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System Virtualization
• Virtualization allows to show resources different from the 

physical ones
• More operating systems can be run on the same hardware
• A Virtual Machine is a mixure of software- and hardware-based 

facilities
• The software component is the Hypervisor or VMM (Virtual 

Machine Monitor). 

• Advantages:
• Isolation of different execution environments (on the same hardware)
• Reduction of hardware and administration costs



Hypervisor
• Host system: the real system where (software implemented) virtual machines 

run
• Guest system: the system that runs on top of a (software implemented) virtual 

machine

• Hypervisor:
– It manages hardware resources provided by the host system
– It makes virtualized resources available to the guest system in a correct 

and secure way

– Native Hypervisor: runs with full capabilities on bare metal. It resembles a 
lightweight virtualization kernel operating on top of the harware.

– Hosted Hypervisor: it runs as an applicaiton, which accesses host services 
via system calls



Software-based Virtualization
• Instructions are executed by the native physical CPU in the 

host platform
• A subset of the instruction set must be emulated
• No particular  hardware component playes a role in 

virtualiztion

• The main problems:
– What if ring 0 is required for guest activities?
– Risk to bypass the VMM resource management policy in case 

of actual ring 0 access

• The solution: ring deprivileging



Ring Deprivileging
• A technique to let the guest kernel run at a privilege level that 

“simulates” 0
• Two main strategies:

1. 0 / 1 / 3 Model: 
• VMM runs at ring 0
• Kernel guest runs at ring 1 (not typically used by native 

kernels)
• Applications still run at ring 3
• This is the most used approach

2. 0 / 3 / 3 Model :
• VMM runs at ring 0.
• Kernel guest and applications run at ring 3.
• Too close to emulation, too high costs



0/1/3 Model
• Applications (running at ring 3) cannot alter the state of the guest 

operating system (running at ring 1).
• The guest operating system cannot access privileged instructions and 

data structures of the host operating system
• we guarantee the isolation of guest systems

• Any exception must be trapped by the VMM (at ring 0) and must be 
properly handled (e.g. by reflecting it into ring 1 tasks)

• Issues to cope with:
• Ring aliasing
• Virtualization of the interrupts
• Frequent access to privileged resources 



Ring Aliasing
• An OS kernel is designed to run at ring 0, while it is actually being run 

at ring 1 for guest systems
• Privileged instructions generate an exception if not run at CPL 0:

– Some examples: hlt, lidt, lgdt, invd, mov %crx
• I/0 sensistive instructions: they generate a trap if executed when CPL > 

IOPL (I/O Privilege Level). Classical examples are:
– cli, sti

• The generated trap (general protection fault) must be handled by the 
VMM,  so as to finally determine how to handle it (emulation vs 
interpretation)



The VirtualBox Example
• Based on hosted hypervisor with ad-hoc kernel facilities, via classical special 

devices (0/1/3 model)

• Pure software virtualization is supported for x86
– Fast Binary Translation (code patching): the kernel code is analysed and modified 

before being executed 
– Privileged instructions replaced with semantically equivalent blocks of code
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Execution Modes and Context

• Guest context (GC): execution context for the guest 
system. It is based on two modes:
– Raw mode: native guest code runs at ring 3 or 1
– Hypervisor: VirtualBox runs at ring 0

• Host context (HC): execution context for userspace 
portions of VirtualBox (ring 3):
– The running thread implementing the VM lives in this 

context upon a mode change 
– Critical/privileged instructions are emulated upon a GPF



• Introduction of gate 
descriptors for kernel 
code/data segments 
with DPL=1. These 
segments are 
accessible with  CPL=1

• New TSSD pointing to 
the  TSS wrapper 
which keeps info on 
stack positioning at 
ring 1 (ss1,esp1) and 
ring 0 (ss0,esp0).

• 2 new segments for the 
Hypervisor are addedd 
with DPL=0
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VBOXIDT: interrupt gate
• Interrupt must be managed by the 

VMM.

• To this end, a wrapper for the IDT is 
generated

• Proper handlers are instantiated, 
which get executed by the Hypervisor 
upon traps. VMM can take control 
thanks to the ad-hoc segment selector 
(at the GDT offset for the hypervisor 
code segment).

• In case of a "genuine" trap, the control 
goes to the native kernel, otherwise 
the virtual handler is executed
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• INT 0x80 has an ad-hoc management

• The syscall gate is modified so as to 
provide a segment selector with RPL = 
1

• It indicates the GDT offset for the code 
segment (at ring 1).

• Hence calling a system call does not 
require interaction with the 
Hypervisor

• The trampoline handler is then used 
to launch the actual syscall handler

system_call 
handler

Handler 
trampoline

Ring 1 handler



Paravirtualization

• The VMM offers a virtual interface (hypercall 
API) used by guest OS to access resources
– To run privileged instructions, hypercalls are 

executed
– There is a need to modify the code of the guest OS
– VMM is simplified: no need to account for traps 

generated by virtualized OS
• An example: Xen



Paravirtualization
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Hardware-Assisted Virtualization: VT-x

• Intel Vanderpool Technology, referred to as VT-x,  represents 
Intel’s virtualization technology on the x86 platform.

• Its goal: simplify VMM software by closing virtualization holes 
by design.
– Ring Compression (lack of OS/Applications separations if 

only 2 rings are used)
– Non-trapping instructions (some instructions at ring 3 are 

not trapped, for example popf)
– Excessive trapping

• Eliminate need for software virtualization (i.e paravirtualization, 
binary translation).



Virtual Machine Extension (VMX)
• Virtual Machine Extensions define CPU support for VMs on x86 

by a new form of operation called VMX operation
• Kinds of VMX operation:

– root: VMM runs in VMX root operation
– non-root: Guest runs in VMX non-root operation

• Eliminate ring deprivileging for guest OS
• VMX Transitions between VMX root operation and VMX non-

root operation:
– VM Entry: Transitions into VMX non-root operation. 
– VM Exit: Transitions from VMX non-root operation to VMX root operation.
– Registers and address space swapped in one atomic operation.



             Pre VT-x                                                      Post VT-x
VMM ring deprivileging of guest OS VMM executes in VMX root-mode

 Guest OS aware its not at Ring 0 Guest OS deprivileging eliminated

Guest OS runs directly on hardware

Virtual Machine Extension (VMX)



VMCS: VM Control Structure
• Data structure to manage VMX non-root operation and VMX transitions

– Specifies guest OS state
– Configured by VMM
– Controls when VM exits occur

The VMCS consists of six logical groups:
• Guest-state area: processor state saved into the guest-state area on VM exits and 

loaded on VM entries.
• Host-state area: processor state loaded from the host-state area on VM exits.
• VM-execution control fields: fields controlling processor operation in VMX non-

root operation.
• VM-exit control fields: fields that control VM exits.
• VM-entry control fields: fields that control VM entries.
• VM-exit information fields: read-only fields to receive information on VM exits 

describing the cause and the nature of the VM exit.



MMU Virtualization with VT-x: VPIDs

• First generation VT-x forces TLB flush on each VMX transition
• Performance loss on all VM exits
• Performance loss on most VM entries

– Guest page tables not modified always
• Better VMM software control of TLB flushes is beneficial
• VPID:

– 16-bit virtual-processor-ID field in the VMCS
– Cached linear translations tagged with VPID value
– No flush of TLBs on VM entry or VM exit if VPID active
– TLB entries of different virtual machines can all co-exist in the TLB



Virtualizing Memory in Software
• Three abstractions of memory:
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Shadow Page Tables

• VMM maintains shadow page tables that map 
guest-virtual pages directly to machine pages

• Guest modifications to V→P tables synced to 
VMM V→M shadow page tables
– Guest OS page tables marked as read-only
– Modifications of page tables by guest OS → trapped 

to VMM
– Shadow page tables synced to the guest OS tables
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Set CR3 by guest OS (2)
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Shadow Page Tables: Drawbacks
• Maintaining consistency between guest page tables and shadow 

page tables leads to an overhead: VMM traps
• Loss of performance due to TLB flush on every “world-switch”
• Memory overhead due to shadow copying of guest page tables  



Nested / Extended Page Tables
• The Extended Page-Table mechanism (EPT) is used to support 

the virtualization of physical memory
• Translates the guest-physical addresses used in VMX non-root 

operation
• Guest-physical addresses are translated by traversing a set of 

EPT paging structures to produce physical addresses that are 
used to access memory



Source: [4]

Nested / Extended Page Tables



Considerations on EPT

• Advantages:
– Simplified VMM design
– Guest page table modifications need not to be 

trapped, hence VM exits reduced
– Reduced memory footprint compared to shadow 

page table algorithms
• Disadvantages:

– TLB miss is very costly since guest-physical address 
to machine address needs an extra EPT walk for 
each stage of guest-virtual address translation



Linux Containers



Underlying Kernel Mechanisms

• cgroups: manage resources for groups of 
processes

• namespaces: per-process resource isolation

• seccomp: limit the possible syscalls to be executed 
to exit(), sigreturn(), read() and 
write(), the last two only to already-opened 
file descriptors

• capabilities: privileges available to processes



cgroups (as seen from userspace)
• low-level filesystem interface similar to sysfs 

and procfs
• new filesystem type “cgroup”, default location in 

/sys/fs/cgroup
cgroup hierarchies subsystems (controllers)

cpuset cpu cpuacct

memory

devices blkio net_cls

freezer

hugetbl

perf

net_prio

cpu cpuacct

memory

 each subsystem can be  
used at most once*

built as kernel module  
top level cgroup (mount)



tasks  cgroup.procs  
release_agent  
notify_on_release
cgroup.clone_children  
cgroup.sane_behavior

cgroup hierarchies

cpu cpuacct

memory

common

cpuacct.stat  
cpuacct.usage  
cpuacct.usage_percpu

cpuacct

cpu.stat  
cpu.shares  
cpu.cfs_period_us  
cpu.cfs_quota_us  
cpu.rt_period_us  
cpu.rt_runtime_us

cpu

cpuset memory devices blkio

net_cls freezer

hugetbl

perfnet_prio

cgroups (as seen from userspace)



list of all tasks using the  
same

include / linux / cgroup.h

kernel code for attach/detaching  
task from css_set

cgroups (as managed by kernel)



list of all tasks using the  
same

include / linux / cgroup.h

include / linux / cgroup_subsys.h

cgroups (as managed by kernel)



include / linux / cgroup_subsys.h

cgroups (as managed by kernel)



namespaces (as seen from userspace)

• namespaces limit the scope of kernel-level 
names and data structures at process granularity

• Some examples:
– mnt (mount points, file systems)  CLONE_NEWNS
– pid (processes)     CLONE_NEWPID
– net (network stack)     CLONE_NEWNET
– ipc (System V IPC)     CLONE_NEWIPC
– uts (unix timesharing)     CLONE_NEWUTS
– user (UIDs)     CLONE_NEWUSER



namespaces (as seen from userspace)

• There are three system calls for management:
– clone(): create new process, new namespace, 

attach to namespace
– unshare(): create new namespace, attach current 

process to it
– setns(int fd, int nstype): join an existing 

namespace
• Each namespace is identified by a unique inode

– symbolic links in /proc/<pid>/ns



• For each namespace type, a default namespace 
exists (the global namespace)

• struct nsproxy is shared by all tasks with 
the same set of namespaces

include / linux / nsproxy.h

include / linux / nsproxy.h

include / linux / cred.h

namespaces (as managed by kernel)



• Example for the UTS namespace

• Global access to hostname: system_utsname.nodename
• Namespace-aware access to hostname:
&current->nsproxy->uts_ns->name->nodename

include / linux / nsproxy.h

include / uapi / linux / utsname.h

namespaces (as managed by kernel)



• Example for the net namespace

• A network device belongs to exactly one namespace
• A socket belongs to exactly one namespace
• A new namespace only includes the loopback device
• Communications between namespaces are handled 

via veth or unix sockets

include / linux / nsproxy.h

Logical copy of the network stack:

- loopback device
- all network tables (routing, etc)
- all sockets
- /procfs and /sysfs entries

include / net / net_namespace.h

namespaces (as managed by kernel)



pids and namespaces

• struct pid links 
together pids in the 
namespace world

struct pid



• A light form of resource virtualization based on 
kernel mechanisms

• A container is a user-space construct
• Multiple containers run on top of the same kernel

– illusion that they are the only one using resources  (cpu, 
memory, disk, network)

• some implementations offer support for:
– container templates
– deployment / migration
– union filesystems

Containers



• An LXC container is a userspace process created 
with the clone() syscall:
– with its own pid namespace
– with its own mnt namespace
– net namespace is configurable

• Container templates can be found in 
/usr/share/lxc/templates

• Shell scripts:
– lxc-create -t ubuntu -n containerName

Container Solutions: LXC



• A Linux container 
engine

• Multiple backend 
drivers

• Application-centric
• Diff-based deployment 

of updates (AUFS)
• Links (tunnels) 

between containers

Container Solutions: Docker



Kernel Samepage Merging
• COW is used by the kernel to share physical frames 

with different virtual mappings
• If the kernel has no knowledge on the usage of 

memory, a similar behaviour is difficult to put in 
place

• KSM exposes the /dev/ksm pseudofile
• By means of ioctl() calls, programs can register 

portions of their address spaces
• An additional ioctl() call enables the page sharing 

mechanism, and the kernel starts looking for pages to 
share



Kernel Samepage Merging

• The KSM driver (in a kernel thread) picks one 
registered region and starts scanning it
– A SHA1 hash is used to compare frames
– If a similarity is found, all processes "sharing" the 

page will point to the same frame (in COW mode)
• A host running several guest Windows machines 

can overcommit its memory 300% without 
affecting performance
– Windows zeroes all free'd memory


