
Advanced Operating Systems
and Virtualization

Alessandro Pellegrini
A.Y. 2018/2019



Basic Information

• Lecture Schedule:
– Course begins today! ☺
– Course ends on May 31st

– Lecture slots:
• Wednesday, 17.00–19.00 (Room B2, Via Ariosto);
• Friday, 08.00–11.00 (Room B2, Via Ariosto).

• Office Hours: 
– See on my webpage for the schedule

• Contact: pellegrini@diag.uniroma1.it



Exam Rules

• A written test (3/5 of the final mark)
• A code project (2/5 of the final mark)

– Implementation of facilities within the Linux Kernel
– Instructions will be given during the course

• We will see internals from Linux 2.4/2.6/3.0/4.0
– Pick your preferred version!
– Best if you are compatible with more than one!



Course Outline

• A Primer on Modern Hardware Architectures
• x86 Initial Boot Sequence.
• Linux Kernel Boot
• Memory Management.
• System Calls Management
• Interrupt Management
• Building the Kernel
• Kernel Data Structures



Course Outline

• Virtual File System and Devices
• Userspace Initialization
• Process Startup and Management
• Scheduling Processes
• Loadable Kernel Modules
• Kernel Messaging
• Security Aspects
• Hot Patching



Reference Material

• Daniel P. Bovet, Marco Cesati, Understanding the 
Linux Kernel. O’Reilly.

• Mel Gorman, Understanding the Linux Virtual 
Memory Manager. Prentice Hall.

• Alessandro Rubini, Jonathan Corbet, Linux 
Device Drivers, O’Reilly.

• David A. Rusling, The Linux Kernel.



Reference Material



What you should know already
• Computing Architectures

– Registers, I/O, Interrupts principles, flat memory model, ...
– Numerical Representations

• Basic x86 assembly notation
• Operating Systems Principles

– Threads and Processes
– System Calls

• Algorithms and Data Structures
• Some notions on Concurrency

– Synchronization, race conditions, critical sections, locks, ...



Why Linux?

AOSV: Introduction



Why x86?

AOSV: Introduction



Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)



Boot Sequence

• BIOS: Basic Input/Output System
– Performs some system integrity checks
– Searches, loads, and executes the Stage 1 boot loader 

program.
• UEFI: Unified Extensible Firmware Interface

– More standardized than BIOS
– Gives much more versatility

BIOS/UEFI The actual Hardware Startup



Boot Sequence

• Stored in the Master Boot Record (MBR)
• Less than 512 bytes in size

– primary boot loader info in 1st 446 bytes
– partition table info in next 64 bytes 
– mbr validation check in last 2 bytes.

• Not enough space to load the kernel: activates 
Bootloader Stage 2

Bootloader Stage 1
Executes the Stage 2 bootloader

(skipped in case of UEFI)



Boot Sequence

• Typical software: LILO or GRUB
• Allows kernel selection
• Loads from disk the actual kernel startup image 

and gives control to it

Bootloader Stage 2 Loads and starts the Kernel



Boot Sequence

• Configures the hardware environment
– On x86 this requires multiple memory image 

initializations
• Mounts the root file system
• Configures internal data structures
• Spawns the first process (init)

Kernel Startup
The Kernel takes control of and initializes the machine

(machine-dependent operations)



Boot Sequence

• Configures the software environment
• Loads the default runlevel
• Spawns other (interactive) processes

Init
First process: basic environment initialization

(e.g., SystemVInit, systemd)



Boot Sequence

• They represent the state of a machine
– running processes and services offered

• On UNIX, they are traditionally six
– 0: halts the machine
– 1: single-user mode
– 2-5: multi-user with different services/facilities
– 6: reboots the machine

Runlevels/Targets
Initializes the user environment

(e.g., single-user mode, multiuser, graphical, ...)


