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Simulation

• From latin simulare (to mimic or to fake)
• It is the imitation of a real-world process' or 

system's operation over time
• It allows to collect results long before a system 

is actually built (what-if analysis)
• It  can be used to  drive physical  systems 

(symbiotic simulation)
• Widely used:  medicine,  biology,  physics , 

economics, sociology, ...



Some Examples



Main Categories of Simulation

• Continuous Simulation
• Monte Carlo Simulation
• Discrete-Event Simulation



Wall-Clock Time vs Logical Time

• Two different notions of time are present in a 
simulation

• Wall-Clock Time: the elapsed time required to 
carry on a digital simulation (the shorter, the 
higher is the performance)

• Logical Time: the actual simulated time
– Also referred to as simulation time



Continuous Simulation

• It is typically employed for modeling physical 
phenomena
– Usually relies on a set of equations to be solved 

periodically
• Commonly physical phenomena are expressed 

via differential equations
• A continuous simulation involves repeatedly 

solving equations to update the state of the 
modeled phenomenon



An Example: Diffusion Equation

• Let's consider the Bidimensional Diffusion 
Equation Case:

• or, more compactly:



An Example: Diffusion Equation

• We approximate u(x, y, t) by a discrete function 
ui,j

(m)

– x = iΔx
– y = iΔy
– t = iΔt

• This approximation is not enough for 
simulation: we must be able to compute a future 
state starting from the current one

• We use finite difference to transform it into a 
recurrence relation



Finite Difference

• A finite difference is a mathematical expression of the 
form f(x+b) - f(x+a)
– Forward difference: Δh[f](x) = f(x+h) - f(x)
– Backward difference: ∇h[f](x) = f(x) - f(x - h)
– Central difference: δh[f](x) = f(x + ½h) - f(x - ½h)

• Using finite difference, the finite-difference method 
can be applied to solve differential equations

• Finite differences are used to approximate 
derivatives: it is a discretization method



An Example: Diffusion Equation

• Applying finite (forward) difference 
approximations to the derivatives we obtain:

• To simulate, we transform it into:

• This gives us an expression of ui,j
(m+1)



Stability of the Simulation

• This is an approximation of a continuous system
• Is the result correct independently of the 

selected time step?
• Stability reflects the sensitivity of Differential 

Equation solution to perturbations
• If the solutions are stable, they converge and 

perturbations are damped out
• When we step from an approximation to the 

next, we land on a different solution from what 
we started from



An Example: Diffusion Equation

• In case of 2D Heat Simulation, we rewrite ut as:

• The resulting amplification factor becomes:

• Neumann boundary conditions lead to:



An Example: Diffusion Equation

• We know that -2 ≤ cos(βΔx) - 1 ≤ 0 and -2 ≤ 
cos(γΔy) -1 ≤ 0

• The right-hand inequality holds for all β and γ
• The left-hand inequality leads to:



How is this useful programmatically?

• Simulation is an approximation of reality
• We want our approximation to resemble reality 

as much as possible
• Setting a simulation time step such that:

    

    gives a simulation which is incorrect



Initial and Boundary Conditions

• ui,j
(m+1) is derived using ui,j

(m)

• Then, we must give a numerical value to ui,j
(0)

• Furthermore, we must specify boundary 
conditions to the Laplacian
– We can arbitrarily set it to 0



Evolution of the System



Coding the Problem

• We repeatedly solve the differential equations
• We rely on a loop to do this:

• The code to update the state of the system looks 
like:



Coding the Problem: Initial Conditions



EXAMPLE SESSION
Heat Diffusion Simulation in Python



What Lessons Have we Learnt?

• Before going distributed, we must be sure that 
the sequential implementation is efficient

• Stability conditions are not only a 
mathematician's concern!

• Continuous simulation is actually an 
approximation of the continuous behaviour of a 
system



Monte Carlo Simulation

• It is generally used to evaluate some property that is 
time independent

• It tries to explore densely the whole space of 
parameters of the phenomenon
– Monte Carlo simulations sample probability distribution 

for each variable to produce hundreds or thousands of 
possible outcomes

• It is used to find (approximate) solutions of 
mathematical problems involving a high number of 
variables that cannot be easily solved analytically



An Example: Computing π

• Let us consider a circle with r 
= 1

• The area of the circle is πr2 = π
• The area of the sourrounding 

square is (2r)2 = 22 = 4
• The ratio of the areas is:



An Example: Computing π

• Randomly select points {(xi, yi)}n
i=1 in the square

• Determine the ratio
– m is the number of points such that xi

2 + yi
2 ≤ 1

• Since           , then



EXAMPLE SESSION
Monte Carlo PI Approximation



Event-Driven Programming
• Event-Driven Programming is a programming 

paradigm in which the flow of the program is 
determined by events
– Sensors outputs
– User actions
– Messages from other programs or threads

• Based on a main loop divided into two phases:
– Event selection/detection
– Event handling

• Events resemble what interrupts do in hardware 
systems



Event Handlers
• An event handler is an asynchronous callback
• Each event represents a piece of application-level 

information, delivered from the underlying framework:
– In a GUI events can be mouse movements, key pression, action 

selection, . . .
• Events are processed by an event dispatcher which 

manages associations between events and event handlers 
and notifies the correct handler

• Events can be queued for later processing if the involved 
handler is busy at the moment



Discrete Event Simulation (DES)

• A discrete event occurs at an instant in time and 
marks a change of state in the system

• DES represents the operation of a system as a 
chronological sequence of events

• If the simulation is run on top of a 
parallel/distributed system, it's named Parallel 
Discrete Event Simulation (PDES)



DES Building Blocks
• Clock

– Independently of the measuring unit, the simulation must keep 
track of the current simulation time

– Being discrete, time hops to the next event’s time
• Event List

– At least the pending event set must be maintained by the simulation 
architecture

– Events can arrive at a higher rate than they can be processed
• Random Number Generators
• Statistics
• Ending Condition



DES Skeleton



Implementation of a DES Kernel

• General-purpose Simulation is easy for DES
– No notion of model in the main-loop pseudocode!

• Only prerequisites:
– The model must implement actual handlers
– The model requires APIs to inject new events in the 

system and pass entities' states from the kernel
• Multiple models can be run on the same kernel

– Core reuse
– Model-independent optimization of the kernel



Data Structures for Simulation: Priority Queue

• Is an abstract data type similar to a regular queue
• Elements have a priority associated with each of them
• An element with a high priority is served before
• Operations:

– insert with priority: add an element to the queue with associated 
priority

– pull highest priority element: remove the element from the queue 
that has the highest priority, and return it

• Highest priority can be either minimum or maximum value
• It can be used to implement the FEL

– What about the ordering of simultaneous events?



Data Structures for Simulation: Calendar Queue

• A fast priority queue implementation (Brown, 1988)
• Composed of n buckets, each of width (or covering time) w
• Notion of current time
• Items with priority p > current time go into bucket:

• n and w should be chosen so as to have few elements per 
bucket
– Double or halve n and change w if the number of items grows or 

shrinks too much



Data Structures for Simulation: Calendar Queue

• Changing n involves no more that 3 moves of each 
event in the worst case

• w should be the average separation between events
• Calendar Queue has amortized O(1) operations cost



API to Schedule Events and Set State



API to Schedule Events and Set State



API to Schedule Events and Set State



Initialization and Main Loop



Initialization and Main Loop



Initialization and Main Loop



Personal Communication Service
• Networking System for mobile devices
• Interesting to study how different 

configurations behave
• Coverage area modeled as a set of adjacent 

hexagons
• Explicit modeling of channel allocation



EXAMPLE SESSION
Personal Communication Service



Parallel Discrete Event Simulation

• To increase the overall performance, DES 
models can be run on top of multiple computing 
nodes
– Distributed and/or concurrent simulation

• The main goal is transparency

• Simulation models should not be modified



Traditional PDES execution support



Why are multicores important?



Revisited PDES Architecture
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The Synchronization Problem

• Consider a simulation program composed of 
several logical processes exchanging 
timestamped messages

• Consider the sequential execution: this ensures 
that events are processed in timestamp order

• Consider the parallel execution: the greatest 
opportunity arises from processing events from 
different LPs concurrently

• Is correctness always ensured?
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The Synchronization Problem
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Conservative Synchronization

• Consider the LP with the smallest clock value at 
some instant T in the simulation's execution

• This LP could generate events relevant to every 
other LP in the simulation with a timestamp T

• No LP can process any event with timestamp 
larger than T



Conservative Synchronization

• If each LP has a lookahead of L, then any new 
message sent by al LP must have a timestamp of 
at least T + L

• Any event in the interval [T, T + L] can be safely 
processed

• L is intimately related to details of the 
simulation model



Optimistic Synchronization: Time Warp

• There are no state variables that are shared between 
LPs

• Communications are assumed to be reliable
• LPs need not to send messages in timestamp order
• Local Control Mechanism

– Events not yet processed are stored in an input queue
– Events already processed are not discarded

• Global Control Mechanism
– Event processing can be undone
– A-posteriori detection of causality violation
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Time Warp: State Recoverability
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Rollback Operation

• The rollback operation is fundamental to ensure 
a correct speculative simulation

• Its time critical: it is often executed on the 
critical path of the simulation engine

• 30+ years of research have tried to find 
optimized ways to increase its performance



State Saving and Restore

• The traditional way to support a rollback is to 
rely on state saving and restore

• A state queue is introduced into the engine
• Upon a rollback operations, the "closest" log is 

picked from the queue and restored

• What are the technological problems to solve?
• What are the methodological problems to solve?
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State Saving Efficiency

• How large is the simulation state?
• How often do we execute a rollback? (rollback 

frequency)
• How many events do we have to undo on 

average?

• Can we do something better?



Copy State Saving



Sparse State Saving (SSS)



Coasting Forward

• Re-execution of already-processed events
• These events have been artificially undone!
• Antimessages have not been sent

• These events must be reprocessed in silent 
execution
– Otherwise, we duplicate messages in the system!



When to take a checkpoint?

• Classical approach: periodic state saving
• Is this efficient?

– Think in terms of memory footprint and wall-clock 
time requirements



When to take a checkpoint?

• Classical approach: periodic state saving
• Is this efficient?

– Think in terms of memory footprint and wall-clock 
time requirements

• Model-based decision making
• This is the basis for autonomic self-optimizing 

systems
• Goal: find the best-suited value for χ



When to take a checkpoint?

• δs: average time to take a snapshot
• δc: the average time to execute coasting forward
• N: total number of committed events
• kr: number of executed rollbacks
• γ: average rollback length



Incremental State Saving (ISS)

• If the state is large and scarcely updated, ISS 
might provide a reduced memory footprint and 
a non-negligible performance increase!

• How to know what state portions have been 
modified?



Incremental State Saving (ISS)

• If the state is large and scarcely updated, ISS 
might provide a reduced memory footprint and 
a non-negligible performance increase!

• How to know what state portions have been 
modified?
– Explicit API notification (non-transparent!)
– Operator Overloading
– Static Binary Instrumentation
– Compiler-assisted Binary Generation



Reverse Computation

• It can reduce state saving overhead
• Each event is associated (manually or 

automatically) with a reverse event
• A majority of the operations that modify state 

variables are constructive in nature
– the undo operation for them requires no history

• Destructive operations (assignment, bit-wise 
operations, ...) can only be restored via 
traditional state saving



Reversible Operations



Non-Reversible Operations: 
if/then/else

if(qlen > 0) {

qlen--;

sent++;
}

if(qlen "was" > 0) 
{

sent--;

qlen++;
}

• The reverse event must check an "old" 
state variables' value, which is not 
available when processing it!



Non-Reversible Operations: 
if/then/else

if(qlen > 0) {
b = 1;
qlen--;
sent++;

}

if(b == 1) {

sent--;

qlen++;
}

• Forward events are modified by inserting "bit variables";
• The are additional state variables telling whether a 

particular branch was taken or not during the forward 
execution



Random Number Generators

• Fundamental support for stochastic simulation
• They must be aware of the rollback operation!

– Failing to rollback a random sequence might lead to 
incorrect results (trajectory divergence)

– Think for example to the coasting forward operation

• Computers are precise and deterministic:
– Where does randomness come from?



Random Number Generators

• Practical computer "random" generators are 
common in use

• They are usually referred to as pseudo-random 
generators

• What is the correct definition of randomness in 
this context?



Random Number Generators
“The deterministic program that produces a random 

sequence should be different from, and—in all measurable 
respects—statistically uncorrelated with, the computer 

program that uses its output”

• Two different RNGs must produce statistically 
the same results when coupled to an application

• The above definition might seem circular: 
comparing one generator to another!

• There is a certain list of statistical tests



Uniform Deviates
• They are random numbers lying in a specified 

range (usually [0,1])
• Other random distributions are drawn from a 

uniform deviate
– An essential building block for other distributions

• Usually, there are system-supplied RNGs:



Problems with System-Supplied RNGs

• If you want a random float in [0.0, 1.0):
x = rand() / (RAND_MAX + 1.0);

• Be very (very!) suspicious of a system-supplied 
rand() that resembles the above-described one

• T h e y  b e l o n g  t o  t h e  c a t e g o r y  o f  l i n e a r 
congruential generators

Ij+1 = a Ij + c (mod m)
• The recurrence will eventually repeat itself, 

with a period no greater than m



Problems with System-Supplied RNGs

• If m, a, and c are properly chosen, the period 
will be of maximal length (m)
– all possible integers between 0 anbd m - 1 will occur 

at some point
• In general, it may look a good idea
• Many ANSI-C implementations are flawed



An example RNG (from libc)



An example RNG (from libc)

This is where we can support the 
rollback operation: consider the seed 
as part of the simulation state!



Problems with System-Supplied RNGs



Problems with System-Supplied RNGs

In an n-dimensional space, the points lie on
at most m1/n hyperplanes!



• The probability p(x)dx of generating a number 
between x and x+dx is:

• p(x) is normalized:

• If we take some function of x like y(x):

Functions of Uniform Deviates



Exponential Deviates

• Suppose that y(x) ≡ -ln(x), and that p(x) is 
uniform:

• This is distributed exponentially
• Exponential distribution is fundamental in 

simulation
– Poisson-random events, for example the radioactive 

decay of nuclei, or the more general interarrival time



Exponential Deviates



Deviate Transformation
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Scheduling Events

• A single thread takes care of a certain number of 
LPs at any time

• We have to avoid inter-LPs rollbacks
• Lowest-Timestamp First:

– Scan the input queue of all LPs
– Check the bound of each LP
– Pick the LP whose next event is closest in simulation 

time



Global Virtual Time

• In a PDES system, memory usage is always 
increasing
– We do not discard events
– We take a lot of snapshots!

• We must find a way to implement a garbage 
collector
– During the execution of an event at time T, we can 

schedule events at time t ≥ T



Global Virtual Time

At a specific wall-clock time t, the GVT is defined as 
the minimum between:
• All virtual times in all virtual clocks at time t;
• The timestamps of all sent but not yet processed 

events at time t



Global Virtual Time
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Global Virtual Time
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GVT Operations

• Once a correct GVT value is determined we can 
perform two actions:
– Fossil Collection: the actual garbage collection of 

old memory buffers
– Termination Detection

• GVT identifies the commitment horizon of the 
speculative execution



How Accurate is Speculative Simulation?

• Sequential Simulation is perfect for fine-grain 
inspection of predicates
– It does not scale
– Models are getting larger and larger everyday

• Parallel/Distributed simulation has great 
performance

• Fine-grain inspection is not viable
– Process coordination is required
– This hampers the achievable speedup



How Accurate is Speculative Simulation?

• Speculative Simulation inserts an additional 
delay

• The inspection of a global simulation state is 
delayed until a portion of the simulation 
trajectory becomes committed

• Inspection can be done after a GVT value has 
been computed



The Completion-Shift Problem



The Completion-Shift Problem



The Completion-Shift Problem



Time Warp Fundamentals



ROOT-Sim

• The ROme OpTimisti Simulator
https://github.com/HPDCS/ROOT-Sim

• A general-purpose speculative simulation kernel 
based on both state saving and reversibility

• Targets complete transparency towards the 
model developer

• It can transparently deploy and run legacy 
models



ROOT-Sim Internals



EXAMPLE SESSION
PCS on ROOT-Sim


