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Concurrency Properties
• Safety: nothing wrong happens

– It’s called Correctness as well
– What does it mean for a program to be correct?

• What’s exactly a concurrent FIFO queue?
• FIFO implies a strict temporal ordering
• Concurrent implies an ambiguous temporal ordering

– Intuitively, if we rely on locks, changes happen in a non-interleaved 
fashion, resembling a sequential execution

– We can say a parallel execution is correct only because we can associate it 
with a sequential one, which we know the functioning of

• Liveness: eventually something good happens
– It’s called Progress as well
– Opposed to Starvation



Correctness Conditions
• The linearizability property tries to generalize the intuition of correctness
• A history is a sequence of invocations and replies generated on an object by a set 

of threads
• A sequential history is a history where all the invocations have an immediate 

response
• A history is called linearizable if:

– Invocations/responses can be reordered to create a sequential history
– The so-generated sequential history is correct according to the sequential definition of 

the object
– If a response precedes an invocation in the original history, then it must precede it in 

the sequential one as well
• An object is linearizable if every valid history associated with its usage can be 

linearized



Progress Conditions
• Deadlock-free:

– Some thread acquires a lock eventually
• Starvation-free:

– Every thread acquires a lock eventually
• Lock-free:

– Some method call completes
• Wait-free:

– Every method call completes
• Obstruction-free:

– Every method call completes, if they execute in isolation



Progress Taxonomy

Non-Blocking Blocking

For Everyone Wait-Free Obstruction-
Free

Starvation-
Free

For Some Lock-free
Deadlock-

Free

Progress conditions on multiprocessors:
• Are not about guarantees provided by a method implementation
• Are about the scheduling support needed to provide maximum or minimum 

progress



Progress Taxonomy

Non-Blocking Blocking
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Thread 
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No thread 
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No thread 
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Concurrent and Preëmptive Kernels
• Modern kernels are preëmptive

– A process running in kernel mode might be replaced by another process 
while in the middle of a kernel function

• Modern kernels run concurrently
– Any core can run kernel functions at any time

• Kernel code must ensure consistency and avoid deadlock
• Typical solutions:

– Explicit synchronization
– Non-blocking synchronization
– Data separation (e.g., per-CPU variables)
– Interrupt disabling
– Preëmption disabling

Mandatory on
multi-core machine



Kernel Race Conditions

• System calls and interrupts

queue_t *shared_q;

my_irq_handler() {
data = io(...);
push(shared_q, data);

}

Interrupt

Task 1 ISR Task 1
Critical Section

my_syscall() {
   n = length(shared_q);
   if(n > 0) {
      buf = kmalloc(1024);
      pop(shared_q, buf);
   }
}

syscall



Kernel Race Conditions

• System calls and preëmption

queue_t *shared_q;
kmalloc
blocks

Task 1 Task 2 Task 1
Critical Section

my_syscall() {
   n = length(shared_q);
   if(n > 0) {
      buf = kmalloc(1024);
      pop(shared_q, buf);
   }
}

syscall same
syscall



Enabling/Disabling Preëmption
• Kernel preëmption might take place when the 

scheduler is activated
• There must be a way to disable preëmption

– This is based on a (per-CPU) counter
– A non-zero counter tells that preëmption is disabled

• preempt_count(): return the current's core counter
• preempt_disable(): increases by one the 

preëmption counter (needs a memory barrier).
• preempt_enable(): decreases by one the 

preëmption counter (needs a memory barrier).



Why do we need counters?
• In a Kernel with no preëmption counters this is possible:

Kernel function A: it disables preëmption
to avoid race conditions

function call To prevent race condition, this
function disables and the re-enables
preëmption

Kernel function A: running with preëmption
enabled, as a side effect of function call

return to the original
execution context



Enabling/Disabling HardIRQs

• Given the per-CPU management of interrupts, 
HardIRQs can be disabled only locally

• Managing the IF flags:
– local_irq_disable()
– local_irq_enable()
– irqs_disabled()

• Nested activations (same concept as in the 
preëmption case):
– local_irq_save(flags)
– local_irq_restore(flags)



The _save Version
#define raw_local_irq_save(flags) \

do { \
typecheck(unsigned long, flags); \
flags = arch_local_irq_save(); \

} while (0)

extern inline unsigned long native_save_fl(void)
{

unsigned long flags;
asm volatile("pushf ; pop %0"

     : "=rm" (flags)
     : /* no input */
     : "memory");

return flags;
}

Why cannot we rely on 
counters as in the case of
preëmption disabling?



Per-CPU Variables

• A support to implement “data separation” in the 
kernel

• It is the best “synchronization” technique
– It removes the need for explicit synchronization

• They are not silver bullets
– No protection againts asynchronous functions
– No protection against preëmption and reschedule on 

another core



Atomic Operations

• Based on RMW instructions
• atomic_t type

– atomic_fetch_{add,sub,and,andnot,or,xor}()
• DECLARE_BITMAP() macro

– set_bit()
– clear_bit()
– test_and_set_bit()
– test_and_clear_bit()



Memory Barriers
• A compiler might reorder the instructions

– Typically done to optimize the usage of registers
• Out of order pipeline and Memory Consistency 

models can reorder memory accesses
• Two families of barriers:

– Optimization barriers 
• #define barrier() asm volatile(“”:::”memory”);

– Memory barriers
• {smp_}mb(): full memory barrier
• {smp_}rmb(): read memory barrier
• {smp_}wmb(): write memory barrier

Add fences
if necessary



Big Kernel Lock

• Traditionally called a "Giant Lock"
• This is a simple way to provide concurrency to 

userspace avoiding concurrency problems in the 
kernel

• Whenever a thread enters kernel mode, it 
acquires the BKL
– No more than one thread can live in kernel space

• Completely removed in 2.6.39



Linux Mutexes
DECLARE_MUTEX(name); 
/* declares struct semaphore <name> ... */

void sema_init(struct semaphore *sem, int val); 
/* alternative to DECLARE_... */

void down(struct semaphore *sem); /* may sleep */

int down_interruptible(struct semaphore *sem); 
/* may sleep; returns -EINTR on interrupt */

int down_trylock(struct semaphone *sem); 
/* returns 0 if succeeded; will no sleep */

void up(struct semaphore *sem); 



Linux Spinlocks
#include <linux/spinlock.h>

spinlock_t my_lock = SPINLOCK_UNLOCKED;
spin_lock_init(spinlock_t *lock);
spin_lock(spinlock_t *lock);
spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
spin_lock_irq(spinlock_t *lock);
spin_lock_bh(spinlock_t *lock);

spin_unlock(spinlock_t *lock);
spin_unlock_irqrestore(spinlock_t *lock,

unsigned long flags);
spin_unlock_irq(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);
spin_is_locked(spinlock_t *lock);
spin_trylock(spinlock_t *lock)
spin_unlock_wait(spinlock_t *lock);



Linux Spinlocks
static inline void __raw_spin_lock_irq(raw_spinlock_t *lock)
{
    local_irq_disable();
    preempt_disable();
    spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
}

spin_lock_irq

spin_lock

preempt_disable local_irq_disable

spin_lock_irqsave

spin_lock

preempt_disable local_irq_save



Read/Write Locks
Read
Get Lock:
• Lock r
• Increment c
• if c == 1

– lock w
• unlock r

Release Lock:
• Lock r
• Decrement c
• if c == 0

– unlock w
• unlock r

Write
Get Lock:
• Lock w

Release Lock:
• Unlock w



Read/Write Locks
rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock); 
unsigned long flags; 

read_lock_irqsave(&xxx_lock, flags); 
.. critical section that only reads the info ... 
read_unlock_irqrestore(&xxx_lock, flags); 

write_lock_irqsave(&xxx_lock, flags); 
.. read and write exclusive access to the info ... 
write_unlock_irqrestore(&xxx_lock, flags); 



seqlocks

• A seqlock tries to tackle the following situation:
– A small amount of data is to be protected.
– That data is simple (no pointers), and is frequently 

accessed.
– Access to the data does not create side effects.
– It is important that writers not be starved for access.

• It is a way to avoid readers to starve writers



seqlocks
• #include <linux/seqlock.h>
• seqlock_t lock1 = 
SEQLOCK_UNLOCKED;

• seqlock_t lock2;
• seqlock_init(&lock2);

• write_seqlock(&the_lock);
• /* Make changes here */
• write_sequnlock(&the_lock);

Exclusive access and
increment the 
sequence number

increment again



seqlocks
• Readers do not acquire a lock:
unsigned int seq;
do {
  seq = read_seqbegin(&the_lock);
  /* Make a copy of the data of interest */
} while read_seqretry(&the_lock, seq);

• The call to read_seqretry checks whether the initial 
number was odd

• It additionally checks if the sequence number has changed



Read-Copy-Update (RCU)
• Another synchronization mechanism, added in 

October 2002
• RCU ensures that reads are coherent by maintaining 

multiple versions of objects and ensuring that they 
are not freed up until all pre-existing read-side 
critical sections complete

• RCU allow many readers and many writers to 
proceed concurrently

• RCU is lock-free (no locks nor counters are used)
– Increased scalability, no cache contention on 

synchronization variables



Read-Copy-Update (RCU)
• Three fundamental mechanisms:

– Publish-subscribe mechanism (for insertion)
– Wait for pre-existing RCU readers to complete (for 

deletion)
– Maintain multiple versions of RCU-updated objects 

(for readers)
• RCU scope:

– Only dynamically allocated data structures can be 
protected by RCU

– No kernel control path can sleep inside a critical 
section protected by RCU



Insertion
struct foo {
   int a;
   int b;
   int c;
 };
 struct foo *gp = NULL;
 
 /* . . . */
 
 p = kmalloc(sizeof(*p), GFP_KERNEL);
 p->a = 1;
 p->b = 2;
 p->c = 3;
 gp = p;

Is this always correct?



Insertion
struct foo {
   int a;
   int b;
   int c;
 };
 struct foo *gp = NULL;
 
 /* . . . */
 
 p = kmalloc(sizeof(*p), GFP_KERNEL);
 p->a = 1;
 p->b = 2;
 p->c = 3;
 rcu_assign_pointer(gp, p) the "publish" part



Reading
 
 p = gp;
 if (p != NULL) {
   do_something_with(p->a, p->b, p->c);
 }

Is this always correct?



Reading
 rcu_read_lock();
 p = rcu_dereference(gp);
 if (p != NULL) {
   do_something_with(p->a, p->b, p->c);
 }
 rcu_read_unlock();

Memory barriers here



Wait Pre-Existing RCU Updates

• synchronize_rcu()
• It can be schematized as:

for_each_online_cpu(cpu)
     run_on(cpu);



Multiple Versions: Deletion
struct foo {
   struct list_head list;
   int a;
   int b;
   int c;
 };
 LIST_HEAD(head);
 
 /* . . . */
 
 p = search(head, key);
 p = search(head, key);
 if (p != NULL) {
   list_del_rcu(&p->list);
   synchronize_rcu();
   kfree(p);
 }



Multiple Versions: Update
struct foo {
   struct list_head list;
   int a;
   int b;
   int c;
 };
 LIST_HEAD(head);
 
 /* . . . */
 
 p = search(head, key);
 if (p == NULL) {
   /* Take appropriate action, unlock, and return. */
 }
 q = kmalloc(sizeof(*p), GFP_KERNEL);
 *q = *p;
 q->b = 2;
 q->c = 3;
 list_replace_rcu(&p->list, &q->list);
 synchronize_rcu();
 kfree(p);



RCU Garbage Collection
• An old version of a data structure can be still 

accessed by readers
– It can be freed only after that all readers have called 
rcu_read_unlock()

• A writer cannot waste to much time waiting for 
this condition

• call_rcu() registers a callback function to free 
the old data structure

• Callbacks are activated by a dedicated SoftIRQ 
action



RCU vs RW Locks


