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System Virtualization
• Virtualization allows to show resources different from the 

physical ones
• More operating systems can be run on the same hardware
• A Virtual Machine is a mixure of software- and hardware-based 

facilities
• The software component is the Hypervisor or VMM (Virtual 

Machine Monitor). 

• Advantages:
• Isolation of different execution environments (on the same hardware)
• Reduction of hardware and administration costs



Hypervisor
• Host system: the real system where (software implemented) virtual machines run
• Guest system: the system that runs on top of a (software implemented) virtual 

machine

• Hypervisor:
– It manages hardware resources available to the host system
– It makes virtualized resources available to the guest system in a correct and 

secure way

– Native Hypervisor: runs with full capabilities on the native host hardware. It 
resembles a lightweight virtualization kernel operating on top of the harware.

– Hosted Hypervisor: it runs as an applicaiton, which accesses the actual host 
services via system calls



Software-based Virtualization
• Instructions are executed by the native physical CPU in the host 

platform
• We need to emulate a subset of the instruction set
• No particular  hardware component playes a role in virtualiztion (as 

instead for the case of Intel VT-x o AMD-V).

• The main issue:
– What if RING 0 is required for the guest system tasks?
– Risk to bypass the VMM resource management policy in case of 

actual RING 0 access

• The solution: ring deprivileging.



Ring Deprivileging
• A technique to let the guest kernel run at privilege level that simulates 0

• Two main strategies:
1. 0 / 1 / 3 Model: 

• VMM runs at ring 0.
• Kernel guest runs at ring 1 (which is typically not used by native kernels)
• Applications still run at ring 3.
• This is the most used approach.

2. 0 / 3 / 3 Model :
• VMM runs at ring 0.
• Kernel guest and applications run at ring 3.
• Too close to emulation, too high costs.



0/1/3 Model
• The application layer (running at ring 3) cannot damage the guest 

operating system state (which runs at ring 1).
• The guest system cannot access to the hadware priviledged facilities 

bypassing the VMM, so we still guarantee the isolation of guest 
systems’ execution

• Any exception must be trapped by the VMM (at ring 0) and must be 
properly handled (e.g. by reflecting it into ring 1 tasks)

• Issues to cope with:
• Ring aliasing
• Virtualization of the interrupts
• Frequent access to privileged resources 



Ring Aliasing
• The kernel is designed to run at ring 0, while it is actually being run at ring 1 for 

guest systems
• Privileged instructions generate an exception is not run at CPL 0:

– hlt
– lidt
– lgdt
– invd
– mov %crx

• I/0 sensistive instructions: they generate a trap if executed when CPL > IOPL (I/O 
Privilege Level). Classical examples are:
– cli
– sti

• The generated trap (general protection fault) must be handled by VMM,  so as to 
finally determine how to handle it (emulation vs interpretation)



The VirtualBox Example
• Based on hosted hypervisor with ad-hoc kernel facilities, via classical special 

devices.

• Pure software virtualization is supported for x86
– Fast Binary Translation (code patching): the kernel code is analysed and modified 

before being executed so as to replace privileged instructions with semantically 
equivalent blocks of code

• Based on the  0/1/3 model



Execution Modes and Context
• Guest context (GC): execution context for the guest system. It is bsed 

on two modes:
– Raw mode: native guest code runs at ring level 3 or ring level 1
– Hypervisor: VirtualBox code is run at the maximum privilege level (ring 0)

• Host context (HC): execution context for userspace portions of 
VirtualBox (ring 3):
– The running thread implementing the VM lives in this context upon a 

mode change 
– REM mode: execution mode for emulating critical/privileged instructions



• Introduction of gate 
descriptors for kernel 
code/data segments 
with DPL=1. These 
segments are 
accessible with  CPL=1

• New TSSD pointing to 
the  TSS wrapper 
which keeps info on 
stack positioning at 
ring 1 (ss1,esp1) and 
ring 0 (ss0,esp0).

• 2 new segments for the 
Hypervisor are addedd 
with DPL=0
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VBOXIDT: interrupt gate
• Interrupt must be managed by the 

VMM.

• To this end, a wrapper for the IDT is 
generated

• Proper handlers are instantiated, 
which get executed by the Hypervisor 
upon traps. VMM can take control 
thanks to the ad-hoc segment selector 
(at the GDT offset for the hypervisor 
code segment).

• In case of a "genuine" trap, the control 
goes to the native kernel, otherwise 
the virtual handler is executed
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• INT 0x80 has an ad-hoc management

• The syscall gate is modified so as to 
provide a segment selector with RPL = 
1

• It indicates the GDT offset for the code 
segment (at ring 1).

• Hence calling a system call does not 
require interaction with the 
Hypervisor

• The trampoline handler is then used 
to launch the actual syscall handler

system_call 
handler

Handler 
trampoline

Ring 1 handler



Access to raw mode
• This is used for privileged instructions 

– LIDT -> idtr points to VBOXIDT
– LGDT -> gdtr poiunts to VBOXGDT
– LTR -> trpoints to VBOXTSS

• The guest system can then take back control by returning from the trap (iret), 
with the following registers saved on the stack 

– SS
– ESP
– EFLAGS
– CS
– EIP



Privileged instructions: patching
• Privileged instructions may hamper performane given that the Hypervisor needs 

to take back control for handling any of them
• A way to cope with this is patching of these instructions 

• An example: the cliinstruction
• Trap if CPL<=IOPL → VMM sets IOPL=0 upon entering raw mode
• Problem: if IF=0, then VMM cannot handle interrupts anymore.

• The solution: the code block cli…sti is replaced with a functionally-equivalent one
• Interrupts are disabled only for the guest system 
• The Hypevisor will take care of finally delivering it.



REM mode
• It does not use runtime patching due to efficiency issues

• Actually executed in host context at ring 3.

• It relies on QEMU.

• Emulation process can be slow, since we need to keep track of processor state 
changes to be restored upon reentering raw mode

• Typically, at each emulation step, it is checked whether native code execution 
can be restored 



Kernel Samepage Merging
• COW is used by the kernel to share physical frames 

with different virtual mappings
• If the kernel has no knowledge on the usage of 

memory, a similar behaviour is difficult to put in 
place

• KSM exposes the /dev/ksm pseudofile
• By means of ioctl() calls, programs can register 

portions of their address spaces
• An additional ioctl() call enables the page sharing 

mechanism, and the kernel starts looking for pages to 
share



Kernel Samepage Merging

• The KSM driver (in a kernel thread) picks one 
registered region and starts scanning for it
– A SHA1 hash is used to compare frames
– If a similarity is found, all processes "sharing" the 

page will point to the same frame (in COW mode)
• A host running several guest Windows machines 

can overcommit its memory 300% without 
affecting performance
– Windows zeroes all free'd memory


