
System Calls Management

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2018/2019

trap_init()
gate_desc idt_table[NR_VECTORS] __page_aligned_bss;

void __init trap_init(void) {
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);
set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);
set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
set_intr_gate_ist(X86_TRAP_DF, &double_fault,

 DOUBLEFAULT_STACK);
set_intr_gate(X86_TRAP_OLD_MF,

coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, invalid_TSS);
...
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
...

} 0x80

Userspace Kernel API: System Calls
• For Linux (same for Windows), the gate for on-

demand access (via software traps) to the kernel is
only one

• For i386 machines the corresponding software traps
are:
– 0x80 for LINUX
– 0x2E for Windows

• The software module associated with the on-demand
access GATE implements a dispatcher that is able to
trigger the activation of the specific system call
targeted by the application

System Call Dispatching
• The main data structure is the system call table
• Each entry of the table points to a kernel-level

function, activated by the dispatcher
• To access the correct entry, the dispatcher needs as

input the system call number (provided in a CPU
register)

• The code is used to identify the target entry within the
system call table

• The system call is activated via an indirect call
• The return value is returned in a register

Dispatcher Mechanism

Userspace

Kernel space

Process

Dispatcher

System Call

Disp.

Process

System
Call

Table

Time

Lookup

set parameters and
access GATE (trap)

retrieve system call
return value

return from trap

Compile-Time Syscall Interface (2.4)

• This is all based on macros
– Macros for standard formats are in include/asm-
xx/unistd.h (or asm/unistd.h)

• There we find:
– System call numerical codes

• They are numbers used to invoke a syscall for userspace
• They are a displacement in the syscall table for kernel space

– Standard macros to let userspace access the gate to the
Kernel

• There is a macro for each range of parameters, from 0 to 6

Syscall codes (2.4.20)
/*
 * This file contains the system call
numbers.
 */

#define __NR_exit 1
#define __NR_fork 2
#define __NR_read 3
#define __NR_write 4
#define __NR_open 5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link 9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
………
#define __NR_fallocate 324

Macro for a 0-Parameters Syscall
#define _syscall0(type,name) \

type name(void) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name)); \

__syscall_return(type,__res); \

}

Example syscall: fork()

Return from a syscall
/* user-visible error numbers are in the range -1 - -124:

 see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

if ((unsigned long)(res) >= (unsigned long)(-125)) { \

errno = -(res); \

res = -1; \

} \

return (type) (res); \

} while (0)

Only if res in [–1, -124]

What's that?!

Macro for a 1-Parameter Syscall

#define _syscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1))); \

__syscall_return(type,__res); \
}

Example syscall: close()

Macro for a 6-Parameters Syscall
#define _syscall6(type,name,type1,arg1,type2,arg2,\

 type3,arg3,type4,arg4,type5,arg5,type6,arg6) \
type name (type1 arg1,type2 arg2,type3 arg3,\

 type4 arg4,type5 arg5,type6 arg6) \
{ \

long __res; \
__asm__ volatile (

"push %%ebp ; movl %%eax,%%ebp ;"\
"movl %1,%%eax ; int $0x80 ; pop %%ebp" \
: "=a" (__res) \
: "i" (__NR_##name),"b" ((long)(arg1)),\
 "c" ((long)(arg2)),"d" ((long)(arg3)),\
 "S" ((long)(arg4)),"D" ((long)(arg5)), \

 "0" ((long)(arg6))
); \
__syscall_return(type,__res); \

}

Dispatcher Activities

• Once gained control, the dispatcher takes a complete
snapshot of CPU registers

• The snapshot is taken within the system-level stack

• Then the system call is invoked as a subroutine call
(via a call)

• The system call retrieves the parameters from stack
via the base pointer (remember asmlinkage?)

Dispatcher Activities

RAX RCX

RBX RDX

R14 R15

...

CPU

interrupt
frame

Sy
st

em
St

ac
k

RBP

RSP

RSP

__NR_X

arg6

arg5

...

arg1

interrupt
frame

Sy
st

em
St

ac
k

RBP

RSP

__NR_X

arg6

arg5

...

arg1

interrupt
frame

RBP
RET

DISPATCHER PARAMETERS COPY SYSCALL

CPU Stack (i386)
/*
 * 0(%esp) - %ebx
 * 4(%esp) - %ecx
 * 8(%esp) - %edx
 * C(%esp) - %esi
 * 10(%esp) - %edi
 * 14(%esp) - %ebp
 * 18(%esp) - %eax
 * 1C(%esp) - %ds
 * 20(%esp) - %es
 * 24(%esp) - orig_eax
 * 28(%esp) - %eip
 * 2C(%esp) - %cs
 * 30(%esp) - %eflags
 * 34(%esp) - %oldesp
 * 38(%esp) - %oldss
 */

arguments

Syscall number

Interrupt frame

pt_regs

Syscall Dispatcher (i386)
ENTRY(system_call)

pushl %eax # syscall no.
SAVE_ALL
GET_CURRENT(%ebx)
testb $0x02, tsk_ptrace(%ebx) # PT_TRACESYS
jne tracesys
cmpl $(NR_syscalls),%eax
jae badsys
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl %eax, EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)
cli # need_resched and signals atomic test
cmpl $0, need_resched(%ebx)
jne reschedule
cmpl $0, sigpending(%ebx)
jne signal_return

restore_all:
RESTORE_ALL

syscall()

• This is a construct introduced in Kernel 2.6 for the
Pentium 3 chip

• Implemented through glibc (stdlib.h)
• It triggers a trap to execute a generic system call
• The first argument is the system call number
• The other parameters are the input for the system

call code
• Based on new x86 instructions: sysenter/sysexit

or syscall/sysret (initially for AMD chips)

i386 Fast syscall Path
SYSENTER

based on model-specific registers
CS register set to the value of (SYSENTER_CS_MSR)
EIP register set to the value of (SYSENTER_EIP_MSR)
SS register set to the sum of (8 plus the value in SYSENTER_CS_MSR)
ESP register set to the value of (SYSENTER_ESP_MSR)

SYSEXIT
based on model-specific registers

CS register set to the sum of (16 plus the value in SYSENTER_CS_MSR)
EIP register set to the value contained in the EDX register
SS register set to the sum of (24 plus the value in SYSENTER_CS_MSR)
ESP register set to the value contained in the ECX register

Model-Specific Registers for Syscalls
/include/asm/msr.h:
#define MSR_IA32_SYSENTER_CS 0x174
#define MSR_IA32_SYSENTER_ESP 0x175
#define MSR_IA32_SYSENTER_EIP 0x176

/arch/x86/kernel/cpu/common.c:
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
wrmsr(MSR_IA32_SYSENTER_ESP, tss->esp0, 0);
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)

sysenter_entry, 0);

Again based on rdmsr and wrmsr

x64 syscall invocation

• SYSCALL/SYSRET
– Again, based on MSRs

void syscall_init(void)
{
/*
 * LSTAR and STAR live in a bit strange symbiosis.
 * They both write to the same internal register.
 * STAR allows to set CS/DS but only a 32bit target.
 * LSTAR sets the 64bit rip.
 */
 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 |

 ((u64)__KERNEL_CS)<<32);
 wrmsrl(MSR_LSTAR, system_call);
 /* ... */
}

x64 Calling Conventions (syscalls)
/*
 * Register setup:
 * rax system call number
 * rdi arg0
 * rcx ret.address for syscall/sysret, userspace arg3
 * rsi arg1
 * rdx arg2
 * r10 arg3 (--> to rcx for userspace)
 * r8 arg4
 * r9 arg5
 * r11 eflags for syscall/sysret, temporary for C
 * r12-r15,rbp,rbx saved by C code, not touched.
 *
 * Interrupts are off on entry.
 * Only called from user space.
 */

Virtual Dynamic Shared Object (vDSO)

• Syscall entry/exit points are set by the Kernel
• Few memory pages are created and made visible to all

processes' addres spaces when they are initialized
• There processes find the actual code for the syscall

entry/exit mechanism
• For i386 the definition is (up to Kernel 2.6.23) in
arch/i386/kernel/vsyscall-sysenter.S

• In later versions, it's become an actual shared library. The source
tree is at /source/arch/x86/vdso and the entry point is
thus moved to /arch/x86/vdso/vdso32/sysenter.S

Mapping vDSO

text

data bss

heap

stack

VDSO

User-accessible memory

Software can know where
vDSO is located

Exposing vDSO

#include <sys/auxv.h>
void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

The "vDSO" (virtual dynamic shared object) is a small shared
library that the kernel automatically maps into the address space
of all user-space applications. Applications usually do not need to
concern themselves with these details as the vDSO is most
commonly called by the C library. This way you can code in the
normal way using standard functions and the C library will take
care of using any functionality that is available via the vDSO.

vDSO Entry Point
__kernel_vsyscall:

push %ecx
push %edx
push %ebp
movl %esp,%ebp
sysenter
nop
/* 14: System call restart point is here! */
int $0x80
/* 16: System call normal return point is here! */
pop %ebp
pop %edx
pop %ecx
ret

Considerations on the vDSO

• The vDSO Kernel entry point exploits flat addressing
to bypass segmentation and the related operations

• It therefore reduces the number of accesses to
memory in order to support the change to kernel
mode

• Studies show that the reduction of clock cycles for
system calls can be in the order of 75%

• It allows randomization: security is enhanced

The syscall Table

• The kernel level system call table is defined in specific
files:

– For Kernel 2.4.20 on i386 it is defined in arch/i386/kernel/entry.S

– For Kernel 2.6 is in arch/x86/kernel/syscall_table32.S

– More recent versions:
/arch/x86/entry/syscalls/syscall_32.tbl

• Entries keep a reference to the kernel-level system call
implementation

• Typically, the kernel-level name resembles the one used
at application level (traditionally sys_...)

C Syscall Entry Points (4.20)
• /arch/x86/entry/syscalls/syscall_64.tbl:

0 common read __x64_sys_read

• /include/linux/syscalls.h:
asmlinkage long sys_read(unsigned int fd, char __user
*buf, size_t count);

• /fs/read_write.c:
SYSCALL_DEFINE3(read, unsigned int, fd, char __user *,
buf, size_t, count)
{

return ksys_read(fd, buf, count);
}

C Syscall Entry Points (4.20)
• include/linux/syscalls.h:

#define SYSCALL_DEFINE3(name, ...) \

SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...) \

SYSCALL_METADATA(sname, x, __VA_ARGS__) \

__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

• The final macro __SYSCALL_DEFINEx() will generate the actual
entry point of the system call, with additional protection
mechanisms

C Syscall Entry Points (4.20)
asmlinkage long sys_read(unsigned int fd, char __user * buf, size_t count)
__attribute__((alias(__stringify(SyS_read))));

asmlinkage long SyS_read(long int fd, long int buf, long int count)
{
 long ret = SYSC_read((unsigned int) fd, (char __user *) buf, (size_t) count);
 asmlinkage_protect(3, ret, fd, buf, count);
 return ret;
}

static inline long SYSC_read(unsigned int fd, char __user * buf, size_t count)
{
 return ksys_read(fd, buf, count);
}

for security reasons (sign extension)

The Final Picture

Security of SYSRET

• Before executing a sysret, the kernel must
switch back to userspace stack

• This opens a race condition with NMI handlers
• This is the reason why the TSS has been

modified
– The Interrupt Stack Table allows to move NMIs off

the main stacks

