Virtualization Support

Advanced Operating Systems and Virtualization
Alessandro Pellegrini
AY.2017/2018

System Virtualization

e Virtualization allows to show resources different from the
physical ones

* More operating systems can be run on the same hardware

e A Virtual Machine is a mixure of software- and hardware-based
facilities

* The software component is the Hypervisor or VMM (Virtual
Machine Monitor).

* Advantages:
* Isolation of different execution environments (on the same hardware)
* Reduction of hardware and administration costs

Hypervisor

* Host system: the real system where (software implemented) virtual machines run

e (Guest system: the system that runs on top of a (software implemented) virtual
machine

* Hypervisor:
— It manages hardware resources available to the host system

— It makes virtualized resources available to the guest system in a correct and
secure way

— Native Hypervisor: runs with full capabilities on the native host hardware. It
resembles a lightweight virtualization kernel operating on top of the harware.

— Hosted Hypervisor: it runs as an applicaiton, which accesses the actual host
services via system calls

y 4 1. W y & 4 A Y

aZYB

Software-based Virtualization

. Instructions are executed by the native physical CPU in the host
platform

. We need to emulate a subset of the instruction set

. No particular hardware component playes a role in virtualiztion (as
instead for the case of Intel VT-x 0 AMD-V).

The main issue:
— What if RING 0 is required for the guest system tasks?

— Risk to bypass the VMM resource management policy in case of
actual RING 0 access

The solution: ring deprivileging.

Ring Deprivileging
» Atechnique to let the guest kernel run at privilege level that simulates 0
* Two main strategies:

1. 0/1/3 Model:
e VMM runs at ring 0.

Kernel guest runs at ring 1 (which is typically not used by native kernels)

Applications still run at ring 3.

This is the most used approach.

2. 0/3/3Model:
* VMM runs at ring 0.
* Kernel guest and applications run at ring 3.
* Too close to emulation, too high costs.

1. W y & 4

aZYB

0/1/3 Model

* The application layer (running at ring 3) cannot damage the guest
operating system state (which runs at ring 1).

* The guest system cannot access to the hadware priviledged facilities
bypassing the VMM, so we still guarantee the isolation of guest
systems’ execution

* Any exception must be trapped by the VMM (at ring 0) and must be
properly handled (e.g. by reflecting it into ring 1 tasks)

* Issues to cope with:
* Ring aliasing
 Virtualization of the interrupts
* Frequent access to privileged resources

(RYESYS)

Ring Aliasing

* The kernel is designed to run at ring 0, while it is actually being run at ring 1 for
guest systems
* Privileged instructions generate an exception is not run at CPL O:
— hit
— lidt
— lgdt
— invd
— mov %crx
» [/0 sensistive instructions: they generate a trap if executed when CPL > IOPL (I/0
Privilege Level). Classical examples are:
— cli
— sti
* The generated trap (general protection fault) must be handled by VMM, so as to
finally determine how to handle it (emulation vs interpretation)

1. W y & 4

aZYB

The VirtualBox Example

« Based on hosted hypervisor with ad-hoc kernel facilities, via classical special

devices.

VM1 VM2

host

Applicazioni

Applicazioni | [Applicazioni
guest guest

S.0. 5.0.

VIRTUAL MACHINE MONITOR

SISTEMA OPERATIVO

HARDWARE

* Pure software virtualization is supported for x86

— Fast Binary Translation (code patching): the kernel code is analysed and modified
before being executed so as to replace privileged instructions with semantically

equivalent blocks of code

 Based on the 0/1/3 model

y 4 1. W y & 4 A Y

aZYB

NG

, guest

>.
. host

Execution Modes and Context

* Guest context (GC): execution context for the guest system. It is bsed
on two modes:
— Raw mode: native guest code runs at ring level 3 or ring level 1
— Hypervisor: VirtualBox code is run at the maximum privilege level (ring 0)

* Host context (HC): execution context for userspace portions of
VirtualBox (ring 3):
— The running thread implementing the VM lives in this context upon a
mode change
— REM mode: execution mode for emulating critical /privileged instructions

Virtual Box GDT

e Introduction of gate DESCRIPTION OFFSET DPL BASE
descriptors for kernel (0000)
code/data segments Entry 0 H - | null
A ORIGINAL TSS

with DPL=1. These
segments are
accessible with CPL=1

. New TSSD pointing to

the TSS wrapper
which keeps info on unused
stack positioning at
ring 1 (ss1,esp1) and 551 unused)
ring 0 (ss0,esp0).
. 2 new segments for the
Hypervisor are addedd
with DPL=0 VBOXTSS
HYPERVISOR
DATA (FFFO)y 0
SEGMENT
HYPERVISOR
CODE (FFF8)y 0
SEGMENT
CPL = Current Privilege Level ss1=ss0 | 1
DPL = Descriptor Privilege Level
y 4 iaw -~ 51 A

)
o o@T

aZYB

VBOXIDT: interrupt gate

e Interrupt must be managed by the IDT ORIGINAL
VMM.

e To this end, a wrapper for the IDT is
generated

 Proper handlers are instantiated,
which get executed by the Hypervisor
upon traps. VMM can take control
thanks to the ad-hoc segment selector
(at the GDT offset for the hypervisor VBOXIDT
code segment).

Genuine trap

0x0
VMM handler,

e In case ofa "genuine" trap, the control
goes to the native kernel, otherwise
the virtual handler is executed

Virtual trap

y 4 iaw y & &

-y (@

VBOXIDT: gate 0x30

ORIGINAL IDT

e INT 0x80 has an ad-hoc management

e The syscall gate is modified so as to
provide a segment selector with RPL =
1 0x8 | 1 | (0060) | 4

o |5 -
/

e Itindicates the GDT offset for the code)
segment (atring 1). /I

/

e Hence calling a system call does not VBOXIDT /
require interaction with the ,'
Hypervisor /

K Ring 1 handler

e The trampoline handler is then used i
to launch the actual syscall handler 0}58 é (0061), | 3

y 4 1. W y & & A Y

aZYB

Access to raw mode

e This is used for privileged instructions
— LIDT -> idtr points to VBOXIDT
- LGDT -> gdtr poiunts to VBOXGDT
- LTR -> trpoints to VBOXTSS

e The guest system can then take back control by returning from the trap (iret),
with the following registers saved on the stack

- SS

- ESP

- EFLAGS
- CS

- EIP

y 4 1. W y & 4 A Y

aZYB

Privileged instructions: patching

e Privileged instructions may hamper performane given that the Hypervisor needs
to take back control for handling any of them

e A way to cope with this is patching of these instructions

e An example: the cliinstruction
e Trap if CPL<=IOPL — VMM sets IOPL=0 upon entering raw mode
e Problem: if IF=0, then VMM cannot handle interrupts anymore.

e The solution: the code block cli...sti is replaced with a functionally-equivalent one
* Interrupts are disabled only for the guest system
* The Hypevisor will take care of finally delivering it.

y 4 1. W y & 4 A Y

aZYB

REM mode

e [tdoes notuse runtime patching due to efficiency issues
e Actually executed in host context at ring 3.
e Itrelies on QEMU.

 Emulation process can be slow, since we need to keep track of processor state
changes to be restored upon reentering raw mode

e Typically, at each emulation step, it is checked whether native code execution
can be restored

y 4 1. W y & 4 A Y

aZYB

Kernel Samepage Merging

COW is used by the kernel to share physical frames
with different virtual mappings

[f the kernel has no knowledge on the usage of
memory, a similar behaviour is difficult to put in
place

KSM exposes the /dev/ksm pseudofile

By means of ioct1 () calls, programs can register
portions of their address spaces

An additional ioctl () call enables the page sharing
mechanism, and the kernel starts looking for pages to
share

Kernel Samepage Merging

 The KSM driver (in a kernel thread) picks one

registered region and starts scanning for it
— A SHA1 hash is used to compare frames

— If a similarity is found, all processes "sharing" t|
page will point to the same frame (in COW mod

1€

e)

* A host running several guest Windows mac!
can overcommit its memory 300% without
affecting performance

— Windows zeroes all free'd memory

nines

