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Memory Management
• During the boot, the Kernel relies on a 

temporary memory manager
– It's compact and not very efficient
– The rationale is that there are not many memory 

requests during the boot
• At steady state this is no longer the case

– Allocations/deallocations are frequent
– Memory must be used wisely, accounting for 

hardware performance
• We must also discover how much physical 

memory is available, and how it is organized



NUMA Nodes Organization

• A node is organized in a struct pglist_data 
(even in the case of UMA) typedef'd to pg_data_t

• Every node in the system is kept on a NULL-
terminated list called pgdat_list

• Each node is linked to the next with the field 
pg_data_t→node_next
– In UMA systems, only one static pg_data_t structure 

called contig_page_data is used (defined at 
mm/numa.c)



NUMA Nodes Organization

• From Linux 2.6.16 to 2.6.17 much of the codebase 
of this portion of the kernel has been rewritten

• Introduction of macros to iterate over node data 
(most in include/linux/mmzone.h) such as:
– for_each_online_pgdat()
– first_online_pgdat()
– next_online_pgdat(pgdat)

• Global pgdat_list has since then been removed
• Macros rely on the global struct pglist_data 

*node_data[];



pg_data_t
• Defined in include/linux/mmzone.h

typedef struct pglist_data {
zone_t node_zones[MAX_NR_ZONES];
zonelist_t node_zonelists[GFP_ZONEMASK+1];
int nr_zones;
struct page *node_mem_map;
unsigned long *valid_addr_bitmap;
struct bootmem_data *bdata;
unsigned long node_start_paddr;
unsigned long node_start_mapnr;
unsigned long node_size;
int node_id;
struct pglist_data *node_next;

} pg_data_t;



Zones
• Nodes are divided into zones:

#define ZONE_DMA      0
#define ZONE_NORMAL   1
#define ZONE_HIGHMEM  2
#define MAX_NR_ZONES  3

• They target specific physical  memory areas:
– ZONE_DMA:  < 16 MB
– ZONE_NORMAL: 16-896 MB
– ZONE_HIGHMEM: > 896 MB

Limited in size and 
high contention. Linux 
also has the notion of 
high memory



Zones



Zones Initialization

• Zones are initialized after the kernel page tables 
have been fully set up by paging_init()

• The goal is to determine what parameters to 
send to:
– free_area_init() for UMA machines
– free_area_init_node() for NUMA machines

• The initialization grounds on PFNs
• max PFN is read from BIOS e820 table



e820 dump in dmesg

[0.000000] e820: BIOS-provided physical RAM map:
[0.000000] BIOS-e820: [mem 0x0000000000000000-0x000000000009fbff] usable
[0.000000] BIOS-e820: [mem 0x00000000000f0000-0x00000000000fffff] reserved
[0.000000] BIOS-e820: [mem 0x0000000000100000-0x000000007dc08bff] usable
[0.000000] BIOS-e820: [mem 0x000000007dc08c00-0x000000007dc5cbff] ACPI NVS
[0.000000] BIOS-e820: [mem 0x000000007dc5cc00-0x000000007dc5ebff] ACPI data
[0.000000] BIOS-e820: [mem 0x000000007dc5ec00-0x000000007fffffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000e0000000-0x00000000efffffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fed003ff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fed20000-0x00000000fed9ffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000feefffff] reserved
[0.000000] BIOS-e820: [mem 0x00000000ffb00000-0x00000000ffffffff] reserved



typedef struct zone_struct {
spinlock_t lock;
unsigned long free_pages;
zone_watermarks_t watermarks[MAX_NR_ZONES];
unsigned long       need_balance;
unsigned long  nr_active_pages,nr_inactive_pages;
unsigned long       nr_cache_pages;
free_area_t free_area[MAX_ORDER];
wait_queue_head_t * wait_table;
unsigned long wait_table_size;
unsigned long wait_table_shift;
struct pglist_data *zone_pgdat;
struct page *zone_mem_map;
unsigned long zone_start_paddr;
unsigned long zone_start_mapnr;
char *name;
unsigned long size;
unsigned long realsize;

} zone_t;

Currently 11

zone_t



Nodes, Zones and Pages Relations



Core Map
• It is an array of mem_map_t structures defined in include/linux/mm.h and kept in 
ZONE_NORMAL

    typedef struct page {
struct list_head list; /* ->mapping has some page lists. */
struct address_space *mapping; /* The inode (or ...) we belong to. */
unsigned long index; /* Our offset within mapping. */
struct page *next_hash; /* Next page sharing our hash bucket in

   the pagecache hash table. */
atomic_t count; /* Usage count, see below. */
unsigned long flags; /* atomic flags, some possibly

   updated asynchronously */
struct list_head lru; /* Pageout list, eg. active_list;

   protected by pagemap_lru_lock !! */
struct page **pprev_hash; /* Complement to *next_hash. */
struct buffer_head * buffers; /* Buffer maps us to a disk block. */

#if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if

   not kmapped, ie. highmem) */
#endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */

} mem_map_t;



Core Map Members
• Struct members are used to keep track of the interactions 

between MM and other kernel sub-systems 
• struct list_head list: used to organize the frames into 

free lists
• atomic_t count: counts the virtual references mapped onto 

the frame 
• unsigned long flags: status bits for the frame

#define PG_locked     0
#define PG_referenced 2
#define PG_uptodate   3
#define PG_dirty      4
#define PG_lru        6
#define PG_reserved  14



How to manage flags



Core Map on UMA
• Initially we only have the core map pointer
• This is  mem_map and is declared in mm/memory.c
• Pointer initialization and corresponding memory allocation occur 

within free_area_init()
• After initializing, each entry will keep the value 0 within the 
count field and the value 1 into the  PG_reserved flag 
within the flags field

• Hence no virtual reference exists for that frame and the frame is 
reserved 

• Frame un-reserving will take place later via the function 
mem_init() in arch/i386/mm/init.c  (by resetting the 
bit PG_reserved) 



Core Map on NUMA

• There is not a global mem_map array
• Every node keeps its own map in its own 

memory
• This map is referenced by 
pg_data_t→node_mem_map 

• The rest of the organization of the map does not 
change



Buddy System: Frame Allocator
• By Knowlton (1965) and Knuth (1968)
• It has been experimentally shown to be quite fast

• Based on two main data structures:
typedef struct free_area_struct {

struct list_head list;
unsigned int *map;

} free_area_t

struct list_head {
struct list_head *next, *prev;

}



free_area_t organization



Bitmap *map semantic
• Linux saves memory by using one bit for a pair of 

buddies
• It's a "fragmentation" bit
• Each time a buddy is allocated or free'd, the bit 

representing the pair is toggled
– 0: if the pages are both free or allocated
– 1: only one buddy is in use

#define MARK_USED(index, order, area) \
__change_bit((index) >> (1+(order)), (area)->map)

Index in the global 
mem_map array



High Memory

• When the size of physical memory approaches/ 
exceeds the maximum size of virtual memory, it 
is impossible for the kernel to keep all of the 
available physical memory mapped

• “Highmem” is the memory not covered by a 
permanent mapping

• The Kernel has an API to allow “temporary 
mappings”

• This is where userspace memory comes from



High Memory
• vmap(): used to make a long-duration mapping of multiple 

physical pages
• kmap(): it permits a short-duration mapping of a single page.

– It needs global synchronization, but is amortized somewhat. 
• kmap_atomic():  This permits a very short duration mapping 

of a single page. 
– It is restricted to the CPU that issued it
– the issuing task is required to stay on that CPU until it has finished

• In general: nowadays, it really makes sense to use 64-bit 
systems!



High Memory Deallocation

• Kernel maintains an array of counters:
    static int pkmap_count[ LAST_PKMAP ];

• One counter for each ‘high memory’ page
• Counter values are 0, 1, or more than 1:

– =0:  page is not mapped
– =1:  page not mapped now, but used to be
– =n >1: page was mapped (n-1) times



kunmap()
• kunmap(page) decrements the associated 

reference counter
• When the counter is 1, mapping is not needed 

anymore
• But CPU still has “cached” that mapping
• So the mapping must be “invalidated”
• With multiple CPUs, all of them must do it

– __flush_tlb_all()



Reclaiming Boot Memory
• The finalization of memory management init is done via 
mem_init() which destroys the bootmem allocator

• This function will release the frames, by resetting the 
PG_RESERVED bit 

• For each free'd frame, the function __free_page() is 
invoked

• This gives all the pages in ZONE_NORMAL to the buddy allocator

• At this point the reference count within the corresponding 
entry gets set to 1 since the kernel maps that frame anyway 
within its page table



Finalizing Memory Initialization
static unsigned long __init 
free_all_bootmem_core(pg_data_t *pgdat) {
  ……………
       // Loop through all pages in the current node

for (i = 0; i < idx; i++, page++) {
if (!test_bit(i, bdata->node_bootmem_map)) {

count++;
ClearPageReserved(page);
// Fake the buddy into thinking it's an
// actual free
set_page_count(page, 1);
__free_page(page);

}
}
total += count;
……………
return total;

}



Allocation Contexts

• Process context: allocation due to a system call
– If it cannot be served: wait along the current execution 

trace
– Priority-based approach

• Interrupt: allocation due to an interrupt 
handler
– If it cannot be served: no actual waiting time
– Priority independent schemes

• This approach is general to most Kernel subsystems



Basic Kernel Internal MM API
• At steady state, the MM subsystem exposes API to 

other kernel subsystems
• Prototypes in #include <linux/malloc.h>
• Basic API: page allocation

– unsigned long get_zeroed_page(int flags): 
take a frame from the free list, zero the content and return its 
virtual address

– unsigned long __get_free_page(int flags): 
take a frame from the free list and return its virtual address

– unsigned long __get_free_pages(int flags, 
unsigned long order): take a block of contiguous 
frames of given order from the free list



Basic Kernel Internal MM API

• Basic API: page allocation
– void free_page(unsigned long addr): 

put a frame back into the free list
– void free_pages(unsigned long addr, 

unsigned long order): put a block of frames 
of given order back into the free list

• Warning: passing a wrong addr or order 
might corrupt the Kernel!



Basic Kernel Internal MM API

• flags: used to specify the allocation context
– GFP_ATOMIC: interrupt context. The call cannot 
lead to sleep

– GFP_USER: Used to allocate memory for userspace-
related activities. The call can lead to sleep

– GFP_BUFFER: Used to allocate a buffer. The call 
can lead to sleep

– GFP_KERNEL: Used to allocate Kernel memory. 
The call can lead to sleep



NUMA Allocation

• On NUMA systems, we have multiple nodes
• UMA systems eventually invoke NUMA API, but 

the system is configured to have a single node
• Core memory allocation API:

– struct page *alloc_pages_node(int nid, 
unsigned int flags, unsigned int order);

– __get_free_pages() calls alloc_pages_node() 
specifying a NUMA policy



NUMA Policies
• NUMA policies determine what NUMA node is 

involved in a memory operation
• Since Kernel 2.6.18, userspace can tell the Kernel 

what policy to use:

#include <numaif.h> 
int set_mempolicy(int mode, unsigned long 
*nodemask, unsigned long maxnode); 

• mode can be: MPOL_DEFAULT, MPOL_BIND, 
MPOL_INTERLEAVE or MPOL_PREFERRED  



NUMA Policies
#include <numaif.h> 
int mbind(void *addr, unsigned long len, 
int mode, unsigned long *nodemask, 
unsigned long maxnode, unsigned flags); 

Sets the NUMA memory policy, which consists of a 
policy mode and zero or more nodes, for the 
memory range starting with addr and continuing 
for len bytes. The memory policy defines from 
which node memory is allocated. 



Moving Pages Around
#include <numaif.h> 
long move_pages(int pid, unsigned long 
count, void **pages, const int *nodes, 
int *status, int flags);

Moves the specified pages of the process pid to the 
memory nodes specified by nodes. The result of 
the move is reflected in status. The flags indicate 
constraints on the pages to be moved. 



Frequent Allocations/Deallocations

• Consider fixed-size data structures which are 
frequently allocated/released

• The buddy system here does not scale
– This is a classical case of frequent logical contention
– The Buddy System on each NUMA node is protected 

by a spinlock
– The internal fragmentation might rise too much



Classical Examples

• Allocation/release of page tables, at any level, is 
very frequent

• We want to perform these operations quickly
• For paging we have:

• pgd_alloc(), pmd_alloc() and pte_alloc()
• pgd_free(), pmd_free() and pte_free()

• They rely on one of Kernel-level fast allocators



Fast Allocation

• There are several fast allocators in the Kernel
• For paging, there are the quicklists
• For other buffers, there is the slab allocator
• There are three implementations of the slab allocator 

in Linux:
– the SLAB: Implemented around 1994
– the SLUB: The Unqueued Slab Allocator, default since 

Kernel 2.6.23
– the SLOB: Simple List of Blocks. If the SLAB is disabled at 

compile time, Linux reverts to this



Quicklist

• Defined in include/linux/quicklist.h
• They are implemented as a list of per-core page 

lists
• There is no need for synchronization
• If allocation fails, they revert to 
__get_free_page()



Quicklist Allocation
static inline void *quicklist_alloc(int nr, gfp_t flags, ...) {

struct quicklist *q;
void **p = NULL;

q = &get_cpu_var(quicklist)[nr];
p = q->page;
if (likely(p)) {

q->page = p[0];
p[0] = NULL;
q->nr_pages--;

}
put_cpu_var(quicklist);
if (likely(p))

return p;

p = (void *)__get_free_page(flags | __GFP_ZERO);
return p;

}



likely/unlikely
• Defined in include/linux/compiler.h
# define likely(x) __builtin_expect(!!(x), 1)
# define unlikely(x) __builtin_expect(!!(x), 0)

• !! is used to convert any value to 1 or 0

• Up to Pentium 4:
– 0x2e: Branch Not Taken
– 0x3e: Branch Taken



The SLAB Allocator



SLAB Interfaces

• Prototypes are in #include <linux/malloc.h>
• void *kmalloc(size_t size, int flags): 

allocation of contiguous memory (it returns the 
virtual address)

• void kfree(void *obj): frees memory allocated via 
kmalloc()

• void *kmalloc_node(size_t size, int flags, int 
node): NUMA-aware allocation



Available Caches (up to 3.9.11)
struct cache_sizes {

size_t  cs_size;
struct kmem_cache *cs_cachep;

#ifdef CONFIG_ZONE_DMA
struct kmem_cache *cs_dmacachep;

#endif
}

static cache_sizes_t cache_sizes[] = {
{32, NULL, NULL},
{64, NULL, NULL},
{128, NULL, NULL}
...
{65536, NULL, NULL},
{131072, NULL, NULL},

}



Available Caches (since 3.10)
struct kmem_cache_node {

spinlock_t list_lock;

#ifdef CONFIG_SLAB
struct list_head slabs_partial; /* partial list first, better 

     asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
struct array_cache *shared; /* shared per node */
struct array_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */

#endif
};



Slab Coloring
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L1 data caches
• Cache lines are small (typically 32/64 bytes)
• L1_CACHE_BYTES is the configuration macro in 

Linux
• Independently of the mapping scheme, close 

addresses fall in the same line
• Cache-aligned addressess fall in different lines
• We need to cope with cache performance issues at 

the level of kernel programming (typically not of 
explicit concern for user level programming)



Cache Performance Aspects
• Common members access issues

• Most-used members in a data structure should 
be placed at its head to maximize cache hits

• This should happen provided that the slab-
allocation (kmalloc()) system gives cache-line 
aligned addresses for dynamically allocated 
memory chunks

• Loosely related fields should be placed 
sufficiently distant in the data structure so as to 
avoid performance penalties due to false cache 
sharing

• The Kernel has also to deal with Aliasing



Cache flush operations
• Cache flushes automation can be partial (similar to TLB)
• Need for explicit cache flush operations 
• In some cases, the flush operation uses the physical 

address of the cached data to support flushing (“strict 
caching systems”, e.g. HyperSparc)

• Hence, TLB flushes should always be placed after the 
corresponding data cache flush calls



• void flush_cache_all(void)
• Flushes the entire CPU cache system, which 

makes it the most severe flush operation to use 
• It is used when changes to the kernel page tables, 

which are global in nature, are to be performed

• void flush_cache_mm(struct mm_struct 
*mm)
• Flushes all entries related to the address space
• On completion, no cache lines will be associated 

with mm

Cache flush operations



void flush_cache_range(struct mm_struct *mm, 
unsigned long start, unsigned long end)
• This flushes lines related to a range of addresses
• Like its TLB equivalent, it is provided in case the architecture 

has an efficient way of flushing ranges instead of flushing 
each individual page

void flush_cache_page(struct vm_area_struct 
*vma, unsigned long vmaddr)

• Flushes a single-page-sized region
• vma is supplied because the mm_struct is easily accessible 

through vma->vm_mm
• Additionally, by testing for the VM_EXEC flag, the 

architecture knows if the region is executable for caches that 
separate the instructions and data caches

Cache flush operations



User-/Kernel-Level Data Movement
unsigned long copy_from_user(void *to, const void *from, unsigned long n)

Copies n bytes from the user address(from) to the kernel address space(to).

unsigned long copy_to_user(void *to, const void *from, unsigned long n)
Copies n bytes from the kernel address(from) to the user address space(to).

void get_user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to).

void put_user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to).

long strncpy_from_user(char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from userspace (src) to 
kernel space (dst)

int access_ok(int type, unsigned long addr, unsigned long size)
Returns nonzero if the userspace block of memory is valid and zero otherwise



Large-size Allocations
• Typically used when adding large-size data structures to 

the kernel in a stable way
• This is the case when, e.g., mounting external modules
• The main APIs are:

– void *vmalloc(unsigned long size)
allocates memory of a given size, which can be non-
contiguous, and returns the virtual address (the 
corresponding frames are reserved)

– void vfree(void *addr)
frees the above mentioned memory



Logical/Physical Address Translation 

• This is valid only for kernel directly mapped 
memory (not vmalloc'd memory)

• virt_to_phys(unsigned int addr)  (in 
include/x86/io.h)

• phys_to_virt(unsigned int addr) (in 
include/x86/io.h)



kmalloc() vs vmalloc()
• Allocation size:

– Bounded for kmalloc (cache aligned)
• The boundary depends on the architecture and the Linux version. Current 

implementations handle up to 8KB
– 64/128 MB for vmalloc

• Physical contiguousness
– Yes for kmalloc
– No for vmalloc

• Effects on TLB
– None for kmalloc
– Global for vmalloc (transparent to vmalloc users)



Kernel Page Table Isolation



cpu_entry_area
struct cpu_entry_area {
   char gdt[PAGE_SIZE];

   struct entry_stack_page entry_stack_page;

   struct tss_struct tss;

   char exception_stacks[...];
};

DECLARE_PER_CPU(struct cpu_entry_area *, 
 cpu_entry_area);



Double Page General Directory

• The first level of the 
page table is 
composed of a buffer 
of 8 KBs (two actual 
pages)

• One page is used to 
map the kernel-level 
memory view

• The other one is used 
to map the userspace 
memory view

Kernel-Level 
PGD

Userspace 
PGD

CR3

CR3 is updated when transitioning to
and from kernel mode



Switch CR3
/arch/x86/entry/entry_64.S:
SYM_CODE_START(entry_SYSCALL_64)
 ...

SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
...
SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi

/arch/x86/entry/calling.h:
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req

mov %cr3, \scratch_reg
andq    $(~PTI_USER_PGTABLE_AND_PCID_MASK), \scratch_reg
mov \scratch_reg, %cr3

.endm



Memory View Consistency

• When a minor fault occurs, the process 
transitions to kernel mode

• Any update in the page table is therefore 
reflected only in the kernel-view page table

• The userspace page table must be explicitly 
realigned by the fault handler

• This same behavior occurs when a clone of the 
page table is created (this aspect is related to 
the implementation of the fork())



Memory View Consistency (5.5)
static noinline int vmalloc_fault(unsigned long address)
{

pgd_t *pgd, *pgd_k;
p4d_t *p4d, *p4d_k;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;

pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);

if (pgd_none(*pgd)) {
set_pgd(pgd, *pgd_k);

}

...
}



Memory View Consistency (5.5)
/arch/x86/include/asm/pgtable_64.h:
static inline void native_set_pgd(pgd_t *pgdp, pgd_t pgd)
{

WRITE_ONCE(*pgdp, pti_set_user_pgtbl(pgdp, pgd));
}

/arch/x86/mm/pti.c:
pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
{

if (!pgdp_maps_userspace(pgdp))
return pgd;

kernel_to_user_pgdp(pgdp)->pgd = pgd.pgd;

if ((pgd.pgd & (_PAGE_USER|_PAGE_PRESENT)) == (_PAGE_USER|_PAGE_PRESENT) &&
    (__supported_pte_mask & _PAGE_NX))

pgd.pgd |= _PAGE_NX;

return pgd;
}


