
Loadable Kernel Modules

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2019/2020

Basics
• A Loadable Kernel Module (LKM) is a software

component which can be added to the memory image
of the Kernel while it is already running

• The kernel does not need to be recompiled to add
new software facilities

• They are also used to develop new parts of the Kernel
that can be then integrated in the final image once
stable

• They are also used to tailor the start up of a kernel
configuration, depending on specific needs

Module Initialization and Description

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Author <me@example.com>");
MODULE_DESCRIPTION("My Fancy Module");
module_init(my_module_init);
module_exit(my_module_cleanup);

Reference Counters

• The Kernel keeps a reference counter for each loaded
LKM

• If the reference counter is greater than zero, then the
module is locked

• This means that there are other services in the
system which rely on facilities exposed by the module

• If not forced, unloading of the module fails
• lsmod gives also information on who is using the

module

Reference Counters

• try_module_get(): try to increment the
reference counter

• module_put(): decrement the reference
counter

• CONFIG_MODULE_UNLOAD is a global macro
which allows the kernel to unload modules
– it can be used to check unloadability

Module Parameters

• We can pass parameters to modules
• These are not passed as actual function

parameters
• Rather, they are passed as initial values of global

variables declared in the module source code
• These variables, after being declared, need to be

marked as “module parameters” explicitly

Module Parameters
• Defined in include/linux/module.h or

include/linux/moduleparm.h

– MODULE_PARM(variable, type)(deprecated)
– module_param(variable, type, perm)
– module_param_array(name, type, num, perm);

• These macros specify the name of the global variable
which "receives" the input, its type, and its permission
(when mapped to a pseudofile)

• Based on pseudo-files in /sys
• Initialization is done upon module load

Module Parameters
module_param(myshort, short, S_IRUSR | S_IWUSR |

S_IRGRP | S_IWGRP);
MODULE_PARM_DESC(myshort, "A short integer");

module_param(myint, int, S_IRUSR | S_IWUSR | S_IRGRP
| S_IROTH);

MODULE_PARM_DESC(myint, "An integer");

module_param(mylong, long, S_IRUSR);
MODULE_PARM_DESC(mylong, "A long integer");

module_param(mystring, charp, 0000);
MODULE_PARM_DESC(mystring, "A character string");

module_param_array(myintArray, int, &arr_argc, 0000);
MODULE_PARM_DESC(myintArray, "An array of integers");

Module Parameters
/* You can use " around spaces, but can't escape ". */
/* Hyphens and underscores equivalent in parameter names. */

static char *next_arg(char *args, char **param, char **val)
{
 ...
 for (i = 0; args[i]; i++) {
 if (isspace(args[i]) && !in_quote)
 break;
 ...
}

Loading/Unloading a Module
• A module is loaded by the administrator via the shell

command insmod
• It can also be used to pass parameters

(variable=value)

• It takes as a parameter the path to the object file generated
when compiling the module

• A module is unloaded via the shell command rmmod
• We can also use modprobe, which by default looks for the

actual module in the directory /lib/modules/$(uname
–r)

Steps to Load a Module

• We need memory to load in RAM both code and
data structures

• We need to know several memory locations to
perform a dynamic resolution:
• Base address of the module, for internal references
• Locations in memory of static Kernel facilities

(functions and data)

Loading Scheme

Free
space

data

code

Kernel image

Module stuff
0x0Free space

obtained via
vmalloc()

get_zeroed_page()

Internal
reference

External
reference

Who does the job?

• Up to kernel 2.4 most of the job is done is userspace
– A module is a .o ELF
– Applications reserve memory, resolve the

symbols’ addresses and load the module in RAM
• From kernel 2.6 most of the job is kernel-internal

– A module is a .ko ELF
– Shell commands are used to trigger the kernel

actions for memory allocation, module loading,
and address resolution

#include <linux/module.h>
caddr_t create_module(const char *name, size_t size);

DESCRIPTION
create_module attempts to create a loadable module entry and reserve the kernel
memory that will be needed to hold the module. This system call is only open to the
superuser.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error -1 is
returned and errno is set appropriately.

System Calls up to 2.4

System Calls up to 2.4
 #include <linux/module.h>
int init_module(const char *name, struct module *image);
DESCRIPTION
init_module loads the relocated module image into kernel space and runs the
module's init function. The module image begins with a module structure and is followed by
code and data as appropriate. The module structure is defined as follows:
struct module {
 unsigned long size_of_struct;
 struct module *next; const char *name;
 unsigned long size; long usecount;
 unsigned long flags; unsigned int nsyms;
 unsigned int ndeps; struct module_symbol *syms;
 struct module_ref *deps; struct module_ref *refs;
 int (*init)(void); void (*cleanup)(void);
 const struct exception_table_entry *ex_table_start;
 const struct exception_table_entry *ex_table_end;
 };

#include <linux/module.h>
int delete_module(const char *name);

DESCRIPTION
delete_module attempts to remove an unused loadable module entry. If name is NULL,
all unused modules marked autoclean will be removed. This system call is only open to the
superuser.

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set appropriately.

System Calls up to 2.4

SYNOPSIS
 int init_module(void *module_image, unsigned long len,
 const char *param_values);
 int finit_module(int fd, const char *param_values,
 int flags);
 int delete_module(const char *name, int flags);

 Note: glibc provides no header file declaration of init_module() and no wrapper
 function for finit_module(); see NOTES.

DESCRIPTION
 init_module() loads an ELF image into kernel space, performs any necessary sym-
 bol relocations, initializes module parameters to values provided by the call-
 er, and then runs the module's init function. This system call requires privi-
 lege.

 The module_image argument points to a buffer containing the binary image to be
 loaded; len specifies the size of that buffer. The module image should be a
 valid ELF image, built for the running kernel.

System Calls since 2.6

Dynamic Resolution on 2.6

• To make a .ko file, we start with a regular .o file.
• The modpost program creates (from the .o file)

a C source file that describes the additional
sections that are required for the .ko file

• The C file is called .mod file
• The .mod file is compiled and linked with the

original .o file to make a .ko file

Up to Kernel 2.4 Since Kernel 2.6

insmod

create_module

Relocate module
(exploiting symtab, e.g.
exposed via /proc/ksyms)

init_module

1 2 3

insmod

init_module

insmod Operations

Kernel Exported Symbols
• Symbols from the Kernel or from modules can be exported
• An exported symbol can be referenced by other modules
• If a module references a symbol which is not exported, then

loading the module will fail
• EXPORT_SYMBOL(symbol) defined in

include/linux/module.h
• This must be configured:

CONFIG_KALLSYMS = y
CONFIG_KALLSYMS_ALL = y (include all symbols)

• Exported symbols are placed in the __ksymtab section

Kprobes
• Kprobes are meant as a support for dynamic tracing in the

Kernel
• int register_kprobe(struct kprobe *p) in
include/linux/kprobes.h specifies where the probe
is to be inserted and what pre_ and post_ handlers are to
be called when the probe is hit.

• unregister_kprobe(struct kprobe *p)
• typedef int (*kprobe_pre_handler_t)
(struct kprobe *, struct pt_regs *)

• To enable kprobes:
– CONFIG_KPROBES=y and CONFIG_KALLSYMS=y or
CONFIG_KALLSYMS_ALL=y

Kprobes
• Use breakpoints and single-step on copied code

Preparing

Running

Kprobes
• Kprobes can be installed anywhere in the kernel

– Multiple probes at the same address
– Multiple handlers (or multiple instances of the same handler) may run

concurrently on different CPUs.
– Registered kprobes are visible under the

/sys/kernel/debug/kprobes/ directory
– when registered, probes are saved in a hash table hashed by the address of

the probe
– Hash table is protected by kprobe_lock (a spinlock)

• Kprobes cannot probe itself
– use a blacklist to prevent recursive traps

• Probe handlers are run with preemption disabled.
– Depending on the architecture and optimization state, handlers may also

run with interrupts disabled (not on x86/x86-64).
– In any case, should not yield the CPU (e.g., by attempting to acquire a

semaphore).

Kprobes and Non-Exported Symbols
// Get a kernel probe to access flush_tlb_all
memset(&kp, 0, sizeof(kp));
kp.symbol_name = "flush_tlb_all";
if (!register_kprobe(&kp)) {

flush_tlb_all_lookup = (void *)kp.addr;
unregister_kprobe(&kp);

}

Linux Kernel Versioning
• include/linux/version.h is automatically included via the inclusion of
include/linux/module.h (except for cases where the __NO_VERSION__
macro is used)

• include/linux/version.h provides macros that can be used to get
information related to the "current" kernel version such as:

– UTS_RELEASE: expanded to a string defining the kernel version (e.g.
“4.1.7”)

– LINUX_VERSION_CODE: expanded to the binary representation of the
kernel version (with one byte for each number specifying the version)

– KERNEL_VERSION(major,minor,release): expanded to the binary
value representing the version number as defined by major, minor and
release

/sys/module
• /sys/module/MODULENAME: The name of the module that is

in the kernel. This module name will always show up if the
module is loaded as a dynamic module.

• /sys/module/MODULENAME/parameters: This directory
contains individual files that are each individual parameters of
the module that are able to be changed at runtime.

• /sys/module/MODULENAME/refcnt: If the module is able to
be unloaded from the kernel, this file will contain the current
reference count of the module.
– Note: If CONFIG_MODULE_UNLOAD kernel configuration value is not

enabled, this file will not be present.

