
Hot Patching

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2018/2019

Why hot patching?

• Huge costs of downtime → reduce cost of
planned downtime

• Common tiers of change management:
– incident response

• "we are down and/or exploited"
– emergency change

• "we could go down: we are vulnerable"
– scheduled change

• "time is not critical, we keep safe"

2

Hot Patching
is handy here!

Why is Rebooting a Problem?

• Disruption to users/applications
• Sysadmins don't always have control of users or

applications
• Many applications aren't distributed
• Re-architecting can be expensive or impractical
• Distributed systems need to reboot too
• (Up)time is money
• Hardware reboot failures

● 50k Sandy Bridge
cores

● The most
beautiful
supercomputer in
the world

● Terabytes of data

● Reboot?
© BSC

4

Barcelona Supercomputing Center
Mare Nostrum Supercomputer

NASA JPL

© NASA JPL

● 5m telescope with
adaptive optics on
Mount Palomar

● Avoid atmospheric
blurring in Real Time

● Control 3888
segments of a
deformable
mirror with a
latency
<250 μs

● Reboot?

Hale telescope PALM-3000 Adaptive optics

SAP HANA

● 4-16 TB of RAM

● All operations done in
memory

● Disk used for journalling

● Active-Passive HA

● Failover measured in
seconds

● Reboot?

© HP

6

HP DL980 w/ 12 TB RAM

In-memory database and analytics engine

Not a New Idea:1943 Manhattan Project

• IBM punchcard automatic calculators
were used to crunch the numbers

• A month before the Trinity nuclear
device test, the question was: “What
will the yield be, how much energy
will be released?”

• The calculation would normally take
three months to complete –
recalculating any batches with errors

• Multiple colored punch cards
introduced to fix errors in
calculations while the calculator was
running

Trinity test site, 16ms after initiation

Windows Hot Patching (2003)

• Windows Server 2003 SP1
• Stops Kernel execution for activeness check

– Schedule procedures on all but current CPUs and
keep them busy

• Uses short jumps patched into functions for
redirection
– The second redirection jumps to a new function

• Removed in Windows 8 and later versions

Linux kpatch (2014)

• Tries to overcome the costs and problems of
rebooting systems to apply patches

• Based on two "simple" steps:
1. Build the patch module (kpatch-build

foo.patch)
2. Apply the patch (kpatch load kpatch-foo.ko)

Building the Patch Module

• Much harder than patching the kernel
• Compile kernel with/without patch
• Compare binaries
• Detect which functions have changed
• Extract object code of changed functions into

patch module

Patching the Kernel

• Load new functions into memory
• Link new functions into kernel

• Allows access to unexported kernel symbols
• Activeness safety check

• Prevent old & new functions from running at same
time

• stop_machine() + stack backtrace checks

• Patch it!
• Uses ftrace

What is ftrace?
• Ftrace is the first generic tracing system to get

mainlined
– Mainlined in 2.6.27
– Derived from RT-preempt latency tracer

• Provides a generic framework for tracing
– Infrastructure for defining tracepoints
– Ability to register different kinds of tracers
– Specialized data structure (ring buffer) for trace

data storage

ftrace Schematization
Caller

Function

Func exit
Tracer

mcount

Func entry
Tracer

Thead_info
struct ret_stack

Stack

caller 1
caller 2

ret addr

Patching with ftrace

Original
Functio
n

ftrace kpatch

New
Function

call

return

return

no opnoop

Old
Function

Original
Functio
n

call
no op

Old
Function

Before
patching:

14

After
patching:

call

return

call

