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This document is meant to give information concerning the research activities related to the first two years
of the PhD Program in Computer Science. In particular, after pointing out the Research Context I am focusing
on, and its current State of the Art, I will concentrate on the results which I have so far achieved—showing their
relations to the addressed problems—and will provide a description of the Future Work which I intend to follow
through during my last year.

1 Research Context

The total number of transistors available on a microchip, over the past 45 years, has doubled every 18-24 months,
a trend which is known as Moore’s law [78]. This electronic advancement, due to improvements in production
cycles and technologies, had a direct impact on computation speed of single processors—and therefore on the
actual efficiency of algorithms and programs run onto them. This computation power’s enhancement trend has
not significantly changed until year 2003 [99], when physical constraints related to power consuption [60] have
produced a final stall in the growth of per-CPU clock frequency.

Nevertheless, both industrial and academic institutions are still demanding for an increased computation
power, which is the basis for the development of new/more efficient programs and algorithms, and for addressing
always more complex problems. This has lead the industry to the development of new computing architectures
which provide multiple processing units, and therefore give the possibility to enhance software performance by
relying on the parallel programming paradigm. Among the various proposals, the most promising ones are GPUs
(see, e.g. [46, 80, 36, 73]) and the multi/many-core architectures (see, e.g., [22, 25, 82, 93]). While the former
is more targeted at data-parallel applications [107], the latter is (generally speaking) a more widely applicable
paradigm, and it is indeed the one which I have targeted for my research activity.

Today, parallel programming is indeed one of the possible answers to the physical limits in the development of
more powerful computing systems. If this kind of system has reached a sort of stability from the electronic point
of view (i.e., the format of architectures is now stabilized), there’s still a long way before the software run on top
of it will be considered both efficient and widely exploitable. In fact, the ability to produce effective and efficient
parallel code has been so far the privilege of few scientist, and therefore considered a niche field.

The need for parallel processing is evident in real-time computing, scientific and non-scientific areas. Scien-
tific computing in high-level languages requires high-fidelity simulations and computations that can be achieved
by increasing the number of parameters and the size of the datasets. Similarly, in the field of embedded real-
time computing the replacement of analog receiver technology (in sensor arrays) by digital technology requires
faster digital processing capabilities at the sensor front end. Additionally, the migration of more and more post-
processing—such as tracking and target recognition—to the sensor front end necessitates increasingly powerful
processing architectures. Finally, as said, multicore processing units are now a consolidated reality on out-of-the-
shelf machines, giving normal users a relevant computation power which is most of the times wasted or not fully
exploited.
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My research is precisely focusing on this direction, that is, the possibility to produce tools and techniques
which might enhance the effectiveness of parallel programming and bring its power directly to inexperienced
programmers, or scientists from different fields, which do not have the skills required to fully exploit the always
increasing computation power offered by multi/many-cores architectures, and yet can be considered amongst the
ones which could benefit the most from it.

As hinted, my research is mostly twofold. On the one side, I am focusing on performance aspects of con-
current programming, in particular exploring the viability of new synchronization patterns and protocols (e.g.,
non-blocking algorithms, which are algorithms ensuring that threads competing for a shared resource do not have
their execution indefinitely postponed by mutual exclusion).

On the other side, I am concentrating on transparency, which can be regarded as the answer to the demand
for providing software developers with efficient tools and techniques for supporting the creation of parallel algo-
rithms/programs. In order to provide the user with full transparency, I have to develop tools which are able to
understand at their best what the programmer is really asking the machine to do, that is, tools which are able to
understand both the program and the machine which the program will be run on. In addition, to make these tools
general purpose, a low-level approach should be used: Every program talks with the underlying hardware using
machine code, therefore producing tools and methodologies which are able to directly handle final executable files
will produce a benefit for programmers of multiple languages. This means that if we want to produce a general-
purpose tool, we cannot move from a language of a level higher than machine code, or its 1:1 companion, the
assembly.

So far, I have concentrated my effort on some special cases, i.e. Parallel Discrete Event Simulation (PDES)
systems [43] and Transactional Memories [54, 94, 74, 31]. The first one falls into the Event-Driven Programming
[72] paradigm, in which the flow of the program is determined by events (generated from the users or from
other software modules) or messages from other programs or threads. PDES, in particular, is used to implement
simulation models through a reduced-size set of APIs offered by simulation platforms. Event scheduling can be
based on the safety property of events (i.e., if an event will not cause any time-causality inconsistency), or using
an optimistic approach [61], where events are executed regardless of their safety (thus being intrinsically prone to
great exploitation of parallelism), and if an inconsistency is later found, a rollback operation (supported by state
log/restore operations) is performed, bringing the state back to consistency.

On the other hand, Transactional Memories are a generic non-blocking synchronization construct, which have
been studied for over a decade and offer—in their software version—both obstruction-free [53, 49] and lock-
free [94, 41] implementations. They allow a correct sequential object to be mapped automatically into a correct
concurrent object, using the definition of a transaction, which is a sequence of instructions which atomically
modifies a set of data objects. To fully exploit transactions, the user must explicitly mark in the code which regions
have to be executed atomically. Later on, at runtime, the underlying framework uses a system-wide declaration of
a transaction’s update intention, to notify any other concurrently-running transaction that an update to a particular
object is about to be performed.

2 State of the Art

In the context of performance, reducing the impact of mutual exclusion has been considered a benefit since the
early 1970’s [34]. Lamport [67] gave the first non-blocking algorithm for the problem of a single-writer/multiple-
reader shared variable. Herlihy [52] proved that for non-blocking implementations of most interesting data types
(e.g., linked lists), a synchronization primitive that is universal, in conjunction with reads and writes, is both neces-
sary and sufficient. A universal primitive is one that can solve the consensus problem [38] for any number of pro-
cesses. Among various ones, atomic operations like compare and swap (CAS) and load-linked/store-conditional
(LL/SC) [27, 62, 55, 52] can be exploited as universal primitives, avoiding costly ones like spinlocks, and being
safe from drawbacks like deadlocks, priority inversions, and convoying.

A subtle problem associated with most lock-free algorithms is the ABA problem. It was first reported in
association with the introduction of the CAS instruction on the IBM System 370 [27]. It occurs when a thread T1
reads a value A from a shared object and then an interrupting thread T2 modifies the value of the shared object
from A to B and then back to A. When T1 resumes, it erroneously assumes that the object has not been modified.
Given such behavior, there is a serious risk that T2’s execution is going to violate the correctness of the object’s
semantic. Practical solutions to the ABA problem include the use of hazard pointers [76] or the association of a
version counter to each element in platforms supporting a double-word compare-and-swap primitive (CAS2) such
as [A-32 [58, 59].



In literature, a relevant amount of researchers has addressed the study of non-blocking algorithms from a
data-structure point of view, i.e. several data types along with non-blocking procedures to handle them have been
proposed. The works in [64, 77, 53, 48] address, e.g., the implementation of queues and lists.

Concrete applications of non-blocking algorithms appear in solutions for the mutual exclusion problem [23,
68, 106], write barrier implementations in garbage collectors [71], and in implementations of composite locks
[51]. All these solutions have been experimented in real implementations of programs, proving the effectiveness
and viability of the approach.

Recently, the work in [65] has proposed a general methodology, namely fast-path-slow-path, the idea of which
is to build data structures from fast and slow paths, where the former ensures good performance, while the latter
serves as a fall-back to achieve wait-freedom. Normally, the fast path is a customized version of a lock-free
algorithm, while the slow path is a customized version of a wait-free one. A thread makes several attempts to
apply an operation on the fast path; only if it fails to complete, it switches to the slow path, where the completion
is guaranteed.

As mentioned before, Software Transactional Memories (STM) [45] are an answer to the high contention
derived by the explicit use of locks when a high degree of parallelism is shown, expecially on a reduced set of
data structures, which is likely to happen in the context of, e.g., high performance computing. The basic principle
behind them is rather easy, involving the programmer in the conversion of critical sections into transactions,
i.e. portions of code which should be executed atomically. Rather than that, the execution is non-atomic, but
works on actual copies of the data, which are a-posteriori reconciliated with the main (global) version through a
commit phase. In particular, during the commit phase, inconsistent accesses by different threads are detected, and
transactions are therefore aborted and restarted, in order to take into account the new changes in data by other
threads. Indeed, a transaction is a very intuitive abstraction that has been used with success in databases for a long
time. Nevertheless, it is not a fully transparent solution!, given that the programmer must once more determine
which are the atomic portions of its code and explicitly mark them, using the API provided by the underlying
library.

The idea underlying transactional memories is more widely applied by Speculative Processing, which can be
regarded as a means to improve parallel programs’ performance with respect to serial fractions. In particular, it
tries to guess which is going to be the outcome of parallel fractions of programs and tries to execute the serial
ones concurrently. By using a retry-until-commit approach, Speculative Programming does some work, the result
of which may be incorrect, but if it is not, a significant increase in performance can be obtained.

This technique has been successfully applied in a number of different fields such as pipelined computing archi-
tectures [66, 92] and high performance computing systems and applications [28, 95, 91, 88]. Using Speculative
Programming, parallel parts of the application are not subject to locks, therefore the processing units are fully
exploited, and with some probability the partial results will be committed, with some other probability they will
be undone. Overall, the global performance of the application will benefit from this approach.

The work in [24] has targeted non-replicated real-time databases and shows the benefits, in terms of transaction
timeliness, by speculatively forking, upon detection of a conflict, a copy of the current transaction that remains
idle and serves as a save-point to reduce the rollback cost.

Self-Adjusting Computation, in which programs respond to input changes by updating automatically their
output [19, 21, 20, 47], is a technique allowing, to some extent, to advance in a computation—which is not
necessarily consistent—until new information is available (i.e., updates on constrained data are performed) and
the global execution is corrected using it. This is done by recording data and control dependencies during a
program’s execution, and by exploiting a propagation algorithm which updates the computation as if the program
were run from scratch. To increase performance, propagation algorithms are able to perform these updates in an
incremental fashion, i.e. only parts of the program which are affected by the data changes are re-executed.

Reactive languages are imperative languages which support the dataflow model of computation [44, 70, 47,
79]. They are mostly (but not necessarily) visual languages, and allow the user to manage the flow graph by putting
links between various entities using some sort of GUIs. They mainly focus on how the different data components
in the program connect, so that the procedures updating them are just a secondary aspect with respect to the actual
graph defining the information flowing through the execution. In this way, given that the constraints on data are
well-specified, some sort of runtime library is able to guarantee consistency on the dataflow whenever the data is
changed by a portion of the software.

Both self-adjusting computation and reactive languages allow the end user to provide efficient execution of

INevertheless, STMs are definitely oriented to transparency, since synchronization is ensured and guaranteed transparently by the underly-
ing library.



their parallel algorithms, although they are far from transparent. In fact, the programmer is required to explicitly
know that he is developing software which will be run on concurrent machines, and some effort must be put
in consistently defining which are the relations about data and procedures updating them, in order to allow the
underlying runtime library to effectively maintain consistency, whenever some constraint is violated.

The work in [30] has proposed an extension to the C/C++ languages where the programmer is able to mark a
memory region (i.e., either complex data structures, or even single primitive datatypes) as reactive. The executable,
at compile time, is statically analyzed in order to identify which operations can produce modifications on data.
In particular, every memory region which is explicitly marked as being reactive (through the exploitation of a
modified version of the malloc allocator) is placed into protected pages, so that whenever they are accessed, a
SIGSEGV signal is raised, and a specific routine can generate dependencies and reconciliate constraints.

PDES systems [43] are usually regarded as an effective means to carry on complex simulations, as an in-
stance of the more general event-driven programming approach, by relying on multiple processing units either in
a multi/many-core machine, or in a cluster. Many implementation provide scheduling mechanisms implemented
using global data structures like global queues (see, e.g., [75], or allow particular supporting routines (e.g., com-
munication) to be executed on separate threads (see again, e.g., [75]), imposing scalability constraints on the
number of concurrent instances of simulation kernels being run.

In the optimistic simulation context [61], several solutions have been introduced for logging the whole state of
a simulation object (at each event execution or after an interval of executed events) [39, 84, 87, 89], or incremen-
tally logging modified state portions [90, 98, 105], or supporting a mix of the two approaches [40, 96]. With these
solutions there is the need (i) to supply the necessary code to collect snapshots of the objects’ state inside the appli-
cation level software, or (ii) to employ calls to functions within the API of proper checkpointing libraries, or (iii)
to statically identify (e.g., at compile-time) which portions of the address space need to be considered part of the
state. Consequently, perfect transparency is not supported since the programmer must necessarily be faced with
issues related to state snapshots, and hence parallelism and synchronization. Also, static identification of the mem-
ory locations to be included inside the snapshot is non-compatible with dynamic memory allocation/deallocation
(e.g. via standard libraries) at the simulation object level. This is the case for the work in [105], which has some
technical similarities to my work on the side of automatic instrumentation, but does not allow dynamic memory to
be employed, thus not supporting recoverability for each permitted operation (allocation, deallocation and update).

The issue of dynamic memory based states for optimistic simulation objects has also been addressed by the
optimistic simulation framework in [97]. However, ad-hoc APIs are used to explicitly notify to the simulation
kernel that specific allocation/deallocation operations, and, more in general, operations on data structures based
on dynamic memory (e.g. lists), need to be rollbackable. Hence, differently from my approach, dynamic memory
based layouts via ANSI-C memory allocation/deallocation services are not supported.

3 Achieved Results

As mentioned earlier in this report, my research activity is focusing on two sides of the same coin, namely
methodologies and techniques for bridging the end user with both parallelism transparency and performance on
multi/many-cores architectures. In this section I provide a discussion of the so-far achieved results. In the begin-
ning, I will present a technological result—showing a tool which stands itself as a building block for later works—
emphasizing its capabilities, along with examples of application scope. Then, I will present methodological and
design/implementation results related to the context ofEvent-Driven Programming and Software Transactional
Memories.

3.1 Software Manipulation Framework

The work in [10] has paved the way to the possibility of altering (at compile time) the actual operations performed
by an executable without modifying its semantics, i.e. the program’s outcome is left unmodified. A tool imple-
menting this technique, called static software instrumentation, has been realized via a software Parser/Modifier
(PM) specifically designed for analyzing and rewriting ELF (Executable and Linkable Format) objects generated
by standard gcc compilers (versions 3 and 4) for IA-32 and x86-64 architectures®. At the very base, PM works
by parsing the object generated after linking together all the application level modules, and build in memory an

2 At the time of this writing, an extension of the described tool/methodology is currently under active development, in order to support
different architectures and executables’ formats.
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Figure 1: PM Internal Representation of Executables

intermediate representation which describes procedures and data structures (i.e., memory addresses) touched dur-
ing the execution. In particular, every instruction in the program being analyzed is classified into a particular
family, describing its actual behaviour (in terms of memory access patterns, flow control, ...). The internal repre-
sentation is depicted in Figure 1, where some instruction/instruction and instruction/data dependencies are shown
as well. The instrumentation process basically involves re-ordering or inserting new elements between the ones
representing instructions, or changing depndencies pointers between instructions.

The user relying on PM is therefore allowed to specify instrumentation rules (specified in an xml configuration
file), i.e. he is able to replace or prepend/append particular user-defined calls to specific instructions (depending
on their family), analyze or modify particular functions, injecting new code into the executable, and/or produce
multiple versions of the same original executable (with different instrumented behaviours) into the same program.
PM simply applies rules to the intermediate representation of the instructions being analyzed, and in the end it
creates a new executable, which transparently embodies all the changes.

Among the various benefits which can derive from the usage of this tool, I mention:

e Profiling: Code profiling is undoubtfully a useful technique to measure the efficiency of algorithms’ im-
plementations. Traditionally, in order to profile code, the user is required to either (i) manually modify the
sources adding timers or use automatic source level instrumentation (therefore producing different versions
of the code), or (ii) to rely on features provided by compilers, like the ones provided by the Intel Compiler
[29] which is not necessarily available in any production cycle or might be incompatible with specific ex-
tensions required by the sources, or (iii) to use external tools which are targeted at fixed-size instruction
sets, and therefore not widely applicable on out-of-the-shelf machines (see, e.g., [35, 85]) or (iv) are quite
intrusive since they rely on dynamic instrumentation (see, e.g., [42, 33, 83, 32, 17]), or require the user to
rely on specific APIs (see, e.g., [69]), or (v) rely on emulation rather than execution (see, e.g., [103]).

On the other hand, relying on a tool like the one I have proposed, user can just maintain one single version
of the sources, and write rules to inject efficient profiling routines to track the execution performance of
single functions, class of functions or even single code snippets.

e Performance Enhancements: In order to enhance the performance of software architectures/algorithms, a
viable approach is to rely on autonomic computing [50, 56, 63]. This technique allows a software platform
to self-adjust its internal configuration in response to variation of the dynamic workload during its actual
execution, in a way transparent to the user, i.e. the system platform is able to sense the environment and
apply changes to itself in order to maximize some internal metrics. In [8], as explained in Section 3.2.2,
I have presented an approach for supporting autonomic computing in the context of PDES simulations
which exploits PM for creating multiple differently-instrumented versions of the same application-level
code, activating the execution of either of the two by simply rewriting function pointers, depending on the
current execution dynamics.

e Synchronization Transparency: having the software run on top of a parallel environment means that we
are explicitly trying to have it run efficiently, in order to optimize in some way the overall performance.
In this context, a great importance falls on the primitives which are actually used in order to enforce syn-
chronization. In particular, in several contexts some primitives might be proven to be more efficient than



others, but in general this would be not an axiom (e.g., spinlocks are efficients when dealing with a small
number of threads, while in other execution scenarios condition variables might provide a less intrusive syn-
crhonization form). PM offers the possibility to alter the actual behaviour of the program being developed
for execution on parallel architectures in order to insert control routines aimed at fine tuning the running
synchronization scheme as a function of the actual scale of the system (which can perfectly target dynami-
cally changing systems), the number of active threads, and any other deploy parameter which can strongly
affect the overall performance because of enhanced contention on the synchronization primitives.

e Post-Mortem Debugging [81]: The problem of finding bugs in a program is non-trivial, especially when
in complex systems it is not possibile to reproduce the problem in the development/testing phase. On
the contrary, if the production version of the software is lightweightly instrumented, it is possible to trace
execution and store light metadata which allow, by analyzing a core dump, to step back between instructions
(restoring previous snapshots of the memory map) and find where the actual bug is. PM actually provides
all the facilities needed to support this kind of system, if ad-hoc routines are injected into the executable.

A subtle technical problem which might arise in instrumentation is related to how common compilers translate
high-level languages structures in assemly. In particular, the switch/case construct, which is indeed very
relevant in the context of event-driven programming, is translated using indirect branches, as specified by the
System V ABI [100, 101, 18].

The modification of the actual executable leads to a resize of the sections associated with the object file,
and to the shift of instructions and other memory locations inside the object layout. Given that instructions/data
instructions/functions references are explicitly handled in the intermediate representation by PM, when the new
executable is flushed, the headers associated with the ELF object, the relocation tables, and the offsets used
for the identification of memory addresses referenced by the software—e.g. the destination addresses for jmp
instructions—are rebuilt from scratch, in order to maintain references’ consistency.

This is not the case for the aforementioned indirect branches, where the destination address is dynamically
identified via the content of CPU registers. To cope with this issue, if such instructions are found in the executable
being parsed, PM automatically flags the generation of a runtime monitoring module for supporting on-the-fly
correction of destination addresses in register jumps. This mechanism is based on the insertion of a call instruc-
tion to an assembly-level monitoring module, referred to as branch_corrector, prior to each register jump in
the original software. This monitoring module relies on a hash table where entries are structured as follows:

struct entry {
unsigned long insn_addr;
char flags;
char base;
char index;
char scale;
long displacement;
}i

where insn_addr is the virtual address associated with the indirect branch instruction and acts as the key value
for this table which is scanned by the branch_corrector module using a fast binary search. In particular, it
reads from the stack its return value—which is actually the address of the subsequent instruction, i.e. the indirect
branch—and associates a particular invocation of the monitor with the instruction which generated the insertion
of the actual call.

This table is built and populated at compile-time during the instrumentation process—to avoid costly run-time
disassembling techniques—and allows the branch_corrector module to fastly compute the target address of
the jump, according to the IA-32/x86-64 specification (for a complete discussion on this, see [57]). To provide a
lightweight mechanism for address correction, PM generates a second table at compile-time, which is visible only
to branch_corrector. Each entry inside this table identifies an interval of addresses for which the instru-
mentation process gave rise to the same amount of shift inside the final (instrumented) memory layout. Such an
offset is also maintained in the table entry. The table is ordered by interval extremes, and branch_corrector
performs a logarithmic-cost binary search to retrieve the interval containing the original destination for the register
jump, and the offset to be applied for the correction. Such a correction cannot however be applied by modifying
the values of the CPU registers involved in the jmp instruction. This would otherwise result in an application
inconsistent processor state, and might potentially produce an undefined behaviour. I have rather adopted a differ-
ent approach where the original indirect-branch instructions are substituted at compile-time by PM with so-called



offset jumps (not relying on CPU registers), where the destination address is maintained inside one field of the in-
struction, and is appropriately set by the on-the-fly correction mechanism. To support the rewrite operation of the
appropriate instruction field at run-time, without impacting typical settings associated with memory protection, the
offset-jump operation has been moved inside a run-time re-writable ELF section. Also, a jump-label instruction
has been inserted in place of the offset jump inside the original (non-writable) sections of the application code,
which passes control to the offset jump right after the brach_corrector module has re-written the correct
destination address (the offset) inside the ad-hoc re-writable section.

3.2 Results in the Context of Event-Driven Programming

As mentioned in Section 1, the Event-Driven Programming paradigm [72] models the execution of the program
as a flow of events which represent interactions among components of the system, and produce alterations in the
actual program’s state. In particular, the notion of events is associated with a (logical) timestamp to take care
of their logical flow, and the programming model is usually realized by the implementation of callback functions
which are activated whenever a particular event is scheduled for execution. In the context of speculative execution,
like the one provided by optimistic simulation environments [61], the problem of supporting transparency for the
incremental execution is non-trivial, since it requires the simulation platform to extract information about which
portions of the simulation state are being modified during events’ execution. Unlike the proposal in [105], in
Section 3.2.1 I present a solution for a completely transparent support for incremental state saving and restore for
private portions of the simulation state. This solution is augmented, as described in Section 3.2.2, to account for
performance enhancements by relying on the autonomic computing paradimg. Later, in Section 3.2.3, I also face
this problem giving a support for shared portion of the simulation state, as well.

3.2.1 Supporting Transparency for Private Data Management

In [10], extending the work in [102], I have implemented a memory manager for handling private simulation
data explicitly recorded in the heap, in the context of PDES simulations. In particular, the PM tool described
in Section 3.1 has been successfully exploited, creating the runtime support to incremental logging. In particu-
lar, every memory-write instruction inside the application-level code, namely mov instructions with a memory
location as the destination, have been modified inserting before each of them a call instruction to a provided
update_tracker module, written in assembly language, which performs the identification of the exact memory
address and the size (amount of bytes) involved in the memory update operation. Although this is a typical way
for tracking memory update references (e.g. in the context of program debugging techniques [104]), the usage
of this approach in optimistic simulation systems poses (more) stringent performance issues. In particular, the
monitor should likely perform its job via very few machine instructions, in order not to significantly impact event
execution latency.

To cope with such a performance target I have explicitly discarded run-time disassembling of the memory ref-
erence instruction, which could be too much costly (compared to the event execution latency of non-instrumented
software) especially due to the complexity and variable format/length of the Intel instruction set. Instead, I have
adopted an orthogonal technique where information related to a particolar mov instruction is immediately pushed
into the stack by another instruction injected into the executabe during the compile-time instrumentation process.
This acts as a sparse cache of disassembling results for memory-write instructions.

In particular, a structure like the one used to correct indirect branches is populated during the instrumentation
phase, and it is pushed into the stack at runtime. Additionally, since the opcode of the instruction being statically
disassembled, together with its prefixes, establish the real size of the memory area touched by the write operation,
this information is also pushed into the stack, and tells update_t racker the (compile-time defined) size of the
memory area to be dirtied by the current memory-write instruction®.

So, upon its activation, update_tracker checks inside its own stack frame the information needed to
compute at runtime the memory address for the write operation and the size of the memory being dirtied. Given
that this computation can unpredictably change the value of the EFLAGS register on board of the CPU, this
register value is saved by update_tracker upon its activation together with general purpose ones, and is put
back in place right before returning control to the memory write instruction for which the tracking process has
been activated.

3The only exception is for movs and stos instructions, used for moving arbitrary size memory blocks. These instructions keep the
information for identifying the destination address and the current size of the memory block being written into predefined registers, namely
EDI and ECX, which are directly accessible by update_tracker.



Figure 2: Di-DyMeLoR’s Memory Map
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In the memory model offered by DyMeLoR [102], the subsystem upon which the work in [10] is built, lo-
cations associated with automatic variables (allocated inside the stack) do not belong to the object memory map,
since they do not survive across different invocations of the event handler. Hence, all those memory-write instruc-
tions that can be detected at compile-time to access the stack (e.g. mov instructions addressing memory via base
pointer or stack pointer displacement) are not actually instrumented by PM, by relying on a special configuration
rule. Anyway, in some cases write access into the stack cannot be recognized at compile time. For this reason,
after having computed the address for the memory-write operation, update_t racker compares it with the cur-
rent value of the stack pointer. In case the access is an actual stack update, update_tracker simply returns.
Otherwise, the information about the identified memory address and the size of the area being dirtied is passed to
the memory map manager.

A second important aspect presented in [10] is related to the memory management subsystem, which allows to
transparently handle the memory allocation requests by the application-level code, and manage the memory map
adding the possibility to silently perform some operations—in the case in point, the rollback operations—which
enhances the global throughput in specific execution scenarios.

In particular, upon simulation startup, a memory map like the one depiceted in Figure 2 is setup. Amalloc_area
maintains a set of metadata for describing the state of a contiguous memory region which is used to serve memory
requests of a given size. In particular, differen malloc_areas handle memory chunks of different power-of-
two sizes. Two bitmaps, namely the status and the dirty bitmaps, are used to track the current state of memory
allocation.

Calls to standard malloc library’s APIs are redirected at compile time to DyMeLoR’s ones, which upon al-
location requests via a malloc call selects the best malloc_area which allows to serve the memory request
(minimizing fragmentation) and in case some chunks are still available, the corresponding bit in the status bitmap
is flagged, and the chunk is delivered to the application-level software. If, on the contrary, the status bitmap states
that the contiguous region is full, a new malloc_area is allocated, along with the bitmaps and the contiguous
chunks, and is linked to the previous one.

Via the exploitation of the dirty_area and dirty_chunks fields inside each malloc_area, and of
the dirty bitmaps, logging activities performed by Di-DyMeLoR have been differentiated in full and incremental
logs. Both types of logs result in packing the information to be logged inside a contiguous buffer allocated via
the underlying malloc services. However, they pack different things. A full-log operation implies that the active
malloc_area entries are packed inside the log buffer together with the in-use chunks in the corresponding mem-
ory blocks, while the dirty bitmaps are not logged. On the other hand, an incremental log performs differentiated
operations depending on the current value of the control flags/fields. Specifically, for each active malloc_area
entry we have the following cases:

A: dirty_areais set and dirty_chunks is zero. In this case the malloc_area is packed into the log
buffer together with the status bitmap indicating the current allocation of chunks inside a given block. But
the dirty bitmap and the currently in-use chunks are not logged.

B: dirty_areais set and dirty_chunks is greater than zero. In this case the malloc_area is packed
into the log buffer together with the status bitmap, the dirty bitmap and the chunks that are currently in use,



which have been dirtied.

C: dirty_area is not set. In this case, no information associated with the area is logged at all.

Full and incremental logs both involve the re-set of all the data structures tracking dirty data/meta-data. For
incremental logs, this occurs independently of the actual case among the aforementioned ones.

Each log is stamped with the current simulation time, and all the logs (full and incremental) are linked together
as a chain. When a restore operation needs to be executed at simulation time 7', the log chain is searched to
determine the more recent log with time less than or equal to 7" (logs with time greater than 7" are simply discarded
since they refer to causally inconsistent memory maps). In case the log found is a full one, then a restore operation
is executed by simply unpacking all the logged data and putting them back in place. A different restore algorithm
is executed in case the log found is an incremental one. Specifically, the following steps are iterated by backward
traversing the chain of logs:

1. Amalloc_area found inside the log buffer, which has not been restored, is put back in place inside the
meta-data table. The associated status bitmap is also copied back from the log buffer (recall that indepen-
dently of the type of log and of the specific case for incremental logging, a logged malloc_area is always
associated with the corresponding status bitmap inside the log buffer to guarantee recoverability of chunk
allocation/deallocation operations).

2. Each dirty chunk found inside the log and associated with the malloc_area, which has not yet been
restored in a previous iteration while backward traversing the log, is copied back in its correct position
inside the corresponding memory block.

The iterative restore procedure stops when all the active malloc_area entries have been restored and all the
in-use chunks that have been dirtied are also restored. Although in principles this could entail an indefinite number
of iterative backward steps along the log chain, in practice the restore operation can be immediately finalized once
we find a full log while backward re-traversing the log chain. In fact, all the in-use chunks that have not yet
been restored are immediately available inside the full log for copy-back operations. Actually, to optimize the
detection of already restored chunks, which must therefore not be copied-back again from the log, the iterative
restore procedure has been based on temporary bitmaps (each associated with an active malloc_area) on which
a couple of fast bitwise OR-XOR operations are executed each time a dirty bitmap (associated with that same
malloc_area) is extracted from the incremental log.

In Figure 3.2.1, I present some performance results evaluated using Personal Communication System (PCS),
a parameterizable cellular system simulator, explicitly modeling fading and channel interference phenomena,
entailing the computation of the minimum transmission power allowing the currently setup call to achieve the
threshold-level SIR value, according to GSM technology. In the experimental configuration, the call inter-arrival
frequency has been varied, in order to actually show how the memory manager scales when the execution load is
increased.

In particular, the proposal has been show to add a very reduced—and constant— overhead (see Figure 3(b)),
while at the same time showing a log latency which grows linearly, while the original (non-incremental) latency
was showing an exponential trend (see Figure 3(a)). At the same time, the cost for restoring a log is higher in the
case of an incremental log (see Figure 3(c)), altought this operation is seldom executed, and the actual cost can
be tuned by forcing the interval of the incremental log. At the same time, the memory usage in the incremental
version is definitely minimal, even more if compared to the non-incremental one (see Figure 3(d)), giving the
possibility to follow through more complex simulations even on machines where the available memory is limited.

3.2.2 An Autonomic Approach based on a Dual Coding Mechanism

In [8] an extension to [10] has been presented, in which multiple (differently instrumented) versions of the
same executable coexist in the same image. In particular, this work has allowed complex simulation systems
to switch between incremental and non-incremental executions of the log/restore operations depending on the
actual application-level execution dynamics, thus enhancing the overall throughtput by selecting the most suited
execution mode.

Automatic ELF rewriting schemes have been introduced into the aforementioned PM tool, in order to create,
starting from the same set of application level modules, two different .text sections within the ELF, one containing
a non-instrumented version of the compiled modules, and the other one containing the instrumented counterpart.
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Figure 3: Di-DyMeLoR Performance Results

These two sections are then transparently placed within different virtual memory sections thanks to standard 1d
facilities. However, the corresponding symbol tables are modified by my preprocessing/instrumenting tool in
order to expose the application interface requested by the underlying simulation kernel, namely the event handler
callback, via differentiated symbols. The .rodata sections corresponding to the two different text sections are
modified in order to provide correct adjustment of the displacement information associated with the position of
code and data within the virtual memory addressing. Also, the replicated .data/.bss sections associated with the
two versions of the application object code have been collapsed on the same virtual addressing range in order to
provide a single actual copy of initialized and non-initialized data, accessible by both the generated code versions.
A schematization of the whole process supporting such a dual-version code generation is provided in Figure 4,
where I explicitly indicate the steps carried out by my extension to PM.

Once the executable is finally built and run, a kernel level
switch between the two different log modes simply involves reas-

instrumented version

signing the event-handler callback pointer to the entry point sym- (fr incremental logging)

bol associated with the corresponding version of the duplicated Foe

application executable modules. Adopting this solution, either _ /7 L e

full or incremental log mode is supported* according to an op- o - T

timized run-time scheme where any overheads are at all avoided o e s o

while processing simulation events in case no tracking of memory appicaton e e

update operations is requested by the currently active log mode. e B F fial inary
The above scheme would only entail additional virtual ad- o o ncementa - loggn)

dresses consumption due to the presence of two versions of the
executable modules associated with the application layer. How-
ever, this should not represent a real problem when considering
the tendency of vendors towards 64-bit processors, enabling ex-  Figure 4: Dual-Code Coexistance Scheme
tremely wide span of virtual memory addressing, and the fact that
text sections usually fill a reduced percentage of the available virtual addresses.
I have conducted an experimental assessment of my proposal, by relying on the PCS simulation model, where I
have simulated a whole week of operativity of the GSM coverage system along the roman GRA highway, explicitly

4The work in [8] actually presents as well a closed-formula method to estimate which are the best incremental/full log interval (x 7 and x r,
respectively) according to the current execution dynamics. For the sake of brevity, I refer directly to that work for that part of the discussion.
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Figure 5: Autonomic System Experimental Results

accounting for dynamic day-time traffic variations, like night and rush hours, as derived by [16].

I report in Figure 5(a) the variation of the amount of committed events per wall-clock-time second (event rate)
achieved while simulating specific virtual time periods, represented by the variation of the GVT on the x-axis.
Actually, this parameter indicates the speed according to which a given virtual time period is simulated. The
higher the event rate, the faster the execution while simulating a given virtual time period. I report three plots
referring to (i) the case in which the autonomic layer is active (ii) the case in which the autonomic layer is active,
but I always force the incremental log/restore mode, with the corresponding optimized value for x; and (iii) the
case in which the layer is active but the non-incremental (full) log/restore mode is forced, with the corresponding
optimized value for x . The plots for cases (ii) and (iii) express performance levels that could be achieved via an
optimized log/resotre mode (adaptive in the selection of the log interval) based on either the incremental or the
non-incremental log mode, but not allowing autonomic switch between the two modes on the basis of run-time
dynamics.

By the results, we see that, depending on the simulated period (night-time vs day-time), forced-incremental
and forced-full modes alternately exhibit better execution speed. In particular, the forced-full mode is faster while
simulating night-time periods, while the forced-incremental mode is faster while simulating day-time periods.
This is a reflection of the fact that, during night-times and in the weekend, each GSM cell, and hence each LP,
exhibits a reduced state size due to the minimal number of records allocated for ongoing calls. This is not the case
for day-time periods, where the state size of the LPs can grow significantly (especially for rush hours), up to the
limit of slightly less than 70 KB, and the update pattern of the state upon the occurrence of the events allows the
incremental-log mode to outperform the full one, once the correspnding log period get optimized. Anyway, the
most important outcome by the event rate plots is that the autonomic configuration always switches to the best
performing mode (incremental vs non-incremental) depending on the currently simulated period (e.g. night vs
day), and hence depending of the actual dynamics (e.g. in terms of state size, event granularity, memory update
pattern and so on).

The final effect on performance by the above optimized behavior is expressed by the plots in Figure 5(b), where
we draw the cumulated amount of committed events vs the wall-clock-time for the simulation run. These curves
express the ability of each log/restore configuration to commit events (and hence to carry out useful simulation
work) while wall-clock-time goes ahead, hence we have a representation of how fast the simulation model is
executed vs wall-clock-time. By the results, the ability of the autonomic configuration to always switch to the
best suited mode is reflected in the fact that its cumulated event rate curve always exhibits the best pendency vs
wall-clock-time. In other words, it allows the model execution to be carried out in a significantly faster manner,
compared to what done by the other two schemes. In particular, the wall-clock-time by the autonomic scheme
for reaching the required amount of events to be committed for the whole simulation is reduced of about 13%
compared to the forced-full mode, and of about 9% compared to the forced-incremental mode. Given that these
modes run according to an optimized configuration, thanks to dynamic (re-)selection of well suited log intervals,
this is a significant result.
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3.2.3 Supporting Transparency for Shared Data Management

In [3] I have presented a solution to the problem of handling shared state in optimistic simulation. In particular,
according to the seminal paper in [61], the whole simulation state S is partitioned amongst the various n LPs

which together set up the simulation, in a way such that (i) S = U S; and that (i) Vi, 7 S; N S; = (). This means

that in order to synchronize or communicate, different LPs mu;t %ely on explicit events (i.e., message passing).
The aforementioned work in [3] specifically addresses this problem by relaxing constraint (ii) and allowing global
variables to be consistently accessed during the optimistic simulation’s execution.

This solution clearly sets forth the path of transparency, in the sense that it allows programmers to rely on
conventional programming facilities (i.e., assignments to global variables), re-maps these operations to different
ones better matching multi/many-core architectures, and additionally tackles performance by explicitly relying on
a non-blocking implementation.

In order to provide complete transparency to the application-level programmer, accesses in read/write mode
to global variables must be explicitly intercepted. To this end, I have again relied on the PM tool, modifying
the actual instructions executed by software executables, without altering their actual semantics. By relying on
PM, at compile time the application-level instruction code (i.e., the assembly bytestream) is modified in order
to replace operations loading data to and from memory with actual function calls which are the entry points of
my Shared State Memory Subsystem (SSMS). These entry points are associated with the following APIs pro-
vided by SSMS: write_global variable (void *orig.addr, time_type 1lvt, ...) andvoid
xrread-global_variable (void xorig.addr, time_type my-lvt). They allow accessing the ver-
sions within the version lists for a given variable at a certain Logical-Virtual-Time (LVT).

I have identified two main groups of instructions/code blocks which have to be handled within the application-
level assembly code. First, in IA-32 simple load and store operations are identified by mov instructions. Whenever
IT’s parser identifies a mov instruction, it is analyzed in order to determine whether it is targeting memory as
a source or destination operand, and a call to write_ global variable or read_global variable is
replaced accordingly. When the mov instruction involves a load operation from memory, an additional postamble
to the function call is placed, in order to have the actual value returned by read_global_variable placed
into the correct CPU register where the application-level software is expecting the value to be found.

Second, the IA-32 instruction set provides more complex instructions which allow an executable to efficiently
modify memory areas in-place. As a relevant example, I propose instructions like ADD m32, r32or INC m32.
In this case, IT replaces the instructions with a block of instructions, entailing a couple of calls to the SSMS’s read
and write APIs, and re-implementing the same logic with several CPU instructions. This implementation of course
adds some overhead, nevertheless it allows to integrate my SSMS completely transparently wrt the application-
level programmer.

High-level programming languages allow to access memory objects in a non-direct way, namely through the
use of pointers. Since IT works at compile time, it is not possible to statically determine whether a pointer
will target a global variable or not. To cope with this issue, I use IT to instrument any mov instruction which
can handle pointers through a call to a monitor function which fastly determines if a pointer targets a global
variable. In particular, at compile time, via the usage of a custom ld-based linker script I insert symbols called
_bss_start, bss_end, data_start, data_end, within the application-level ELF executable, which mark
off the area containing global variables. Upon a call to the monitor routine, a fast check on these boundaries is
performed. If a pointer falls within this area, the operation is redirected to SSMS, on the other hand the original
mov instruction is executed.

As a last note, Intel’s instruction set provides string instructions which allow to perform operations on memory
buffers instead of single memory locations. In particular, movs and stos instructions allow the program to
copy or modify large buffers at once. In order to cope with the presence of these complex instructions, SSMS
provides two additional APIs, namely copy buffer () and set_buffer () which simulate the execution of
these operations on version lists if they are found to target global variables (e.g., global arrays). Otherwise, they
just execute the original movs or st os operations. Therefore, at compile time, IT replaces every string operation
involving memory update with a function call to these APIs, accordingly.

The last operation I perform at compile time is the inspection of the application-level ELF object file in order
to extract information concerning global variables. In particular, by exploring the application object I extract from
the symbol table . symtab all the STT_-OBJECT / STT_-COMMON symbols and store their name, address and size
in a text file which will be later used at startup time for setting up the version lists. In this way, by exploiting
the (name, address, size) tuple, I am able to transparently identify any access to global variables which will be
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likely used by the application-level code during the execution of the simulation model, allowing the programmer
to rely on the complete set of constructs provided by ANSI-C. I note that, although there will be more instances
of the simulation kernel running the application-level code, a global variables’ address is a common information
shared among the instances, as long as its virtual address will be the same and is cabled into the executable.

SSMS explicitly targets shared-memory/multi-core machines. In order to significantly enhance performance,
I have decided to avoid requesting to the underlying operating system shared memory segments on-demand,
whenever SSMS needs to install some data structure. On the other hand, at simulation startup the master kernel
installs a large shared memory segment, and broadcasts to other kernel instances its id. The shared segment is
partitioned according to the definition of the following structure:

typedef struct _globval_shmem {
int num_vars;
globvar_info variables[MAX_GLOBVARS];
volatile int first_node_free;
globvar_node versions[MAX_VERSIONS];
time_type read_list[];

} globvar_shmem;

In particular, the shared memory segment is divided into several fixed-sized portions. One portion, namely
variables,is an array which is used to manage global variables. Upon initialization of SSMS, the configuration
text file is loaded and parsed. The field num_vars is used to keep track of how many variables are actually
handled, and for each of them an entry in the variables array is populated. To allow a fast retrieval of the
global variables, I use a fast hash function to determine which entry in the variables array will store the
information associated with a specific variable. In particular, the position in the array is determined with a fast
bitwise operation — namely, address & (~ (-MAX_GLOBVARS)) — since MAX_GLOBVARS is set to be a
power of two. In case collisions are found, separate chaining is used as a means for finding a free place. Each
entry in the variables array is structured as:

typedef struct _globvar_info ({
void *orig_addr;
unsigned short int size;
long long head;
long long tail;

} globvar_info;

orig_address stores the global variable’s original address, which is used as hash table’s key; size describes
which is the size (in bytes) of the global variable.

Since I am preallocating shared memory, version lists must be implemented using nodes scattered around the
preallocated segment. In particular, versions is an array of fixed-sized nodes which can be used for any list,
and head and tail are indices within this array, which is composed of entries structured as follows:

typedef struct _globvar_node {
volatile int alloc;
time_type 1lvt;
unsigned char value[MAX_ BUFF];
spinlock_t read_list_spinlock;
long long next;

} globvar_node;

where 1vt is the logical time associated with the version, value is the global variable’s value, and next is used
to identify which is the following node in the list. A node can therefore be seen as a snapshot of the state of a
single global variable at a certain LVT. In Figure 6 I provide a complete picture of the preallocated memory map.
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Node versions’ entries can belong to any list, and given that lists are accessed without the use of locks, a
special allocation function must be used, ensuring that no two simulation kernel instances running concurrently
are given the same entry for handling two different versions.

The ALLOCATE pseudocode is given in Algorithm 1. In
order to allow concurrent accesses, it relies on CAS®, which
allows to update involved data only if no other process has up-
dated the same data in the meanwhile. The globvar_shmem

Algorithm 1 Shared Memory Allocation

1: procedure ALLOCATE

m « generatemark() data structure holds in first_node_free the value of the
Z fvlﬁe; i;git’mde’free first element of th.e ve'rsi.ons array to start trying to ?1110-
5: alloc + vers[slot].alloc; cate from. Its manipulation is based on the classical algorithm
6: if alloc V = CAS(vers[slot].alloc, alloc, m) then . .
7 slot + next slot in circular policy use.d by the LINUX ke.rnel for managing the bltmap Qf file de-
8 else scriptors associated with a process. Specifically, it is always
1(9); en d"i;eak atomical.ly increased upon allocation, apd gets atomically de-
11: end while creased in case an entry is released having index less than the
i% ‘;‘:;';‘r’:;agli;‘,pdate first.node-free first chunk currently available within that block. Starting from

that slot, a kernel instance tries to allocate a node by storing
via a CAS operation a non-zero value within the alloc field
of globvar_node, which tells whether a node is currently in
use. In case the CAS fails, the next node in the array is selected and the procedure is repeated, until it eventu-
ally succeeds®. The companion function RELEASE is much simpler, as it only entails resetting the alloc and
updating first_node_free, viaan atomic_set call.

In order to cope with the ABA problem, I have explicitly decided to consider a node allocated if the alloc
field is non-zero. In particular, I store into it a unique value every time a node is allocated, so that two allocations
can be identified as different. The macro generate_mark produces an integer value which is in turn composed
of two short integers, one holding the unique id of a kernel instance and the other holding the value of a per-kernel
counter which is incremented every time the macro is invoked’.

Once a node is allocated, it gets organized into a non-blocking linked list, which is implemented according
to a modified version of the one proposed in [48]. Concurrent insertions are handled via the use of a single CAS
operation, which is used to introduce the newly allocated node into the list by acting on the next field of the
predecessor node. As for deletion, two CAS are used, one to mark the next field of the deleted node as logically
deleted, and another to physically delete the node. I have slightly modified the algorithm in order to take into
account my specific needs. In particular, the FIND-NODE procedure has been augmented in order to return the
alloc field, to explicitly cope with the ABA problem, and the INSERT procedure does not fail if a node with
the same key (i.e. LVT) already exists. Specifically, the new node is simply linked after the originally existing
one. In addition, I note that LPs are more likely to access versions associated with higher LVTs, since well
partitioned/balanced optimistic simulations usually proceed relatively evenly. Therefore, I sort the versions in the
lists in descending order, to avoid a complete scan of the list every time we want to find a node in it.

To avoid the ABA problem in linked lists, pointers (i.e. indices) to nodes are composed (every time they
are updated) by a unique mark generated via the aforementioned macro generate_mark and the real index,
allowing to capture the situation where two nodes are still adjacent but one was deallocated and then reallocated
during the execution of the non-blocking algorithm by different kernel instances.

The operations performed on the versions lists are depicted in Figure 7(a).

The APIs offered by SSMS provide two main functions to access global variables, namely read_global_variable
and write_global_variable, which I will refer to as READ and WRITE from now on.

READ operation’s pseudocode is provided in Algorithm 2. For efficiency reasons, before letting an LP execute
a simulation event, SSMS sets up an AccessSet, i.e., a mapping between version nodes and variables. Whenever
a variable is accessed for the first time, FIND-NODE (®) determines which is the most suitable version for the
given LVT, and a couple (slot, version) is placed into AccessSet in order to speedup the retrieval of the version,

14: end procedure

SIn particular, I rely on the IA-32’s cmpxchg. I often mention atomic operations, which are implemented directly in assembly using native
atomic instructions.

%To check if the space is up, a counter of available free nodes is kept as well in shared memory, which is managed via an
atomic_decrement operation.

Tgenerate_mark can of course return two equal values when the counter overflows, but this situation can happen after a significant
simulation time, so I consider it to be statistically non-significant for the ABA problem.

81 remind that FIND-NODE is a modified version of the one presented in [48]. For a detailed description of the procedure, I throw back to
that work. In addition, I note that a version node is always available, even before any WRITE operation, since at startup the initial value of the
global variable is placed into the version list.
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Algorithm 2 Global Variable Read

1: procedure READ(addr, lvt)

2: slot < hash table’s entry associated with addr
3: hasRead « false Algorithm 3 Global Variable Write
4: if slot € AccessSet then
5: version < AccessSet[slot] 1: procedure WRITE(addr, lvt, val)
6: else 2 slot < hash table’s entry associated with addr
7: while —hasRead do 3 if slot € AccessSet then
8: (version, alloc) < FIND-NODE(slot, lvt) 4: version < AccessSet[slot]
9: AccessSet[slot] + version 5: verslversion].value < val
10: spin_lock(read.list_lock) 6 else
11: if alloc has been changed then 7 version < INSERT-VERSION(slot, lvt, val)
12: spin_unlock(read_list_lock) 8: AccessSet[slot] « version
13: continue 9: end if
14: end if 10: for all {Ip, lvt’) € ReadLists.t. lut’ > lvt do
15: add (Ip, lvt) into ReadList 11: send antimessage to Ip
16: spin_unlock(read_list_lock) 12: end for
17: hasRead < true
18 end while 13: end procedure
19: end if
20: return vers[version].value;

21: end procedure

avoiding the scan of the list upon subsequent accesses.

As for the WRITE operation, the pseudocode of which is presented in Algorithm 3, its behavior is twofold
depending on whether it is invoked for the first time since the beginning of the current event’s execution. In
particular, upon the first access on a variable, the AccessSet for that particular event is populated. Otherwise,
a call to INSERT-VERSION is performed whichcreates a new version. The second part of the WRITE operation
entails checking the ReadList for ensuring consistency.

In order to strengthen the optimism of my implementation, I allow interleaved reads and writes on a version
list, and I explicitly avoid a version £ installed at LVT %, to invalidate every version j such that ¢, < t;. In
fact, I note that consistency is violated only if, at LVT ¢, an LP reads the version associated with LVT ¢, such
that ¢, < ¢,, and at a certain point during the execution a new version node associated with LVT ¢, such that
ty, <t, <1, is installed.

This means that every process which reads a certain version node must leave a mark of that operation, i.e.,
visible reads [26] are enforced. In fact, as shown in Figure 7(b), I are interested in undoing only the events which
read a version older than the new one which has just been inserted.

To this end, I augment the classical notion of rollback as presented by the Time Warp synchronization protocol,
by sending a special anti-message to all the LPs which have read a so-defined causally inconsistent version after
any write operation. This is reflected into Algorithms 2 and 3. In fact, in the READ operation, before returning
the variable’s value, the tuple (Ip, lvt) is inserted into the ReadList for that particular version. This operation is
included within a specially designed critical section to ensure consistency. In fact, a spinlock for that particular
ReadList is taken, ensuring that no other process will start the rollback operation while the ReadList is being
updated. Otherwise, this scenario would produce a non-trackable read operation. In addition, after the spinlock
has been taken, a check on the variation of the alloc field for that particular version is performed, so to avoid
the ABA problem due to a critical race between the deallocation/allocation procedure and the ReadList update.
At the same time, at the end of the WRITE operation, the ReadList of the left node is checked in order to find
all the LPs which read the previous node’s value, while they were requesting a version at an LVT such that they
should have read the one in the version which was just installed. Although the list is linked in only one direction,
given the implementation of FIND-NODE, locating the previous node is immediate.

I note that another step must be undertaken in order to ensure correctness. In particular, whenever a special
antimessage is received because of an inconsistent read, any version node installed due to that particular event
must be removed. To this end, I augmented the concept of message queue and modified the WRITE function so
that whenever a node is installed during the execution of an event, the message queue keeps track of this operation
via a pointer to the node created during the event’s execution. In case a rollback operation entails the undoing of
that event, the node is removed from the version list, and the ReadList is scanned for sending antimessages to
every LP which read that particular node.

In Time Warp, the notion of fossil collection is defined, i.e., the process of recovering memory by deleting
simulation state snapshots which are no longer needed. In particular, at a periodic rate, the Global Virtual Time
(GVT) is computed as the minimum timestamp of not yet processed events or in-transit messages/antimessages in

15



Insertion:

s \

Write

V —| Lvf=10 | ——»| LvVT=6

Deletion: H ﬂ n o ' u. E ' Read: LVV

'Read: LVT = 9

5O e ® =0 =<

(a) List Operations (b) Causality Violation

Figure 7: Multiversioned Variables

Throughput Total Time Execution

7e+06 600

Message ‘Passing J— Messagé Passing I
Shared Memory ---x--- Shared Memory ------
M No Shared State ----*---

i e 500

6e+06

5e+06

400

300 /

4e+06 3 /_/

30406 % S

2e+06

Cumulated Committed Events
x
Execution Time (seconds)

100

1e+06 i /_//

» L

0 10 20 30 40 50 60 70 80 920 0 5 10 15 20 25 30 35
Wall-Clock Time (seconds) Number of Simulation Kernels

(a) (b)

Figure 8: SSMS Performance

the whole simulation system. Since during the execution of an event an LP can schedule a new event at an LVT
which is equal to, or greater than, the one associated with the event being executed, there cannot be a rollback
operation involving a simulation state snapshot associated with a timestamp less than the GVT. Therefore, any
snapshot belonging to a logical time window before the GVT can be discarded.

In my proposal, I extend the notion of fossil collection by defining the version list pruning. In particular,
upon GVT computation, the version lists associated with global variables are scanned in order to find which is
the first node ¢ stamped with ¢; < GV'T and that node is selected as the barrier node. Any node marked with
a timestamp t; < ¢; is marked as free and removed from the list. For implementations where there is no actual
event processing during GVT computation, the version list pruning is thread safe, and can therefore be executed
efficiently, with no need to synchronize the access. In particular, the various lists can be divided evenly across
the various kernel instances, and each kernel performs the memory recover executing in isolation. This choice
provides a more efficient execution and still ensures correctness.

To evaluate the efficiency of my proposal, I have extended the PCS simulation model having a set of global
variables handling global statistics. In particular, upon each event’s execution the total number of calls, the to-
tal number of handoffs, and the global cumulated power is updated in the shared state. In addition, I have re-
implemented a different version of the model in order to have a centralized LP keeping in its disjoint simulation
state the global attributes. Every LP willing to update a shared attribute issues a message request to the centralized
LP, which in turn sends back the current value. Any update on the current value is then sent as another message to
the centralized LP.

In Figure 8(a) I present the throughput associated with my proposed test-bed model run on top of 32 simulation
kernel instances, each one running on a private CPU-core of my test machine. By the results, I can see that the
execution of the simulation model relying on my SSMS provides a speedup in the order of 70%. In addition, I
note that there is a tangible difference between the two curves’ trends. In fact, the throughput associated with the
SSMS execution has a constant growth, which suggests a constant event commitment rate. On the other hand,
the centralized-LP implementation’s slope shows fluctuations, which are related to the large amount of events
associated with variables’ reads/updates which must be processed. Therefore, the number of committed events
per GVT interval is not constant, due to the fact that the amount of workload processed by differentiated LPs is
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totally different and that the LVT of the LP keeping the shared state diverges from the other LPs’ one (this can
entail a higher rollback probability), a scenario which is not present at all when relying on the multiversion lists in
the shared memory version case.

At the same time, Figure 8(b) shows the total execution time of the simulation wrt the number of parallel
simulation kernel instances on which the model is run. In addition to the set of experiments described before,
I present also the curve associated with another implementation of the benchmark, where the shared attributes
are kept in the disjoint LPs’ simulation states and are reduced at the end of the simulation. By the results, I can
see that both the SSMS and the centralized-LP implementation suffer from some form of thrashing. In fact, the
centralized-LP version provides a speed-down in the order of 100% when the model is parallelized on top of 4
parallel kernel instances, while SSMS shows the same behaviour starting from 8 parallel kernel instances. The
version with no shared state shows a trend which is the one expected by a parallel simulator.

I note that in this configuration, the SSMS’s speedup wrt the centralized-LP is very large. Of course, the
overhead in the centralized-LP case could be leveraged by having different LPs handle different variables, but this
solution would not scale well wrt the size of the shared state in the simulation model.

Finally, I note that the simulation model used to assess the validity of my proposal is a worst case for my
architecture, since at every event’s execution some updates on the global variables are performed, producing a
large contention on the linked lists. A simulation model which relies on shared-state for synchronization rather
than for global statistics would benefit much more from the proposed architecture.

3.3 Achieved Results in the Context of Software Transactional Memories

In an ongoing work [15], I am addressing the problem of performance in the context of high-contention executions
of transactional programs. In particular, given the fine synchronization granularity provided by transactions, it is
important to study the viability of developing a scheme targeted at undoing the smallest amount of work done as
possibile.

In particular, it is evident that whenever a transaction is aborted, it is because some object accessed in read
is detected not be consistent (since, e.g., some other transaction has modified it as well, and the read value is no
longer valid). To this end, in [15] I have relied on the snapshot extension [37] protocol, that is, whenever a conflict
is detected (i.e., some object accessed by a transaction 7" is associated with a logical clock value higher than the
transaction’s) instead of aborting the whole transaction, I try to read again the new value of the object and check
if the previously read ones are still valid. If this is not the case, then the partial rollback rollback algorithm is
triggered, and the computation is restarted from the first accessed value in 7" which is no longer valid.

I emphasize that this approach involves a relation change between the transaction and the snapshot. In fact, in
the traditional abort scheme a transaction was allowed to look at a snapshot related to a fixed logical clock’s time.
In my proposal, on the other hand, the snapshot which is seen by a transaction is dynamically re-evaluated in order
to make it aware of possible changes happening during its execution. In particular, the partial rollback approach
ensures that, given the fine-grained locking scheme used, we discard only the minimum portion of the work which
is needed to restore the execution into a consistent state, thus mixing objects’ values which are related to different
logical values of the global clock.

To successfully support this approach, two basic aspects must be faced: (i) the CPU state must be restored to
the one which was found at that particular point in the transaction (a problem which is addressed by traditional
STM systems, which restart the execution of a transaction from its beginning) using the standard sigset jmp
library function, and (ii) the stack state must be restored as well. This is particularly important, since normally
STM systems address only the consistency of shared objects, while they completely discard the state of per-thread
objects. If, on the contrary, a thread’s execution must be restored, e.g., in the middle of a function call, we must
guarantee that non-consistent updates of local portions of per-thread data (i.e., automatic variables) are restored as
well.

To this end, I have relied again on PM, using a memory-update tracking mechanisms similar to the one de-
scribed in Section 2, yet tuning the assembly monitoring routine to just detect stack changes (i.e., changes in
functions’ automatic variables). An ad-hoc module for logging versions of automatic variables, based on fast hash
tables, has been developed, optimizing in particular the “unbounded” nature of the number of automatic variables
which can be found in a program’s function. Whenever a partial rollback is triggered, the log chain is backward
traversed, restoring the older automatic variables’ values, until the target point in the execution which we want to
restart from is reached.
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3.4 Dissemination of the Results

All my research results have debouched firstly into prototypes, and have later become part of an open-source
fully-featured optimistic simulation engine, namely the ROme OpTimistic Simulator (ROOT-Sim) [86] [6], which
is publicly available online and which can be downloaded and straightly used by any researcher to follow through
his activities.

4 Open Issues and Future Work

The main focus of my future work will be mainly on interaction transparency and deploy transparency, besides
on transparency with respect to the programming model. In particular, I will concentrate on the following aspects:

e [nteraction transparency: One of the most important features which programmers want their software to
be able to support, is to produce output, i.e. to make the parallel program interact with other worlds,
which are not necessarily parallel as well. Output is recognized as a non-trivial problem in the context of
parallel programming, especially when dealing with optimistic/speculative executions. This is related to
the operations which should be performed when the user is asking to produce some output starting from
not-yet-committed data. In particular, since outputting is generally speaking a non-rollbackable operation
(in fact, if the output is produced on the screen, on some network device, or on some external device in
general, this operation cannot be undone), great care must be used to decide whether the user’s request
must be fullfilled or not. Additionally, this decision must be done efficiently, since all the time spent in this
internal management procedure is time substracted from the actual execution of the program, which is the
main goal of a speculative execution.

In my future work, I want to study the viability and efficiency of different possibilities (i.e. block-until-
commit and wait-until-commit) as a support to a consistent and efficient parallel output module, both in the
multi/many-core and in the distributed domains.

As for the input problem, the main goal is to study in the context of speculative/optimistic executions which
are the implications of giving the user the possibility to interact with the ongoing flow of the execution. In
particular, if we look at the context of optimistic simulation, consistency is guaranteed by using the spec-
ulative retry-until-commit approach. Yet, in order to efficiently use the available computing resources (in
particular memory) whenever an event is considered committed, every information associated with it (e.g.,
state logs) are discarded. If the user, during the flow of the simulation, produces an interaction associated
with a committed portion of the simulation, the engine supporting it might not be able to handle the user’s
request. My main goal is to study the most effective tradeoff between the user’s possibility to interact
at any time of the execution of the simulation, and the actual efficient resource management which such
enviroments must guarantee.
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e Deploy transparency: On the path of seeking transparency, facing this problem entails the desing/development
of tools and techniques which address the selection of the most suited amount of parallel computing re-
sources, in order to minimize thrashing due to synchronization operations. In fact, if we support the end
user with a transparent environment which allows to rely on a set of facilities unlocking concurrency, due to
the fact that he is not expected to be an expert of the field, at the same time selecting the best amount of com-
puting resources needed to efficiently follow through the execution might be a difficult task as well. This is
particularly important if we set ourselves on the modern trend of, e.g., Cloud Computing, where requesting
more resources than needed might not only entail a thrashing in the execution, but a money/resources waste
as well.

e Programming Model Transparency: Concerning this point, the core aspect focuses on a portion of end
users which is not necessarily completely unaware of parallelism. In fact, if dealing with supporting the
parallelization of, e.g., an event-driven program the end user specifies in its source code that he is willing
to explicitly exploit some parallelism (e.g., by explicitly relying on multithreading by calling functions
from the pthread library), the question would be how to map this user request on top of the speculative
framework which support the parallel execution of its software.

In my future work, I want to study the viability of several approaches targeted at mixing together the notion
of parallelism provided by the end users, and the parallelism induced by the executiong framework which I
have been working so far.
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8 Educational plan

Type Name Credits | Date
A 12/12
“Artificial Intelligence II” (Prof. D. Nardi) 6 02-10-2012
“Elective in Computer Networks” (Prof. L. Becchetti) 3 28-06-2011
“Pattern Recognition” (Prof. F. Pirri) 3 23-09-2011
B 10/10
“Winter School on Hot Topics in Distributed Computing”, 25 2011-03-25
La Plagne, France
“GII Doctoral School”, Lucca, Italy 2.5 2012-07-04
“Scuola Estiva di Calcolo Avanzato, Grottaferrata, Italy 5 2011-09-09
C 8/8
“Chippy’s Recovery” (Donald R. Perlis) 0.5 20-01-2011
“Control, Recognition, Planification - The task function,
swiss knife of the humanoid robot”” (Nicolas Mansard) 05 20-09-2011
“DISC Workshops & Tutorials” 4 22-09-2011
“Mar1.<0V1an Agent Models with Applications” (Andrea 05 06-07-2012
Bobbio)
“Ml(.:rosoft Windows Azure” (Antimo Musone, Daniele 05 04-05-2012
Midi)
“Online Generation of Kinodynamic Trajectories” (Boris
Lau) 0.5 06-05-2011
“Programming by Optimisation: Towards a new Paradigm
for Developing High-Performance Software” (Holger 0.5 13-05-2011
Hoos)
“Robotics: Hephaisots reoffends” (Jean-Paul Laumond) 0.5 29-04-2011
Network Science: From Structure to Control” (Albert- 05 05-07-2012

Laszl6 Barabdsi)
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