
Process Management and Startup

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2019/2020

Process Control Block

Process Control Block
• This is struct task_struct in include/linux/sched.h
• One of the largest structures in the kernel (almost 600 LOCs)
• Relevant members are:

– volatile long state
– struct mm_struct *mm
– struct mm_struct *active_mm
– pid_t pid
– pid_t tgid
– struct fs_struct *fs
– struct files_struct *files
– struct signal_struct *sig
– struct thread_struct thread /* CPU-specific state:

TSS, FPU, CR2, perf events, ... */
– int prio; /* to implement nice() */
– unsigned long policy /* for scheduling */
– int nr_cpus_allowed;
– cpumask_t cpus_allowed;

The mm member
• mm points to a mm_struct defined in

include/linux/mm_types.h
• mm_struct is used to manage the memory map of the process:

• Virtual address of the page table (pgd member)
• A pointer to a list of vm_area_struct records (mmap

field)
• Each record tracks a user-level virtual memory area which is

valid for the process
• active_mm is used to "steal" a mm when running in an

anonymous process, and mm is set to NULL
• Non-anonymous processes have active_mm == mm

vm_area_struct
• Describes a Virtual Memory Area (VMA):

– struct mm_struct *vm_mm: the address space the structure belongs to
– unsigned long vm_start: the start address in vm_mm
– unsigned long vm_end: the end address
– pgprot_t vm_page_prot: access permissions of this VMA
– const struct vm_operations_struct *vm_ops: operations to

deal with this structure
– struct mempolicy *vm_policy: the NUMA policy for this range of

addresses
– struct file *vm_file: pointer to a memory-mapped file
– struct vm_area_struct *vm_next, *vm_prev: linked list of VM

areas per task, sorted by address

vm_operations_struct
struct vm_operations_struct {

void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault

*vmf);
void (*map_pages)(struct vm_area_struct *vma, struct

vm_fault *vmf);

/* notification that a previously read-only page is about
 * to become writable, if an error is returned it will
 * cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct

vm_fault *vmf);
...
int (*set_policy)(struct vm_area_struct *vma, struct

mempolicy *new);
struct mempolicy *(*get_policy)(struct vm_area_struct

*vma, unsigned long addr);
};

Userspace Memory Management

Userspace Memory Management

Userspace Memory Management

Userspace Memory Management

PCB Allocation up to 2.6

• PCBs can be dynamically allocated upon request
• The PCB is directly stored at the bottom of the

kernel-level stack of the process which the PCB
refers to

PCB

Usable
Stack

2 memory
frames

Kernel-level
Stack

PCB Allocation since 2.6

• The PCB is moved outside of the kernel-level
stack

• At the top, there is the thread_info data
structure

task thread_info

Usable
Stack

2 or 4
memory
frames

PCB

union thread_union
• This union is used to easily allocate thread_info at the base

of the stack, independently of its size.
• It works as long as its size is smaller than the stack's

– Of course, this is mandatory

union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE/sizeof(long)];

};

struct thread_info
• This is the organization of thread_info up to version 4.3.
• Later on, thread_info has been progressively deprived of

most members on x86
– Security implications of this struct on the stack have been severe

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int saved_preempt_count;
mm_segment_t addr_limit;
void __user *sysenter_return;
unsigned int sig_on_uaccess_error:1;
unsigned int uaccess_err:1; /* uaccess failed */

};

Virtually Mapped Kernel Stack

• Kernel-level stacks
have always been the
weak point in the
system design

• This is quite small: you
must be careful to
avoid overflows

• Stack overflows (and
also recursion
overwrite) have been
successfully used as
attack vectors

struct thread_info in 3.19.8
struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 ...
};

U/K Boundary!
(affects, e.g., access_ok())

(can write into kmem)

Has a function pointer!
(triggered by syscall restart())

(can be overridden with userspace pointers)

Virtually Mapped Kernel Stack

• When an overflow occurs, the Kernel is not
easily able to detect it

• Even less able to counteract on it!

• Stacks are in the ZONE_NORMAL memory and
are contiguous

• But access is done through the MMU via virtual
addresses

Virtually Mapped Kernel Stack
• There is no need to have a physically contiguous stack, so

stack was created relying on vmalloc()
• This introduced a 1.5μs delay in process creation which

was unacceptable
• A cache of kernel-level stacks getting memory from
vmalloc() has been introduced

• This allows to introduce surrounding unmapped pages
• thread_info is moved off the stack

– it's content is moved to the task_struct

current
• current always refers to the currently-scheduled process

– It is therefore architecture-specific

• It returns the memory address of its PCB (evaluates to a pointer
to the corresponding task_struct)

• On early versions, it was a macro current defined in
include/asm-i386/current.h

• It performed computations based on the value of the stack
pointer, by exploiting that the stack is aligned to the couple of
pages/frames in memory

• Changing the stack's size requires re-aligning this macro

current
• When thread_info was introduced, masking the stack gived

the address to task_struct
• To return the task_struct, the content of the task member of
task_struct was returned

• Later, current has been mapped to the static
__always_inline struct task_struct
*get_current(void) function

• It returns the per-CPU variable current_task declared in
arch/x86/kernel/cpu/common.c

• The scheduler updates the current_task variable when
executing a context switch

• This is compliant with the fact that thread_info has left the
stack

Accessing PCBs (up to 2.6.26)
• This function in include/linux/sched.h allows to retrieve the

memory address of the PCB by passing the process/thread pid as input

static inline struct task_struct
*find_task_by_pid(int pid) {
 struct task_struct *p,
 **htable = &pidhash[pid_hashfn(pid)];

 for(p = *htable; p && p->pid != pid;
 p = p->pidhash_next) ;
 return p;
}

Accessing PCBs (after 2.6.26)
• find_task_by_pid has been replaced :

– struct task_struct
*find_task_by_vpid(pid_t vpid)

• This is based on the notion of virtual pid

• It has to do with userspace namespaces, to
allow processes in different namespaces to
share the same pid numbers

Accessing PCBs (up to 4.14)
/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;

• There is a hash defined as below in include/linux/sched.h
– #define PIDHASH_SZ (4096 >> 2)
– extern struct task_struct
*pid_hash[PIDHASH_SZ];

– #define pid_hashfn(x) ((((x) >> 8) ^ (x)) &
(PIDHASH_SZ - 1))

Accessing PCBs (currently)

• The hash data structure has been replaced by a
radix tree

• PIDs are replaced with Integer IDs (idr)
• idr is the kernel-level library for the

management of small integer ID numbers
• An idr is a sparse array mapping integer IDs

onto arbitrary pointers
– Look back at the data structures lecture

fork()/exec() Model

• To create a new process, a couple of fork()
and exec*() calls should be issued
– Unix worked mainly with multiprocessing (shared

memory)
– fork() relies on COW
– fork() followed by exec*() allows for fast

creation of new processes, both for sharing memory
view or not

fork()
• This function creates a new process. The return value is zero in

the child and the process-id number of the child in the parent, or
-1 upon error.

• Both processes start executing from the next instruction to the
fork() call.

stack

heap

data

text

stack

heap

data

text

fork()

parent child

Process and thread creation

fork() pthread_create()

sys_fork() sys_clone()

clone()[LINUX specific]
user level

kernel level

library call

do_fork()

Calling sys_clone() from Userspace

long clone(unsigned long flags, void *child_stack,
int *ptid, int *ctid, unsigned long newtls);

• When usign sys_clone(), we must allocate a new stack first
– By convention, userspace memory is always allocated from

userspace
– Indeed, a thread of the same process share the same address

space
• Also, TLS must be allocated in user space

– This is architecture-dependent, thus the unsigned long type
• glibc offers a uniform function

– The implementation of the syscall entry points is slightly different on
every architecture

sys_fork() and sys_clone()
SYSCALL_DEFINE0(fork)
{
 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
}

SYSCALL_DEFINE5(clone, unsigned long, clone_flags,
unsigned long, newsp, int __user *,
parent_tidptr, int __user *, child_tidptr,
unsigned long, tls)

{
 return _do_fork(clone_flags, newsp, 0,

parent_tidptr, child_tidptr, tls);
}

do_fork()
• Fresh PCB/kernel-stack allocation
• Copy/setup of PCB information/data structures
• What information is copied or inherited (namely

shared into the original buffers) depends on the
value of the flags passed as input to do_fork()

• Legit values for the flags are defined in
include/linux/sched.h
– CLONE_VM: set if VM is shared between processes
– CLONE_FS: set if fs info shared between processes
– CLONE_FILES: set if open files shared between

processes
– CLONE_PID: set if pid shared
– CLONE_PARENT: set if we want to have the same

parent as the cloner

do_fork() (5.0)
long do_fork(unsigned long clone_flags, unsigned long stack_start,

 unsigned long stack_size,
 int __user *parent_tidptr,
 int __user *child_tidptr,
 unsigned long tls)

{
 struct pid *pid;
 struct task_struct *p;

...
 p = copy_process(clone_flags, stack_start, stack_size, child_tidptr,

NULL, trace, tls, NUMA_NO_NODE);
...

 pid = get_task_pid(p, PIDTYPE_PID);
...

 wake_up_new_task(p);
}

copy_process()
• Copy process implements several checks on

namespaces
• Pending signals are processed immediately in the

parent process
• p = dup_task_struct(current, node);

– setup_thread_stack(tsk, orig);
• copy_creds(p, clone_flags);
• copy_files(clone_flags, p);
• copy_fs(clone_flags, p);
• copy_mm(clone_flags, p);

– dup_mm()

dup_mm()
static struct mm_struct *dup_mm(struct task_struct *tsk)
{

struct mm_struct *mm, *oldmm = current->mm;
mm = allocate_mm();

...
memcpy(mm, oldmm, sizeof(*mm));
if (!mm_init(mm, tsk, mm->user_ns))

goto fail_nomem;
err = dup_mmap(mm, oldmm);
if (err)

goto free_pt;
...

return mm;
...
}

allocates new PGD

Kernel Thread Creation API

• Kthreads are stopped upon creation
• It must be activated with a call to wake_up_process()

struct task_struct *kthread_create(
int (*function)(void *data), void *data,
 const char namefmt[], ...)

The name of the thread
The thread entry point

Entry point parametersThis is seen as a task by the scheduler

__kthread_create_on_node()
struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),

void *data, int node,
const char namefmt[],
va_list args)

{
 struct task_struct *task;
 struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL);

 if (!create)
 return ERR_PTR(-ENOMEM);
 create->threadfn = threadfn;
 create->data = data;
 create->node = node;
 create->done = &done;

 spin_lock(&kthread_create_lock);
 list_add_tail(&create->list, &kthread_create_list);
 spin_unlock(&kthread_create_lock);

 wake_up_process(kthreadd_task);
 ...
}

Kernel Thread Daemon

Signal Handlers Management

• Once a non-masked
pending signal is found
for a certain process,
before returning
control to it a proper
stack is assembled

• Control is then
returned to the signal
handler

Out of Memory (OOM) Killer
• Implemented in mm/oom_kill.c
• This module is activated (if enabled) when the

system runs out of memory
• There are three possible actions:

– Kill a random task (bad)
– Let the system crash (worse)
– Try to be smart at picking the process to kill

• The OOM Killer picks a "good" process and kills
it in order to reclaim available memory

Out of Memory (OOM) Killer
• Entry point of the system is
out_of_memory()

• It tries to select the "best" process checking for
different conditions:
– If a process has a pending SIGKILL or is exiting, this

is automatically picked (check done by task_will_free_mem())
– Otherwise, it issues a call to select_bad_process() which will return a

process to be killed
– The picked process is then killed
– If no process is found, a panic() is raised

select_bad_process()
• This iterates over all available processes calling
oom_evaluate_task() on them, until a
killable process is found

• Unkillable tasks (i.e., kernel threads) are
skipped

• oom_badness() implements the heuristic to
pick the process to be killed
– it computes the "score" associated with each process,

the higher the score the higher the probability of
getting killed

oom_badness()
• A score of zero is given if:

– the task is unkillable
– the mm field is NULL
– if the process is in the middle of a fork

• The score is then computed proportionally to
the RAM, swap, and pagetable usage:

points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
mm_pgtables_bytes(p->mm) / PAGE_SIZE;

How a Program is Started?

• We all know how to compile a program:
– gcc program.c –o program

• We all know how to launch the compiled
program:
– ./program

• The question is: why does all this work?
• What is the convention used between kernel and

user space?

In the beginning, there was init

Starting a Program from bash
static int execute_disk_command (char *command, int
pipe_in, int pipe_out, int async, struct fd_bitmap
*fds_to_close) {
 pid_t pid;
 pid = make_child (command, async);

 if (pid == 0) {
 shell_execve (command, args, export_env);
 }
}

Starting a Program from bash
pid_t make_child (char *command, int async_p) {
 pid_t pid;
 int forksleep;

 start_pipeline();

 forksleep = 1;
 while ((pid = fork ()) < 0 && errno == EAGAIN &&

forksleep < FORKSLEEP_MAX) {
 sys_error("fork: retry");

 reap_zombie_children();
 if (forksleep > 1 && sleep(forksleep) != 0)
 break;
 forksleep <<= 1;
 }

 ...
 return (pid);
}

Starting a Program from bash
int shell_execve (char *command, char **args, char **env) {
 execve (command, args, env);
 READ_SAMPLE_BUF (command, sample, sample_len);
 if (sample_len == 0)
 return (EXECUTION_SUCCESS);
 if (sample_len > 0) {
 if (sample_len > 2 && sample[0] == '#' && sample[1] == '!')
 return (execute_shell_script(sample, sample_len, command, args, env));
 else if (check_binary_file (sample, sample_len)) {
 internal_error (_("%s: cannot execute binary file"), command);
 return (EX_BINARY_FILE);
 }
 }
 longjmp(subshell_top_level, 1);
}

exec*()
• exec*() changes the program file that an

existing process is running:
– It first wipes out the memory state of the calling

process
– It then goes to the filesystem to find the program

file requested
– It copies this file into the program's memory and

initializes register state, including the PC
– It doesn't alter most of the other fields in the PCB

• the process calling exec*() (the child copy of the shell,
in this case) can, e.g., change the open files

struct linux_binprm

struct linux_binprm {
 char buf[BINPRM_BUF_SIZE];
 struct page *page[MAX_ARG_PAGES];
 unsigned long p; /* current top of mem */
 int sh_bang; struct file* file;
 int e_uid, e_gid;
 kernel_cap_t cap_inheritable, cap_permitted,
cap_effective;
 int argc, envc;
 char *filename; /* Name of binary */
 unsigned long loader, exec;
};

do_execve()
int do_execve(char *filename, char **argv, char **envp, struct pt_regs
*regs) {
 struct linux_binprm bprm;
 struct file *file;
 int retval;
 int i;
 file = open_exec(filename);
 retval = PTR_ERR(file);
 if (IS_ERR(file))
 return retval;

 bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
 bprm.file = file;
 bprm.filename = filename;
 bprm.sh_bang = 0;
 bprm.loader = 0;
 bprm.exec = 0;
 if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) { allow_write_access(file); fput(file); return bprm.argc; }

do_execve()
 if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
 allow_write_access(file);
 fput(file);
 return bprm.envc;
 }
 retval = prepare_binprm(&bprm);
 if (retval < 0)
 goto out;
 retval = copy_strings_kernel(1, &bprm.filename, &bprm);
 if (retval < 0)
 goto out;
 bprm.exec = bprm.p;
 retval = copy_strings(bprm.envc, envp, &bprm);
 if (retval < 0)
 goto out;

 retval = copy_strings(bprm.argc, argv, &bprm);
 if (retval < 0)
 goto out;
 retval = search_binary_handler(&bprm,regs);
 if (retval >= 0)
 /* execve success */
 return retval;

do_execve()
 out:
 /* Something went wrong, return the inode and free the argument pages*/
 allow_write_access(bprm.file);
 if (bprm.file)
 fput(bprm.file);
 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { struct page * page = bprm.page[i]; if (page) __free_page(page); }

 return retval;
}

search_binary_handler()
• search_binary_handler():

– Scans a list of binary file handlers registered in the
kernel;

– If no handler is able to recognize the image format,
syscall returs the ENOEXEC error (“Exec Format Error”);

• In fs/binfmt_elf.c:
– load_elf_binary():

• Load image file to memory using mmap;
• Reads the program header and sets permissions accordingly
• elf_ex = *((struct elfhdr *)bprm->buf);

Compiling Process

Linker
Script

File

Makefile

preprocessor

compiler assembler

Make

Object File

 Shared
Object

Relocatable
File

Executable
File

 Link Map
File

Linker

Archive (ar)

User-created files

C/C++ Sources
And Headers

Assembly
Sources

Library File

ELF Types of Files
• ELF defines the format of binary executables. There are

four different categories:
– Relocatable (Created by compilers and assemblers. Must be

processed by the linker before being run).
– Executable (All symbols are resolved, except for shared

libraries’ symbols, which are resolved at runtime).
– Shared object (A library which is shared by different

programs, contains all the symbols’ information used by the
linker, and the code to be executed at runtime).

– Core file (a core dump).
• ELF files have a twofold nature

– Compilers, assemblers and linkers handle them as a set of
logical sections;

– The system loader handles them as a set of segments.

ELF File’s Structure

Segments

Program
Header

Section
Header

ELF Header

Describes Sections

Describes segments

Sections

(optional, ignored)

(optional, ignored)

Relocatable File Executable File

Relocatable File
• A relocatable file or a shared object is a

collection of sections
• Each section contains a single kind of

information, such as executable code, read-only
data, read/write data, relocation entries, or
symbols.

• Each symbol’s address is defined in relation to
the section which contains it.
– For example, a function’s entry point is defined in

relation to the section of the program which
contains it.

Section Header

typedef struct {
 Elf32_Word sh_name; /* Section name (string tbl index) */
 Elf32_Word sh_type; /* Section type */
 Elf32_Word sh_flags; /* Section flags */
 Elf32_Addr sh_addr; /* Section virtual addr at execution */
 Elf32_Off sh_offset; /* Section file offset */
 Elf32_Word sh_size; /* Section size in bytes */
 Elf32_Word sh_link; /* Link to another section */
 Elf32_Word sh_info; /* Additional section information */
 Elf32_Word sh_addralign; /* Section alignment */
 Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;

Types and Flags in Section Header
PROGBITS: The section contains the program content (code, data, debug
information).
NOBITS: Same as PROGBITS, yet with a null size.
SYMTAB and DYNSYM: The section contains a symbol table.
STRTAB: The section contains a string table.
REL and RELA: The section contains relocation information.
DYNAMIC and HASH: The section contains dynamic linking information.

WRITE: The section contains runtime-writeable data.
ALLOC: The section occupies memory at runtime.
EXECINSTR: The section contains executable machine instructions.

Some Sections
• .text: contains program’s instructions

– Type: PROGBITS
– Flags: ALLOC + EXECINSTR

• .data: contains preinitialized read/write data
– Type: PROGBITS
– Flags: ALLOC + WRITE

• .rodata: contains preinitialized read-only data
– Type: PROGBITS
– Flags: ALLOC

• .bss: contains uninitialized data. Will be set to zero at
startup.
– Type: NOBITS
– Flags: ALLOC + WRITE

Executable Files
• Usually, an executable file has only few

segments:
– A read-only segment for code.
– A read-only segment for read-only data.
– A read/write segment for other data.

• Any section marked with flag ALLOCATE is
packed in the proper segment, so that the
operating system is able to map the file to
memory with few operations.
– If .data and .bss sections are present, they are

placed within the same read/write segment.

Program Header

typedef struct {
 Elf32_Word p_type; /* Segment type */
 Elf32_Off p_offset; /* Segment file offset */
 Elf32_Addr p_vaddr; /* Segment virtual address */
 Elf32_Addr p_paddr; /* Segment physical address */
 Elf32_Word p_filesz; /* Segment size in file */
 Elf32_Word p_memsz; /* Segment size in memory */
 Elf32_Word p_flags; /* Segment flags */
 Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;

Linker’s Role

ELF Header

Prog. Header Table

Segment 1

Segment 2 Data

Executable File

Segment 3

Segment 2

ELF Header

Sec. Header Table

Section 1
Section 2

Relocatable File 1

. . .
Section n

ELF Header

Sec. Header Table

Section 1
Section 2

Relocatable File 2

. . .
Section n

Static Relocation Data Structures

...
1bc1: e8 00 00 00 00 (call ???)
1bc6: 83 c4 10 add $0x10, %rsp
1bc9: a1 00 00 00 00 (movb 0x0, %eax)

...
2bd7: 55 push %rbp
2bd8: 48 89 e5 mov %rsp, %rbp

text section

name value sec

1 2bd7 text

5 812f data

...
732e 6d79 6174 0062 732e 7274 6174 0062
732e 7368 7274 6174 0062 742e 7865 0074
642e 7461 0061 622e 7373 6174 0062 7865

...

data section

symbol table

␀ f o o ␀ m y _ v a r ␀

string table

offset info addend

1bc2 0 / off 4

1bca 1 / addr 0

.text.rela table

This member also tells what kind
of relocation should be performed

Static Relocation Data Structures

...
1bc1: e8 00 00 00 00 (call ???)
1bc6: 83 c4 10 add $0x10, %rsp
1bc9: a1 00 00 00 00 (movb 0x0, %eax)

...
2bd7: 55 push %rbp
2bd8: 48 89 e5 mov %rsp, %rbp

text section

name value sec

1 2bd7 text

5 812f data

...
732e 6d79 6174 0062 732e 7274 6174 0062
732e 7368 7274 6174 0062 742e 7865 0074
642e 7461 0061 622e 7373 6174 0062 7865

...

data section

symbol table

␀ f o o ␀ m y _ v a r ␀

string table

offset info addend

1bc2 0 / off 4

1bca 1 / addr 0

.text.rela table

This member also tells what kind
of relocation should be performed

Symbols Visibility
• weak symbols:

– More modules can have a symbol with the same name of a
weak one;

– The declared entity cannot be overloaded by other modules;
– It is useful for libraries which want to avoid conflicts with

user programs.
• gcc version 4.0 gives the command line option

 -fvisibility:
– default: normal behaviour, the symbol is seen by other

modules;
– hidden: two declarations of an object refer the same object

only if they are in the same shared object;
– internal: an entity declared in a module cannot be referenced

even by pointer;
– protected: the symbol is weak;

Symbols Visibility
int variable __attribute__ ((visibility (“hidden”)));

#pragma GCC visibility push(hidden)
int variable;

int increment(void) {
 return ++variable;
}
#pragma GCC visibility pop

Entry Point for the Program

• main() is not the actual entry point for the
program

• glibc inserts auxiliary functions
– The actual entry point is called _start

• The Kernel starts the dynamic linker which is
stored in the .interp section of the program
(usually /lib/ld-linux.so.2)

• If no dynamic linker is specified, control is given
at address specified in e_entry

Dynamic Linker
• Initialization steps:

– Self initialization
– Loading Shared Libraries
– Resolving remaining relocations
– Transfer control to the application

• The most important data structures which are
filled are:
– Procedure Linkage Table (PLT), used to call

functions whose address isn't known at link time
– Global Offsets Table (GOT), similarly used to resolve

addresses of data/functions

Dynamic Relocation Data Structures
• .dynsym: a minimal symbol table used by the

dynamic linker when performing relocations
• .hash: a hash table that is used to quickly

locate a given symbol in the .dynsym, usually in
one or two tries.

• .dynstr: string table related to the symbols
stored in .dynsym

• These tables are used to populate the GOT table
• This table is populate upon need (lazy binding)

Steps to populate the tables
• The first PLT entry is special
• Other entries are identical, one for each function

needing resolution.
– A jump to a location which is specified in a

corresponding GOT entry
– Preparation of arguments for a resolver routine
– Call to the resolver routine, which resides in the first

entry of the PLT
• The first PLT entry is a call to the resolver

located in the dynamic loader itself

GOT and PLT after library loading

Steps to populate the tables

• When func is called for the first time:
– PLT[n] is called, and jumps to the address pointed

to it in GOT[n]
– This address points into PLT[n] itself, to the

preparation of arguments for the resolver.
– The resolver is then called, by jumping to PLT[0]
– The resolver performs resolution of the actual

address of func, places its actual address
into GOT[n] and calls func.

GOT and PLT after first call to func

Initial steps of the Program’s Life
• So far the dynamic linker has loaded the shared libraries in

memory
• GOT is populated when the program requires certain functions
• Then, the dynamic linker calls _start

<_start>:
 xor %ebp,%ebp
 pop %esi
 mov %esp,%ecx
 and $0xfffffff0,%esp
 push %eax
 push %esp
 push %edx
 push $0x8048600
 push $0x8048670
 push %ecx
 push %esi
 push $0x804841c
 call 8048338 <__libc_start_main>
 hlt
 nop
 nop

Suggested by ABI to mark outermost frame

the pop makes argc go into %esi
%esp is now pointing at argv. The mov puts argv into
%ecx without moving the stack pointer
Align the stack pointer to a multiple of 16 bytes

Prepare parameters to __libc_start_main
%eax is garbage, to keep the alignment

This instruction should be never executed!

Userspace Life of a Program

Initializes argc, argv, and argp

Stack Layout at Program Startup
local variables of main
saved registers of main
return address of main
argc
argv
envp
stack from startup code
argc
argv pointers
NULL that ends argv[]
environment pointers
NULL that ends envp[]
ELF Auxiliary Table
argv strings
environment strings
program name
NULL

__libc_start_main()

actual main()

kernel

vDSO is here

