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Moore's Law (1965)

Moore's law is dead, long live Moore's law

The number of transistors in a dense integrated circuit
doubles approximately every two years

— Gordon Moore, Co-founder of Intel



Moore's Law (1965)



The free lunch

• Implications of Moore’s 
Law have changed since 
2003

• 130W is considered an 
upper bound (the power 
wall)
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The Power Wall
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Performance over Time



Mining Moore's Law

• We can look at Moore's law as a gold mine:
– You start from the motherlode
– When it's exhausted, you start with secondary veins
– You continue mining secondary veins, until it's no 

longer economically sustainable

1970s 1980s 1990s 2000s 2010s

1975 2005 2011 20??
Exit Moore

single-threaded free lunch multicore

hetero-core

cloud-core



Trying to speedup: the pipeline (1980s)

• Temporal parallelism
• Number of stages increases with each generation
• Maximum Cycles Per Instructions (CPI)=1



Superascalar Architecture (1990s)
• More instructions are simultaneously executed on the 

same CPU
• There are redundant functional units that can operate 

in parallel
• Run-time scheduling (in contrast to compile-time)



Speculation
• In what stage does the CPU fetch the 

next instruction?
• If the instruction is a conditional 

branch, when does the CPU know 
whether the branch is taken or not?

• Stalling has a cost: 
nCycles · branchFrequency

• A guess on the outcome of a 
compare is made
– if wrong the result is discarded
– if right the result is flushed

a ← b + c
if a ≥ 0 then

d ← b
else

d ← c
end if



Branch Prediction
• Performance improvement depends on:

– whether the prediction is correct
– how soon you can check the prediction

• Dynamic branch prediction
– the prediction changes as the program behaviour changes
– implemented in hardware
– commonly based on branch history

• predict the branch as taken if it was taken previously

• Static branch prediction
– compiler-determined
– user-assisted (e.g., likely in kernel’s source code; 0x2e, 
0x3e prefixes for Pentium 4)



Branch Prediction Table
• Small memory indexed by the lower bits of the address of conditional 

branch instruction
• Each instruction is associated with a prediction

– Take or not take the branch
• If the prediction is take and it is correct:

– Only one cycle penalty
• If the prediction is not take and it is correct:

– No penalty
• If the prediction is incorrect:

– Change the prediction
– Flush the pipeline
– Penalty is the same as if there were no branch prediction



Two-bit Saturating Counter
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Branch Prediction is Important
• Conditional branches are around 20% of the instructions in the 

code
• Pipelines are deeper

– A greater misprediction penalty

• Superscalar architectures execute more instructions at once
– The probability of finding a branch in the pipeline is higher

• Object-oriented programming
– Inheritance adds more branches which are harder to predict

• Two-bits prediction is not enough
– Chips are denser: more sophisticated hardware solutions could be put in 

place



How to Improve Branch Prediction?
• Improve the prediction

– Correlated (two-levels) predictors [Pentium]
– Hybrid local/global predictor [Alpha]

• Determine the target earlier
– Branch target buffer [Pentium, Itanium]
– Next address in instruction cache [Alpha, UltraSPARC]
– Return address stack [Consolidated into all architecture]

• Reduce misprediction penalty
– Fetch both instruction streams [IBM mainframes]



Return Address Stack
• Registers are accessed several stages after 

instruction’s fetch
• Most of indirect jumps (85%) are function-call 

returns
• Return address stack:

– it provides the return address early
– this is pushed on call, popped on return
– works great for procedures that are called from multiple 

sites
• BTB would would predict the address of the return from the 

last call
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Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores

• The “big” cores: they directly come from the motherlode
• Best at running sequential code
• Any inexperienced programmer should be able to use them effectively



Simultaneous Multi-Threading－SMT (2000s)

• A physical processor appears as multiple logical processors
• There is a copy of the architecture state (e.g., control registers) 

for each logical processor
• A single set of physical execution resources is shared among 

logical processors
• Requires less hardware, but some sort of arbitration is 

mandatory



The Intel case: Hyper-Threading on 
Xeon CPUs

• Goal 1: minimize the die area cost (share of the 
majority of architecture resources)

• Goal 2: when one logical processor stalls, the other 
logical process can progress

• Goal 3: in case the feature is not needed, incur in no 
cost penalty

• The architecture is divided into two main parts:
– Front end
– Out-of-order execution engine



Xeon Front End
• The goal of this stage is to deliver instruction to later 

pipeline
• stages
• Actual Intel’s cores do not execute CISC instructions

– Intel instructions are cumbersome to decode: variable length, 
many different options

– A Microcode ROM decodes instructions and converts them into a 
set of semantically-equivalent RISC μ-ops

• μ-ops are cached into the Execution Trace Cache (TC)
• Most of the executed instructions come from the TC



Trace Cache Hit

• Two sets of next-instruction 
pointers

• Access to the TC is arbitrated 
among logical processors at 
each clock cycle

• In case of contention, access 
is alternated

• TC entries are tagged with 
thread information

• TC is 8-way associative, 
entries are replaced 
according to a LRU scheme



Trace Cache Miss



Xeon Out-of-order Pipeline



Multicores (2000s)

• First multicore chip: IBM Power4 (1996)
• 1.3 GHz dual-core PowerPC-based CPU
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Complex cores Simpler cores

• “small” traditional cores
• Best at running parallelizable code, that still requires the full 

expressiveness of a mainstream programming language

• They could require “programming hints” (annotations)
• They make parallelism mode explicit
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Complex cores Simpler cores Mixed cores

• A simpler core takes less space
• You can cram more on a single die in place of a complex core

• A good tradeoff for energy consumption
• Good to run legacy code and exploit benefits of Amdahl's law

• Typically they have the same instruction set (ARM big.LITTLE/DynamIQ), 
but some don't (CellBE)



The Cell Broadband Engine (Cell BE)

• Produced in co-operation by Sony, Toshiba, and IBM
• Nine cores interconnected through a circular bus—Element 

Interconnect Bus (EIB):
– one Power Processing Element (PPE): 3.2 GHz 2-way SMT processor
– eight Synergistic Processing Elements (SPE): SIMD processors, 256 Kb of 

local memory
• The priority is performance over programmability
• SPEs need to be managed (offloading) explicitly by the PPE
• SPEs are number crunching elements
• Many applications: video cards, video games (Playstation 3), home 

cinema, supercomputing, ...



The Cell Broadband Engine (Cell BE)



Cell BE programming: the PPE



Cell BE programming: the PPE



Cell BE programming: the PPE



Cell BE programming: the PPE



Cell BE programming: the SPE

Why do we need an additional main()?
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Complex cores Simpler cores Specialized coresMixed cores

• Typical of GPUs, DSPs, and SPUs
• They are more limited in power, and often do not support all features 

of mainstream languages (e.g., exception handling)

• Best at running highly-parallelizable code



Graphics Processing Unit (GPU)

• Born specifically for graphics, then re-adapted 
for scientific computation

• The same operation is performed on a large set 
of objects (points, lines, triangles)

• Large number of ALUs (∼100)
• Large number of registers (∼32k)
• Large bandwidth
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Complex cores Simpler cores Specialized coresMixed cores

SIMD Units



SIMD—Single Instruction Stream, 
Multiple Data Stream

• One operation executed on a set of data (e.g., 
matrix operations)

• Data-level Parallelism
• Synchronous operation



Vector Processor (or Array Processor)

• Vector registers
• Vectorized and pipelined functional units
• Vector instructions
• Interleaved memory
• Strided memory access and hardware scatter/gather
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Charting the landscape: Memory
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Unified

• The “traditional” memory taught in enginering courses, used by all computers 
until 2000's

• A single address space
• A single memory hierarchy

• Any inexperienced programmer should be able to use it effectively
• There is the cache anyhow: notion of locality and access order



Charting the landscape: Memory
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Unified Multi-Cache

• Still a single chunk or RAM
• Multiple cache hierarchies are introduced

• We still enjoy a single address space, and have increased performance (per-
core caches)

• New “performance effects”:
• locality is more important (L2 cache is shared among subgroups of cores)
• layout matters: the false cache-sharing performance anomaly



Cache Coherence (CC)
• CC defines the correct behaviour of caches, regardless 

of how they are employed by the rest of the system
• Typically programmers don’t see caches, but caches are 

usually part of shared-memory subsystems

• What is the value of A in C2?



Strong Coherence

• Most intuitive notion of CC is that cores are cache-
oblivious:
– All cores see at any time the same data for a particular 

memory address, as they should have if there were no 
caches in the system

• Alternative definition:
– All memory read/write operations to a single location A 

(coming from all cores) must be executed in a total order 
that respects the order in which each core commits its own 
memory operations



Strong Coherence

• A sufficient condition for strong coherence is 
jointly given by implementing two invariants:
1.  Single-Writer/Multiple-Readers (SWMR)

• For any memory location A, at any given epoch, either a 
single core may read and write to A or some number of 
cores may only read A

2. Data-Value (DV)
• The value of a memory location at the start of an epoch is 

the same as its value at the end of its latest read-write 
epoch



CC Protocols
• A CC protocol is a distributed algorithm in a message-

passing distributed system model
• It serves two main kinds of memory requests

– Load(A) to read the value of memory location A
– Store(A, v) to write the value v into memory location A

• It involves two main kinds of actors
– Cache controllers (i.e., L1, L2, ..., LLC)
– Memory controllers

• It enforces a given notion of coherence
– Strong, weak, no coherence



Coherency Transactions

• A memory request may traduce into some 
coherency transactions and produce the 
exchange of multiple coherence messages

• There are two main kinds of coherency 
transactions:
– Get: Load a cache block b into cache line l
– Put: Evict a cache block b out of cache line l



Cache and Memory Controllers



Finite-State Machines
• Cache controllers manipulate local finite-state machines (FSMs)
• A single FSM describes the state of a copy of a block (not the block 

itself)
• States:

– Stable states, observed at the beginning/end of a transaction
– Transient states, observed in the midst of a transaction

• Events:
– Remote events, representing the reception of a coherency message
– Local events, issued by the parent cache controller

• Actions:
– Remote action, producing the sending of a coherency message
– Local actions, only visible to the parent cache controller



Families of Coherence Protocols

• Invalidate protocols:
– When a core writes to a block, all other copies are 

invalidated
– Only the writer has an up-to-date copy of the block
– Trades latency for bandwidth

• Update protocols:
– When a core writes to a block, it updates all other 

copies
– All cores have an up-to-date copy of the block
– Trades bandwidth for latency



Families of Coherence Protocols
• Snooping Cache:

– Coherence requests for a block are broadcast to all controllers
– Require an interconnection layer which can total-order requests
– Arbitration on the bus is the serialization point of requests
– Fast, but not scalable

• Directory Based:
– Coherence requests for a block are unicast to a directory
– The directory forwards each request to the appropriate core
– Require no assumptions on the interconnection layer
– Arbitration at the directory is the serialization point of requests
– Scalable, but not fast



Directory System Model



Snooping-Cache System Model



The VI Protocol
• Only one cache controller can read and/or write the block in any 

epoch
• Supported transactions:

– Get: to request a block in read-write mode from the LLC controller
– Put: to write the block’s data back to the LLC controller

• • List of events:
– Own-Get: Get transaction issued from local cache controller
– Other-Get: Get transaction issued from remote cache controller
– Any-Get: Get transaction issued from any controller
– Own-Put: Put transaction issued from local cache controller
– Other-Put: Put transaction issued from remote cache controller
– Any-Put: Put transaction issued from any controller
– DataResp: the block’s data has been successfully received



The VI Protocol



The VI Protocol
• It has an implicit notion of dirtiness of a block

– When in state V , the L1 controller can either read-write or just read the 
block (can’t distinguish between the two usages)

• It has an implicit notion of exclusiveness for a block
– When in state V , the L1 controller has exclusive access to that block (no 

one else has a valid copy)
• It has an implicit notion of ownership of a block

– When in state V , the L1 controller is responsible for transmitting the 
updated copy to any other controller requesting it

– In all other states, the LLC is responsible for the data transfer
• This protocol has minimal space overhead (only a few states), but it is 

quite inefficient—why?



What a CC Protocol should offer
• We are interested in capturing more aspects of a cache block

– Validity: A valid block has the most up-to-date value for this block. The 
block can be read, but can be written only if it is exclusive.

– Dirtiness: A block is dirty if its value is the most up-to-date value, and it 
differs from the one stored in the LLC/Memory.

– Exclusivity: A cache block is exclusive if it is the only privately cached copy 
of that block in the system (except for the LLC/Memory).

– Ownership: A cache controller is the owner of the block if it is responsible 
for responding to coherence requests for that block.

• In principle, the more properties are captured, the more aggressive is 
the optimization (and the space overhead!)



MOESI Stable States
• Modified (M): The block is valid, exclusive, owned and potentially dirty. It 

can be read or written. The cache has the only valid copy of the block.

• Owned (O): The block is valid, owned, and potentially dirty, but not exclusive. 
It can be only read, and the cache must respond to block requests.

• Exclusive (E): The block is valid, exclusive and clean. It can be only read. No 
other caches have a valid copy of the block. The LLC/Memory block is up-to-
date.

• Shared (S): The block is valid but not exclusive, not dirty, and not owned. It 
can be only read. Other caches may have valid or read-only copies of the 
block.

• Invalid (I): The block is invalid. The cache either does not contain the block, 
or the block is potentially stale. It cannot be read nor written.



MOESI Stable States

• Many protocols spare one bit and drop the 
Owned state (MESI)

• Simpler protocols drop the Exclusive state (MSI)



CC and Write-Through Caches

• Stores immediately propagate to the LLC
– States M and S collapse into V (no dirty copies)
– Eviction only requires a transition from V to I (no 

data transfer)
• Write-through requires more bandwidth and 

power to write data



CC and False Cache Sharing
• This problem arises whenever two cores access different data items 

that lie on the same cache line (e.g., 64B–256B granularity)
• It produces an invalidation although accessed data items are different

• Can be solved using sub-block coherence or speculation
• Better if prevented by good programming practices



The False Cache Sharing Problem
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Unified Multi-Cache NUMA RAM

• We have multiple chunks of RAM, yet still a single address space

• The interconnect plays an important role: some memory is closer to some CPU, 
farther to others

• Conscious programmers should care about copying: having the possibility to 
point a byte could become expensive performance-wise



UMA vs NUMA
• In Symmetric Multiprocessing (SMP) Systems, a single memory 

controller is shared among all CPUs (Uniform Memory Access—
UMA)

• To scale more, Non-Uniform Memory Architectures (NUMA) 
implement multiple buses and memory controllers



Non-Uniform Memory Access
• Each CPU has its own local memory which is accessed faster
• Shared memory is the union of local memories
• The latency to access remote memory depends on the ‘distance’

[NUMA organization with 4 AMD Opteron 6128 (2010)]



Non-Uniform Memory Access
• A processor (made of multiple cores) and the memory local to it 

form a NUMA node
• There are commodity systems which are not fully meshed: 

remote nodes can be only accessed with multiple hops
• The effect of a hop on commodity systems has been shown to 

produce a performance degradation of even 100%—but it can 
be even higher with increased load on the interconnect



NUMA Policies
• Local (first touch): allocation happens on the node the process is 

currently running on. Local allocation is the default policy
• Preferred: a set of nodes is specified. Allocation is first tried on these 

nodes. If memory is not available, the next closest node is selected
• Bind: similarly to the preferred policy, a set of nodes can be specified. 

If no memory is available, the allocation fails
• Interleaved: an allocation can span multiple nodes. Pages are allocated 

in a round-robin fashion across several specified nodes.

• Policies can be specified for processes, threads, or particular regions 
of virtual memory



NUMA System Calls (Linux)
• Require #include<numaif.h> and must be linked with -lnuma
• int set_mempolicy(int mode, unsigned long *nodemask, unsigned long 

maxnode)
– mode is one of MPOL_DEFAULT, MPOL_BIND, MPOL_INTERLEAVE, MPOL_PREFERRED
– nodemask is a bitmask specifying what nodes are affected by the policy
– maxnode tells what is the most significant bit in nodemask which is valid

• int get_mempolicy(int *mode, unsigned long *nodemask, unsigned 
long maxnode, unsigned long addr, unsigned long flags)
– If flags is 0, then information about the calling process’s default policy is 

returned in nodemask and mode
– If flags is MPOL_F_MEMS_ALLOWED, mode is ignored and nodemask is set 

accordingly all available NUMA nodes
– If flags is MPOL_F_ADDR, the policy governing memory at addr is returned

• int mbind(void *addr, unsigned long len, int mode, unsigned long 
*nodemask, unsigned long maxnode, unsigned flags)
– Can be used to set a policy for a memory region defined by addr and len



NUMA Page Migration (Linux)
• The kernel itself does not perform automatic memory migration of 

pages that are not allocated optimally
• int numa_migrate_pages(int pid, struct bitmask 

*fromnodes, struct bitmask *tonodes)
– This system call can be used to migrate all pages that a certain process 

allocated on a specific set of nodes to a different set of nodes
• long move_pages(int pid, unsigned long count, void 

**pages, const int *nodes, int *status, int flags)
– Allows to move specific pages to any specified node
– The system call is synchronous
– status allows to check the outcome of the move operation



How to Move Pages



libnuma

• This library offers an abstracted interface
• It is the preferred way to interact with a NUMA-aware 

kernel
• Requires #include<numa.h> and linking with -lnuma
• Some symbols are exposed through numaif.h

• numactl is a command line tool to run processes with a 
specific NUMA policy without changing the code, or to 
gather information on the NUMA system



Checking for NUMA



Allocation and Policies
• Different memory allocation APIs for different nodes:

– void *numa_alloc_onnode(size_t size, int node)
– void *numa_alloc_local(size_t size)
– void *numa_alloc_interleaved(size_t size)
– void *numa_alloc_interleaved subset(size_t size, 
struct nodemask_t *nodemask)

• The counterpart is numa_free(void *start, size t size)
• How to set a process policy:



Dealing with Nodemasks
• nodemask_t defines a nodemask
• A nodemask can be cleared with 
nodemask_zero(nodemask_t *)

• A specific node can be set with 
nodemask_set(nodemask_t *, int node), cleared 
with nodemask_clear(nodemask_t *, int node), 
and checked with nodemask_isset(nodemask_t *, 
int node)

• nodemask_equal(nodemask_t *, nodemask_t *) 
compares two different nodemasks



Binding to CPUs
• Run current thread on node 1 and allocate memory on node 1:

• Bind process CPU and memory allocation to node 1:

• Allow the thread to run on all CPUs again:



numactl

• numactl --cpubin=0 --membind=0,1 program
– Run program on CPUs of node 0 and allocate memory from nodes 0 and 1

• numactl --preferred=1 numactl --show
– Allocate memory preferably from node 1 and show the resulting state

• numactl --interleave=all program
– Run program with memory interleaved over all available nodes

• numactl --offset=1G --length=1G --membind=1 --file 
/dev/shm/A --touch
– Bind the second gigabyte in the tempfs file /dev/shm/A to node 1

• numactl --localalloc /dev/shm/file
– Reset the policy for the shared memory file /dev/shm/file

• numactl --hardware
– Print an overview of the available nodes
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Unified Multi-Cache NUMA RAM Incoherent & 
weak memory

• The cache subsystem no longer ensures consistency, or ensures “reduced” 
consistency

• Different CPUs could see different values at the same byte

• Programmers must take care of synchronization explicitly

• Many of these are performance experiments that are failing in the 
marketplace

• Yet, all mainstream architectures have some form of weak memory



Weaker Coherence
• Weaker forms of coherence may exist for performance purposes

– Caches can respond faster to memory read/write requests
• The SWMR invariant might be completely dropped

– Multiple cores might write to the same location A
– One core might read A while another core is writing to it

• The DV invariant might hold only eventually
– Stores are guaranteed to propagate to all cores in d epochs
– Loads see the last value written only after d epochs

• The effects of weak coherency are usually visible to 
programmers
– Might affect the memory consistency model (see later)



No Coherence
• The fastest cache is non-coherent

– All read/write operations by all cores can occur 
simultaneously

– No guarantees on the value observed by a read 
operation

– No guarantees on the propagation of values from 
write operations

• Programmers must explicitly coordinate caches 
across cores
– Explicit invocation of coherency requests via 

C/Assembly APIs



Intel Single-Chip Cloud Computing (SCC)

• 48 Intel cores on a single die
• Power 125W cores @ 1GHz, Mesh @ 2Ghz
• Message Passing Architecture
• No coherent shared memory
• Proof of Concept of a scalable many-core solution



Memory Consistency (MC)
• MC defines the correct behaviour of shared-memory 

subsystems, regardless of how they are implemented
• Programmers know what to expect, implementors 

know what to provide

• What is the value of r2?



Reordering of Memory Accesses
• Reordering occurs when two memory R/W operations:

– Are committed by a core in order
– Are seen by other cores in a different order

• Mainly for performance reasons
– Out-of-order execution/retirement
– Speculation (e.g., branch prediction)
– Delayed/combined stores

• Four possible reorderings
– Store-store reordering
– Load-load reordering
– Store-load reordering
– Load-store reordering



An example

• Multiple reorderings are possible:
– (r1, r2) = (0, NEW) [S1, L1, S2, L2]
– (r1, r2) = (NEW, 0) [S2, L2, S1, L1]
– (r1, r2) = (NEW, NEW) [S1, S2, L1, L2]
– (r1, r2) = (0, 0) [L1, L2, S1, S2]

Allowed by most real hardware
architectures (also x86!)



Program and Memory Orders

• A program order ≺p is a per-core total order 
that captures the order in which each core 
logically executes memory operations

• A memory order ≺m is a system-wide total order 
that captures the order in which memory 
logically serializes memory operations from all 
cores

• Memory consistency can be defined imposing 
constraints on how ≺p and ≺m relate to each 
other



Sequential Consistency
• Let L(a) and S(a) be a Load and a Store to address a, 

respectively
• A Sequentially Consistent execution requires that:

– All cores insert their loads and stores into ≺m respecting their 
program order regardless of whether they are to the same or 
different address (i.e., a = b or a ≠ b):

• If L(a) ≺p L(b) ⇒ L(a) ≺m L(b) (Load/Load)
• If L(a) ≺p S(b) ⇒ L(a) ≺m S(b) (Load/Store)
• If S(a) ≺p S(b) ⇒ S(a) ≺m S(b) (Store/Store)
• If S(a) ≺p L(b) ⇒ S(a) ≺m L(b) (Store/Load)

– Every load gets its value from the last store before it (as seen 
in memory order) to the same address:

• value of L(a) = value of max≺m {S(a)|S(a) ≺m L(a)} where max≺m is the 
latest in memory order



Sequential Consistency in Practice

• We can globally reorder the execution in four 
different ways

• Only three of them are sequentially consistent



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is not a SC execution

Why did we say that this outcome
is allowed on common hardware architectures?



Weaker Consistency: Total Store Order

• A FIFO store buffer is 
used to hold committed 
stores until the memory 
subsystem can process it

• When a load is issued by 
a core, the store buffer is 
looked up for a matching 
store
– if found, the load is 

served by the store buffer 
(forwarding)

– otherwise it is served by 
the memory subsystem 
(bypassing)



Sequential Consistency in Practice
• This is a valid TSO execution

• A programmer might want to avoid the result 
(r1, r2) = (0, 0)



Memory Reordering in the Real World

Type Alpha ARMv7 POWER
SPARC 

PSO x86 AMD64 IA-64

LOAD/LOAD ✓ ✓ ✓ ✓
LOAD/STORE ✓ ✓ ✓ ✓
STORE/STORE ✓ ✓ ✓ ✓ ✓
STORE/LOAD ✓ ✓ ✓ ✓ ✓ ✓ ✓
ATOMIC/LOAD ✓ ✓ ✓ ✓
ATOMIC/STORE ✓ ✓ ✓ ✓ ✓
Dependent LOADs ✓
Incoherent I-cache ✓ ✓ ✓ ✓ ✓ ✓



The Effect Seen by Programmers
struct foo {

   int a;

   int b;

   int c;

 };

 struct foo *gp = NULL;

 

 /* . . . */

 

 p = malloc(sizeof(*p));

 p->a = 1;

 p->b = 2;

 p->c = 3;

 gp = p;

Is this always correct?



The Effect Seen by Programmers
struct foo {

   int a;

   int b;

   int c;

 };

 struct foo *gp = NULL;

 

 /* . . . */

 

 p = malloc(sizeof(*p));

 p->a = 1;

 p->b = 2;

 p->c = 3;

 gp = p;

 SFENCE "publish" the value



The Effect Seen by Programmers
 

 p = gp;

 if (p != NULL) {

   do_something_with(p->a, p->b, p->c);

 }

Is this always correct?



The Effect Seen by Programmers

 p = gp;
 if (p != NULL) {

   do_something_with(p->a, p->b, p->c);

 }

Memory/compiler barriers here



Memory Fences

• Let X(a) be either a load or a store operation to a
• Memory fences force the memory order of 

load/store operations:
– If X(a) ≺p FENCE ⇒ X(a) ≺m FENCE
– If FENCE ≺p X(a) ⇒ FENCE ≺m X(a)
– If FENCE ≺p FENCE ⇒ FENCE ≺m FENCE

• With fences it is possible to implement SC over 
TSO (with a significant performance penalty)



x86 Fences
• MFENCE: Full barrier

– If X(a) ≺p MFENCE ≺p X(b) ⇒ X(a) ≺m MFENCE ≺m X(b)
• SFENCE: Store/Store barrier

– If S(a) ≺p SFENCE ≺p S(b) ⇒ S(a) ≺m SFENCE ≺m S(b)
• LFENCE: Load/Load and Load/Store barrier

– If L(a) ≺p LFENCE ≺p X(b) ⇒ L(a) ≺m LFENCE ≺m X(b)

• Both MFENCE and SFENCE drain the store 
buffer



Charting the landscape: Memory
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• Different cores see different memory, connected over a shared busnetwork
• Reliability is still evaluated as a single unit
• Typical of ~2010 vintage GPU systems, or in general of systems which require 

offloading

• Removed all precedent burdens from programmers
• replaced with that of copying data



Inter-Core Connection

• What is the importance of inter-core connection?



Front-Side Bus (up to 2004)



Front-Side Bus (up to 2004)
• All traffic is sent across a single shared bi-directional bus
• Common width: 64 bits, 128 bits－multiple data bytes at a time
• To increase data throughput, data has been clocked in up to 4x 

the bus clock
– double-pumped or quad-pumped bus



Dual Independent Buses (2005)



Dual Independent Buses (2005)

• The single bus is split into two separate buffers
• This doubles the available bandwidth, in 

principles

• All snoop traffic had to be broadcast on both 
buses

• This would reduce the effective bandwidth
– Snoop filters are introduced in the chipset
– They are used as a cache of snoop messages



Dedicated High-Speed Interconnects (2007)



QuickPath Interconnect (2009)

• Migration to a distributed 
shared memory architecture 
chipset

• Inter-CPU communication 
based on high-speed uni-
directional point-to-point 
links

• Data can be sent across 
multiple lanes

• Transfers are packetized: 
data is broken into multiple 
transfers



QPI and Multicores

• The connection 
between a core and 
QPI is realized using a 
crossbar router:



QPI Layers

• Each link is made of 20 
signal pairs and a 
forwarded clock

• Each port has a link 
pair with two uni-
directional link

• Traffic is supported 
simultaneously in both 
directions



Charting the landscape: Memory

Memory

Pr
oc

es
so

rs
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weak memory

Disjoint
(tight)

Disjoint
(loose)

• The memory bus is replaced with a network
• We have islands of computing power, which can be closer of farther apart

• Typical of cloud computing, and the idea of cloud-core

• Two additional concerns for programmers (often abstracted by libraries):
• reliability: nodes come and go
• latency: the network congestion and the distance play an important role



Charting the landscape
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Mainstream Hardware: 1970s－today
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Mainstream
CPUs (1975–)

(GP)GPU
(2008–)

Mainstream Computers
(2010–)



Recent Hardware Trends
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XBOX
360

Intel Sandy Bridge
AMD Fusion
NVIDIA Tegra

Intel MIC
(2012-2019)

PS3
(CellBE)TPU (2016–)

Neuromorphic 
(2011–)



The Cloud
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Cloud Computing

Cloud Computing
+ Accelerators

Cloud Computing
+ GPU
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Welcome to the jungle...
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+ Performance/Watt
+ Parallel

- Performance/Watt
- Parallel



Petascale Computing

• Petascale: a computer system capable of reaching 
performance in excess of one petaflops, i.e. one 
quadrillion floating point operations per second.

• Level already reached in ~2007
– Several in the US
– Four in China
– One in Russia
– Some in Europe



Exascale Computing

• Computing systems capable of at least one 
exaFLOPS, or a billion billion (i.e. a quintillion) 
calculations per second

• Expected to enter the market in 2020/2021
– Involved both research and industrial partners
– Huge effort put by US, Europe, and China



From Petascale to Exascale
Re

la
tiv

e 
Tr

an
sis

to
r P

er
fo

rm
an

ce

1000

100

10

1
1986 1991 1992 2001 2006 2011 2016 2021

Giga

Tera

Peta
Exa

32x from transistors
32x from parallelism

8x from transistors
128x from parallelism

1.5x from transistors
670x from parallelism



Complicating the Picture: Dark Silicon

• Dark silicon is increasing (portion of circuitry that cannot be 
powered off for TDP constraints)

• We won’t be able to run all computing units powered on and at 
the max performance state

• Power management mechanisms
are required to fine-tune
allocation of the power
budget



Recap: The Hardware Perspective
• Parallelism is the de-facto standard to support the exascale transition

• General purpose computing units even through parallelism cannot 
reach exascale with tolerable power consumption 

• Heterogeneity of specialized computing units is key
– FPGA
– GPUs
– Same ISA heterogeneous chips
– Co-processors (Xeon Phi)
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The Software Perspective

Sequential programming

Concurrent
programming

Heretogeneous
programming



The Software Perspective
• Applications will need to be at least massively 

parallel, and ideally able to use non-local cores 
and heterogeneous cores

• Efficiency and performance optimization will 
get more, not less, important

• Programming languages and systems will 
increasingly be forced to deal with 
heterogeneous distributed parallelism



Complexity in Plain Sight
• The hardware is no longer hiding its complexity

• Software libraries (e.g. OpenCL) require 
understanding of the underlying hardware 
infrastructure

• Who will be using heterogeneous architectures?

• Economists
• Genetic engineers
• Etc.

• Computer scientists
• Biologists
• Medical scientists



Questions?

?


