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Moore's Law (1965)

The number of transistors in a dense integrated 
circuit doubles approximately every two years

— Gordon Moore, Co-founder of Intel



Effects of this Technological Trend

• Implications of
• Moore’s Law have 
changed since 2003
• 130W is 
considered an upper 
bound (the power 
wall )

P=ACV2f



Single Cores

• Multicycle single core 
CPUs were already 
complex...

• ...but they were slow!



Trying to speedup: the pipeline (1980s)

• Temporal parallelism
• Number of stages increases with each generation
• Maximum Cycles Per Instructions (CPI)=1



Superascalar Architecture (1990s)
• More instructions are simultaneously executed on the 

same CPU
• There are redundant functional units that can operate 

in parallel
• Run-time scheduling (in contrast to compile-time)



Speculation
• In what stage does the CPU fetch the 

next instruction?
• If the instruction is a conditional 

branch, when does the CPU know 
whether the branch is taken or not?

• Stalling has a cost: 
nCycles · branchFrequency

• A guess on the outcome of a 
compare is made
– if wrong the result is discarded
– if right the result is flushed

a ← b + c
if a ≥ 0 then

d ← b
else

d ← c
end if



Branch Prediction
• Performance improvement depends on:

– whether the prediction is correct
– how soon you can check the prediction

• Dynamic branch prediction
– the prediction changes as the program behaviour changes
– implemented in hardware
– commonly based on branch history

• predict the branch as taken is it was taken previously

• Static branch prediction
– compiler-determined
– user-assisted (e.g., likely in kernel’s source code; 0x2e, 
0x3e prefixes for Pentium 4)



Branch Prediction Table
• Small memory indexed by the lower bits of the address of conditional 

branch instruction
• Each instruction is associated with a prediction

– Take or not take the branch
• If the prediction is take and it is correct:

– Only one cycle penalty
• If the prediction is not take and it is correct:

– No penalty
• If the prediction is incorrect:

– Change the prediction
– Flush the pipeline
– Penalty is the same as if there were no branch prediction



Two-bit Saturating Counter

• How well does it work with nested loops?

T

NTNT

T
taken

taken

not taken

not taken

not takentaken

not taken

taken



A Nested Loop Example



A Nested Loop Example

• 2-bit saturating 
counters do not work 
well with nested loops

• It could mispredict the 
first and last iteration 
due to the inner loop



Branch Prediction is Important
• Conditional branches are around 20% of the instructions in the 

code
• Pipelines are deeper

– A greater misprediction penalty

• Superscalar architectures execute more instructions at once
– The probability of finding a branch in the pipeline is higher

• Object-oriented programming
– Inheritance adds more branches which are harder to predict

• Two-bits prediction is not enough
– Chips are denser: more sophisticated hardware solutions could be put in 

place



How to Improve Branch Prediction?
• Improve the prediction

– Correlated (two-levels) predictors [Pentium]
– Hybrid local/global predictor [Alpha]

• Determine the target earlier
– Branch target buffer [Pentium, Itanium]
– Next address in instruction cache [Alpha, UltraSPARC]
– Return address stack [Consolidated into all architecture]

• Reduce misprediction penalty
– Fetch both instruction streams [IBM mainframes]



Correlated Predictor

• Predictions cannot depend on only one branch
• Some branch outcomes are correlated

• Use a history of past m branches, representing a 
path through the program



Pattern History Table (PHT)

• Put the global branch history in a global history 
register

• Use its value to access a PHT of 2-bit saturating 
counters



Tournament Predictor

• Combines different branch predictors
• A local predictor, selected using the branch 

address
• A correlated predictor, based on the last m 

branches, accessed by the local history
• An indicator of which has been the best 

predictor for this branch
– A 2-bit counter, which is increased for one and 

decreased for the other



DEC Alpha 21264 BPU

• Tournament Branch Prediction Algorithm
• 35Kb of prediction information
• 2% of total die size
• Claim 0.7-1.0% misprediction



Branch Target Buffer
• Indirect jumps are hard to predict (e.g., jmp * rax, 
ret)

• It is a small cache memory, accessed via PC during the 
fetch phase

• Prediction bits are coupled with prediction target



Return Address Stack
• Registers are accessed several stages after 

instruction’s fetch
• Most of indirect jumps (85%) are function-call 

returns
• Return address stack:

– it provides the return address early
– this is pushed on call, popped on return
– works great for procedures that are called from multiple 

sites
• BTB would would predict the address of the return from the 

last call



Fetch Both Targets

• This technique fetches both targets of the 
branch

• Does not help in case of multiple targets (e.g., 
switch statements)

• Reduces the misprediction penalty
• Requires a lot of I-cache bandwidth



Simultaneous Multi-Threading－SMT (2000s)

• A physical processor appears as multiple logical processors
• There is a copy of the architecture state (e.g., control registers) 

for each logical processor
• A single set of physical execution resources is shared among 

logical processors
• Requires less hardware, but some sort of arbitration is 

mandatory



The Intel case: Hyper-Threading on 
Xeon CPUs

• Goal 1: minimize the die area cost (share of the 
majority of architecture resources)

• Goal 2: when one logical processor stalls, the other 
logical process can progress

• Goal 3: in case the feature is not needed, incur in no 
cost penalty

• The architecture is divided into two main parts:
– Front end
– Out-of-order execution engine



Xeon Front End
• The goal of this stage is to deliver instruction to later 

pipeline
• stages
• Actual Intel’s cores do not execute CISC instructions

– Intel instructions are cumbersome to decode: variable length, 
many different options

– A Microcode ROM decodes instructions and converts them into a 
set of semantically-equivalent RISC μ-ops

• μ-ops are cached into the Execution Trace Cache (TC)
• Most of the executed instructions come from the TC



Trace Cache Hit

• Two sets of next-instruction 
pointers

• Access to the TC is arbitrated 
among logical processors at 
each clock cycle

• In case of contention, access 
is alternated

• TC entries are tagged with 
thread information

• TC is 8-way associative, 
entries are replaced 
according to a LRU scheme



Trace Cache Miss



ITLB and Branch Prediction
• The Instruction Tranlsation Lookaside Buffer (ITLB) receives a request 

from TC to deliver new instructions
• The next-instruction pointer is translated to a physical address

– A request is sent to L2 cache
– Per-logical-processor access is arbitrated on a FIFO basis, with at least 

one slot for each logical processor
• Instruction bytes are stored in a 64-byte streaming buffer
• Duplicated branch-prediction structures:

– Return stack buffer
– Branch history register

• Shared branch-prediction structures:
– Pattern history table, with per-logical processor entry tags



Xeon Out-of-order Pipeline



μ-op Queue
• This queue decouples the front end from the 

out-of-order execution engine
• Allows logical processors to make progress 

independently of front-end stalls
• μ-ops are executed as quickly as their inputs are 

ready
• The original program order is not taken into 

account



Allocator
• The allocator take μ-ops from the μ-op queue
• Its goal is to allocate machine buffers needed for μ-op execution:

– 126 re-order buffer entries
– 128 integer and 128 floating-point physical registers
– 48 load and 24 store buffer entries

• Some of these buffers are partitioned among logical processors, 
to ensure progress and fairness

• The allocator alternates selecting μ-ops associated with logical 
processors at each clock cycle

• If partitioned resources are all used by a logical processor, it is 
stalled



Register Rename
• IA-32 has 8 general-purpose registers, while Intel Xeon has 128 

physical registers
• Logical registers are expanded to use all the available physical 

registers
• A Register Alias Table (RAT) tracks the latest version of each IA-32 

register to tell the next instruction where to find input operands
• There is one RAT for each logical processor
• After register rename, μ-ops are placed into two separate queues:

– A memory-operation queue (for load/stores)
– A queue for all other operations

• These queue are duplicated for each logical processor



Instruction Scheduling
• Five μ-op schedulers are used to schedule different types of μ-

ops for the various execution units
• They can dispatch up to 6 μ-ops at each clock cycle
• The two queues (memory and other instructions) send as fast as 

they can μ-ops to the scheduler, handling logical processors in a 
round-robin fashion, if possible

• Each scheduler has its own queue, of up to 12 entries
• μ-ops are taken from these queues independently of the logical 

processor (schedulers are logical-processor-oblivious)
• μ-ops are evaluated depending on the availability of their input 

operands



Execution Units

• They are oblivious of the logical processors as well
• The availability of many physical registers reduces 

contention
• Standard forward propagation is used to deliver 

results to other executing μ-ops
• After the execution, μ-ops are placed in the re-order 

buffer
• This buffer decouples execution from the retirement 

stage



Retirement
• μ-op retirement commits the architecture state 

in program order
• μ-ops are tracked, and the firmware determines 

when the execution can be considered 
completed

• If possible, retirement is enforced in a round-
robin fashion which accounts for logical 
processors

• Once stores have retired, the store data is 
written on L1 cache



Multicores (2000s)

• First multicore chip: IBM Power4 (1996)
• 1.3 GHz dual-core PowerPC-based CPU

• How do they access the data?



Cache Coherence (CC)
• CC defines the correct behaviour of caches, regardless 

of how they are employed by the rest of the system
• Typically programmers don’t see caches, but caches are 

usually part of shared-memory subsystems

• What is the value of A in C2?



Strong Coherence

• Most intuitive notion of CC is that cores are cache-
oblivious:
– All cores see at any time the same data for a particular 

memory address, as they should have if there were no 
caches in the system

• Alternative definition:
– All memory read/write operations to a single location A 

(coming from all cores) must be executed in a total order 
that respects the order in which each core commits its own 
memory operations



Strong Coherence

• A sufficient condition for strong coherence is 
jointly given by implementing two invariants:
1.  Single-Writer/Multiple-Readers (SWMR)

• For any memory location A, at any given epoch, either a 
single core may read and write to A or some number of 
cores may only read A

2. Data-Value (DV)
• The value of a memory location at the start of an epoch is 

the same as its value at the end of its latest read-write 
epoch



Weaker Coherence
• Weaker forms of coherence may exist for performance purposes

– Caches can respond faster to memory read/write requests
• The SWMR invariant might be completely dropped

– Multiple cores might write to the same location A
– One core might read A while another core is writing to it

• The DV invariant might hold only eventually
– Stores are guaranteed to propagate to all cores in d epochs
– Loads see the last value written only after d epochs

• The effects of weak coherency are usually visible to 
programmers
– Might affect the memory consistency model (see later)



No Coherence
• The fastest cache is non-coherent

– All read/write operations by all cores can occur 
simultaneously

– No guarantees on the value observed by a read 
operation

– No guarantees on the propagation of values from 
write operations

• Programmers must explicitly coordinate caches 
across cores
– Explicit invocation of coherency requests via 

C/Assembly APIs



CC Protocols
• A CC protocol is a distributed algorithm in a message-

passing distributed system model
• It serves two main kinds of memory requests

– Load(A) to read the value of memory location A
– Store(A, v) to write the value v into memory location A

• Itinvolves two main kinds of actors
– Cache controllers (i.e., L1, L2, ..., LLC)
– Memory controllers

• It enforces a given notion of coherence
– Strong, weak, no coherence



Coherency Transactions

• A memory request may traduce into some 
coherency transactions and produce the 
exchange of multiple coherence messages

• There are two main kinds of coherency 
transactions:
– Get: Load a cache block b into cache line l
– Put: Evict a cache block b out of cache line l



Cache and Memory Controllers



Finite-State Machines
• Cache controllers manipulate local finite-state machines (FSMs)
• A single FSM describes the state of a copy of a block (not the block 

itself)
• States:

– Stable states, observed at the beginning/end of a transaction
– Transient states, observed in the midst of a transaction

• Events:
– Remote events, representing the reception of a coherency message
– Local events, issued by the parent cache controller

• Actions:
– Remote action, producing the sending of a coherency message
– Local actions, only visible to the parent cache controller



Families of Coherence Protocols

• Invalidate protocols:
– When a core writes to a block, all other copies are 

invalidated
– Only the writer has an up-to-date copy of the block
– Trades latency for bandwidth

• Update protocols:
– When a core writes to a block, it updates all other 

copies
– All cores have an up-to-date copy of the block
– Trades bandwidth for latency



Families of Coherence Protocols
• Snooping Cache:

– Coherence requests for a block are broadcast to all controllers
– Require an interconnection layer which can total-order requests
– Arbitration on the bus is the serialization point of requests
– Fast, but not scalable

• Directory Based:
– Coherence requests for a block are unicast to a directory
– The directory forwards each request to the appropriate core
– Require no assumptions on the interconnection layer
– Arbitration at the directory is the serialization point of requests
– Scalable, but not fast



Directory System Model



Snooping-Cache System Model



The VI Protocol
• Only one cache controller can read and/or write the block in any 

epoch
• Supported transactions:

– Get: to request a block in read-write mode from the LLC controller
– Put: to write the block’s data back to the LLC controller

• • List of events:
– Own-Get: Get transaction issued from local cache controller
– Other-Get: Get transaction issued from remote cache controller
– Any-Get: Get transaction issued from any controller
– Own-Put: Put transaction issued from local cache controller
– Other-Put: Put transaction issued from remote cache controller
– Any-Put: Put transaction issued from any controller
– DataResp: the block’s data has been successfully received



The VI Protocol



The VI Protocol
• It has an implicit notion of dirtiness of a block

– When in state V , the L1 controller can either read-write or just read the 
block (can’t distinguish between the two usages)

• It has an implicit notion of exclusiveness for a block
– When in state V , the L1 controller has exclusive access to that block (no 

one else has a valid copy)
• It has an implicit notion of ownership of a block

– When in state V , the L1 controller is responsible for transmitting the 
updated copy to any other controller requesting it

– In all other states, the LLC is responsible for the data transfer
• This protocol has minimal space overhead (only a few states), but it is 

quite inefficient—why?



What a CC Protocol should offer
• We are interested in capturing more aspects of a cache block

– Validity: A valid block has the most up-to-date value for this block. The 
block can be read, but can be written only if it is exclusive.

– Dirtiness: A block is dirty if its value is the most up-to-date value, and it 
differs from the one stored in the LLC/Memory.

– Exclusivity: A cache block is exclusive if it is the only privately cached copy 
of that block in the system (except for the LLC/Memory).

– Ownership: A cache controller is the owner of the block if it is responsible 
for responding to coherence requests for that block.

• In principle, the more properties are captured, the more aggressive is 
the optimization (and the space overhead!)



MOESI Stable States
• Modified (M): The block is valid, exclusive, owned and potentially dirty. It 

can be read or written. The cache has the only valid copy of the block.

• Owned (O): The block is valid, owned, and potentially dirty, but not exclusive. 
It can be only read, and the cache must respond to block requests.

• Exclusive (E): The block is valid, exclusive and clean. It can be only read. No 
other caches have a valid copy of the block. The LLC/Memory block is up-to-
date.

• Shared (S): The block is valid but not exclusive, not dirty, and not owned. It 
can be only read. Other caches may have valid or read-only copies of the 
block.

• Invalid (I): The block is invalid. The cache either does not contain the block, 
or the block is potentially stale. It cannot be read nor written.



MOESI Stable States

• Many protocols spare one bit and drop the 
Owned state (MESI)

• Simpler protocols drop the Exclusive state (MSI)



MOESI Transactions
• GetS: Obtain a block in Shared (read-only) state
• GetM: Obtain a block in Modified (read/write) state
• Upgr: Upgrade block from Shared/Owned (read-

only) to Morified (read/only)—no data transfer 
needed

• PutS: evict block in Shared state
• PutE: evict block in Exclusive state
• PutO: evict block in Owned state
• PutM: evict block in Modified state



The MESI Protocol
• Cache controllers

Dashed lines indicate “silent” transactions



The MESI Protocol

• LLC/Memory controller



The MESI Protocol

• The notion of exclusiveness is explicit (E state)
– E to M transition in L1 controller is silent

• The notion of ownership is implicit (M/E states)
• Counting on S copies is avoided

– S to I transition in L1 controller is silent
– S to I transition in LLC is disabled

• An Other-GetS message in state M or E requires 
the LLC to update its copy and become the 
owner



CC and Write-Through Caches

• Stores immediately propagate to the LLC
– States M and S collapse into V (no dirty copies)
– Eviction only requires a transition from V to I (no 

data transfer)
• Write-through requires more bandwidth and 

power to write data



CC and False Cache Sharing
• This problem arises whenever two cores access different data items 

that lie on the same cache line (e.g., 64B–256B granularity)
• It produces an invalidation although accessed data items are different

• Can be solved using sub-block coherence or speculation
• Better if prevented by good programming practices



The False Cache Sharing Problem



Virtual vs Physical Memory Addressing

• A technique supported by CPUs since the 70's
– A layer of abstraction between the memory address 

layout that most software sees and the physical 
devices backing that memory

• It allows applications to utilize more memory 
than the machine actually has

• The virtual-to-physical translation is supported 
by hardware/firmware (Translation Lookaside 
Buffer－TLB) cooperating with the Operating 
System



Virtual vs Physical Memory Addressing

frames

pages



L1 Cache

TLB

Virtual 
address

L2 Cache RAM
storage

Physical
address

Where to put the L1 cache?

L1 Cache

Virtual 
address

L2 Cache RAM
storage

Physical
address

TLB

• With “virtual caches”:
– one-step process in 

case of a hit
– cache must be 

flushed upon context 
switch

– aliasing problems 
occur



x86 Caches

• On x86 architectures, caches are 
physically indexed and physically 
tagged (except for small L1 caches)

• Virtual address associated with any 
memory map is filtered by the MMU 
before real access to the memory 
hierarchy is performed



ARM Caches

• On ARMv4 and ARMv5 processors, cache is 
organized as a virtual-indexed, virtual-tagged 
(VIVT) cache 

• Both the index and the tag are based on the 
virtual address. 
– Cache lookups are faster (TLB is not involved in 

matching cache lines for a virtual address)
– The same physical address can be mapped to 

multiple virtual addresses



MIPS R4x00 Caches

• Virtually-indexed, physically tagged on-chip L1 cache
– 16kB cache with 32B lines
– 4kB (base) page size

• Location of data in cache is determined by the index
• The tag only confirms whether it's a hit



Virtual Aliasing

• This is an anomaly occurring when the cache (at 
some level) is indexed via virtual addresses (e.g. 
Sparc64)

• This leads to cache coherency issues
• Two families of problems:

• Homonyms
• Synonyms (alias)



Virtual Aliasing: Homonyms

• Same VA corresponds to several PAs
– standard situation in multitasking systems

• Problem: tag may not uniquely identify cache data!
• Homonyms lead to cache accessing the wrong data!
• Homonym prevention:

– tag virtual address with address-space ID (ASID)
• disambiguates virtual addresses (makes them globally valid)

– use physical tags
– flush cache on context switch



Virtual Aliasing: Synonyms
• Several VAs map to the same PA

– frames shared between processes
– multiple mappings of a frame within an address space

• Synonyms in cache may lead to accessing stale data:
– same data may be cached in several lines
– on write, one synonym is updated
– a subsequent read on the other synonym returns the old value

• Physical tagging doesn't help, ASIDs don't help either
• Solutions:

– hardware synonym detection (disallow aliases to coexist in cache)
– flush cache on context switch
– restrict VM mapping so synonyms map to same cache set



Memory Consistency (MC)
• MC defines the correct behaviour of shared-memory 

subsystems, regardless of how they are implemented
• Programmers know what to expect, implementors 

know what to provide

• What is the value of r2?



Reordering of Memory Accesses
• Reordering occurs when two memory R/W operations:

– Are committed by a core in order
– Are seen by other cores in a different order

• Mainly for performance reasons
– Out-of-order execution/retirement
– Speculation (e.g., branch prediction)
– Delayed/combined stores

• Four possible reorderings
– Store-store reordering
– Load-load reordering
– Store-load reordering
– Load-store reordering



An example

• Multiple reorderings are possible:
– (r1, r2) = (0, NEW) [S1, L1, S2, L2]
– (r1, r2) = (NEW, 0) [S2, L2, S1, L1]
– (r1, r2) = (NEW, NEW) [S1, S2, L1, L2]
– (r1, r2) = (0, 0) [L1, L2, S1, S2]

Allowed by most real hardware
architectures (also x86!)



Program and Memory Orders

• A program order ≺p is a per-core total order 
that captures the order in which each core 
logically executes memory operations

• A memory order ≺m is a system-wide total order 
that captures the order in which memory 
logically serializes memory operations from all 
cores

• Memory consistency can be defined imposing 
constraints on how ≺p and ≺m relate to each 
other



Sequential Consistency
• Let L(a) and S(a) be a Load and a Store to address a, 

respectively
• A Sequentially Consistent execution requires that:

– All cores insert their loads and stores into ≺m respecting their 
program order regardless of whether they are to the same or 
different address (i.e., a = b or a ≠ b):

• If L(a) ≺p L(b) ⇒ L(a) ≺m L(b) (Load/Load)
• If L(a) ≺p S(b) ⇒ L(a) ≺m S(b) (Load/Store)
• If S(a) ≺p S(b) ⇒ S(a) ≺m S(b) (Store/Store)
• If S(a) ≺p L(b) ⇒ S(a) ≺m L(b) (Store/Load)

– Every load gets its value from the last store before it (as seen 
in memory order) to the same address:

• value of L(a) = value of max≺m {S(a)|S(a) ≺m L(a)} where max≺m is the 
latest in memory order



Sequential Consistency in Practice

• We can globally reorder the execution in four 
different ways

• Only three of them are sequentially consistent



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is a SC execution



Sequential Consistency in Practice

• This is not a SC execution

Why did we say that this outcome
is allowed on common hardware architectures?



Weaker Consistency: Total Store Order

• A FIFO store buffer is 
used to hold committed 
stores until the memory 
subsystem can process it

• When a load is issued by 
a core, the store buffer is 
looked up for a matching 
store
– if found, the load is 

served by the store buffer 
(forwarding)

– otherwise it is served by 
the memory subsystem 
(bypassing)



Sequential Consistency in Practice
• This is a valid TSO execution

• A programmer might want to avoid the result 
(r1, r2) = (0, 0)



Memory Reordering in the Real World

Type Alpha ARMv7 POWER
SPARC 

PSO x86 AMD64 IA-64

LOAD/LOAD ✓ ✓ ✓ ✓
LOAD/STORE ✓ ✓ ✓ ✓
STORE/STORE ✓ ✓ ✓ ✓ ✓
STORE/LOAD ✓ ✓ ✓ ✓ ✓ ✓ ✓
ATOMIC/LOAD ✓ ✓ ✓ ✓
ATOMIC/STORE ✓ ✓ ✓ ✓ ✓
Dependent LOADs ✓
Incoherent I-cache ✓ ✓ ✓ ✓ ✓ ✓



Memory Fences

• Let X(a) be either a load or a store operation to a
• Memory fences force the memory order of 

load/store operations:
– If X(a) ≺p FENCE ⇒ X(a) ≺m FENCE
– If FENCE ≺p X(a) ⇒ FENCE ≺m X(a)
– If FENCE ≺p FENCE ⇒ FENCE ≺m FENCE

• With fences it is possible to implement SC over 
TSO (with a significant penalty)



x86 Fences
• MFENCE: Full barrier

– If X(a) ≺p MFENCE ≺p X(b) ⇒ X(a) ≺m MFENCE ≺m X(b)
• SFENCE: Store/Store barrier

– If S(a) ≺p SFENCE ≺p S(b) ⇒ S(a) ≺m SFENCE ≺m S(b)
• LFENCE: Load/Load and Load/Store barrier

– If L(a) ≺p LFENCE ≺p X(b) ⇒ L(a) ≺m LFENCE ≺m X(b)

• Both MFENCE and SFENCE drain the store 
buffer



Atomic Operations

• The following is a naïve implementation of a 
spinlock on x86
– It repeatedly tries to replace the content of a 

spinlock variable

• Is it correct?



Atomic Operations

• The following is a naïve implementation of a 
spinlock on x86
– It repeatedly tries to replace the content of a 

spinlock variable

• Is it correct?



Read-Modify-Write Instructions
• RMW is a class of instructions which implement 

atomic operations
• They allow to read memory and modify its content in 

an apparently instantaneous fashion
• Some important instructions:

– Compare and Swap (CAS)
– Fetch and Add (FAA)
– Test and Set (TAS)
– Load-Link/Store-Conditional (LL/SC)

• The updated value can be a new value, or a function 
of the previous value



x86 lock prefix
• Atomicity affects both memory consistency and cache coherency

– Reordering can put an arbitrary operation X between R and W
– A read and/or write request can appear in between a GetS and a 

GetM/Upg transaction for the same block
• The goal of the lock prefix is to ensure the atomicity of RMW 

instructions
• Therefore, the execution of a lock’d RMW instruction entails:

1. Draining the store buffer so as to prevent reordering effects due to 
forwarding/bypassing

2. Loading the cache block using a GetM operation so as to limit the effect 
of concurrent transactions

3. Retaining the bus so as to lock the state of the cache block until the 
RMW completes



lock and MC
• “R” and “W” must appear consecutively in ≺m even in TSO

– Suppose a load part (“R”) could bypass an earlier store...
– ...then, the store part (“W”) should be moved as well...
– ...but stores are not allowed to bypass each other in TSO...
– ...so a load associated with a RMW instruction cannot bypass!

• Actual draining of the store buffer is typically performed on x86

Locked instructions can be used to synchronize data written by one 
processor and read by another processor. For the P6 family processors, 

locked operations serialize all outstanding load and store operations (that 
is, wait for them to complete).



lock and CC
• MESI protocols guarantee that if a block is held exclusively by a 

certain core, no one else has it
• By adding a simple flag, controllers can perform multiple 

operations atomically on an exclusive block
• Incoming coherence requests for the exclusive, locked block are 

not serviced until after the store

For the P6 and more recent processor families, if the area of memory being 
locked during a LOCK operation is cached in the processor that is 

performing the LOCK operation [...] the processor may not assert the 
LOCK# signal on the bus. Instead, it will modify the memory location 

internally and allow its cache coherency mechanism to ensure that the 
operation is carried out atomically. This operation is called “cache locking.”



Correctness vs Efficiency: which comes first?

• Software designers want everything to be 
correct, then fast
– No reordering of instructions
– Strong cache coherency

• Hardware designers want everything to be fast, 
then correct
– Different programs requires different notion of 

correctness
– The expected correctness can always be achieved in 

software



Security Aspects
• A speculative processor can let an attacker exploit 

micro-architectural effects by using phantom 
instructions even though the pipeline is flushed

• Phantom instructions leave effects in the micro-
architectural state for a transient period

• These effects can be observed
• This is the rationale behind Spectre/Meltdown attacks

– It affects Intel, AMD and ARM processors
• Side channel: memory which allows to read other 

memory content



Meltdown Primer

uint8_t *probe_array = new uint8_t[256 * 4096];
// Make sure probe_array is not cached
uint8_t kernel_memory = *(uint8_t*)(kernel_address);
uint64_t final_kernel_memory = kernel_memory * 4096;
uint8_t dummy = probe_array[final_kernel_memory];
// handle (eventual) SEGFAULT
// determine which of 256 slots in probe_array is cached

• Simply measuring the latency to access probe_array 
at the end of this execution path allows to know the 
value of the kernel memory byte

Intel OOO Execution

Avoid prefetching
& different lines

possible byte values



Spectre Primer

if(x < array1_size) {

y = array2[array1[x] * 4096];
}



Spectre Primer

if(x < array1_size) {

y = array2[array1[x] * 4096];
}

not available in cache

address available in cache

speculate through (vendor specific)

finally out of boundsbyte of interest



Spectre Primer

if(x < array1_size) {

y = array2[array1[x] * 4096];
}

• It is then possible to inspect the cache state of 
array2 to see what was the speculatively 
accessed value of array1[x].

not available in cache

address available in cache

speculate through (vendor specific)

finally out of boundsbyte of interest



Inter-Core Connection

• What is the importance of inter-core connection?



Front-Side Bus (up to 2004)



Front-Side Bus (up to 2004)
• All traffic is sent across a single shared bi-directional bus
• Common width: 64 bits, 128 bits－multiple data bytes at a time
• To increase data throughput, data has been clocked in up to 4x 

the bus clock
– double-pumped or quad-pumped bus



Dual Independent Buses (2005)



Dual Independent Buses (2005)

• The single bus is split into two separate buffers
• This doubles the available bandwidth, in 

principles

• All snoop traffic had to be broadcast on both 
buses

• This would reduce the effective bandwidth
– Snoop filters are introduced in the chipset
– They are used as a cache of snoop messages



Dedicated High-Speed Interconnects (2007)



QuickPath Interconnect (2009)

• Migration to a distributed 
shared memory architecture 
chipset

• Inter-CPU communication 
based on high-speed uni-
directional point-to-point 
links

• Data can be sent across 
multiple lanes

• Transfers are packetized: 
data is broken into multiple 
transfers



QPI and Multicores

• The connection 
between a core and 
QPI is realized using a 
crossbar router:



QPI Layers

• Each link is made of 20 
signal pairs and a 
forwarded clock

• Each port has a link 
pair with two uni-
directional link

• Traffic is supported 
simultaneously in both 
directions



Once again on the lock prefix: split locks

For the P6 and more recent processor families, if the area of memory 
being locked during a LOCK operation is cached in the processor that is 

performing the LOCK operation as write-back memory and is completely 
contained in a cache line, the processor may not assert the LOCK# signal 

on the bus. Instead, it will modify the memory location internally and 
allow it’s cache coherency mechanism to ensure that the operation is 

carried out atomically. This operation is called “cache locking.” The cache 
coherency mechanism automatically prevents two or more processors 

that have cached the same area of memory from simultaneously
modifying data in that area.



Once again on the lock prefix: split locks

• If two processors defer snoops on both 
cache lines, the system might deadlock

• They instead compete to acquire the bus 
lock, which serializes the two transactions

• QPI designates a Quiesce Master for the 
entire system (an arbiter)

• A processor issuing a LOCK# signal asks the 
QM to force stopping all transactions

• This entails DMA transactions as well
• Draining all transactions from the system 

has severe performance implications
• Imagine this sledge diagram embedded into 

a loop!



UMA vs NUMA
• In Symmetric Multiprocessing (SMP) Systems, a single memory 

controller is shared among all CPUs (Uniform Memory Access—
UMA)

• To scale more, Non-Uniform Memory Architectures (NUMA) 
implement multiple buses and memory controllers



Non-Uniform Memory Access
• Each CPU has its own local memory which is accessed faster
• Shared memory is the union of local memories
• The latency to access remote memory depends on the ‘distance’

[NUMA organization with 4 AMD Opteron 6128 (2010)]



Non-Uniform Memory Access
• A processor (made of multiple cores) and the memory local to it 

form a NUMA node
• There are commodity systems which are not fully meshed: 

remote nodes can be only accessed with multiple hops
• The effect of a hop on commodity systems has been shown to 

produce a performance degradation of even 100%—but it can 
be even higher with increased load on the interconnect



Linux and NUMA

• Linux is NUMA-aware
– Support started in 2004 (Linux 2.6)

• Two optimization areas (we will come back 
later on both):
– Thread scheduling
– Memory allocation

• User space support:
– libnuma



libnuma

• This library offers an abstracted interface
• It is the preferred way to interact with a NUMA-aware 

kernel
• Requires #include<numa.h> and linking with -lnuma
• Some symbols are exposed through numaif.h

• numactl is a command line tool to run processes with a 
specific NUMA policy without changing the code, or to 
gather information on the NUMA system



numactl

• numactl --cpubin=0 --membind=0,1 program
– Run program on CPUs of node 0 and allocate memory from nodes 0 and 1

• numactl --preferred=1 numactl --show
– Allocate memory preferably from node 1 and show the resulting state

• numactl --interleave=all program
– Run program with memory interleaved over all available nodes

• numactl --offset=1G --length=1G --membind=1 --file 
/dev/shm/A --touch
– Bind the second gigabyte in the tempfs file /dev/shm/A to node 1

• numactl --localalloc /dev/shm/file
– Reset the policy for the shared memory file /dev/shm/file

• numactl --hardware
– Print an overview of the available nodes


