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Linux Scheduler

• The scheduler is a fundamental subsystem of 
the kernel

• Different scheduling strategies exist
– Take into account priority
– Take into account responsiveness
– Take into account fairness

• The history of Linux has seen different 
algorithms



Process Priority
• Unix demands for priority based scheduling

– This relates to the nice of a process in [-20, 19]
– The higher the nice, the lower the priority
– This tells how nice a process is towards others

• There is also the notion of "real time" processes
– Hard real time: bound to strict time limits in which a 

task must be completed (not supported in 
mainstream Linux)

– Soft real time: there are boundaries, but don't make 
your life depend on it

• Examples: burning data to a CD ROM, VoIP



Process Priority

• In Linux, real time priorieties are in [0, 99]
– Here higher value means lower priority

• Implemented according to the Real-Time 
Extensions of POSIX

ps -eo pid,rtprio,cmd ('-' = no realtime)
chrt -p pid
chrt -p prio pid



Process Priority in the Kernel

• Both nice and rt priorities are mapped to a 
single value in [0, 139] in the kernel

• 0 to 99 are reserved to rt priorities
• 100 to 139 for nice priorities (mapping exactly 

to [-20, 19])
• Priorities are defined in 
include/linux/sched/prio.h



Process Priority in the Kernel
#define MAX_NICE 19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE - MIN_NICE 

   + 1)

#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
#define MAX_PRIO (MAX_RT_PRIO + 
NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + 
NICE_WIDTH / 2)



Process Priority in the Kernel
/*
* Convert user-nice values [ -20 ... 0 ... 19 ]
* to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
* and back.
*/
#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)

/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [ 0 ... 39 ] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))



Process Priority in task_struct
• static_prio: priority given “statically” by a user (and 

mapped into kernel’s representation)
• normal_priority: based on static_prio and 

scheduling policy of a process: Tasks with the same static 
priority that belong to different policies will get different 
normal priorities. Child processes inherit the normal 
priorities from their parent processes when forked.

• prio: “dynamic priority”. It can change in certain 
situations, e.g. to preempt a process with higher priority

• rt_priority: the realtime priority for realtime tasks in 
[0, 99]



Computing  prio
• In kernel/sched/core.c
p->prio = effective_prio(p);

static int effective_prio(struct task_struct 
*p) {

p->normal_prio = normal_prio(p);
if (!rt_prio(p->prio))

return p->normal_prio;
return p->prio;

} Returns static_priority or maps 
rt_priority to kernel representation  



Load Weights
• task_struct->se is a struct 
sched_entity (in 
include/linux/sched.h):
– It keeps a struct load_weight load:
struct load_weight {

unsigned long weight;
u32 inv_weight;

};
• Load weights are used to scale the time slice 

assigned to a scheduled process



Load Weights
• From kernel/sched/core.c:
Nice levels are multiplicative, with a gentle 10% change for 
every nice level changed. I.e. when a CPU-bound task goes from 
nice 0 to nice 1, it will get ~10% less CPU time than another 
CPU-bound task that remained on nice 0.
The "10% effect" is relative and cumulative: from _any_ nice 
level, if you go up 1 level, it's -10% CPU usage, if you go down 1 
level it's +10% CPU usage. (to achieve that we use a multiplier 
of 1.25. If a task goes up by ~10% and another task goes down 
by ~10% then the relative distance between them is ~25%.)



Load Weights
• From kernel/sched/core.c:

const int sched_prio_to_weight[40] = {
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
};

• This array takes a value for each possible nice level in [-20, 19]



Some Examples

• Two tasks running at nice 0 (weight 1024)
– Both get 50% of time: 1024/(1024+1024) = 0.5

• Task 1 is moved to nice -1 (priority boost):
– T1:  1277/(1024+1277) ≈ 0.55
– T2: 1024/(1024+1277) ≈ 0.45 (10% difference)

• Task 2 is then moved to nice 1 (priority drop):
– T1: 1277/(820+1277) ≈ 0.61
– T2: 820/(820+1277) ≈ 0.39 (22% difference)



Different Scheduling Classes
• SCHED_FIFO: Realtime FIFO scheduler, in which a 

process has to explicitly yield the CPU
• SCHED_RR: Realtime Round Robin Scheduler (might 

fallback to FIFO)
• SCHED_OTHER/SCHED_NORMAL: the common round-

robin time-sharing scheduling policy
• SCHED_DEADLINE (since 3.14): Constant Bandwidth 

Server (CBS) algorithm on top of Earliest Deadline First 
queues

• SCHED_DEADLINE (since 4.13): CBS replaced with 
Greedy Reclamation of Unused Bandwidth (GRUB).



Scheduling Classes
struct sched_class {
  const struct sched_class *next;
  void (*enqueue_task) (struct rq *rq, struct task_struct *p, int 

flags);
  void (*dequeue_task) (struct rq *rq, struct task_struct *p, int 

flags);
  void (*yield_task) (struct rq *rq);

  void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int 
flags);

  struct task_struct * (*pick_next_task) (struct rq *rq, struct   
task_struct *prev, struct rq_flags *rf);

  void (*put_prev_task) (struct rq *rq, struct task_struct *p);
  ...
  void (*set_curr_task) (struct rq *rq);
  int  (*select_task_rq)(struct task_struct *p, int task_cpu,

  int sd_flag, int flags);
  ...
};



Scheduler Code Organization

• General code base and specific scheduler classes 
are found in kernel/sched/

• core.c: the common codebase
• fair.c: implementation of the basic scheduler 

(CFS: Completely Fair Scheduler)
• rt.c: the real-time scheduler
• idle_task.c: the idle-task class



Run Queues
struct rq {

unsigned int nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
/* capture load from all tasks on this cpu */
struct load_weight load;
struct cfs_rq cfs;
struct rt_rq rt;
struct task_struct *curr, *idle, ...;
u64 clock;
/* cpu of this runqueue */
int cpu;

}



Run Queues
• Added in 2.6
• Defined in kernel/sched/sched.h

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, 
runqueues);

#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() this_cpu_ptr(&runqueues)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)



Wait Queues
• Defined in include/linux/wait.h
• This is a set of data structures to manage 

threads that are waiting for some condition to 
become true

• This is a way to put threads to sleep in kernel 
space

• It is a data structure which changed many times 
in the history of the kernel

• Suffered from the "Thundering Herd" 
performance problem



Thundering Herd Effect

Taken from 1999 Mindcraft study on Web and File Server Comparison



Wait Queues
#define WQ_FLAG_EXCLUSIVE       0x01

struct wait_queue_entry {
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head entry;

};

struct wait_queue_head {
spinlock_t lock;
struct list_head head;

};
typedef struct wait_queue_head wait_queue_head_t;



Wait Queue API
• Implemented as macros in include/linux/wait.h

static inline void init_waitqueue_entry(struct 
wait_queue_entry *wq_entry, 
struct task_struct *p)

wait_event_interruptible(wq_head, condition)
wait_event_interruptible_timeout(wq_head, 

condition, timeout)
wait_event_hrtimeout(wq_head, condition, 

timeout)
wait_event_interruptible_hrtimeout(wq, 

condition, timeout)



Wait Queue API
void add_wait_queue(struct wait_queue_head *wq_head, 
struct wait_queue_entry *wq_entry) {
     unsigned long flags;

     wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
     spin_lock_irqsave(&wq_head->lock, flags);
     list_add(&wq_entry->entry, &wq_head->head);
     spin_unlock_irqrestore(&wq_head->lock, flags);
}



Wait Queue API
void add_wait_queue_exclusive(struct wait_queue_head 

*wq_head, struct wait_queue_entry *wq_entry)
{
     unsigned long flags;

     wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
     spin_lock_irqsave(&wq_head->lock, flags);
     list_add_tail(&wq_entry->entry, &wq_head->head);
     spin_unlock_irqrestore(&wq_head->lock, flags);
}



Wait Queue API
void remove_wait_queue(struct wait_queue_head *wq_head, 

struct wait_queue_entry *wq_entry)
{
       unsigned long flags;

       spin_lock_irqsave(&wq_head->lock, flags);
       list_del(&wq_entry->entry);
       spin_unlock_irqrestore(&wq_head->lock, flags);
}



Wait Queue Exclusive



Wait Queue API
• Implemented as macros in include/linux/wait.h
• wake_up(x)
• wake_up_nr(x, nr)
• wake_up_all(x)
• wake_up_locked(x)
• wake_up_all_locked(x)

• wake_up_interruptible(x)
• wake_up_interruptible_nr(x, nr)
• wake_up_interruptible_all(x)
• wake_up_interruptible_sync(x)



Scheduler Entry Point
• The entry point for the scheduler is schedule(void) in 
kernel/sched.c

• This is called from several places in the kernel
• Direct Invocation: an explicit call to schedule() is issued
• Lazy Invocation: some hint is given to the kernel indicating that 
schedule() should be called soon (see need_resched)

• In general schedule() entails 3 distinct phases, which depend on the 
scheduler implementation: 

– Some checks on the current process (e.g., with respect to signal 
processing)

– Selection of the process to be activated
– Context switch



Periodic Scheduling

• schedule_tick() is called from 
update_process_times()

• This function has two goals:
– Managing scheduling-specific statistics
– Calling the scheduling method of the class



schedule_tick()
/*
* This function gets called by the timer code, with HZ 
frequency.
* We call it with interrupts disabled.
*/
void scheduler_tick(void) {

int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
...
update_rq_clock(rq);
curr->sched_class->task_tick(rq, curr, 0);
update_cpu_load_active(rq);
...

}



Task States
• The state field n the PCB tracks the current state of the 

process/thread
• Values are defined in inlude/linux/sched.h

• TASK_RUNNING
• TASK_ZOMBIE
• TASK_STOPPED
• TASK_INTERRUPTIBLE
• TASK_UNINTERRUPTIBLE
• TASK_KILLABLE

• All the PCBs registered in the runqueue are TASK_RUNNING



Task State Transition



Tasks Going to Sleep

• In case an operation cannot be completed 
immediately (think of a read()) the task goes 
to sleep in a wait queue

• While doing this, the task enters either the 
TASK_INTERRUPTIBLE or 
TASK_UNINTERRUPTIBLE state

• At this point, the kernel thread calls 
schedule() to effectively put to sleep the 
currently-running one and pick the new one to 
be activated



TASK_*INTERRUPTIBLE
• Dealing with TASK_INTERRUPTIBLE can be 

difficult:
– At kernel level, understand that the task has been resumed 

due to an interrupt
– Clean up all the work that has been done so far
– Return to userspace with -EINTR
– Userspace has to understand that a syscall was interrupted 

(bugs here!)
• Conversely, a TASK_UNINTERRUPTIBLE might 

never be woken up again (the dreaded D state in ps)
• TASK_KILLABLE is handy for this (since 2.6.25)

– Same as TASK_UNINTERRUPTIBLE except for fatal sigs.



Sleeping Task Wakes Up

• The event a task is waiting for calls one of the 
wake_up*() functions on the corresponding 
wait queue

• A task is set to runnable and put back on a 
runqueue

• It the woken up task has a higher priority than 
the other tasks on the runqueue, 
TIF_NEED_RESCHED is flagged



O(n) Scheduler (2.4)

• It has a linear complexity, as it iterates over all 
tasks

• Time is divided into epochs
• At the end of an epoch, every process has run 

once, using up its whole quantum if possible
• If processes did not use the whole quantum, 

they have half of the remaining timeslice added 
to the new timeslice



O(n) Scheduler (2.4)
asmlinkage void schedule(void) {
  int this_cpu, c; /* weight */
  ...
 repeat_schedule:
  /* Default process to select.. */
  next = idle_task(this_cpu);
  c = -1000; /* weight */
  list_for_each(tmp, &runqueue_head) {
    p = list_entry(tmp, struct task_struct, run_list);
    if (can_schedule(p, this_cpu)) {
      int weight = goodness(p, this_cpu, prev->active_mm);

if (weight > c)
  c = weight, next = p;

    }
  }
}



Computing the Goodness
goodness (p)= 20 – p->nice  (base time quantum)

+ p->counter (ticks left in time quantum)

+1 (if page table is shared
with the previous process)

+15 (in SMP, if p was last 
running on the same CPU)



Computing the Goodness

• Goodness values explained and special cases:
– -1000: never select this process to run
– 0: out of timeslice (p->counter == 0)
– >0: the goodness value, the larger the better
– +1000: a realtime process, select this



Epoch Management
……………
/* Do we need to re-calculate counters? */
if (unlikely(!c)) {

struct task_struct *p;

spin_unlock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p)

p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule;

}
…………… 6 - p->nice/4



Analysis of the O(n) Scheduler
• Disadvantages:

– A non-runnable task is also searched to determine 
its goodness

– Mixture of runnable/non-runnable tasks into a 
single runqueue in any epoch

– Performance problems on SMP, as the length of 
critical sections depends on system load

• Advantages:
– Perfect Load Sharing
– No CPU underutilization for any workload type
– No (temporary) binding of threads to CPUs



Contention in the O(n) Scheduler on SMP

Core-0 calls schedule()

All other cores call schedule()
Core-0 returns

0
1
2
3



O(1) Scheduler (2.6.8)
• By Ingo Molnár
• Schedules tasks in constant time, indepentendly of 

the number of active processes
• Introduced the global priority scale which we 

discussed
• Early preëmption: if a task enters the 
TASK_RUNNING state its priority is checked to see 
whether to call schedule()

• Static priority for real-time tasks
• Dynamic priority for other tasks, recalculated at the 

end of their timeslice (increases interactivity)



Runqueue Revisited

struct runqueue {
/* number of runnable tasks */
unsigned long nr_running;
...
struct prio_array *active;
struct prio_array *expired;
struct prio_array arrays[2];

}



Runqueue Revisited
• Each runqueue has two struct prio_array:

struct prio_array {
int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};



Runqueue Revisited



Runqueue Revisited

X X

X

X

X

X

X X X X

bit 0, priority 0
schedule() → schedule_find_first_set()

bit 10, priority 10

bit 139
priority 139



Cross-CPU Scheduling
• Once a task lands on a CPU, it might use up its timeslice 

and get put back on a prioritized queue for rerunning—but 
how might it ever end up on another processor? 

• If all the tasks on one CPU exit, might not one processor 
stand idle while another round-robins three, ten or several 
dozen other tasks? 

• The 2.6 scheduler must, on occasion, see if cross-CPU 
balancing is needed.

• Every 200ms a CPU checks to see if any other CPU is out of 
balance and needs to be balanced with that processor. If 
the processor is idle, it checks every 1ms so as to get 
started on a real task earlier



Stack Variables Refresh
asmlinkage void __sched schedule(void)
{

struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;

need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_qsctr_inc(cpu);
prev = rq->curr;
switch_count = &prev->nivcsw;

...



Stack Variables Refresh

...
if (unlikely(!rq->nr_running)) idle_balance(cpu, rq);
prev->sched_class->put_prev_task(rq, prev);
next = pick_next_task(rq, prev);

if (likely(prev != next)) {
sched_info_switch(prev, next);

rq->nr_switches++;
rq->curr = next;
++*switch_count;

context_switch(rq, prev, next); /* unlocks the rq */
/* the context switch might have flipped the stack from under
   us, hence refresh the local variables. */
cpu = smp_processor_id();
rq = cpu_rq(cpu);

} else spin_unlock_irq(&rq->lock);
...



Staircase Scheduler

• By Con Kolivar, 2004 (none of its schedulers in 
the official Kernel tree)

• The goal is to increase "responsiveness" and 
reduce the complexity of the O(1) Scheduler

• It is mostly based on dropping the priority 
recalculation, replacing it with a simpler rank-
based scheme

• It is supposed to work better up to ~10 CPUs 
(tailored for desktop environments)



Staircase Scheduler
• The expired array is removed and the staircase data 

structure is used instead

• A process expiring its timeslice is moved to a lower 
priority

• At the end of the staircase, it gets to a MAX_PRIO-1 
level with one more timeslice

• If a process sleeps (i.e., an interactive process) it gets 
back up in the staircase

• This approach favors interactive processes rather CPU-
bound ones



Completely Fair Scheduler (2.6.23)

• Merged in October 2007
• This is since then the default Scheduler
• This models an "ideal, precise multitasking CPU" 

on real hardware
• It is based on a red-black tree, where nodes are 

ordered by process execution time in 
nanoseconds

• A maximum execution time is also calculated for 
each process



Completely Fair Scheduler (2.6.23)



Context switch (5.0)
• Context switch is implemented in the switch_to() 

macro in /arch/x86/include/asm/switch_to.h
• The macro is machine-dependent

#define switch_to(prev, next, last) \
do { \

prepare_switch_to(next); \
((last) = __switch_to_asm((prev), (next))); \

} while (0)

• switch_to() mainly executes the following two tasks:
– TSS update

– CPU control registers update



__switch_to_asm() (x86)
ENTRY(__switch_to_asm)
        /* Save callee-saved registers */
        pushq   %rbp
        pushq   %rbx
        pushq   %r12
        pushq   %r13
        pushq   %r14
        pushq   %r15
        /* switch stack */
        movq    %rsp, TASK_threadsp(%rdi)
        movq    TASK_threadsp(%rsi), %rsp
#ifdef CONFIG_STACKPROTECTOR
        movq    TASK_stack_canary(%rsi), %rbx
        movq    %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
#endif
        /* restore callee-saved registers */
        popq    %r15
        popq    %r14
        popq    %r13
        popq    %r12
        popq    %rbx
        popq    %rbp
        jmp     __switch_to
END(__switch_to_asm)


