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Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)



Initial Life of the Linux Kernel

• The Second stage bootloader (or the UEFI 
bootloader) loads the initial image of the kernel 
in memory

• This kernel image is very different from the 
steady-state one

• The entry point of the kernel must be identified 
by the bootloader



RAM after the bootloader is done



Initial Life of the Linux Kernel

References to code are related to Linux 2.6.24
In newer versions, the flow is the same, but line numbers change



Initial Life of the Linux Kernel

• The early kernel start-up for the Intel 
architecture is in file arch/x86/boot/header.S

• The very first executed instruction is at _start:

_start:
.byte 0xeb # short (2-byte) jump
.byte start_of_setup-1f

1:
... (around 300 lines of data and support routines)
start_of_setup:



start_of_setup()
• This short routine makes some initial setup:

– It sets up a stack
– It zeroes the bss section (just in case...)
– It then jumps to main() in arch/x86/boot/main.c

• Here the kernel is still running in real mode
• This function implements part of the the Kernel 

Boot Protocol
• This is the moment when boot options are 

loaded in memory



main()
• After some housekeeping and sanity checks, 
main() calls go_to_protected_mode() in 
arch/x86/boot/pm.c

• The goal of this function is to prepare the machine to 
enter protected mode and then do the switch

• This follows exactly the steps which we discussed:
– Enabling A20 line
– Setting up Interrupt Descriptor Table
– Setup memory



Interrupt Descriptor Table

• In real mode, the Interrupt Vector Table is 
always at address zero

• We now have to load the IDT into the IDTR 
register. The following code ignores all 
interrupts:

static void setup_idt(void)
{

static const struct gdt_ptr null_idt = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));

}



setup_gdt()
static void setup_gdt(void)
{
        static const u64 boot_gdt[] __attribute__((aligned(16))) = {

[GDT_ENTRY_BOOT_CS] = GDT_ENTRY(0xc09b, 0, 0xfffff), 
[GDT_ENTRY_BOOT_DS] = GDT_ENTRY(0xc093, 0, 0xfffff), 
[GDT_ENTRY_BOOT_TSS] = GDT_ENTRY(0x0089, 4096, 103), 

};

static struct gdt_ptr gdt;
gdt.len = sizeof(boot_gdt)-1;
gdt.ptr = (u32)&boot_gdt + (ds() << 4);

asm volatile("lgdtl %0" : : "m" (gdt));
}

GDT_ENTRY is defined as a macro in arch/x86/include/asm/segment.h



Moving to protected mode

• After setting the initial IDT and GDT, the kernel 
jumps to protected mode via 
protected_mode_jump() in arch/x86/boot/pmjump.S

• This is an assembly routine which:
– Sets the PE bit in CR0 (paging still disabled)
– Issues a ljmp to its very next instruction to load in 

CS the boot CS selector
– Sets up data segments for flat 32-bit mode
– It sets a (temporary) stack



Decompressing the Kernel

• protected_mode_jump() jumps into startup_32() 
in arch/x86/boot/compressed/head_32.S

• This routine does some basic initialization:
– Sets the segments to known values (__BOOT_DS)
– Loads a new stack
– Clears again the BSS section
– Determines the actual position in memory via a call/pop
– Calls decompress_kernel() (or extract_kernel()) 

in arch/x86/boot/compressed/misc.c



Kernel Address Space Layout 
Randomization (KASLR)

• If you know the binary image of the kernel, an 
attacker patch the memory image of the kernel 
by writing directly at the correct address in 
memory

• At boot time, the kernel “randomly” decides 
where to decompress itself in memory, relying 
on the most accurate source of entropy available

• The number of possibilities is anyhow reduced:
– The kernel is mapped using 2MB pages
– The number of “vaild slots” is thus limited



(Actual) Kernel entry point

• The first startup routine of the decompressed 
kernel is startup_32() at 
arch/x86/kernel/head_32.S

• Here we start to prepare the final image of the 
kernel which will be resident in memory until 
we shut down the machine

• Remember that paging is still disabled!



startup_32() (second version)

• Clear the BSS segment again
• Setup a new GDT
• Build the page table
• Enable paging
• Create the final IDT
• Jump into the architecture-independent kernel 

entry point (start_kernel() at init/main.c)



Kernel Initialization



Kernel Initialization

…Core 0 Core 1 Core 2 Core (n-1) code in 
head.S
(or variants)

start_kernel()

SYNC



Kernel Initialization
• start_kernel() executes on a single core 

(master)
• All the other cores (slaves) keep waiting that the 

master has finished
• The kernel internal function smp_processor_id() 

can be used to retrieve the ID of the current core
• It is based on ASM instructions implementing a 

hardware specific ID detection protocol 
• On newer versions, it reads the CPU ID from APIC
• This function can be used both at kernel startup and 

at steady state 



Inline Assembly

__asm__ __volatile__ (
Assembly Template
: Output Operands
: Input Operands
: Clobbers

);

A comma-separated list of inputs
"=r" (old), "+rm" (*Base)

A string keeping one or more 
assembly instructions

A comma-separated list of outputs
"r" (Offset)

A comma-separated list of registers 
or other elements changed by the 

execution of the instruction(s)



Inline Assembly
• "m": a memory operand
• "o":  a memory operand which is "offsettable" (to deal with instructions' size)
• "r": a general-purpose register
• "g": Register, memory or immediate, except for non-general purpose registers
• "i": an immediate operand
• "0", "1", … ‘9’: a previously referenced register
• "q": any "byte-addressable" register
• “Q” any “high” 8-bit addressable sub-register
• "+": the register is both read and written
• "=": the register is written
• "a", "b", "c", "d", "S", "D": registers A, B, C, D, SI, and DI
• "A": registers A and D (for instructions using AX:DX as output)



CPUID Identification

• When available, the cpuid assembly 
instruction gives information about the 
available hardware

void cpuid(int code, uint32_t *a, uint32_t *d) {
asm volatile("cpuid"
:"=a"(*a),"=d"(*d)
:"a"(code)
:"ecx","ebx");

}



wrmsr/rdmsr
static inline void wrmsr(uint32_t msr_id, uint64_t msr_value)
{
    asm volatile ( "wrmsr" : : "c" (msr_id), "A" (msr_value) );
}

static inline uint64_t rdmsr(uint32_t msr_id)
{
    uint64_t msr_value;
    asm volatile ( "rdmsr" : "=A" (msr_value) : "c" (msr_id) );
    return msr_value;
}



Kernel Initialization Signature

• start_kernel() is declared as:
asmlinkage __visible void __init start_kernel(void);

• asmlinkage: tells the compiler that the calling 
convention is such that parameters are passed on 
stack

• __visible: prevent Link-Time Optimization (since 
gcc 4.5)

• __init: free this memory after initialization (maps 
to a specific section)



Some facts about memory

• During initialization, the steady-state kernel 
must take control of the available physical 
memory (see setup_arch() at kernel/setup.c)

• This is due to the fact that it will have to manage 
it with respect to virtual address spaces of all 
processes
– Memory allocation and deallocation
– Swapping

• When starting, the kernel must have an early 
organization setup out of the box



Enabling Paging

movl $swapper_pg_dir-__PAGE_OFFSET,%eax 
movl %eax,%cr3 /* set the page table pointer */ 
movl %cr0,%eax 
orl $0x80000000,%eax 
movl %eax,%cr0 /* set paging (PG) bit */ 



Early Page Table Organization (i386)
1 Level paging 2 levels pagingaddress

<10 bits page#, 22 bits offset>

<physical 4MB frame address>

PT(E)

<20 bits page#, 12 bits page offset>

<10 bits page sec, 10 bits actual page>

<physical 4KB frame address>

PD(E)

PT(E)



Early Page Table Organization (i386)

8 MB (mapped on VM)

code

data

free

X MB (unmapped on VM)

Page table
with 2 valid 
entries only

(each one for a
 4 MB page)



What do we have to do now
1. We need to reach the correct granularity for paging (4KB)
2. We need to span logical to physical address across the whole 

1GB of manageable physical memory
3. We need to re-organize the page table in two separate levels
4. So we need to determine ‘free buffers’ within the already 

reachable memory segment to initially expand the page table
5. We cannot use memory management facilities other than 

paging (Kernel-level memory manager is not ready yet!)
6. We need to find a way to describe the physical memory
7. We're not dealing with userspace memory yet!



Kernel-Level MM Data Structures

•Kernel Page table
– It keeps the memory mapping for kernel-

level code and data (thread stack included)
•Core map

– The map that keeps status information for 
any frame (page) of physical memory, and 
for any NUMA node

– Free list of physical memory frames, for any 
NUMA node



Bootmem
1. Memory map of the initial kernel image is known at 

compile time
2. A link time memory manager is embedded into the 

kernel image, which is called bootmem allocator (see 
linux/bootmem.h)

3. It relies on bitmaps telling if any 4KB page in the 
currently reachable memory image is busy or free

4. It also offers API (at boot time only) to get free 
buffers

5. These buffers are sets of contiguous page-aligned 
areas



Bootmem organization

Data 

Code

.

.

.

.

Linker

Bootmem
bitmap

0x80000000

0xc0800000

free

free

free

Compact status of 
busy/free buffers



Location of PT in Physical Memory

8 MB (mapped on VM)

code

data

free

X MB (unmapped on VM)

Page table
(composed of 4 KB 

non-contiguous blocks)



Memblock
• The Logical Memory Block (LMB) allocator has superseded 

Bootmem on almost all architectures
• The idea behind it is that available memory is larger and 

addressing is more scattered
• Memory is represented as two arrays of regions

– Physically-contiguous memory
– Allocated regions

• memblock_add[_node](): it registers a physical memory 
range

• memblock_reserve(): mark a range of memory as busy
• memblock_find_in_range(): find an (aligned) free area in 

given range



How Linux handles paging
• Linux on x86 has 3 indirection levels:

• Linux has also the possibility to manage 4 levels:
– Page Global Directory, Page Upper Directory, Page 

Middle Directory, Page Table Entry

Physical 
(frame) adress

Page Middle
Directory

Page Table
Entries

Page General
Directory

pgd pmd pte offset



Splitting the address

pgd pmd pte offset

BITS_PER_LONG

• SHIFT macros specify the length in bit mapped to each PT level:
– arch/x86/include/asm/pgtable-3level_types.h
– arch/x86/include/asm/pgtable-2level_types.h
– arch/x86/include/asm/page_types.h
– arch/x86/include/asm/pgtable_64_types.h

PAGE_SHIFT

PMD_SHIFT

PGDIR_SHIFT



Splitting the address

pgd pmd pte offset

BITS_PER_LONG

• MASK macros are used to retrieve higher bits
• SIZE macros reveal how many bytes are addressed by each entry

PAGE_SIZE

PMD_SIZE

PGDIR_SIZEPGDIR_MASK

PMD_MASK

PAGE_MASK



Configuring the PT

• There are the PTRS_PER_x macros which 
determine the number of entries in each level of 
the page table

#define PTRS_PER_PGD    1024
#define PTRS_PER_PMD    1 without PAE
#define PTRS_PER_PTE    1024 



Page Table Data Structures
• swapper_pg_dir in arch/i386/kernel/head.S keeps 

the virtual memory address of the PGD (PDE) portion of the 
kernel page table

• It is initialized at compile time, depending on the memory layout 
defined for the kernel bootable image

• Any entry within the PGD is accessed via displacement
• C types for the definition of the content of the page table entries 

are defined:
   typedef struct { unsigned long pte_low; } pte_t;
   typedef struct { unsigned long pmd; } pmd_t;
   typedef struct { unsigned long pgd; } pgd_t;



Fighting againts weak typing

• C is weak typed
• This code generates no errors nor warnings:

typedef unsigned long pgd_t;
typedef unsigned long pte_t;
pgd_t x; pte_t y;
x = y;
y = x;



Bit fields
• In arch/x86/include/asm/pgtable_types.h we find the 

definitions of the fields proper of page table entries

#define _PAGE_BIT_PRESENT  0 /* is present */
#define _PAGE_BIT_RW   1 /* writeable */
#define _PAGE_BIT_USER   2 /* userspace addressable */
#define _PAGE_BIT_PWT   3 /* page write through */
#define _PAGE_BIT_PCD   4 /* page cache disabled */
#define _PAGE_BIT_ACCESSED  5 /* accessed (raised by 
CPU) */
#define _PAGE_BIT_DIRTY   6/* was written (raised 
by CPU)*/



Bit fields and masks
pte_t x;

x = …;

if ((x.pte_low) & _PAGE_PRESENT){
/* the page is loaded in a frame */

} else {
 /* the page is not loaded in any 

         frame */
} ;



Different PD Entries

• Again in arch/x86/include/asm/pgtable_types.h

#define _PAGE_TABLE \
(_PAGE_PRESENT | _PAGE_RW | \ 
_PAGE_USER | _PAGE_ACCESSED | \
_PAGE_DIRTY)

#define _KERNPG_TABLE \
(_PAGE_PRESENT | _PAGE_RW | \ 
_PAGE_ACCESSED | _PAGE_DIRTY)



Initialization Steps

setup_arch



Kernel Page Table Initialization

• As said, the kernel PDE is accessible at the virtual 
address kept by swapper_pg_dir

• PTEs are reserved within the 8MB of RAM 
accessible via the initial paging scheme

• Allocation done via alloc_bootmem_low_pages() 
defined in include/linux/bootmem.h (returns a 
virtual address)

• It returns the pointer to a page-aligned buffer with a 
size multiple of 4KBs



pagetable_init() (2.4.22)
for (; i < PTRS_PER_PGD; pgd++, i++) {
    vaddr = i*PGDIR_SIZE;  /* i is set to map from 3 GB */
    if (end && (vaddr >= end)) break;
    pmd = (pmd_t *)pgd;/* pgd initialized to (swapper_pg_dir+i) */
    ………
    for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

………
pte_base = pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
for (k = 0; k < PTRS_PER_PTE; pte++, k++) {
    vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;
    if (end && (vaddr >= end)) break;

………
    *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);
}
set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));
………

    }
}



pagetable_init() (2.4.22)

• The final PDE buffer is the same as the initial 
page table mapping 4 MB pages

• 4KB paging is activated when filling the entry of 
the PDE table (Page Size bit is updated 
accordingly)

• Therefore, the PDE entry is set only after having 
populated the corresponding PTE table

• Otherwise memory mapping would be lost upon 
any TLB miss



__set_pmd() and __pa()
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)

• Parameters are:
– pmdptr, pointing to an entry of the PMD,  of type pmd_t
– The value to assign, of pmd_t type

#define __pa(x)((unsigned long)(x)-PAGE_OFFSET)
– Linux sets up a direct mapping from the physical 

address 0 to the virtual address PAGE_OFFSET at 3GB 
on i386

– The opposite can be done using the __va(x) macro



mk_pte_phys()
mk_pte_phys(physpage, pgprot)

• The input parameters are
– A frame physical address physpage, of type unsigned 

long
– A bit string pgprot for a PTE, of type pgprot_t

• The macro builds a complete PTE entry, which includes the 
physical address of the target frame

• The return type is pte_t
• The returned value can be then assigned to one PTE entry



Loading the new page table

• When pagetable_init() returns, the new page 
table is built

• The CPU is still relying on the boot pagetable
• Two lines in paging_init() make the new table 

visible to the architecture:

load_cr3(swapper_pg_dir);
__flush_tlb_all();

Invalidates Address-Space 
ID (ASID) on x86



load_cr3()
• in arch/x86/include/asm/processor.h:
static inline void load_cr3(pgd_t *pgdir) 
{

native_write_cr3(__pa(pgdir));
}

• in arch/x86/include/asm/special_insns.h:
static inline void native_write_cr3(unsigned long val) {

asm volatile(
"mov %0,%%cr3"
:: "r" (val), "m" (__force_order)

);
}

Dummy global 
variable to force 
serialization
(better than
memory clobber)



TLB implicit vs. explicit operations
• The degree of automation in the management process 

of TLB entries depends on the hardware architecture

• Kernel hooks exist for explicit management of TLB 
operations (mapped at compile time to nops in case of 
fully-automated TLB management)

• On x86, automation is only partial: automatic TLB 
flushes occur upon updates of the CR3 register (e.g. 
page table changes) 

• Changes inside the current page table are not 
automatically reflected into the TLB  



Types of TLB relevant events
• Scale classification

• Global: dealing with virtual addresses accessible by 
every CPU/core in real-time-concurrency

• Local: dealing with virtual addresses accessible in time-
sharing concurrency

• Typology classification
• Virtual to physical address remapping
• Virtual address access rule modification (read only vs 

write access)

• Typical management: TLB implicit renewal via flush 
operations 



TLB flush costs
• Direct costs

– The latency of the firmware level protocol for TLB entries 
invalidation (selective vs non-selective)

– plus, the latency for cross-CPU coordination in case of 
global TLB flushes

• Indirect costs
– TLB renewal latency by the MMU firmware upon misses in the 

translation process of virtual to physical addresses 

– This cost depends on the amount of entries to be refilled

– Tradeoff vs TLB API and software complexity inside the 
kernel (selective vs non-selective flush/renewal)



void flush_tlb_all(void) 

• This flushes the entire TLB on all processors 
running in the system (most expensive TLB flush 
operation)

• After it completes, all modifications to the page 
tables are globally visible

• This is required after the kernel page tables, 
which are global in nature, have been modified

Linux full TLB flush



void flush_tlb_mm(struct mm_struct *mm)

• This flushes all TLB entries related to a portion of the 
userspace memory context

• On some architectures (e.g. MIPS), this is required 
for all cores (usually it is confined to the local 
processor) 

• Called only after an operation affecting the entire 
address space 

– For example, when cloning a process with a fork()
– Interaction with COW protection

Linux partial TLB flush



void flush_tlb_page(struct vm_area_struct 
*vma, unsigned long addr)

• This API flushes a single page from the TLB

• The two most common uses of it are to flush 
the TLB after a page has been faulted in or has 
been paged out

– Interactions with page table access firmware

Linux partial TLB flush



void flush_tlb_range(struct mm_struct *mm, 
unsigned long start, unsigned long end)

 
• This flushes all entries within the requested 

user space range for the mm context
• This is used after a region has been moved 

(mremap()) or when changing permissions 
(mprotect())  

• This API is provided for architectures that can 
remove ranges of TLB entries quicker than 
iterating with flush_tlb_page()

Linux partial TLB flush



void flush_tlb_pgtables(struct mm_struct *mm, 
unsigned long start, unsigned long end)

• Used when the page tables are being torn down 
and free'd 

• Some platforms cache the lowest level of the 
page table, which needs to be flushed when the 
pages are being deleted (e.g. Sparc64)

• This is called when a region is being unmapped 
and the page directory entries are being 
reclaimed

Linux partial TLB flush



void update_mmu_cache(struct vm_area_struct *vma, 
unsigned long addr, pte_t pte)

• Only called after a page fault completes 

• It tells that a new translation now exists at pte for the 
virtual address addr

• Each architecture decides how this information should 
be used

• For example, Sparc64 uses the information to decide if 
the local CPU needs to flush its data cache

• In some cases it is also used for preloading TLB entries

Linux partial TLB flush



Kernel Initialization



Setting up the Final GDT and IDT

• We have seen that during initialization, the 
kernel installs a dummy IDT:

static void setup_idt(void) {
static const struct gdt_ptr null_idt = {0, 0};
asm volatile("lidtl %0" : : "m" (null_idt));

}
• After having initialized memory, it's time to 

setup the final GDT and IDT
• In start_kernel(), after setup_arch() we 

find a call to trap_init() (defined in 
arch/x86/kernel/traps.c)



Final GDT

Per-core, instantiated at arch/x86/kernel/cpu/common.c

Shared across all cores
Different for all cores



cpu_idle()
static void cpu_idle_loop(void) {

while (1) {
    while(!need_resched()) {

        cpuidle_idle_call();
    }

    schedule_preempt_disabled();
}

}

static inline void native_halt(void) {
    asm volatile("hlt": : :"memory");
}



The End of the Booting Process

• The idle loop is the end of the booting process
• Since the very first long jump ljmp 
$0xf000,$0xe05b at the reset vector at F000:FFF0 
which activated the BIOS, we have worked hard to 
setup a system which is spinning forever

• This is the end of the "romantic" Kernel boot 
procedure: we infinitely loop into a hlt instruction

• or...


