
Speculative High-Performance
Simulation

Alessandro Pellegrini
A.Y. 2019/2020

Simulation

• From latin simulare (to mimic or to fake)
• It is the imitation of a real-world process' or

system's operation over time
• It allows to collect results long before a system

is actually built (what-if analysis)
• It can be used to drive physical systems

(symbiotic simulation)
• Widely used: medicine, biology, physics ,

economics, sociology, ...

Some Examples

Main Categories of Simulation

• Continuous Simulation
• Monte Carlo Simulation
• Discrete-Event Simulation

Wall-Clock Time vs Logical Time

• Two different notions of time are present in a
simulation

• Wall-Clock Time: the elapsed time required to
carry on a digital simulation (the shorter, the
higher is the performance)

• Logical Time: the actual simulated time
– Also referred to as simulation time

Continuous Simulation

• It is typically employed for modeling physical
phenomena
– Usually relies on a set of equations to be solved

periodically
• Commonly physical phenomena are expressed

via differential equations
• A continuous simulation involves repeatedly

solving equations to update the state of the
modeled phenomenon

An Example: Diffusion Equation

• Let's consider the Bidimensional Diffusion
Equation Case:

• or, more compactly:

An Example: Diffusion Equation

• We approximate u(x, y, t) by a discrete function
ui,j

(m)

– x = iΔx
– y = iΔy
– t = iΔt

• This approximation is not enough for
simulation: we must be able to compute a future
state starting from the current one

• We use finite difference to transform it into a
recurrence relation

Finite Difference

• A finite difference is a mathematical expression of the
form f(x+b) - f(x+a)
– Forward difference: Δh[f](x) = f(x+h) - f(x)
– Backward difference: ∇h[f](x) = f(x) - f(x - h)
– Central difference: δh[f](x) = f(x + ½h) - f(x - ½h)

• Using finite difference, the finite-difference method
can be applied to solve differential equations

• Finite differences are used to approximate
derivatives: it is a discretization method

An Example: Diffusion Equation

• Applying finite (forward) difference
approximations to the derivatives we obtain:

• To simulate, we transform it into:

• This gives us an expression of ui,j
(m+1)

Stability of the Simulation

• This is an approximation of a continuous system
• Is the result correct independently of the

selected time step?
• Stability reflects the sensitivity of Differential

Equation solution to perturbations
• If the solutions are stable, they converge and

perturbations are damped out
• When we step from an approximation to the

next, we land on a different solution from what
we started from

An Example: Diffusion Equation

• In case of 2D Heat Simulation, we rewrite ut as:

• The resulting amplification factor becomes:

• Neumann boundary conditions lead to:

An Example: Diffusion Equation

• We know that -2 ≤ cos(βΔx) - 1 ≤ 0 and -2 ≤
cos(γΔy) -1 ≤ 0

• The right-hand inequality holds for all β and γ
• The left-hand inequality leads to:

How is this useful programmatically?

• Simulation is an approximation of reality
• We want our approximation to resemble reality

as much as possible
• Setting a simulation time step such that:

 gives a simulation which is incorrect

Initial and Boundary Conditions

• ui,j
(m+1) is derived using ui,j

(m)

• Then, we must give a numerical value to ui,j
(0)

• Furthermore, we must specify boundary
conditions to the Laplacian
– We can arbitrarily set it to 0

Evolution of the System

Coding the Problem

• We repeatedly solve the differential equations
• We rely on a loop to do this:

• The code to update the state of the system looks
like:

Coding the Problem: Initial Conditions

EXAMPLE SESSION
Heat Diffusion Simulation in Python

What Lessons Have we Learnt?

• Before going distributed, we must be sure that
the sequential implementation is efficient

• Stability conditions are not only a
mathematician's concern!

• Continuous simulation is actually an
approximation of the continuous behaviour of a
system

Monte Carlo Simulation

• It is generally used to evaluate some property that is
time independent

• It tries to explore densely the whole space of
parameters of the phenomenon
– Monte Carlo simulations sample probability distribution

for each variable to produce hundreds or thousands of
possible outcomes

• It is used to find (approximate) solutions of
mathematical problems involving a high number of
variables that cannot be easily solved analytically

An Example: Computing π

• Let us consider a circle with r
= 1

• The area of the circle is πr2 = π
• The area of the sourrounding

square is (2r)2 = 22 = 4
• The ratio of the areas is:

An Example: Computing π

• Randomly select points {(xi, yi)}n
i=1 in the square

• Determine the ratio
– m is the number of points such that xi

2 + yi
2 ≤ 1

• Since , then

EXAMPLE SESSION
Monte Carlo PI Approximation

Event-Driven Programming
• Event-Driven Programming is a programming

paradigm in which the flow of the program is
determined by events
– Sensors outputs
– User actions
– Messages from other programs or threads

• Based on a main loop divided into two phases:
– Event selection/detection
– Event handling

• Events resemble what interrupts do in hardware
systems

Event Handlers
• An event handler is an asynchronous callback
• Each event represents a piece of application-level

information, delivered from the underlying framework:
– In a GUI events can be mouse movements, key pression, action

selection, . . .
• Events are processed by an event dispatcher which

manages associations between events and event handlers
and notifies the correct handler

• Events can be queued for later processing if the involved
handler is busy at the moment

Discrete Event Simulation (DES)

• A discrete event occurs at an instant in time and
marks a change of state in the system

• DES represents the operation of a system as a
chronological sequence of events

• If the simulation is run on top of a
parallel/distributed system, it's named Parallel
Discrete Event Simulation (PDES)

DES Building Blocks
• Clock

– Independently of the measuring unit, the simulation must keep
track of the current simulation time

– Being discrete, time hops to the next event’s time
• Event List

– At least the pending event set must be maintained by the simulation
architecture

– Events can arrive at a higher rate than they can be processed
• Random Number Generators
• Statistics
• Ending Condition

DES Skeleton

Implementation of a DES Kernel

• General-purpose Simulation is easy for DES
– No notion of model in the main-loop pseudocode!

• Only prerequisites:
– The model must implement actual handlers
– The model requires APIs to inject new events in the

system and pass entities' states from the kernel
• Multiple models can be run on the same kernel

– Core reuse
– Model-independent optimization of the kernel

Data Structures for Simulation: Priority Queue

• Is an abstract data type similar to a regular queue
• Elements have a priority associated with each of them
• An element with a high priority is served before
• Operations:

– insert with priority: add an element to the queue with associated
priority

– pull highest priority element: remove the element from the queue
that has the highest priority, and return it

• Highest priority can be either minimum or maximum value
• It can be used to implement the FEL

– What about the ordering of simultaneous events?

Data Structures for Simulation: Calendar Queue

• A fast priority queue implementation (Brown, 1988)
• Composed of n buckets, each of width (or covering time) w
• Notion of current time
• Items with priority p > current time go into bucket:

• n and w should be chosen so as to have few elements per
bucket
– Double or halve n and change w if the number of items grows or

shrinks too much

Data Structures for Simulation: Calendar Queue

• Changing n involves no more that 3 moves of each
event in the worst case

• w should be the average separation between events
• Calendar Queue has amortized O(1) operations cost

API to Schedule Events and Set State

API to Schedule Events and Set State

API to Schedule Events and Set State

Initialization and Main Loop

Initialization and Main Loop

Initialization and Main Loop

Personal Communication Service
• Networking System for mobile devices
• Interesting to study how different

configurations behave
• Coverage area modeled as a set of adjacent

hexagons
• Explicit modeling of channel allocation

EXAMPLE SESSION
Personal Communication Service

Parallel Discrete Event Simulation

• To increase the overall performance, DES
models can be run on top of multiple computing
nodes
– Distributed and/or concurrent simulation

• The main goal is transparency

• Simulation models should not be modified

Traditional PDES execution support

Why are multicores important?

Revisited PDES Architecture

Communication Network

Machine

CPU

Kernel

LP LP
LP

…

…

CPU CPU CPU

LP LP
LPLP

Machine

CPU

Kernel

LP LP
LP

…CPU CPU CPU

Kernel

LP LP
LP

The Synchronization Problem

• Consider a simulation program composed of
several logical processes exchanging
timestamped messages

• Consider the sequential execution: this ensures
that events are processed in timestamp order

• Consider the parallel execution: the greatest
opportunity arises from processing events from
different LPs concurrently

• Is correctness always ensured?

LPi LPj

LPk LPh

ek,k

inter-state
event

intra-state
event

Simulated Surface

The Synchronization Problem

ej,i

LPi LPj

LPk LPh

ej,i

ek,k

inter-state
event

intra-state
event

Simulated Surface

The Synchronization Problem

ts = 3

local virtual time (LVT)

ts = 2

ts = 5 ts = 7

ts = 4

ts = 9

!
CAUSALITY
VIOLATION

The Synchronization Problem

6

3

5

9

11

6

15

17

15

11

LPi
Execution Time

Execution Time

Execution Time

8

Message

Straggler MessageEvents
Timestamps

LPj

LPk

Message

Conservative Synchronization

• Consider the LP with the smallest clock value at
some instant T in the simulation's execution

• This LP could generate events relevant to every
other LP in the simulation with a timestamp T

• No LP can process any event with timestamp
larger than T

Conservative Synchronization

• If each LP has a lookahead of L, then any new
message sent by al LP must have a timestamp of
at least T + L

• Any event in the interval [T, T + L] can be safely
processed

• L is intimately related to details of the
simulation model

Optimistic Synchronization: Time Warp

• There are no state variables that are shared between
LPs

• Communications are assumed to be reliable
• LPs need not to send messages in timestamp order
• Local Control Mechanism

– Events not yet processed are stored in an input queue
– Events already processed are not discarded

• Global Control Mechanism
– Event processing can be undone
– A-posteriori detection of causality violation

LPi LPj

LPk LPh

ej,i

ek,k

inter-state
event

intra-state
event

Simulated Surface

The Synchronization Problem

ts = 3

local virtual time (LVT)

ts = 2

ts = 5 ts = 7

ts = 4

ts = 4ts = 9

Time Warp: State Recoverability

6

3

5

9

11

6

15

17

15

8

11

LPi
Execution Time

Execution Time

Execution Time

Message

Straggler MessageEvents
Timestamps

LPj

LPk

8

17

11

Antimessage

Antimessage
reception

Rollback Execution:
recovering state at

LVT 5

Rollback Execution:
recovering state at

LVT 6

Message

Rollback Operation

• The rollback operation is fundamental to ensure
a correct speculative simulation

• Its time critical: it is often executed on the
critical path of the simulation engine

• 30+ years of research have tried to find
optimized ways to increase its performance

State Saving and Restore

• The traditional way to support a rollback is to
rely on state saving and restore

• A state queue is introduced into the engine
• Upon a rollback operations, the "closest" log is

picked from the queue and restored

• What are the technological problems to solve?
• What are the methodological problems to solve?

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3

bound

5.5 7 15 21 33

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 3 3 3

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

3 3 3 3

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

3 3 3 3

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5

3 5.5

3 3 3 3

bound

7 15 21 33

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5

3 3 3 3

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5

3 3 3 3 7 7

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5 7

3 3 3 3

bound

7 7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5 7

3 3 3 3

bound

7 7

3.7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5 7

3 3 3 3

bound

7 7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3 5.5 7

3 3 3 3

bound

7 7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

3 3 3 3

bound

7 7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

3 3 3 3

bound

7 7

Antimessages

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

bound

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

bound

3.7

State Saving and Restore

Simulation Time

State
Queue

Simulation Time

Input
Queue

Simulation Time

Output
Queue

3 5.5 7 15 21 33

3

bound

3.7

State Saving Efficiency

• How large is the simulation state?
• How often do we execute a rollback? (rollback

frequency)
• How many events do we have to undo on

average?

• Can we do something better?

Copy State Saving

Sparse State Saving (SSS)

Coasting Forward

• Re-execution of already-processed events
• These events have been artificially undone!
• Antimessages have not been sent

• These events must be reprocessed in silent
execution
– Otherwise, we duplicate messages in the system!

When to take a checkpoint?

• Classical approach: periodic state saving
• Is this efficient?

– Think in terms of memory footprint and wall-clock
time requirements

When to take a checkpoint?

• Classical approach: periodic state saving
• Is this efficient?

– Think in terms of memory footprint and wall-clock
time requirements

• Model-based decision making
• This is the basis for autonomic self-optimizing

systems
• Goal: find the best-suited value for χ

When to take a checkpoint?

• δs: average time to take a snapshot
• δc: the average time to execute coasting forward
• N: total number of committed events
• kr: number of executed rollbacks
• γ: average rollback length

Incremental State Saving (ISS)

• If the state is large and scarcely updated, ISS
might provide a reduced memory footprint and
a non-negligible performance increase!

• How to know what state portions have been
modified?

Incremental State Saving (ISS)

• If the state is large and scarcely updated, ISS
might provide a reduced memory footprint and
a non-negligible performance increase!

• How to know what state portions have been
modified?
– Explicit API notification (non-transparent!)
– Operator Overloading
– Static Binary Instrumentation
– Compiler-assisted Binary Generation

Reverse Computation

• It can reduce state saving overhead
• Each event is associated (manually or

automatically) with a reverse event
• A majority of the operations that modify state

variables are constructive in nature
– the undo operation for them requires no history

• Destructive operations (assignment, bit-wise
operations, ...) can only be restored via
traditional state saving

Reversible Operations

Non-Reversible Operations:
if/then/else

if(qlen > 0) {

qlen--;

sent++;
}

if(qlen "was" > 0)
{

sent--;

qlen++;
}

• The reverse event must check an "old"
state variables' value, which is not
available when processing it!

Non-Reversible Operations:
if/then/else

if(qlen > 0) {
b = 1;
qlen--;
sent++;

}

if(b == 1) {

sent--;

qlen++;
}

• Forward events are modified by inserting "bit variables";
• The are additional state variables telling whether a

particular branch was taken or not during the forward
execution

Random Number Generators

• Fundamental support for stochastic simulation
• They must be aware of the rollback operation!

– Failing to rollback a random sequence might lead to
incorrect results (trajectory divergence)

– Think for example to the coasting forward operation

• Computers are precise and deterministic:
– Where does randomness come from?

Random Number Generators

• Practical computer "random" generators are
common in use

• They are usually referred to as pseudo-random
generators

• What is the correct definition of randomness in
this context?

Random Number Generators
“The deterministic program that produces a random

sequence should be different from, and—in all measurable
respects—statistically uncorrelated with, the computer

program that uses its output”

• Two different RNGs must produce statistically
the same results when coupled to an application

• The above definition might seem circular:
comparing one generator to another!

• There is a certain list of statistical tests

Uniform Deviates
• They are random numbers lying in a specified

range (usually [0,1])
• Other random distributions are drawn from a

uniform deviate
– An essential building block for other distributions

• Usually, there are system-supplied RNGs:

Problems with System-Supplied RNGs

• If you want a random float in [0.0, 1.0):
x = rand() / (RAND_MAX + 1.0);

• Be very (very!) suspicious of a system-supplied
rand() that resembles the above-described one

• T h e y b e l o n g t o t h e c a t e g o r y o f l i n e a r
congruential generators

Ij+1 = a Ij + c (mod m)
• The recurrence will eventually repeat itself,

with a period no greater than m

Problems with System-Supplied RNGs

• If m, a, and c are properly chosen, the period
will be of maximal length (m)
– all possible integers between 0 anbd m - 1 will occur

at some point
• In general, it may look a good idea
• Many ANSI-C implementations are flawed

An example RNG (from libc)

An example RNG (from libc)

This is where we can support the
rollback operation: consider the seed
as part of the simulation state!

Problems with System-Supplied RNGs

Problems with System-Supplied RNGs

In an n-dimensional space, the points lie on
at most m1/n hyperplanes!

• The probability p(x)dx of generating a number
between x and x+dx is:

• p(x) is normalized:

• If we take some function of x like y(x):

Functions of Uniform Deviates

Exponential Deviates

• Suppose that y(x) ≡ -ln(x), and that p(x) is
uniform:

• This is distributed exponentially
• Exponential distribution is fundamental in

simulation
– Poisson-random events, for example the radioactive

decay of nuclei, or the more general interarrival time

Exponential Deviates

Deviate Transformation

Scheduling Events

Communication Network

Machine

CPU

Kernel

LP LP
LP

…

…

CPU CPU CPU

LP LP
LPLP

Machine

CPU

Kernel

LP LP
LP

…CPU CPU CPU

Kernel

LP LP
LP

Scheduling Events

• A single thread takes care of a certain number of
LPs at any time

• We have to avoid inter-LPs rollbacks
• Lowest-Timestamp First:

– Scan the input queue of all LPs
– Check the bound of each LP
– Pick the LP whose next event is closest in simulation

time

Global Virtual Time

• In a PDES system, memory usage is always
increasing
– We do not discard events
– We take a lot of snapshots!

• We must find a way to implement a garbage
collector
– During the execution of an event at time T, we can

schedule events at time t ≥ T

Global Virtual Time

At a specific wall-clock time t, the GVT is defined as
the minimum between:
• All virtual times in all virtual clocks at time t;
• The timestamps of all sent but not yet processed

events at time t

Global Virtual Time

6

3

5

9

6

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

Global Virtual Time

6

3

5

9

6

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

Global Virtual Time

6

3

5

9

6

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

Global Virtual Time

6

3

5

9

31

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

15

18

Global Virtual Time

6

3

5

9

31

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

15

18

Global Virtual Time

6

3

5

9

31

11

LPi
Execution Time

Execution Time

Execution Time

Events
Timestamps

LPj

LPk

Message

15

18

GVT Operations

• Once a correct GVT value is determined we can
perform two actions:
– Fossil Collection: the actual garbage collection of

old memory buffers
– Termination Detection

• GVT identifies the commitment horizon of the
speculative execution

How Accurate is Speculative Simulation?

• Sequential Simulation is perfect for fine-grain
inspection of predicates
– It does not scale
– Models are getting larger and larger everyday

• Parallel/Distributed simulation has great
performance

• Fine-grain inspection is not viable
– Process coordination is required
– This hampers the achievable speedup

How Accurate is Speculative Simulation?

• Speculative Simulation inserts an additional
delay

• The inspection of a global simulation state is
delayed until a portion of the simulation
trajectory becomes committed

• Inspection can be done after a GVT value has
been computed

The Completion-Shift Problem

The Completion-Shift Problem

The Completion-Shift Problem

Time Warp Fundamentals

ROOT-Sim

• The ROme OpTimisti Simulator
https://github.com/HPDCS/ROOT-Sim

• A general-purpose speculative simulation kernel
based on both state saving and reversibility

• Targets complete transparency towards the
model developer

• It can transparently deploy and run legacy
models

ROOT-Sim Internals

EXAMPLE SESSION
PCS on ROOT-Sim

