
Virtual File System and Devices

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2018/2019

Virtual File System
• The VFS is a software layer which abstracts the actual

implementation of the devices and/or the organization of files
on a storage system

• The VFS exposes a uniform interface to userspace applications
• Roles of the VFS:

– Keep track of available filesystem types.
– Associate (and disassociate) devices with instances of the appropriate

filesystem.
– Do any reasonable generic processing for operations involving files.
– When filesystem-specific operations become necessary, vector them to

the filesystem in charge of the file, directory, or inode in question.

File System: Representations
• In RAM:

– Partial/full representation of the current structure
and content of the File System

• On device:
– (possibly outdated) representation of the structure

and of the content of the File System
• Data access and manipulation:

– FS-independent part: interface towards other
subsystems within the kernel

– FS-dependent part: data access/manipulation
modules targeted at a specific file system type

• In UNIX: "everything is a file"

Connecting the two parts
• Any FS object (dir/file/dev) is represented in RAM

via specific data structures

• They keep a reference to the code which correctly
talks to the actual device, if any

• The reference is accessed using File System
independent APIs by other kernel subsystems

• Function pointers are used to reference actual
drivers' functions

VFS Global Organization

dentry

dentry dentry dentry

inode
child

children list

parent

superblock

vfsmount
file_system_type

Possibly belonging to other
file systems

File system types
• The file_system_type structure describes a file system (it is

defined in include/linux/fs.h)

• It keeps information related to:
– The file system name
– A pointer to a function to be executed upon mounting the file

system (superblock-read)
struct file_system_type {

const char *name;
int fs_flags;
struct super_block *(*read_super)(struct super_block *,
void *, int);
struct module *owner;
struct file_system_type * next;
struct list_head fs_supers;

};

ramfs
• Ramfs is a very simple filesystem that exports

Linux's disk caching mechanisms (the page
cache and dentry cache) as a dynamically
resizable RAM-based filesystem

• With ramfs, there is no backing store. Files
written into ramfs allocate dentries and page
cache as usual, but there's nowhere to write
them to

• Ramfs can eat up all the available memory
– tmpfs is a derivative, with size limits
– only root should be given access to ramfs

rootfs
• Rootfs is a special instance of ramfs (or tmpfs, if

that's enabled), which is always present in 2.6
systems.
– It provides an empty root directory during kernel boot

• Rootfs cannot be unmounted
– This has the same idea behind the fact that init process

cannot be killed
– Rather than checking for empty lists, we always have at

least one placeholder
• During kernel boot, another (actual) filesystem is

mounted over rootfs

vfsmount

struct vfsmount
{
 struct list_head mnt_hash;
 struct vfsmount *mnt_parent; /*fs we are mounted on */
 struct dentry *mnt_mountpoint; /*dentry of mountpoint */
 struct dentry *mnt_root; /*root of the mounted tree*/
 struct super_block *mnt_sb; /*pointer to superblock */
 struct list_head mnt_mounts; /*list of children, anchored

here */
 struct list_head mnt_child; /*and going through their

mnt_child */
 atomic_t mnt_count;
 int mnt_flags;
 char *mnt_devname; /* Name of device e.g.

/dev/dsk/hda1 */
 struct list_head mnt_list;
};

struct super_block
struct super_block {

struct list_head s_list; /* Keep this first */
……
unsigned long s_blocksize;
……
unsigned long long s_maxbytes; /* Max file size */
struct file_system_type *s_type;
struct super_operations *s_op;
……
struct dentry *s_root;
……
struct list_head s_dirty; /* dirty inodes */
……
union {

struct minix_sb_info minix_sb;
struct ext2_sb_info ext2_sb;
struct ext3_sb_info ext3_sb;
struct ntfs_sb_info ntfs_sb;
struct msdos_sb_info msdos_sb;
……
void *generic_sbp;

} u;
……

};

struct dentry
struct dentry {

unsigned int dflags;
……
struct inode * d_inode; /* Where the name belongs to */
struct dentry * d_parent; /* parent directory */
struct list_head d_hash; /* lookup hash list */
……
struct list_head d_child; /* child of parent list */
struct list_head d_subdirs; /* our children */
……
struct qstr d_name;
……
struct lockref d_lockref; /*per-dentry lock and refcount*/
struct dentry_operations *d_op;
struct super_block * d_sb; /* The root of the dentry tree*/
……
unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */

};

struct inode
struct inode {

……
struct list_head i_dentry;
……
uid_t i_uid;
gid_t i_gid;
……
unsigned long i_blksize;
unsigned long i_blocks;
……
struct inode_operations *i_op;
struct file_operations *i_fop;
struct super_block *i_sb;
wait_queue_head_t i_wait;
……
union {

……
struct ext2_inode_info ext2_i;
struct ext3_inode_info ext3_i;
……
struct socket socket_i;
……
void *generic_ip;

} u;
};

VFS and PCBs
• In the PCB, struct fs_struct *fs points to information

related to the current directory and the root directory for the
associated process

• fs_struct is defined in include/fs_struct.h

struct fs_struct {
int users;
spinlock_t lock;
seqcount_t seq;
int umask;
int in_exec;
struct path root, pwd;

} __randomize_layout;

struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
} __randomize_layout;

Superblock operations
• Superblock operations must:

– Manage statistic of the file system
– Create and manage i-nodes
– Flush to the device updated information on the

state of the file system

• Some File Systems might not use some operations
(think of File Systems in RAM)

• Functions to access statistics are invoked by system
calls statfs and fstatfs

struct super_operations
• It is defined in include/linux/fs.h
 struct super_operations {
 struct inode *(*alloc_inode)(struct super_block *sb);

void (*destroy_inode)(struct inode *);
void (*read_inode) (struct inode *);

 void (*read_inode2) (struct inode *, void *) ;
 void (*dirty_inode) (struct inode *);

void (*write_inode) (struct inode *, int);
void (*put_inode) (struct inode *);
void (*delete_inode) (struct inode *);
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*sync_fs) (struct super_block *);
void (*write_super_lockfs) (struct super_block *);
void (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct statfs *);
...

 };

Ramfs Example
• Defined in fs/ramfs/inode.c and fs/libfs.c

int simple_statfs(struct dentry *dentry,
 struct kstatfs *buf)

{
buf->f_type = dentry->d_sb->s_magic;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
return 0;

}

static const struct super_operations ramfs_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
.show_options = ramfs_show_options,

};

dentry operations
• They specify non-default operations for manipulating d-entries
• The table maintaining the associated function pointers is defined in
include/linux/dcache.h

• For the file system in RAM this structure is not used

struct dentry_operations {
int (*d_revalidate)(struct dentry *, int);
int (*d_hash) (struct dentry *, struct qstr *);
int (*d_compare) (struct dentry *,

struct qstr *, struct qstr *);
void (*d_delete)(struct dentry *);
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);

 ...
}; Removes the pointed i-node (when releasing the dentry)

Removes the dentry, when the reference counter is set to zero

i-node operations
• They specify i-node related operations
• The table maintaining the corresponding function pointers is defined in

include/linux/fs.h

struct inode_operations {

 ...
 int (*create) (struct inode *,struct dentry *,int);
 struct dentry * (*lookup) (struct inode *,struct dentry *);
 int (*link) (struct dentry *,struct inode *,struct dentry *);
 int (*unlink) (struct inode *,struct dentry *);
 int (*symlink) (struct inode *,struct dentry *,const char *);
 int (*mkdir) (struct inode *,struct dentry *,int);
 int (*rmdir) (struct inode *,struct dentry *);
 int (*mknod) (struct inode *,struct dentry *,int,int);
 ...
};

Pathname Lookup
• When accessing VFS, the path to a file is used as the “key” to

access a resource of interest
• Internally, VFS uses inodes to represent a resource of interest
• Pathname lookup is the operation which derives an inode from

the corresponding file pathname
• Pathname lookup tokenizes the string:

– the passed string is broken into a sequence of filenames
– everything must be a directory, except for the last component

• Several aspects to take into account:
– Filesystem mount points
– Access rights
– Symbolic links (and circular references)
– Automount
– Namespaces (more on this later)
– Concurrency (while a process is navigating, other processes might make

changes)

Pathname Lookup
• Implemented in fs/namei.c
• main functions are vfs_path_lookup(), filename_lookup()and

path_lookupat()

• Path walking relies on the namei data structure (only some members are
shown):

 struct nameidata {

struct path path;

struct qstr last;

struct path root;

struct inode *inode; /* path.dentry.d_inode */

unsigned int flags;

unsigned depth;
 } __randomize_layout;

Increments the refcount of dentry & inode

current level of symlink navigation

Lookup operation flags

Pathname Lookup
• Lookup operation flags drive the pathname lookup behavior:
• Some flags are:

– LOOKUP_FOLLOW: If the last component is a symlink, follow it
– LOOKUP_DIRECTORY: The last component must be a directory
– LOOKUP_AUTOMOUNT: Ensures that, if the final component is an automount
– point, then the mount is triggered
– LOOKUP_PARENT: Used to access next-to-last component of the path (e.g.,

for file creation)
– LOOKUP_OPEN: The intent is to open a file
– LOOKUP_CREATE: The intent is to create a file
– LOOKUP_EXCL: The intent is to access exclusively

• For further (and more comprehensive) description:
– Documentation/filesystems/path-lookup.rst
– Documentation/filesystems/path-lookup.txt

Not directly used by
VFS, but made
available to the
underlying filesystem

The mount()system call
int mount(const char *source, const char *target,
const char *filesystemtype, unsigned long mountflags,

const void *data);

• MS_NOEXEC: Do not allow programs to be executed from this file system.

• MS_NOSUID: Do not honour set-UID and set-GID bits when executing
programs from this file system.

• MS_RDONLY: Mount file system read-only.

• MS_REMOUNT: Remount an existing mount. This allows you to change the
mountflags and data of an existing mount without having to unmount and
remount the file system. source and target should be the same values
specified in the initial mount() call; filesystem type is ignored.

• MS_SYNCHRONOUS: Make writes on this file system synchronous (as
though the O_SYNC flag to open(2) was specified for all file opens to this
file system).

Mount Points

• Directories selected as the target for the mount
operation become a “mount point”

• This is reflected in struct dentry by setting
in d_flags the flag DCACHE_MOUNTED

• Any path lookup function ignores the content of
mount points (namely the name of the dentry)
while performing pattern matching

File descriptor table
• The PCB has a member struct files_struct *files which points to

the descriptor table defined in include/linux/fdtable.h:

struct files_struct {
atomic_t count;
bool resize_in_progress;
wait_queue_head_t resize_wait;

struct fdtable __rcu *fdt;
struct fdtable fdtab;

spinlock_t file_lock ____cacheline_aligned_in_smp;
unsigned int next_fd;
unsigned long close_on_exec_init[1];
unsigned long open_fds_init[1];
unsigned long full_fds_bits_init[1];
struct file __rcu *fd_array[NR_OPEN_DEFAULT];

};

struct fdtable

struct fdtable {
unsigned int max_fds;
struct file __rcu **fd
unsigned long *close_on_exec;
unsigned long *open_fds;
unsigned long *full_fds_bits;
struct rcu_head rcu;

};

bitmaps

struct file {
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
struct mutex f_pos_lock;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
...
struct address_space *f_mapping;
errseq_t f_wb_err;

}

struct file

Opening a file
• do_sys_open() in fs/open.c is logically

divided in two parts:
– First, a file descriptor is allocated (and a suitable

struct file is allocated)
– The second relies on an invocation of the

intermediate function struct file
*do_filp_open(int dfd, struct
filename *pathname, const struct
open_flags *op) which returns the address
of the struct file associated with the opened
file

do_sys_open()
long do_sys_open(int dfd, const char __user *filename,
int flags, umode_t mode) {

struct filename *tmp;

tmp = getname(filename);
if (IS_ERR(tmp))

return PTR_ERR(tmp);

fd = get_unused_fd_flags(flags);
if (fd >= 0) {

struct file *f = do_filp_open(dfd, tmp, &op);
if (IS_ERR(f)) {

put_unused_fd(fd);
fd = PTR_ERR(f);

} else {
fsnotify_open(f);
fd_install(fd, f);

}
}
putname(tmp);
return fd;

}

Kernel Pointers and Errors
• From include/linux/err.h

#define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >=
(unsigned long)-MAX_ERRNO)

static inline void * __must_check ERR_PTR(long error) {
return (void *) error;

}

static inline long __must_check PTR_ERR(__force const void *ptr) {
return (long) ptr;

}

static inline bool __must_check IS_ERR(__force const void *ptr) {
return IS_ERR_VALUE((unsigned long)ptr);

}

Closing a file
• The close() system call is defined in fs/open.c as:

– SYSCALL_DEFINE1(close, unsigned int, fd)

• This function basically calls (in fs/file.c):
 int __close_fd(struct files_struct *files, unsigned fd)

• __close_fd():

– Closes the file descriptor by calling into
__put_unused_fd();

– Calls filp_close(struct file *filp, fl_owner_t
id), defined in fs/open.c, which flushing the data
structures associated with the file (struct file, dentry and i-
node)

__close_fd()
int __close_fd(struct files_struct *files, unsigned fd)
{

struct file *file;
struct fdtable *fdt;

spin_lock(&files->file_lock);
fdt = files_fdtable(files);
if (fd >= fdt->max_fds)

goto out_unlock;
file = fdt->fd[fd];
if (!file)

goto out_unlock;
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
return filp_close(file, files);

out_unlock:
spin_unlock(&files->file_lock);
return -EBADF;

}

__put_unused_fd()

static void __put_unused_fd(struct files_struct *files,
unsigned int fd) {

struct fdtable *fdt = files_fdtable(files);

__clear_open_fd(fd, fdt);
if (fd < files->next_fd)

files->next_fd = fd;
}

static inline void __clear_open_fd(unsigned int fd,
struct fdtable *fdt) {

 __clear_bit(fd, fdt->open_fds);
 __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
}

Traditional Unix FD management
is implemented here

The write() system call
• Defined in fs/read_write.c

SYSCALL_DEFINE3(write, unsigned int fd, const char __user
*, buf, size_t, count) {

struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_write(f.file, buf, count, &pos);
if (ret >= 0)

file_pos_write(f.file, pos);
fdput_pos(f);

}
return ret;

}
file->f_op->write(file, p, count, pos)

Calls the file ops

The read() system call
• Defined in fs/read_write.c

SYSCALL_DEFINE3(read, unsigned int, fd, char __user *,
buf, size_t, count) {

struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;

if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
if (ret >= 0)

file_pos_write(f.file, pos);
fdput_pos(f);

}
return ret;

}

proc File System
• An in-memory file system which provides information on:

– Active programs (processes)
– The whole memory content
– Kernel-level settings (e.g. the currently mounted modules)

• Common files on proc are:
– cpuinfo contains the information established by the kernel about the

processor at boot time, e.g., the type of processor, including variant and
features.

– kcore contains the entire RAM contents as seen by the kernel.
– meminfo contains information about the memory usage, how much of

the available RAM and swap space are in use and how the kernel is using
them.

– version contains the kernel version information that lists the version
number, when it was compiled and who compiled it.

proc File System
• net/ is a directory containing network information.
• net/dev contains a list of the network devices that are compiled into

the kernel. For each device there are statistics on the number of
packets that have been transmitted and received.

• net/route contains the routing table that is used for routing packets
on the network.

• net/snmp contains statistics on the higher levels of the network
protocol.

• self/ contains information about the current process. The contents
are the same as those in the per-process information described later.

proc File System
• pid/ contains information about process number pid. The kernel maintains a directory

containing process information for each process.
• pid/cmdline contains the command that was used to start the process (using null

characters to separate arguments).
• pid/cwd contains a link to the current working directory of the process.
• pid/environ contains a list of the environment variables that the process has

available.
• pid/exe contains a link to the program that is running in the process.
• pid/fd/ is a directory containing a link to each of the files that the process has open.
• pid/mem contains the memory contents of the process.
• pid/stat contains process status information.
• pid/statm contains process memory usage information.

• All based on the global array tgid_base_stuff

Core data structures for proc
• proc/pid is represented using the data structure defined in
fs/proc/internal.h

struct proc_dir_entry {
unsigned short low_ino;
unsigned short namelen;
const char *name;
mode_t mode;
nlink_t nlink; uid_t uid; gid_t gid;
unsigned long size;
struct inode_operations * proc_iops;
struct file_operations * proc_fops;
...
read_proc_t *read_proc;
write_proc_t *write_proc;
...

};

The Sysfs File System (since 2.6)
• Similar in spirit to proc, mounted to /sys
• It is an alternative way to make the kernel

export information (or set it) via common I/O
operations

• Very simple API, more clear structuring

Sysfs Core API

The owner field may be set by the caller to point to the module in which the code
to manipulate the attribute exists

Kernel Objects (knobs)

• Kobjects don't live on their own: they are
embedded into objects (think of struct
cdev)

• They keep a reference counter (kref)

void kobject_init(struct kobject *kobj);

int kobject_set_name(struct kobject *kobj,
const char *format, ...);

struct kobject *kobject_get(struct kobject
*kobj);

void kobject_put(struct kobject *kobj);

struct kobject

struct kobject {

const char *name;

struct list_head entry;

struct kobject *parent;

struct kset *kset;

struct kobj_type *ktype;

struct kernfs_node *sd; /* sysfs
directory entry */

struct kref kref;
};

struct kobj_type

struct kobj_type {

void (*release)(struct kobject *);

struct sysfs_ops *sysfs_ops;

struct attribute **default_attrs;
};

• A specific object type is defined in terms of the
sysfs_ops to be executed on it, the defaul attributes
(if any), and the release function

Sysfs Read/Write Operations

• These operations are defined in the kobject thanks to
the struct kobj_type *ktype member:
– struct kobject->ktype->sysfs_ops

struct sysfs_ops {
 /* method invoked on read of a sysfs file */
 ssize_t (*show) (struct kobject *kobj,
 struct attribute *attr,
 char *buffer);

 /* method invoked on write of a sysfs file */
 ssize_t (*store) (struct kobject *kobj,
 struct attribute *attr,
 const char *buffer,
 size_t size);
};

ksets

void kset_init(struct kset *kset);

int kset_add(struct kset *kset);

int kset_register(struct kset *kset);

void kset_unregister(struct kset *kset);

struct kset *kset_get(struct kset *kset);

void kset_put(struct kset *kset);

kobject_set_name(my_set->kobj, "The name");

Hooking into Sysfs

• When a kobject is created it does not
immediately appear in Sysfs

• It has to be explicitly added (although the
operation can fail):
– int kobject_add(struct kobject
*kobj);

• To remove a kobject from Sysfs:
– void kobject_del(struct kobject
*kobj);

Device Management

• Any number of devices can be connected to a
machine

• The type of devices can also vary significantly
• Everything in Unix is a file:

– There should be a way to link devices to VFS
• In the end, the management of a device must be

carried out by its driver
– A physical device could eventually generate

interrupts

Device Numbers
• Each device is associated with a couple of numbers: MAJOR and MINOR
• MAJOR is the key to access the device driver as registered within a

driver database
• MINOR identifies the actual instance of the device driven by that driver

(this can be specified by the driver programmer)
• There are different tables to register devices, depending on whether

the device is a char device or a block device:
– fs/char_dev.c for char devices
– fs/block_dev.c for block devices

• In the above source files we can also find device-independent functions
for accessing the actual driver

Identifying Char and Block Devices

$ ls -l /dev/sda /dev/ttyS0

brw-rw---- 1 root disk 8, 0 9 apr 09.31 /dev/sda

crw-rw---- 1 root uucp 4, 64 9 apr 09.31 /dev/ttyS0

type major minor

Major and Minor Numbers
$ ls -l /dev/sd*
brw-rw---- 1 root disk 8, 0 9 apr 09.31 /dev/sda
brw-rw---- 1 root disk 8, 1 9 apr 09.31 /dev/sda1
brw-rw---- 1 root disk 8, 2 9 apr 09.31 /dev/sda2

• The same major can be given to both a character and a block device!
• Numbers are "assigned" by the Linux Assigned Names and Numbers

Authority (http://lanana.org/) and kept in
Documentation/devices.txt.

• Defines are in include/uapi/linux/major.h

Same driver, different disks or partitions

The Device Database
• Char and Block devices behave differently, but they are

organized in identical databases which are handled as hashmaps
• They are referenced as cdev_map and bdev_map
struct kobj_map {

struct probe {
struct probe *next;
dev_t dev;
unsigned long range;
struct module *owner;
kobj_probe_t *get;
int (*lock)(dev_t, void *);
void *data;

} *probes[255];
struct mutex *lock;

};

hasing is done as:
major % 255

The Device Database

[b,c]dev_map

data data data

struct probe struct probe struct probe

device-specific
structure

device-specific
structure

device-specific
structure

Device Numbers Representation

• The dev_t type keeps both the major and the minor
(in include/linux/types.h)
typedef __u32 __kernel_dev_t;
typedef __kernel_dev_t dev_t;

• In linux/kdev_t.h we find facilities to
manipulate it:
#define MINORBITS 20
#define MINORMASK ((1U << MINORBITS) - 1)
#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

struct cdev

struct cdev {

struct kobject kobj;
struct module *owner;

const struct file_operations *ops;
struct list_head list;
dev_t dev;

unsigned int count;
} __randomize_layout;

Char Devices Range Database
• Defined in fs/char_dev.c
• Used to manage device number allocation to drivers

#define CHRDEV_MAJOR_HASH_SIZE 255

static struct char_device_struct {

struct char_device_struct *next;

unsigned int major;

unsigned int baseminor;

int minorct;

char name[64];

struct cdev *cdev;

} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

Registering Char Devices
• linux/fs.h provides the following wappers to

register/deregister a driver:
– int register_chrdev(unsigned int major, const char
*name, struct file_operations *fops): registration takes
place onto the entry at displacement MAJOR (0 means the choice is up o
the kernel). The actual MAJOR number is returned

– int unregister_chrdev(unsigned int major, const char
*name): releases the entry at displacement MAJOR

• They map to actual operations in fs/char_dev.c:
• int __register_chrdev(unsigned int major, unsigned
int baseminor, unsigned int count, const char *name,
const struct file_operations *fops)

• void __unregister_chrdev(unsigned int major,
unsigned int baseminor, unsigned int count, const
char *name)

struct file_operations

• It is defined in include/linux/fs.h
struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t

*);

int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct

*);

int (*ioctl) (struct inode*, struct file *, unsigned int,
unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

...
};

Registering Device Numbers
• A driver might require to register or allocate a

range of device numbers
• API are in fs/char_dev.c and exposed in
include/linux/fs.h

• int register_chrdev_region(dev_t from,
unsigned count, const char *name)
– Major is specified in from

• int alloc_chrdev_region(dev_t *dev,
unsigned baseminor, unsigned count,
const char *name)
– Major and first minor are returned in dev

Block Devices
• The structure corresponding to cdev for a block device is struct gendisk in

include/linux/genhd.h
struct gendisk {

int major; /* major number of driver */
int first_minor;
int minors; /* maximum number of minors, =1 for

 * disks that can't be partitioned. */
char disk_name[DISK_NAME_LEN];/* name of majordriver */
...
const struct block_device_operations *fops;
struct request_queue *queue;

};

• In block/genhd.c we find the following functions to register/deregister the
driver:
int register_blkdev(unsigned int major, const
char * name, struct block_device_operations *bdops)

int unregister_blkdev(unsigned int major, const char *
name)

• It is defined in include/linux/fs.h

struct block_device_operations {
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
int (*ioctl) (struct inode *, struct file *,

unsigned, unsigned long);
int (*check_media_change) (kdev_t);
int (*revalidate) (kdev_t);
struct module *owner;

};

• There is nothing here to read and write from the device!

struct block_device_operations

Read/Write on Block Devices

• For char devices the management of read/write
operations is in charge of the device driver

• This is not the same for block devices

• read/write operations on block devices are
handled via a single API related to buffer cache
operations

• The actual implementation of the buffer cache
policy will determine the real execution activities
for block device read/write operations

Request Queues

• Request queues (strategies in UNIX) are the
way to operate on block devices

• Requests encapsulate optimizations to
manage each specific device (e.g. via the
elevator algorithm)

• The Request Interface is associated with a
queue of pending requests towards the block
device

Linking Devices and the VFS

• The member umode_t i_mode in struct inode tells the type of
the i-node:

– directory
– file
– char device
– block device
– (named) pipe

• The kernel function sys_mknod() creates a generic i-node

• If the i-inode represents a device, the operations to manage the device
are retrieved via the device driver database

• In particular, the i-node has the dev_t i_rdev member

The mknod() System Call

int mknod(const char *pathname, mode_t mode, dev_t dev)

• mode specifies permissions and type of node to be created

• Permissions are filtered via the umask of the calling process
(mode & umask)

• Different macros can be used to define the node type: S_IFREG,
S_IFCHR, S_IFBLK, S_IFIFO

• When using S_IFCHR or S_IFBLK, the parameter dev
specifies Major and Minor numbers of the device file to create,
otherwise it is a don’t care

Opening Device Files
• In fs/devices.c there is the generic
chrdev_open() function

• This function needs to find the dev-specific file
operations

• Given the device, number, kobject_lookup() is
called to find a corresponding kobject

• From the kobject we can navigate to the
corresponding cdev

• The device-dependent file operations are then in
cdev->ops

• This information is then cached in the i-node

i-node to File Operations Mapping

struct inode struct cdev

struct file

struct
file_operations

i_devices

i_cdev

list

f_op

ops

They are both struct list_head

Device Classes

• Devices are organized into "classes"
• A device can belong to multiple classes
• Class membership is shown in /sys/class/

– Block devices are automatically placed under the
"block" class

– This is done automatically whe the gendisk structure
is registered in the kernel

• Most devices don't require the creation of new
classes

Managing New Classes
• Manage classes, we instantiate and register the struct class

declared in linux/device.h
static struct class sbd_class = {

.name = "class_name",

.class_release = release_fn
};

int class_register(struct class *cls);

void class_destroy(struct class *cls);

struct class *class_create(struct module *owner, const
char *name, struct lock_class_key *key)

Managing Devices in Classes
• struct device
*device_create(struct class *class,
struct device *parent, dev_t devt,
void *drvdata, const char
*fmt, ...)

• void device_destroy(struct class
*class, dev_t devt)

printf-like way to specify the device node in /dev

Device Class Attributes
• Specify attributes for the classes, and functions to

"read" and "write" the specific class attributes
• CLASS_DEVICE_ATTR(name, mode, show, store);

• This is expanded to a structure called
dev_attr_name

• ssize_t (*show)(struct class_device
*cd, char *buf);

• ssize_t (*store)(struct class_device *,
const char *buf, size_t count);

Creating Device Attribute Files
• Again placed in /sys

• int device_create_file(struct
device *dev,const struct
device_attribute *attr)

• void device_remove_file(struct
device *dev, const struct
device_attribute *attr)

udev

• udev is the userspace Linux device manager
• It manages device nodes in /dev
• It also handles userspace events raised when

devices are added/removed to/from the system

• The introduction of udev has been due to the
degree of complexity associated with device
management

• It is highly configurable and rule-based

udev rules
• Udev in userspace looks at /sys to detect changes and see whether new

(virtual) devices are plugged
• Special rule files (in /etc/udev/rules.d) match changes and create files in

/dev accordingly
• Syntax tokens in syntax files:

– KERNEL: match against the kernel name for the device
– SUBSYSTEM: match against the subsystem of the device
– DRIVER: match against the name of the driver backing the device
– NAME: the name that shall be used for the device node
– SYMLINK: a list of symbolic links which act as alternative names for the device

node

• KERNEL=="hdb", DRIVER=="ide-disk", NAME="my_spare_disk",
SYMLINK+="sparedisk"

