
Building the Kernel

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2019/2020

How to Compile the Kernel
$ make menuconfig / nconfig / xconfig /
gconfig

$ make -jX
$ make modules
make modules_install
make install
make headers_install
<build an init ramdisk>
grub-mkconfig -o /boot/grub/grub.cfg

initrd
• A way to load a temporary root file system into

memory
• This mainly hosts kernel modules to be loaded

during the boot to interact with the specific
hardware, and early-life applications

• This file system is then replaced by the actual
root file system, moved to a folder, and
unmounted

• Typically it is an archive in the CPIO format
– lsinitcpio /boot/initramfs-linux.img

Manually Create an initrd
• mkdir -p
init/initramfs/{bin,sbin,etc,proc,sys,n
ewroot}

• cd init
• touch initramfs/etc/mdev.conf
• Copy in the archive all tools which respect the

Single UNIX Specification (e.g., BusyBox)
• Provide an implementation of /init

Manually Create an initrd
#!/bin/sh

mount -t proc proc /proc
mount -t sysfs sysfs /sys

echo 0 > /proc/sys/kernel/printk
clear

busybox --install -s

mknod /dev/null c 1 3
mknod /dev/tty c 5 0
mdev -s

You can parse /proc/cmdline
to get actual values
init="/sbin/init"
root="/dev/hda1"

mount "${root}" /newroot

if [[-x "/newroot/${init}"]] ;
then

umount /sys /proc
exec switch_root /newroot
"${init}"

fi

echo "Failed to switch_root,
dropping to a shell"
exec sh

switch_root
NAME
 switch_root - switch to another filesystem as the root of the
 mount tree

SYNOPSIS
 switch_root newroot init [arg...]

DESCRIPTION
 switch_root moves already mounted /proc, /dev, /sys and /run to
 newroot and makes newroot the new root filesystem and starts
 init process.

 WARNING: switch_root removes recursively all files and
 directories on the current root filesystem.

switch_root
• You cannot actually unmount /
• mount(newroot, "/", NULL, MS_MOVE, NULL)

• If mountflags contains the flag MS_MOVE (available since
Linux 2.4.18), then move a subtree: source specifies an
existing mount point and target specifies the new
location to which that mount point is to be relocated. The
move is atomic: at no point is the subtree unmounted.

Kernel Build System
• Kconfig files: define each config symbol and its

attributes, such as its type, description and
dependencies. Programs that generate an option
menu tree (for example, make menuconfig) read the
menu entries from these files.

• .config file: stores each config symbol's selected
value. You can edit this file manually or use one of the
many make configuration targets, such as
menuconfig and xconfig, that call specialized
programs to build a tree-like menu and automatically
update (and create) the .config file for you.

Kernel Build System

• Upper-Level Makefiles: normal GNU makefiles
that describe the relationship between source
files and the commands needed to generate each
make target, such as kernel images and modules.

• Kbuild Files: a "special flavor" of Makefiles
used by the kernel, to instruct how to build
subsystems

Kconfig Example
menu "Character devices"

config DUMMY_CHAR
 tristate "DummyChar device support"
 ---help---
 Say Y here if you want to add support for the
 DummyChar device.
 If unsure, say N.
 To compile this driver as a module, choose M here:
 the module will be called dummy.

config DUMMY_STAT
 bool "dummy statistics"
 depends on DUMMY_CHAR
 ---help---
 Say Y here if you want to enable statistics about
 the DummyChar device.

Kbuild Files

• A Kbuild file is named "Makefile" or "Kbuild"
• Goal definitions: they define the files to be built,

any special compilation options, and any
subdirectories to be entered recursively.

obj-y += foo.o

obj-m += foo.o

obj-$(CONFIG_FOO) += foo.o

Built from foo.c or foo.S
Compile as a module

It can be also a directory

Kbuild for obj-y
• The kbuild Makefile specifies object files for
vmlinux in the $(obj-y) lists.

• Kbuild compiles all the $(obj-y) files.
• It then calls "$(LD) -r" to merge these files

into one built-in.o file

Final Kernel Linking

• The final linking is carried out via the link-
vmlinux.sh script

• vmlinux is linked from the objects selected by
$(KBUILD_VMLINUX_INIT) and
$(KBUILD_VMLINUX_MAIN)

• Order is important!
$(KBUILD_VMLINUX_INIT)must come first

• This is the point where kallsyms is placed in
the kernel image

Kernel System Map
• It contains a mapping between symbols and virtual

memory locations (determined at compile/link time) for:
• Steady-state Kernel functions (steady-state ones)
• Kernel data structures

• Symbols are associated with ‘storage class’:
• T: global (non-static but not necessarily exported)

function;
• t: a function local to the compilation unit (i.e. static)
• D: global data;
• d: data local to the compilation unit.
• R/r: same as D/d, but for read-only data

System map applications
• Kernel debugging
• Kernel run-time hacking
• The system map is also (partially) reported by

the (pseudo) file /proc/kallsysm

• This is access-protected from non-root users:
• Kernel printing function uses the %pK format

specifier
• This checks whether the current command is being

run by root
• In the negative case, it returns zero

An example
2.6.5-7.282-smp #1 SMP ……. i686 i686 i386 GNU/Linux

c03a8a00 D sys_call_table

2.6.32-5-amd64 #1 SMP ……… x86_64 GNU/Linux

ffffffff81308240 R sys_call_table

Read/write data

Read-only data

