
Virtualization Support

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2019/2020

System Virtualization
• Virtualization allows to show resources different from the

physical ones
• More operating systems can be run on the same hardware
• A Virtual Machine is a mixure of software- and hardware-based

facilities
• The software component is the Hypervisor or VMM (Virtual

Machine Monitor).

• Advantages:
• Isolation of different execution environments (on the same hardware)
• Reduction of hardware and administration costs

Hypervisor
• Host system: the real system where (software implemented) virtual machines

run
• Guest system: the system that runs on top of a (software implemented) virtual

machine

• Hypervisor:
– It manages hardware resources provided by the host system
– It makes virtualized resources available to the guest system in a correct

and secure way

– Native Hypervisor: runs with full capabilities on bare metal. It resembles a
lightweight virtualization kernel operating on top of the harware.

– Hosted Hypervisor: it runs as an applicaiton, which accesses host services
via system calls

Software-based Virtualization
• Instructions are executed by the native physical CPU in the

host platform
• A subset of the instruction set must be emulated
• No particular hardware component playes a role in

virtualiztion

• The main problems:
– What if ring 0 is required for guest activities?
– Risk to bypass the VMM resource management policy in case

of actual ring 0 access

• The solution: ring deprivileging

Ring Deprivileging
• A technique to let the guest kernel run at a privilege level that

“simulates” 0
• Two main strategies:

1. 0 / 1 / 3 Model:
• VMM runs at ring 0
• Kernel guest runs at ring 1 (not typically used by native

kernels)
• Applications still run at ring 3
• This is the most used approach

2. 0 / 3 / 3 Model :
• VMM runs at ring 0.
• Kernel guest and applications run at ring 3.
• Too close to emulation, too high costs

0/1/3 Model
• Applications (running at ring 3) cannot alter the state of the guest

operating system (running at ring 1).
• The guest operating system cannot access privileged instructions and

data structures of the host operating system
• we guarantee the isolation of guest systems

• Any exception must be trapped by the VMM (at ring 0) and must be
properly handled (e.g. by reflecting it into ring 1 tasks)

• Issues to cope with:
• Ring aliasing
• Virtualization of the interrupts
• Frequent access to privileged resources

Ring Aliasing
• An OS kernel is designed to run at ring 0, while it is actually being run

at ring 1 for guest systems
• Privileged instructions generate an exception if not run at CPL 0:

– Some examples: hlt, lidt, lgdt, invd, mov %crx
• I/0 sensistive instructions: they generate a trap if executed when CPL >

IOPL (I/O Privilege Level). Classical examples are:
– cli, sti

• The generated trap (general protection fault) must be handled by the
VMM, so as to finally determine how to handle it (emulation vs
interpretation)

The VirtualBox Example
• Based on hosted hypervisor with ad-hoc kernel facilities, via classical special

devices (0/1/3 model)

• Pure software virtualization is supported for x86
– Fast Binary Translation (code patching): the kernel code is analysed and modified

before being executed
– Privileged instructions replaced with semantically equivalent blocks of code

Hardware

Host OS

Host
Applications

Virtual Machine Monitor

Guest OS

Guest Appl.

Guest OS

Guest Appl.

guest

host

Execution Modes and Context

• Guest context (GC): execution context for the guest
system. It is based on two modes:
– Raw mode: native guest code runs at ring 3 or 1
– Hypervisor: VirtualBox runs at ring 0

• Host context (HC): execution context for userspace
portions of VirtualBox (ring 3):
– The running thread implementing the VM lives in this

context upon a mode change
– Critical/privileged instructions are emulated upon a GPF

• Introduction of gate
descriptors for kernel
code/data segments
with DPL=1. These
segments are
accessible with CPL=1

• New TSSD pointing to
the TSS wrapper
which keeps info on
stack positioning at
ring 1 (ss1,esp1) and
ring 0 (ss0,esp0).

• 2 new segments for the
Hypervisor are addedd
with DPL=0

Entry 0 (0000)H - null

... … … …

KERNEL CODE
SEGMENT (0060)H 1

KERNEL DATA
SEGMENT (0068)H 1

… … … …
VIRTUALBOX

TSSD (FFE0) H 0

… … … …
HYPERVISOR

DATA
SEGMENT

(FFF0)H 0
HYPERVISOR

CODE
SEGMENT

(FFF8)H 0

DESCRIPTION OFFSET DPL

CPL = Current Privilege Level
DPL = Descriptor Privilege Level

BASE

VBOXGDT

ss1=ss0 | 1

ORIGINAL TSS

VBOXTSS

unused
unused

VBOXIDT: interrupt gate
• Interrupt must be managed by the

VMM.

• To this end, a wrapper for the IDT is
generated

• Proper handlers are instantiated,
which get executed by the Hypervisor
upon traps. VMM can take control
thanks to the ad-hoc segment selector
(at the GDT offset for the hypervisor
code segment).

• In case of a "genuine" trap, the control
goes to the native kernel, otherwise
the virtual handler is executed

0xD 14 (0060)H 0

0xE 14 (0060)H 0

…

0x0

…

0xD 14 (FFF8)H 0

0xE 14 (FFF8)H 0

…

G
en

ui
ne

 tr
ap

Vi
rtu

al
 tr

ap

ORIGINAL IDT

VBOXIDT

VMM handler

…

0x80 1
5 (0061)H 3

…

VBOXIDT: gate 0x80

…

0x80 1
5 (0060)H 3

…

ORIGINAL IDT

VBOXIDT

• INT 0x80 has an ad-hoc management

• The syscall gate is modified so as to
provide a segment selector with RPL =
1

• It indicates the GDT offset for the code
segment (at ring 1).

• Hence calling a system call does not
require interaction with the
Hypervisor

• The trampoline handler is then used
to launch the actual syscall handler

system_call
handler

Handler
trampoline

Ring 1 handler

Paravirtualization

• The VMM offers a virtual interface (hypercall
API) used by guest OS to access resources
– To run privileged instructions, hypercalls are

executed
– There is a need to modify the code of the guest OS
– VMM is simplified: no need to account for traps

generated by virtualized OS
• An example: Xen

Paravirtualization

Hardware

VMM

Guest OS

Guest Appl.

Guest OS

Guest Appl.

hypercall API

Guest OS

Guest Appl.

Hardware-Assisted Virtualization: VT-x

• Intel Vanderpool Technology, referred to as VT-x, represents
Intel’s virtualization technology on the x86 platform.

• Its goal: simplify VMM software by closing virtualization holes
by design.
– Ring Compression (lack of OS/Applications separations if

only 2 rings are used)
– Non-trapping instructions (some instructions at ring 1 are

not trapped, for example popf)
– Excessive trapping

• Eliminate need for software virtualization (i.e paravirtualization,
binary translation).

Virtual Machine Extension (VMX)
• Virtual Machine Extensions define CPU support for VMs on x86

by a new form of operation called VMX operation
• Kinds of VMX operation:

– root: VMM runs in VMX root operation
– non-root: Guest runs in VMX non-root operation

• Eliminate ring deprivileging for guest OS
• VMX Transitions between VMX root operation and VMX non-

root operation:
– VM Entry: Transitions into VMX non-root operation.
– VM Exit: Transitions from VMX non-root operation to VMX root operation.
– Registers and address space swapped in one atomic operation.

 Pre VT-x Post VT-x
VMM ring deprivileging of guest OS VMM executes in VMX root-mode

 Guest OS aware its not at Ring 0 Guest OS deprivileging eliminated

Guest OS runs directly on hardware

Virtual Machine Extension (VMX)

VMCS: VM Control Structure
• Data structure to manage VMX non-root operation and VMX transitions

– Specifies guest OS state
– Configured by VMM
– Controls when VM exits occur

The VMCS consists of six logical groups:
• Guest-state area: processor state saved into the guest-state area on VM exits and

loaded on VM entries.
• Host-state area: processor state loaded from the host-state area on VM exits.
• VM-execution control fields: fields controlling processor operation in VMX non-

root operation.
• VM-exit control fields: fields that control VM exits.
• VM-entry control fields: fields that control VM entries.
• VM-exit information fields: read-only fields to receive information on VM exits

describing the cause and the nature of the VM exit.

MMU Virtualization with VT-x: VPIDs

• First generation VT-x forces TLB flush on each VMX transition
• Performance loss on all VM exits
• Performance loss on most VM entries

– Guest page tables not modified always
• Better VMM software control of TLB flushes is beneficial
• VPID:

– 16-bit virtual-processor-ID field in the VMCS
– Cached linear translations tagged with VPID value
– No flush of TLBs on VM entry or VM exit if VPID active
– TLB entries of different virtual machines can all co-exist in the TLB

Virtualizing Memory in Software
• Three abstractions of memory:

0 4GB

Current Guest Process

0 4GB

Guest OS Virtual
Address Spaces

Physical
Address SpacesVirtual RAM Virtual

ROM
Virtual
Devices

Virtual
Frame
Buffer

0 4GB
Machine

Address SpaceRAM ROMDevices Frame
Buffer

Shadow Page Tables

• VMM maintains shadow page tables that map
guest-virtual pages directly to machine pages

• Guest modifications to V→P tables synced to
VMM V→M shadow page tables
– Guest OS page tables marked as read-only
– Modifications of page tables by guest OS → trapped

to VMM
– Shadow page tables synced to the guest OS tables

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual CR3

Real CR3

Shadow Page Tables

Set CR3 by guest OS (1)

Set CR3 by guest OS (2)

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual CR3

Real CR3

Shadow Page Tables

Shadow Page Tables: Drawbacks
• Maintaining consistency between guest page tables and shadow

page tables leads to an overhead: VMM traps
• Loss of performance due to TLB flush on every “world-switch”
• Memory overhead due to shadow copying of guest page tables

Nested / Extended Page Tables
• The Extended Page-Table mechanism (EPT) is used to support

the virtualization of physical memory
• Translates the guest-physical addresses used in VMX non-root

operation
• Guest-physical addresses are translated by traversing a set of

EPT paging structures to produce physical addresses that are
used to access memory

Source: [4]

Nested / Extended Page Tables

Considerations on EPT

• Advantages:
– Simplified VMM design
– Guest page table modifications need not to be

trapped, hence VM exits reduced
– Reduced memory footprint compared to shadow

page table algorithms
• Disadvantages:

– TLB miss is very costly since guest-physical address
to machine address needs an extra EPT walk for
each stage of guest-virtual address translation

Linux Containers

Underlying Kernel Mechanisms

• cgroups: manage resources for groups of
processes

• namespaces: per-process resource isolation

• seccomp: limit the possible syscalls to be executed
to exit(), sigreturn(), read() and
write(), the last two only to already-opened
file descriptors

• capabilities: privileges available to processes

cgroups (as seen from userspace)
• low-level filesystem interface similar to sysfs

and procfs
• new filesystem type “cgroup”, default location in

/sys/fs/cgroup
cgroup hierarchies subsystems (controllers)

cpuset cpu cpuacct

memory

devices blkio net_cls

freezer

hugetbl

perf

net_prio

cpu cpuacct

memory

 each subsystem can be
used at most once

built as kernel module
top level cgroup (mount)

tasks
cgroup.procs
release_agent
notify_on_release
cgroup.clone_children
cgroup.sane_behavior

cgroup hierarchies

cpu cpuacct

memory

common

cpuacct.stat
cpuacct.usage
cpuacct.usage_percpu

cpuacct

cpu.stat
cpu.shares
cpu.cfs_period_us
cpu.cfs_quota_us
cpu.rt_period_us
cpu.rt_runtime_us

cpu

cpuset memory devices blkio

net_cls freezer

hugetbl

perfnet_prio

cgroups (as seen from userspace)

list of all tasks using the
same

include / linux / cgroup.h

kernel code for attach/detaching
task from css_set

cgroups (as managed by kernel)

list of all tasks using the
same

include / linux / cgroup.h

include / linux / cgroup_subsys.h

cgroups (as managed by kernel)

include / linux / cgroup_subsys.h

cgroups (as managed by kernel)

namespaces (as seen from userspace)

• namespaces limit the scope of kernel-level
names and data structures at process granularity

• Some examples:
– mnt (mount points, file systems) CLONE_NEWNS
– pid (processes) CLONE_NEWPID
– net (network stack) CLONE_NEWNET
– ipc (System V IPC) CLONE_NEWIPC
– uts (unix timesharing) CLONE_NEWUTS
– user (UIDs) CLONE_NEWUSER

namespaces (as seen from userspace)

• There are three system calls for management:
– clone(): create new process, new namespace,

attach to namespace
– unshare(): create new namespace, attach current

process to it
– setns(int fd, int nstype): join an existing

namespace
• Each namespace is identified by a unique inode

– symbolic links in /proc/<pid>/ns

• For each namespace type, a default namespace
exists (the global namespace)

• struct nsproxy is shared by all tasks with
the same set of namespaces

include / linux / nsproxy.h

include / linux / nsproxy.h

include / linux / cred.h

namespaces (as managed by kernel)

• Example for the UTS namespace

• Global access to hostname: system_utsname.nodename
• Namespace-aware access to hostname:
¤t->nsproxy->uts_ns->name->nodename

include / linux / nsproxy.h

include / uapi / linux / utsname.h

namespaces (as managed by kernel)

• Example for the net namespace

• A network device belongs to exactly one namespace
• A socket belongs to exactly one namespace
• A new namespace only includes the loopback device
• Communications between namespaces are handled

via veth or unix sockets

include / linux / nsproxy.h

Logical copy of the network stack:

- loopback device
- all network tables (routing, etc)
- all sockets
- /procfs and /sysfs entries

include / net / net_namespace.h

namespaces (as managed by kernel)

pids and namespaces

• struct pid links
together pids in the
namespace world

struct pid

• A light form of resource virtualization based on
kernel mechanisms

• A container is a user-space construct
• Multiple containers run on top of the same kernel

– illusion that they are the only one using resources (cpu,
memory, disk, network)

• some implementations offer support for:
– container templates
– deployment / migration
– union filesystems

Containers

• An LXC container is a userspace process created
with the clone() syscall:
– with its own pid namespace
– with its own mnt namespace
– net namespace is configurable

• Container templates can be found in
/usr/share/lxc/templates

• Shell scripts:
– lxc-create -t ubuntu -n containerName

Container Solutions: LXC

• A Linux container
engine

• Multiple backend
drivers

• Application-centric
• Diff-based deployment

of updates (AUFS)
• Links (tunnels)

between containers

Container Solutions: Docker

Kernel Samepage Merging
• COW is used by the kernel to share physical frames

with different virtual mappings
• If the kernel has no knowledge on the usage of

memory, a similar behaviour is difficult to put in
place

• KSM exposes the /dev/ksm pseudofile
• By means of ioctl() calls, programs can register

portions of their address spaces
• An additional ioctl() call enables the page sharing

mechanism, and the kernel starts looking for pages to
share

Kernel Samepage Merging

• The KSM driver (in a kernel thread) picks one
registered region and starts scanning it
– A SHA1 hash is used to compare frames
– If a similarity is found, all processes "sharing" the

page will point to the same frame (in COW mode)
• A host running several guest Windows machines

can overcommit its memory 300% without
affecting performance
– Windows zeroes all free'd memory

