
Dealing with Concurrency
in the Kernel

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2017/2018

Big Kernel Lock

• Traditionally called a "Giant Lock"
• This is a simple way to provide concurrency to

userspace avoiding concurrency problems in the
kernel

• Whenever a thread enters kernel mode, it
acquires the BKL
– No more than one thread can live in kernel space

• Completely removed in 2.6.39

Per-CPU Variables
RAM

Core 0 Core 1

gdtr gdtr

gs segment = X gs segment = X

different bases!

Per-CPU Variables

DEFINE_PER_CPU(int, x);
int z;
z = this_cpu_read(x);
• This is mapped to a single istruction:

– mov %gs:x,%eax

y = this_cpu_ptr(&x);

Linux Mutexes
DECLARE_MUTEX(name);
/* declares struct semaphore <name> ... */

void sema_init(struct semaphore *sem, int val);
/* alternative to DECLARE_... */

void down(struct semaphore *sem); /* may sleep */

int down_interruptible(struct semaphore *sem);
/* may sleep; returns -EINTR on interrupt */

int down_trylock(struct semaphone *sem);
/* returns 0 if succeeded; will no sleep */

void up(struct semaphore *sem);

Linux Spinlocks
#include <linux/spinlock.h>

spinlock_t my_lock = SPINLOCK_UNLOCKED;
spin_lock_init(spinlock_t *lock);
spin_lock(spinlock_t *lock);
spin_lock_irqsave(spinlock_t *lock, unsigned long flags);
spin_lock_irq(spinlock_t *lock);
spin_lock_bh(spinlock_t *lock);

spin_unlock(spinlock_t *lock);
spin_unlock_irqrestore(spinlock_t *lock,

unsigned long flags);
spin_unlock_irq(spinlock_t *lock);
spin_unlock_bh(spinlock_t *lock);
spin_is_locked(spinlock_t *lock);
spin_trylock(spinlock_t *lock)
spin_unlock_wait(spinlock_t *lock);

The “save” version
• it allows not to interfere with IRQ management along the path where the call is

nested
• a simple masking (with no saving) of the IRQ state may lead to misbehavior

Save and manipulation of IRQ state
(start running in state IRQ state A)

Code block nesting manipulation of IRQ state
(suppose the final restore of IRQ is
 to some default state B)

Runs with incorrect IRQ state (say B)

Return to the original code block

Read/Write Locks

rwlock_t xxx_lock = __RW_LOCK_UNLOCKED(xxx_lock);
unsigned long flags;

read_lock_irqsave(&xxx_lock, flags);
.. critical section that only reads the info ...
read_unlock_irqrestore(&xxx_lock, flags);

write_lock_irqsave(&xxx_lock, flags);
.. read and write exclusive access to the info ...
write_unlock_irqrestore(&xxx_lock, flags);

Read/Write Locks

Read
Get Lock:
• Lock r
• Increment c
• if c == 1

– lock w
• unlock r

Release Lock:
• Lock r
• Decrement c
• if c == 0

– unlock w
• unlock r

Write
Get Lock:
• Lock w

Release Lock:
• Unlock w

seqlocks

• A seqlock tries to tackle the following situation:
– A small amount of data is to be protected.
– That data is simple (no pointers), and is frequently

accessed.
– Access to the data does not create side effects.
– It is important that writers not be starved for access.

• It is a way to avoid readers to starve writers

seqlocks

• #include <linux/seqlock.h>
• seqlock_t lock1 = SEQLOCK_UNLOCKED;
• seqlock_t lock2;
• seqlock_init(&lock2);

• write_seqlock(&the_lock);
• /* Make changes here */
• write_sequnlock(&the_lock);

Exclusive access and
increment the
sequence number

increment again

seqlocks
• Readers do not acquire a lock:
unsigned int seq;
do {
 seq = read_seqbegin(&the_lock);
 /* Make a copy of the data of interest */
} while read_seqretry(&the_lock, seq);

• The call to read_seqretry checks whether the initial
number was odd

• It additionally checks if the sequence number has changed

Atomic Operations

• atomic_t type
– atomic_fetch_{add,sub,and,andnot,or,xor}()

• DECLARE_BITMAP() macro
– set_bit()
– clear_bit()
– test_and_set_bit()
– test_and_clear_bit()

• All based on RMW instructions

Read-Copy-Update (RCU)

• This is a synchronization mechanism added in
October 2002

• Scalability is enforced by having readers
concurrently perform operations to writers

• RCU ensures that reads are coherent by
maintaining multiple versions of objects and
ensuring that they are not freed up until all pre-
existing read-side critical sections complete

Read-Copy-Update (RCU)

• Three fundamental mechanisms:
– Publish-subscribe mechanism (for insertion)
– Wait for pre-existing RCU readers to complete (for

deletion)
– Maintain multiple versions of RCU-updated objects

(for readers)

Insertion
struct foo {
 int a;
 int b;
 int c;
 };
 struct foo *gp = NULL;

 /* . . . */

 p = kmalloc(sizeof(*p), GFP_KERNEL);
 p->a = 1;
 p->b = 2;
 p->c = 3;
 gp = p;

Is this always correct?

Insertion
struct foo {
 int a;
 int b;
 int c;
 };
 struct foo *gp = NULL;

 /* . . . */

 p = kmalloc(sizeof(*p), GFP_KERNEL);
 p->a = 1;
 p->b = 2;
 p->c = 3;
 rcu_assign_pointer(gp, p) the "publish" part

Reading

 p = gp;
 if (p != NULL) {
 do_something_with(p->a, p->b, p->c);
 }

Is this always correct?

Reading
 rcu_read_lock();
 p = rcu_dereference(gp);
 if (p != NULL) {
 do_something_with(p->a, p->b, p->c);
 }
 rcu_read_unlock();

Memory barriers here

Wait Pre-Existing RCU Updates

• synchronize_rcu()
• It can be schematized as:

for_each_online_cpu(cpu)
 run_on(cpu);

Wait Pre-Existing RCU Updates
struct foo {
 struct list_head list;
 int a;
 int b;
 int c;
 };
 LIST_HEAD(head);

 /* . . . */

 p = search(head, key);
 if (p == NULL) {
 /* Take appropriate action, unlock, and return. */
 }
 q = kmalloc(sizeof(*p), GFP_KERNEL);
 *q = *p;
 q->b = 2;
 q->c = 3;
 list_replace_rcu(&p->list, &q->list);
 synchronize_rcu();
 kfree(p);

Multiple Concurrent RCU Updates
struct foo {
 struct list_head list;
 int a;
 int b;
 int c;
 };
 LIST_HEAD(head);

 /* . . . */

 p = search(head, key);
 if (p == NULL) {
 /* Take appropriate action, unlock, and return. */
 }
 q = kmalloc(sizeof(*p), GFP_KERNEL);
 *q = *p;
 q->b = 2;
 q->c = 3;
 list_replace_rcu(&p->list, &q->list);
 synchronize_rcu();
 kfree(p);

 p = search(head, key);
 if (p != NULL) {
 list_del_rcu(&p->list);
 synchronize_rcu();
 kfree(p);
 }

