
AOSV: Final Project Assignment

Alessandro Pellegrini
A.Y. 2017/2018



User-Level Threads
• User-Level Threads (ULTs) are execution 

contexts which live within a single thread
• A ULT is non-preëmptive

– Switching from one ULT to the other requires the 
currently-running one to yield the CPU

– Often also called co-routines
• This is not traditionally implemented at 

kernel-level
• Userspace libraries implement context 

switches based on setjmp/longjmp



Fibers
• Fibers are the Windows kernel-level implementation 

of User-Level Threads
– see on MSDN the description
– see an open source implementation (thanks to ReactOS)

• ConvertThreadToFiber(): creates a Fiber in the 
current thread. From now on, other Fibers can be 
created

• CreateFiber(): creates a new Fiber context, 
assigns a separate stack, sets up the execution entry 
point (associated to a function passed as argument to 
the function)

https://msdn.microsoft.com/it-it/library/windows/desktop/ms682661(v=vs.85).aspx
https://doxygen.reactos.org/d9/d44/dll_2win32_2kernel32_2client_2fiber_8c_source.html


Fibers
• SwitchToFiber(): switches the execution context 

(in the caller thread) to a different Fiber (it can fail if 
switching to a Fiber which is already active)

• Fiber-Local Storage (FLS):
– TLS is shared across fibers (this is related to the thread 

where the fiber is running)
– FlsAlloc(): Allocates a FLS index
– FlsFree(): Frees a FLS index
– FlsGetValue(): Gets the value associated with a FLS 

index (a long)
– FlsSetValue(): Sets a value associated with a FLS 

index (a long)



Project General Rules

• The final project entails implementing fiber 
support in the Linux kernel

• The choice of the kernel version to use is up to 
the student (if you can support multiple 
versions, it's better!)

• How to implement the subsystem is up to the 
student: a module, a set of new syscalls, both...

• Projects should be developed alone or in groups 
of 2 students



Project Assignment
• Implement facilities logically related to:

– ConvertThreadToFiber()
– CreateFiber()
– SwitchToFiber()
– Implement also Fiber-Local Storage
– Provide a userspace library to access the new services

• This must be correct also on SMP
• Multiple processes can rely on Fibers at the same 

time
• If relying on a module and a special device is created, 

it must be correctly exposed in /dev



Project Assignment
• In /proc, under the pid of the process, a subfolder 
fibers/ should be created, with an attribute file for 
each active Fiber

• The minimal amount of information to show in 
/proc is:
– whether the Fiber is currently running or not
– the initial entry point for the created fiber
– the thread id from which the Fiber was created
– the number of current activations of the Fiber
– the number of failed activations
– total execution time in that Fiber context



What to hand out

• The code
• An essay discussing:

– Design choices
– Implementation details

• Some performance assessment
– A performance comparison of kernel-level fibers wrt 

ULTs implemented in userspace 
– The benchmark will be provided on the course 

website soon



Some Hints
• Spend more time on the design than the 

implementation
• Write elegant code!
• Develop on a virtual machine
• Test both on a virtual machine and a physical 

machine
• Watch out interrupts and signals!

• If you need help: come to office hours!


