
Kernel Data Structures

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2018/2019

Linux Kernel Design Patterns

• The kernel has to manage a significant amount
of different data structures

• Many objects are complex
– variable size
– groups of other objects (collections)
– changing frequently over time

• Performance and efficiency is fundamental
• We need abstract data types: how to do that in C?

Abstract Data Types

• Encapsulate the entire implementation of a data
structure

• Provide only a well-defined interface to
manipulate objects/collections

• Optimizations in the data structure
implementation is directly spread across the
whole source

Circular Doubly-Linked Lists

• /include/linux/list.h

struct list_head {

 struct list_head *next, *prev;

};

Circular Doubly-Linked Lists

struct my_struct {

 int priority;

 struct list_head list1;
 struct list_head list1;
 int other_member;

};

Circular Doubly-Linked Lists

Circular Doubly-Linked Lists

list_head sorted_by_char

list_head sorted_by_num

A
3

B
1

C
2

How to use Lists

Objects can also be
allocated into an array

• The head of the list is usually a standalone
structure:
struct list_head todo_list;

INIT_LIST_HEAD(&todo_list);

• If it is used as a global variable, it has to be
initialized at compile time:
LIST_HEAD(todo_list);

Head of lists

• list_add(struct list_head *new, struct list_head *head);

• list_add_tail(struct list_head *new, struct list_head *head);

• list_del(struct list_head *entry);

• list_del_init(struct list_head *entry); // To later relink

• list_move(struct list_head *entry, struct list_head *head);

• list_move_tail(struct list_head *entry, struct list_head
*head);

• list_empty(struct list_head *head); // Non-zero if empty

Linked List API (partial)

List Traversal
void my_add_entry(struct my_struct *new) {

struct list_head *ptr;

struct my_struct *entry;

 for (ptr = my_list.next; ptr != &my_list; ptr = ptr->next) {

 entry = list_entry(ptr, struct my_struct, list);

 if (entry->priority < new->priority) {

 list_add_tail(&new->list, ptr);

 return;

 }

 }

 list_add_tail(&new->list, &my_list);

}

List Traversal
void my_add_entry(struct my_struct *new) {

struct list_head *ptr;

struct my_struct *entry;

 list_for_each(ptr, &todo_list) {

 entry = list_entry(ptr, struct my_struct, list);

 if (entry->priority < new->priority) {

 list_add_tail(&new->list, ptr);

 return;

 }

 }

 list_add_tail(&new->list, &my_list);

}

Hash Lists
• In some cases, storing two pointers in the head is a waste of memory

(e.g., hash tables)

struct list_head {
 struct list_head *next, *prev;
};

struct hlist_head {
 struct hlist_node *first;
};

struct hlist_node {
 struct hlist_node *next, **pprev;

hlist_node *first

hlist_node *next hlist_node **prev

hlist_head

hlist_node

hlist_node *next hlist_node **prev

hlist_node

Hash Lists

Lock-less Lists
• Singly-linked NULL-terminated non-blocking lists
• Based on compare and swap to update pointers
• If operations are carried out accessing only the single next

pointer, RMW instructions allow concurrent access with no
locking

• Producer/consumer model

Queues

• Called kfifo in /include/linux/kfifo.h
• Two main operations:

– Enqueue: kfifo_in()
– Dequeue: kfifo_out()

• Creation:
– kfifo_alloc(struct kfifo *fifo, unsigned int
size, gfp_t gfp_mask)

• Removal:
– kfifo_free(struct kfifo *fifo)

Queues

Red-Black Trees
• Self-balancing binary search tree
• Properties:

– Each node is either black or red
– Each path to leaf traverses the same number of black nodes
– Each red node has two black children
– All leaves are black (NIL)

Red-Black Trees
• Defined in /include/linux/rbtree.h
• Initialization:

– struct rb_root root = RB_ROOT;

• The API provides functions to:
– get the payload of a node: rb_entry()
– insert a node: rb_link_node()
– set the color (trigger rebalancing): rb_insert_color()
– remove a node: rb_erase()

• Traversal must be implemented by hand (what
should the default implementation compare?)

Radix Tree

Radix Tree

• There are two different implementations:
– /include/linux/radix-tree.h

– /include/linux/idr.h (simpler, based on the
former)

• Both provide a mapping from a number
(unsigned long) to a pointer (void *)

• They can be used to implement (sparse) maps
– Empty nodes are not kept in the representation

idr Example
• This code allows any to cores to compete at allocating an ID.

again:
if (idr_pre_get(&my_idr, GFP_KERNEL) == 0) {

/* No memory, give up entirely */
}
spin_lock(&my_lock);
result = idr_get_new(&my_idr, &target, &id);
if (result == -EAGAIN) {

sigh();
spin_unlock(&my_lock);
goto again;

}

can sleep, no lock

Per-CPU Variables

• They are variables referenced with the same
name

• Depending on the core on which the code runs,
this name is automatically mapped to different
storage

• They are based on a reserved zone in the linear
addressing space

• Macros allows to retrieve the actual address for
the running core

Per-CPU Variables

• Definition and usage:
DEFINE_PER_CPU(int, x);

int z;

z = this_cpu_read(x);

• This is compiled to:
movl %gs:x, %eax

Per-CPU Variables
• The %gs segment points to a per-CPU area

– This works only because we have a different GDT for
each CPU!

GS = A

GS = B

CPU 0

GDTR

CPU 1

GDTR

RAM

