Dealing with Concurrency
in the Kernel

Advanced Operating Systems and Virtualization

Alessandro Pellegrini
AY.2019/2020

Concurrency Properties

« Safety: nothing wrong happens
— It's called Correctness as well

— What does it mean for a program to be correct?
* What’s exactly a concurrent FIFO queue?
* FIFO implies a strict temporal ordering
e Concurrent implies an ambiguous temporal ordering

— Intuitively, if we rely on locks, changes happen in a non-interleaved
fashion, resembling a sequential execution

— We can say a parallel execution is correct only because we can associate it
with a sequential one, which we know the functioning of

« Liveness: eventually something good happens
— It's called Progress as well
— Opposed to Starvation

V' 4 iaw y & 2 AN

| W=7

Correctness Conditions

* The linearizability property tries to generalize the intuition of correctness

* A history is a sequence of invocations and replies generated on an object by a set
of threads
* Asequential history is a history where all the invocations have an immediate
response
* Ahistory is called linearizable if:
— Invocations/responses can be reordered to create a sequential history

— The so-generated sequential history is correct according to the sequential definition of
the object

— Ifaresponse precedes an invocation in the original history, then it must precede it in
the sequential one as well

* Anobjectis linearizable if every valid history associated with its usage can be
linearized

V' 4 iaw y & 2 AN

| W=7

Progress Conditions

* Deadlock-free:
— Some thread acquires a lock eventually

* Starvation-free:

— Every thread acquires a lock eventually
* Lock-free:

— Some method call completes
 Wait-free:

— Every method call completes

e Obstruction-free:

— Every method call completes, if they execute in isolation

Progress Taxonomy

Non-Blocking Blocking

Obstruction- SiElntEllglis
For Everyone Wait-Free Free
Free
Deadlock-
For Some Lock-free Free

Progress conditions on multiprocessors:

* Are not about guarantees provided by a method implementation

* Are about the scheduling support needed to provide maximum or minimum
progress

iaw y & 2

| W=7

Progress Taxonomy

Non-Blocking Blocking

Thread
For Everyone Nothin executes Merees
d 2 locked in CS
alone
No thread
For Some Nothing locked in CS

\\\\\\

"By @

Concurrent and Preemptive Kernels

 Modern kernels are preémptive

— A process running in kernel mode might be replaced by another process
while in the middle of a kernel function

* Modern kernels run concurrently
— Any core can run kernel functions at any time
* Kernel code must ensure consistency and avoid deadlock

* Typical solutions:
— Explicit synchronization

' Mandatory on
multi-core machine

— Non-blocking synchronization

— Data separation (e.g., per-CPU variables)
— Interrupt disabling
— Preémption disabling

iaw y & 2

| W=7

Kernel Race Conditions

* System calls and interrupts

4 .)
Critical Section o

— ISR
\T T Y,

syscall Interrupt
queue t *shared qg;

. my syscall() {
my_1rqg_handler() ({ n = length(shared q);

data = io(...); if(n > 0) |
buf = kmalloc(1024);

pop (shared g, buf);

push (shared g, data);
} }

Kernel Race Conditions

* System calls and preémption

~ . .
Critical Section o

\T T T /
syscall kmalloc same
queue t *shared qg; blocks syscall

my syscall() {
n = length(shared q);
if(n > 0) {
buf = kmalloc (1024);
pop (shared g, buf);
}

Enabling/Disabling Preemption

Kernel preémption might take place when the
scheduler is activated

There must be a way to disable preémption

— This is based on a (per-CPU) counter

— A non-zero counter tells that preémption is disabled
preempt count ():return the current's core counter

preempt disable ():increases by one the
preémption counter (needs a memory barrier).

preempt enable ():decreases by one the
preémption counter (needs a memory barrier).

Why do we need counters?

* In a Kernel with no preémption counters this is possible:

Kernel function A: it disables preémption
to avoid race conditions

function call To prevent race condition, this

function disables and the re-enables
preemption

return to the original

execution context \/

Kernel function A: running with preémption
enabled, as a side effect of function call

V' 4 iaw y & 2 AN

| W=7

Enabling/Disabling HardIRQs

* Given the per-CPU management of interrupts,
HardIRQs can be disabled only locally

* Managing the IF flags:
— local 1rqg disable ()
— local 1rg enable()
— 1rgs disabled()
* Nested activations (same concept as in the
preémption case):
— local 1rg save(flags)

— local 1rqg restore(flags)

The save Version

#define raw local irqg save(flags) \
do { \
typecheck (unsigned long, flags); \
flags = arch local irg save(); \
} while (0) \\\
extern inline unsigned long native save fl (void)
{
unsigned long flags;
asm volatile ("pushf ; pop %0"
"=rm" (flags)
/* no input */
"memory™) ; Why cannot we rely on
return flags; counters as in the case of

preémption disabling?

V' 4 iaw y & 2 AN

| W=7

Per-CPU Variables

* A support to implement “data separation” in the
kernel

* Itis the best “synchronization” technique
— [t removes the need for explicit synchronization
* They are not silver bullets

— No protection againts asynchronous functions

— No protection against preémption and reschedule on
another core

Atomic Operations

 Based on RMW instructions
* atomilic t type

— atomic fetch {add, sub,and,andnot,or,xor} ()
* DECLARE BITMAP () macro

—set bit ()

—clear bit ()

—test and set bit()

—test and clear bit ()

iaw

'/ V=3 &..Vl)\

Memory Barriers

* A compiler might reorder the instructions
— Typically done to optimize the usage of registers

* Out of order pipeline and Memory Consistency
models can reorder memory accesses

e Two families of barriers:

— Optimization barriers
* #define barrier () asm volatile(“:::”memory”);
— Memory barriers
* {smp }mb ():full memory barrier
* {smp }rmb ():read memory barrier
* {smp }wmb ():write memory barrier

| Add fences
if necessary

Big Kernel Lock

Traditionally called a "Giant Lock”

This is a simple way to provide concurrency to
userspace avoiding concurrency problems in the
kernel

Whenever a thread enters kernel mode, it
acquires the BKL

— No more than one thread can live in kernel space

Completely removed in 2.6.39

V 4

| W=7

Linux Mutexes

DECLARE MUTEX (name) ;
/* declares struct semaphore <name> ... */

volid sema 1nit (struct semaphore *sem, 1int val);
/* alternative to DECLARE ... */

void down (struct semaphore *sem); /* may sleep */

int down interruptible (struct semaphore *sem);
/* may sleep; returns -EINTR on interrupt */

int down trylock(struct semaphone *sem);
/* returns 0 if succeeded; will no sleep */

vold up(struct semaphore *sem);

iaw y & 2 AN

Linux Spinlocks

#include <linux/spinlock.h>

spinlock t my lock = SPINLOCK UNLOCKED;

spin lock init(spinlock t *lock);

spin lock(spinlock t *lock);

spin lock irgsave(spinlock t *lock, unsigned long flags);
spin _lock irqg(spinlock t *lock);

spin lock bh(spinlock t *lock);

spin unlock (spinlock t *lock);
spin unlock irgrestore(spinlock t *lock,
unsigned long flags);
spin unlock irg(spinlock t *lock);
spin_unlock bh(spinlock t *lock);
spin 1s locked(spinlock t *lock);
spin trylock(spinlock t *lock)
spin unlock wait (spinlock t *lock);

V' 4 iaw y & 2 AN

| W=7

Linux Spinlocks

static inline void raw spin lock i1rg(raw spinlock t *lock)
{

local irqg disable();

preempt disable();

spin acquire (&lock->dep map, 0, 0, RET IP);

spin_lock_irq spin_lock_irgsave

spin_lock spin_lock

preempt_disable local_irq_disable preempt_disable local_irg_save

V' 4 |8 W N y & 2 A Y

-y (&

Read/Write Locks

Read Write

Get Lock: Get Lock:
* Lockr e Lockw

e Incrementc
e ifc==1 Release Lock:

— lockw e Unlockw
e unlockr

Release Lock:
« Lockr
e Decrementc
e ifc==

— unlock w
 unlockr

iaw y & 2

| W=7

Read/Write Locks

rwlock t xxx lock = RW LOCK UNLOCKED (xxx lock);
unsigned long flags;

read lock irgsave (&xxx lock, flags);
critical section that only reads the info
read unlock irqgrestore (&xxx lock, flags);

write lock i1rgsave (&xxx lock, flags);
read and write exclusive access to the info
write unlock i1rgrestore (&xxx lock, flags);

V' 4 iaw y & 2 AN

| W=7

seqlocks

* A seqlock tries to tackle the following situation:
— A small amount of data is to be protected.

— That data is simple (no pointers), and is frequently
accessed.

— Access to the data does not create side effects.
— [t is important that writers not be starved for access.

* [tis a way to avoid readers to starve writers

seqlocks

* #include <linux/seqglock.h>

* seqglock t lockl =
SEQLOCK UNLOCKED;

* seglock t lockZ; o 5
o SequCk init (w increment the

o sequence number
* write seqglock(&the lock);
« /* Make changes here */
* write sequnlock(&the lock);

increment again

iaw

” ﬁbSWf\

seqlocks

* Readers do not acquire a lock:
unsigned 1nt seq;

do {

seq = read segbegilin(&the lock);

/* Make a copy of the data of interest */
} while read seqgretry(&the lock, seq);

* Thecallto read segretry checks whether the initial
number was odd

* It additionally checks if the sequence number has changed

Read-Copy-Update (RCU)

Another synchronization mechanism, added in
October 2002

RCU ensures that reads are coherent by maintaining
multiple versions of objects and ensuring that they
are not freed up until all pre-existing read-side
critical sections complete

RCU allow many readers and many writers to
proceed concurrently
RCU is lock-free (no locks nor counters are used)

— Increased scalability, no cache contention on
synchronization variables

Read-Copy-Update (RCU)

e Three fundamental mechanisms:
— Publish-subscribe mechanism (for insertion)

— Wait for pre-existing RCU readers to complete (for
deletion)

— Maintain multiple versions of RCU-updated objects
(for readers)

* RCU scope:

— Only dynamically allocated data structures can be
protected by RCU

— No kernel control path can sleep inside a critical
section protected by RCU

Insertion

struct foo {
int a;
int b;
int c;
I
struct foo *gp = NULL;

/* ... x/

p = kmalloc(sizeof (*p), GFP KERNEL) ;

p->a = 1;

p->b = 2; ___ Is this always correct?
p->c = 3;

gp = b _

V' 4 iaw y & 2 AN

| W=7

Insertion

struct foo {
int a;
int b;
int c;
I
struct foo *gp = NULL;

/* ... x/

p = kmalloc(sizeof (*p), GFP KERNEL) ;

p->a = 1;
p->b = 2;
p->c = 3;
rcu assign pointer(gp, p) the "publish" part

V' 4 iaw y & 2 AN

| W=7

Reading

P = gps
1if (p != NULL) {

do something with (p->a, p->b, p->c);
\ _

[s this always correct? <——

Reading

rcu read lock();

p = rcu dereference (gp); Memory barriers here
1if (p != NULL) {
do something with (p->a, p->b, p->c);

}

rcu_read_unlock();

Wait Pre-Existing RCU Updates

* synchronize rcu/()
e It can be schematized as:
for each online cpu(cpu)

run on(cpu) ;

I
Readar Reader Reader
Reader
Reader Reader
Grace period
Reader extends as
I needed.
Reader -
Removal Grace Period

iaw

'/ V=3 &..Vl)\

Multiple Versions: Deletion

struct foo {
struct list head list;
int a;
int b;
int c;
bi
LIST HEAD (head);

o ¢

123 56,7 | 11148

a 3

p = search (head, key);

P search (head, key);
if (p !'= NULL) {

list del rcu(&p->list);

synchronize rcu();

kfree (p) ;

V' 4 iaw y & 2 AN

| W=7

Multiple Versions: Update

struct foo {
struct list head list;

int a;
int b; 523
—-" P!
int c; q
}; : - T
LIST HEAD (head) ; ‘head 1,23 5671 wj1148

Jx oL % /

p = search (head, key);
if (p == NULL) {

/* Take appropriate action, unlock, and return. */
}
q = kmalloc(sizeof (*p), GFP_KERNEL) ;
*q = *p; q
qg->b = 2;
g->c = 3;

_ w1523

1,23 1148

a =)

list replace_rcu(&p->list, &qg->list);
synchronize rcu();

kfree (p);

V' 4 iaw y & 2 AN

| W=7

RCU Garbage Collection

* An old version of a data structure can be still
accessed by readers

— It can be freed only after that all readers have called
rcu read unlock()

* A writer cannot waste to much time waiting for
this condition

« call rcu() registers a callback function to free
the old data structure

* (Callbacks are activated by a dedicated SoftIRQ
action

'/ 3‘): &..Vl)\

RCU vs RW Locks

rwlock reader spin rwlock reader
rwlock reader spin I‘%ﬂﬁﬁkf@ﬁ&m
rwlock reader! spin | rwlock rez der

spin |rwlock writer

|
RCU reader |RCU reader || RCU reader
RCU reader | RCU reader | ‘RCU réader
RCU reader| |RCU reader | RCU reader
RCU updater

/ Time

Update Received

V' 4 iaw y & 2 AN

Ry

