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trap_init()
gate_desc idt_table[NR_VECTORS] __page_aligned_bss;

void __init trap_init(void) {
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);
set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);
set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
set_intr_gate_ist(X86_TRAP_DF, &double_fault, 

    DOUBLEFAULT_STACK);
set_intr_gate(X86_TRAP_OLD_MF, 

coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, invalid_TSS);
...
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
...

} 0x80



Userspace Kernel API: System Calls
• For Linux (same for Windows), the gate for on-

demand access (via software traps) to the kernel is 
only one

• For i386 machines the corresponding software traps 
are:
–  0x80 for LINUX
–  0x2E for Windows

• The software module associated with the on-demand 
access  GATE implements a dispatcher that is able to 
trigger the activation of the specific system call 
targeted by the application



System Call Dispatching
• The main data structure is the system call table
• Each entry of the table points to a kernel-level 

function, activated by the dispatcher
• To access the correct entry, the dispatcher needs as 

input the system call number (provided in a CPU 
register)

• The code is used to identify the target entry within the 
system call table

• The system call is activated via an indirect call
• The return value is returned in a register
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Compile-Time Syscall Interface (2.4)

• This is all based on macros
– Macros for standard formats are in include/asm-
xx/unistd.h (or asm/unistd.h)

• There we find:
– System call numerical codes

• They are numbers used to invoke a syscall for userspace
• They are a displacement in the syscall table for kernel space

– Standard macros to let userspace access the gate to the 
Kernel

• There is a macro for each range of parameters, from 0 to 6



Syscall codes (2.4.20)
/*
 * This file contains the system call 
numbers.
 */

#define __NR_exit   1
#define __NR_fork   2
#define __NR_read   3
#define __NR_write   4
#define __NR_open   5
#define __NR_close 6
#define __NR_waitpid 7
#define __NR_creat 8
#define __NR_link   9
#define __NR_unlink 10
#define __NR_execve 11
#define __NR_chdir 12
………
#define __NR_fallocate 324



Macro for a 0-Parameters Syscall
#define _syscall0(type,name) \

type name(void) \

{ \

long __res; \

__asm__ volatile ("int $0x80" \

: "=a" (__res) \

: "0" (__NR_##name)); \

__syscall_return(type,__res); \

}

Example syscall: fork()



Return from a syscall
/* user-visible error numbers are in the range -1 - -124: 

  see <asm-i386/errno.h> */

#define __syscall_return(type, res) \

do { \

if ((unsigned long)(res) >= (unsigned long)(-125)) { \

errno = -(res); \

res = -1; \

} \

return (type) (res); \

} while (0)

Only if res in [–1, -124]

What's that?!



Macro for a 1-Parameter Syscall

#define _syscall1(type,name,type1,arg1) \
type name(type1 arg1) \
{ \
long __res; \
__asm__ volatile ("int $0x80" \

: "=a" (__res) \
: "0" (__NR_##name),"b" ((long)(arg1))); \

__syscall_return(type,__res); \
}

Example syscall: close()



Macro for a 6-Parameters Syscall
#define _syscall6(type,name,type1,arg1,type2,arg2,\

    type3,arg3,type4,arg4,type5,arg5,type6,arg6) \
type name (type1 arg1,type2 arg2,type3 arg3,\

    type4 arg4,type5 arg5,type6 arg6) \
{ \

long __res; \
__asm__ volatile (

"push %%ebp ; movl %%eax,%%ebp ;"\
"movl %1,%%eax ; int $0x80 ; pop %%ebp" \
: "=a" (__res) \
: "i" (__NR_##name),"b" ((long)(arg1)),\
  "c" ((long)(arg2)),"d" ((long)(arg3)),\
  "S" ((long)(arg4)),"D" ((long)(arg5)), \

    "0" ((long)(arg6))
); \
__syscall_return(type,__res); \

}



Dispatcher Activities

• Once gained control, the dispatcher takes a complete 
snapshot of  CPU registers

• The snapshot is taken within the system-level stack

• Then the system call is invoked as a subroutine call 
(via a call)

• The system call retrieves the parameters from stack 
via the base pointer (remember asmlinkage?)
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CPU Stack (i386)
/*
 *  0(%esp) - %ebx 
 *  4(%esp) - %ecx
 *  8(%esp) - %edx
 *     C(%esp) - %esi
 * 10(%esp) - %edi
 * 14(%esp) - %ebp
 * 18(%esp) - %eax
 * 1C(%esp) - %ds
 * 20(%esp) - %es
 * 24(%esp) - orig_eax
 * 28(%esp) - %eip
 * 2C(%esp) - %cs
 * 30(%esp) - %eflags
 * 34(%esp) - %oldesp
 * 38(%esp) - %oldss
 */

arguments

Syscall number

Interrupt frame

pt_regs



Syscall Dispatcher (i386)
ENTRY(system_call)

pushl %eax # syscall no.
SAVE_ALL
GET_CURRENT(%ebx)
testb $0x02, tsk_ptrace(%ebx) # PT_TRACESYS
jne tracesys
cmpl $(NR_syscalls),%eax
jae badsys
call *SYMBOL_NAME(sys_call_table)(,%eax,4)
movl %eax, EAX(%esp) # save the return value

ENTRY(ret_from_sys_call)
cli # need_resched and signals atomic test
cmpl $0, need_resched(%ebx)
jne reschedule
cmpl $0, sigpending(%ebx)
jne signal_return

restore_all:
RESTORE_ALL



syscall()

• This is a construct introduced in Kernel 2.6 for the 
Pentium 3 chip

• Implemented through glibc (stdlib.h)
• It triggers a trap to execute a generic system call
• The first argument is the system call number
• The other parameters are the input for the system 

call code
• Based on new x86 instructions: sysenter/sysexit 

or syscall/sysret (initially for AMD chips)



i386 Fast syscall Path
SYSENTER

based on model-specific registers
CS register set to the value of (SYSENTER_CS_MSR)
EIP register set to the value of (SYSENTER_EIP_MSR)
SS register set to the sum of (8 plus the value in SYSENTER_CS_MSR)
ESP register set to the value of (SYSENTER_ESP_MSR)

SYSEXIT
based on model-specific registers

CS register set to the sum of (16 plus the value in SYSENTER_CS_MSR)
EIP register set to the value contained in the EDX register
SS register set to the sum of (24 plus the value in SYSENTER_CS_MSR)
ESP register set to the value contained in the ECX register



Model-Specific Registers for Syscalls
/include/asm/msr.h: 
#define MSR_IA32_SYSENTER_CS   0x174 
#define MSR_IA32_SYSENTER_ESP 0x175 
#define MSR_IA32_SYSENTER_EIP  0x176

/arch/x86/kernel/cpu/common.c:
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0); 
wrmsr(MSR_IA32_SYSENTER_ESP, tss->esp0, 0); 
wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long) 

sysenter_entry, 0);

Again based on rdmsr and wrmsr



x64 syscall invocation

• SYSCALL/SYSRET
– Again, based on MSRs

void syscall_init(void)
{
/*
 * LSTAR and STAR live in a bit strange symbiosis.
 * They both write to the same internal register. 
 * STAR allows to set CS/DS but only a 32bit target. 
 * LSTAR sets the 64bit rip.
 */
  wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | 

   ((u64)__KERNEL_CS)<<32);
  wrmsrl(MSR_LSTAR, system_call);
  /* ... */
}



x64 Calling Conventions (syscalls)
/*
 * Register setup:
 * rax  system call number
 * rdi  arg0
 * rcx  ret.address for syscall/sysret, userspace arg3 
 * rsi  arg1
 * rdx  arg2
 * r10  arg3 (--> to rcx for userspace)
 * r8   arg4
 * r9   arg5
 * r11  eflags for syscall/sysret, temporary for C
 * r12-r15,rbp,rbx saved by C code, not touched. 
 * 
 * Interrupts are off on entry.
 * Only called from user space.
 */ 



Virtual Dynamic Shared Object (vDSO)

• Syscall entry/exit points are set by the Kernel
• Few memory pages are created and made visible to all 

processes' addres spaces when they are initialized
• There processes find the actual code for the syscall 

entry/exit mechanism
• For i386 the definition is (up to Kernel 2.6.23) in 
arch/i386/kernel/vsyscall-sysenter.S

• In later versions, it's become an actual shared library. The source 
tree is at /source/arch/x86/vdso and the entry point is 
thus moved to /arch/x86/vdso/vdso32/sysenter.S



Mapping vDSO
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Exposing vDSO

#include <sys/auxv.h> 
void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR); 

The "vDSO" (virtual dynamic shared object) is a small shared 
library that the kernel automatically maps into the address space 
of all user-space applications. Applications usually do not need to 
concern themselves with these details as the vDSO is most 
commonly called by the C library. This way you can code in the 
normal way using standard functions and the C library will take 
care of using any functionality that is available via the vDSO. 



vDSO Entry Point
__kernel_vsyscall:

push %ecx
push %edx
push %ebp
movl %esp,%ebp
sysenter
nop
/* 14: System call restart point is here! */
int $0x80
/* 16: System call normal return point is here! */
pop %ebp
pop %edx
pop %ecx
ret



Considerations on the vDSO

• The vDSO Kernel entry point exploits flat addressing 
to bypass segmentation and the related operations

• It therefore reduces the number of accesses to 
memory in order to support the change to kernel 
mode

• Studies show that the reduction of clock cycles for 
system calls can be in the order of 75%

• It allows randomization: security is enhanced



The syscall Table

• The kernel level system call table is defined in specific 
files:

– For Kernel 2.4.20 on i386 it is defined in arch/i386/kernel/entry.S

– For Kernel 2.6 is in arch/x86/kernel/syscall_table32.S 

– More recent versions: 
/arch/x86/entry/syscalls/syscall_32.tbl

• Entries keep a reference to the kernel-level system call 
implementation

• Typically, the kernel-level name resembles the one used 
at application level (traditionally sys_...)



C Syscall Entry Points (4.20)
• /arch/x86/entry/syscalls/syscall_64.tbl:

0 common read __x64_sys_read

• /include/linux/syscalls.h:
asmlinkage long sys_read(unsigned int fd, char __user 
*buf, size_t count);

• /fs/read_write.c:
SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, 
buf, size_t, count)
{

return ksys_read(fd, buf, count);
}



C Syscall Entry Points (4.20)
• include/linux/syscalls.h:

#define SYSCALL_DEFINE3(name, ...) \

SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...) \

SYSCALL_METADATA(sname, x, __VA_ARGS__) \

__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

• The final macro __SYSCALL_DEFINEx() will generate the actual 
entry point of the system call, with additional protection 
mechanisms



C Syscall Entry Points (4.20)
asmlinkage long sys_read(unsigned int fd, char __user * buf, size_t count) 
__attribute__((alias(__stringify(SyS_read))));

asmlinkage long SyS_read(long int fd, long int buf, long int count)
{
    long ret = SYSC_read((unsigned int) fd, (char __user *) buf, (size_t) count);
    asmlinkage_protect(3, ret, fd, buf, count);
    return ret;
}

static inline long SYSC_read(unsigned int fd, char __user * buf, size_t count)
{
    return ksys_read(fd, buf, count);
}

for security reasons (sign extension)



The Final Picture



Security of SYSRET

• Before executing a sysret, the kernel must 
switch back to userspace stack

• This opens a race condition with NMI handlers
• This is the reason why the TSS has been 

modified
– The Interrupt Stack Table allows to move NMIs off 

the main stacks


