
Kernel Messaging

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2019/2020

Linux Kernel Messaging System
• Kernel-level software can produce output messages related to events

occurring during the execution (debugging by printing)
• The messages can be produced both during initialization and steady

state operations, hence:
– Sofware modules forming the messaging system cannot rely on

I/O standard services (such as sys_write())
– No standard library function can be used for output production

• Management of kernel-level messages occurs via specific modules that
take care of the following tasks:
– Message print on the “console” device
– Message logging into a circular buffer kept within kernel level

virtual addresses

printk()
• The kernel level function to produce output

messages is printk() defined in
kernel/printk/printk.c

• It accepts a format string, similar to that used for the
printf() standard library function
– Floating point values are not allowed

• A message priority can be specified by relying on
macros (expanded to strings) which tell how critic is
a message

Message Priorities
• Priority levels are defined in include/linux/kernel.h

#define KERN_EMERG "<0>" /* system is unusable */
#define KERN_ALERT "<1>" /* action must be taken immediately */
#define KERN_CRIT "<2>" /* critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /* warning conditions */
#define KERN_NOTICE "<5>" /* normal but significant condition */
#define KERN_INFO "<6>" /* informational */
#define KERN_DEBUG "<7>" /* debug-level messages */

printk(KERN_WARNING "message to print")
printk(KERN_INFO "%s: Module message\n", KBUILD_MODNAME);

Message Priority Management
• There are 4 configurable parameters which determine how output

messages are managed
• They are associated with the following variables:

– console_loglevel: level under which the messages are logged
on the console device

– default_message_loglevel: priority level that is associated
by default with messages for which no priority value is specified

– minimum_console_loglevel: minimum level to allow a
message to be logged on the console device

– default_console_loglevel: the default level for messages
destined to the console device

Interacting with Log Level Settings
• cat /proc/sys/kernel/printk

 7 4 1 7
(current default minimum boot-time-default)

• Write to this file to change the parameters (if
supported by the specific kernel
version/configuration)

• This is not a real stable storage file

syslog()
int syslog(int type, char *bufp, int
len);
•This is the system call to perform management

operation on the kernel-level circular buffer hosting
output messages

• the bufp parameter points to the memory area where
the bytes read from the circular buffer will be copied

•len specifies how many bytes we are interested in, or
a flag (depending on the value of type)

/*
* Commands to sys_syslog:
*
* 0 -- Close the log. Currently a NOP.
* 1 -- Open the log. Currently a NOP.
* 2 -- Read from the log.
* 3 -- Read up to the last 4k

of messages in the ring buffer.
* 4 -- Read and clear last 4k

of messages in the ring buffer
* 5 -- Clear ring buffer.
* 6 -- Disable printk's to console
* 7 -- Enable printk's to console

8 -- Set level of messages printed to console
*/

syslog()'s type

console_loglevel can be set (to a value in the range 1-8) by calling:
syslog(8, dontcare, value)

Messaging Management Daemon

klogd - Kernel Log Daemon

SYNOPSIS
klogd [-c n] [-d] [-f fname] [-iI] [-n] [-o] [-

p] [-s] [-k fname] [-v] [-x] [-2]

DESCRIPTION
 klogd is a system daemon which intercepts and

logs Linux kernel messages

Circular buffer features
• The circular buffer keeping the kernel output messages has size

LOG_BUF_LEN and is stored in the array __log_buf, both in
kernel/printk/printk.c

– originally 4096 bytes
– Since 1.3.54 moved to 8192 bytes
– Since 2.1.113 moved to 16384 bytes
– Today, it can be defined at compile time

• A unique buffer is used for any message, independently of the
priority level

• The buffer content can be accessed by also relying on dmesg

Management of Messages
• To enable the delivery of messages with the exactly-once semantic,

printing on console is synchronous (recall that standard library
functions only enable at-most-once semantic, due to asynchronous
management)

• Hence the printk() function does not return control until the
message is delivered to any active console-device driver

• The driver, in its turn, does not return control until the message is
sent to the (physical) console device

• This may impact performance

– As an example, the delivery of a message on a serial console device
working at 9600 bit/sec, slows down the system by 1 millisecond
per char

panic()
• panic() is defined in kernel/panic.c

• This function prints the specified message on the
console device (by relying on printk())

• The string “Kernel panic:”

is prepended to the
message

• Further, this function halts the machine, hence
leading to stopping the execution of the kernel
– Indeed, threads enter an infinite loop

