Kernel Data Structures

Advanced Operating Systems and Virtualization

Alessandro Pellegrini
AY.2019/2020

Linux Kernel Design Patterns

The kernel has to manage a significant amount
of different data structures

Many objects are complex

— variable size

— groups of other objects (collections)

— changing frequently over time

Performance and efficiency is fundamental

We need abstract data types: how to do that in C?

Abstract Data Types

* Encapsulate the entire implementation of a data
structure

* Provide only a well-defined interface to
manipulate objects/collections

* Optimizations in the data structure
implementation is directly spread across the
whole source

Circular Doubly-Linked Lists

e /include/linux/list.h

struct list head {

struct list head *next, *prev;

} s

iaw

” ﬁbSWf\

Circular Doubly-Linked Lists

struct my struct {
int priority;
struct list head 1listl;
struct list head 1listl;

int other member;

by

iaw

'/ V=3 &..Vl)\

Circular Doubly-Linked Lists

container_of(ptr, type, member)

illustrated explanation

returns

struct object

char first _member

type

char second member

char third member

ptr —

struct list head list
A

member

iaw y & 2

| W=7

Circular Doubly-Linked Lists

Lists in ,('f o
<linux/list.h> ~..|
An empiy list
prev | next ol -, ¢ <

struct list_head : L
‘\D-. - -l—h-r‘ ‘ .‘_““\

& : o e e
% A list head with a two-item list
e
A custom stru -:ture: ./
indudinga list head \h_____ Qﬁk\
et

Effectsofthe List_entrymacro

iaw y & 2

| W=7

How to use Lists

list_ head sorted by char

«"

list_ head sorted by num

Objects can also be
allocated into an array

Head of lists

* The head of the list is usually a standalone

Structure:

struct list head todo list;
INIT LIST HEAD(&todo list);

 Ifitis used as a global variable, it has to be

initialized at compile time:
LIST HEAD(todo list);

iaw

'/ V=3 &..Vl)\

Linked List API (partial)

* list add(struct list head *new, struct list head *head);

* list add tail(struct list head *new, struct list head *head);
* list del(struct list head *entry);

* list del init(struct list head *entry); // To later relink

* list move(struct list head *entry, struct list head *head);

* list move tail(struct list head *entry, struct list head
*head) ;

e list empty(struct list head *head); // Non-zero if empty

V' 4 iaw y & 2 AN

| W=7

List Traversal

void my add entry(struct my struct *new) {
struct list head *ptr;

struct my struct *entry;

for (ptr my list.next; ptr != &my list; ptr = ptr->next) ({
entry = list entry(ptr, struct my struct, list);
1f (entry->priority < new->priority) {

list add tail (&new->list, ptr);

return;

}
list add tail (&new->list, é&my list);

V' 4 iaw y & 2 AN

| W=7

List Traversal

void my add entry(struct my struct *new) {
struct list head *ptr;
struct my struct *entry;
list for each(ptr, &todo_list) {
entry = list entry(ptr, struct my struct, list);
1f (entry->priority < new->priority) {
list add tail (&new->list, ptr);

return;

}
list add tail (&new->list, é&my list);

V' 4 iaw y & 2 AN

| W=7

Hash Lists

* In some cases, storing two pointers in the head is a waste of memory
(e.g., hash tables)

struct list head {
struct list head *next, *prev;

}

struct hlist head ({
struct hlist node *first;

s

struct hlist node {
struct hlist node *next, **pprev;

iaw y & 2

| W=7

Hash Lists

hlist_head

hlist_ node

(e

"By @

\\\\\\

Lock-less Lists

* Singly-linked NULL-terminated non-blocking lists
* Based on compare and swap to update pointers

* [foperations are carried out accessing only the single next
pointer, RMW instructions allow concurrent access with no
locking

OErT T4
Node i
1| 20
key value i

L/

next i
E pointer 00 !

%

Queues

* Producer/consumer model

A Queue

iaw

'/ V=3 &..Vl)\

Queues

Called kfifoin /include/linux/kfifo.h

Two main operations:
— Enqueue: kfifo in()
— Dequeue: kfifo out ()

Creation:

— kfifo alloc(struct kfifo *fifo, unsigned 1nt
size, gfp t gfp mask)

Removal:
— kfifo free(struct kfifo *fifo)

Red-Black Trees

* Self-balancing binary search tree

* Properties:
— Each node is either black or red
— Each path to leaf traverses the same number of black nodes
— Each red node has two black children

— All leaves are black (NIL)

iaw

'/ V=3 &..Vl)\

Red-Black Trees

e Definedin /include/linux/rbtree.h
e Tnitialization:

— struct rb_root root RB ROOT;

* The API provides functions to:
— get the payload of a node: rb entry ()
— inserta node: rb 1link node ()
— set the color (trigger rebalancing): rb insert color ()
— remove a node: rb erase ()

* Traversal must be implemented by hand (what
should the default implementation compare?)

Radix Tree

T T

TAZR(B)

Radix Tree

* There are two different implementations:

— /include/linux/radix—-tree.h

— /include/linux/idr.h (simpler, based on the
former)

* Both provide a mapping from a number
(unsigned long) to a pointer (void *)

* They can be used to implement (sparse) maps

— Empty nodes are not kept in the representation

idr Example

* This code allows any to cores to compete at allocating an ID.

again: Z///
1f (idr_pre_get(&my_idr, GEP KERNEL) == 0) {
/* No memory, give up entirely */

can sleep, no lock

J
spin lock (&my lock);
result = 1dr get new(&my 1dr, é&target, &id);
1f (result == -EAGAIN) {
sigh();

spin unlock (&my lock);
goto again;

}

iaw y & 2

| W=7

Per-CPU Variables

They are variables referenced with the same
name

Depending on the core on which the code runs,
this name is automatically mapped to different
storage

They are based on a reserved zone in the linear
addressing space

Macros allows to retrieve the actual address for
the running core

Per-CPU Variables

* Definition and usage:
DEFINE PER CPU(int, x);
int z;

z = this cpu read(x);

* This is compiled to:

movl %gs:x, %eax

iaw

'/ V=3 &..Vl)\

Per-CPU Variables

* The %gs segment points to a per-CPU area

— This works only because we have a different GDT for
each CPU!

RAM

