
Security

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2017/2018

Basic Security Aspects

1. Systems must be usable by legitimate users only

2. Access is granted on the basis of an authorization,
and according to the rules that are established by
some system administrator
– As for point 1, an unusable system is useless
– However, in several scenarios the attacker might

only tailor system non-usability by legitimate
users (so called DOS – Denial of Service attacks)

Baseline Security Approaches

• Cryptography
• Authentication / Capabilities
• Security enhanced operating systems

• Each approach targets specific security aspects

• They should be combined together to improve
the overall security of the system

Security Aspects Already Mentioned
• Address randomization
• Kernel-level stack protection
• Userspace Namespaces
• Sigreturn Oriented Programming
• Read only permission to critical data/code even when

running in kernel mode
• Determination of the presence of critical instructions

(e.g. those updating CR0 in x86 machines) upon
module insertions (as in Linux)

• Minimization of the exposition of kernel layout data
(%pK and /proc/kallsyms)

User Authentication

• Users login via passwords
• The passwords’ database is stored within two

distinct files:
– /etc/passwd
– /etc/shadow

• /etc/passwd is accessible to every user
• /etc/shadow is accessible only by root

/etc/passwd
• /etc/passwd has the following format:

– username:passwd:UID:GID:full_name:directory:she
ll

username:Npge08pfz4wuk:503:100:The
User:/home/username:/bin/sh

• Np represents the salt (16 bit) and ge08pfz4wuk is the encrypted
password

• When using shadowing, /etc/passwd has the format:
username:x:503:100:full_name:/home/username:/bin/s
h

• x is a placeholder, hence /etc/passwd no longer contains
passwords

/etc/shadow
• /etc/shadow has the format:

username:passwd:ult:can:must:note:exp:disab:reserved

• where:
1. username is the user
2. passwd is the encrypted password
3. ult are the days from 1/1/1970 since the last password change
4. can day interval after which it is possible to change the password
5. must day interval after which the password must be changed
6. Note day interval after which the user is prompted for password update
7. exp days after which the account is disabled if password expires
8. disab days from 1/1/1970 after which the account will be disabled
9. reserved no usage – a reserved field

User IDs in Unix
• The username is only a placeholder
• What discriminates which user is running a program

is the UID
• The same is for GID
• Any process is at any time instant associated with

three different UIDs/GIDs:
– Real: this tells who you are
– Effective: this tells what you can actually do
– Saved: this tells who you can become again

UID/GID management system calls
• setuid()/seteuid(): available only to UID/EUID equal to 0 (root)
• getuid()/geteuid(): queries available to all users
• Similar services exist for managing GID
• setuid() is “non reversible” in the value of the saved UID: it

overwrites all the three used IDs
• seteuid() is reversible and does not prevent restoring a saved UID
• An EUID-root user can temporarily become a different EUID user and

then resume EUID-root identity
• UID and EUID values are not forced to correspond to those registered

in /etc/passwd

An Example

UID EUID saved-UID

x 0 0
x y 0
x x 0
x 0 0

seteuid

setuid

setuid

Line not flushed to x since
UID and EUID (or
EUID/saved-UID) are not
the same

su and sudo
• Both these commands are setuid-root
• They enable starting with the EUID-root identity
• If a correct input password is given by the user,

they move the real UID to root or the target user
(in case of su)

• After moving the UID to root, sudo executes the
target command

Address based service habilitation
• Based on the concept of Access Control List (ACL)
• Addresses of enabled users are explicitly specified
• It is useful for network exposed services
• An approach used in architectures such as:

– super-servers (e.g. inetd: the internet daemon,
xinetd: the extended internet demon)

– TCP containers (es.tcpd)
• Also used since ext3 File System

– setfacl and getfacl commands

UNIX inetd
• It controls services running on specific port numbers

• Upon connection or request arrival, it starts the actual target service

• Association between port number and actual service has been based on the file
/etc/services, with format:

• ……
• ftp-data 20/tcp
• ftp 21/tcp
• telnet 23/tcp
• ……

• The inetd daemon was initially conceived as a means for resource usage
optimization

• It has been then extended to cope with security

inetd Configuration
• Configuration information for inetd is typically kept by

/etc/inetd.conf
• Each managed service is associated with one line structure as

– Service name, as expressed in /etc/services
– Socket type (e.g. stream)
– Socket protocol (e.g. TCP)
– Service flag (wait/nowait) which determines the execution mode

(concurrent or not)
– The user id to be associated with the running service instance (e.g.

root)
– The executable file path (e.g. /usr/sbin/telnetd) and its

arguments (if any)

xinetd Features
• It provides an extension of inetd relying on

– Address based access control
– Time frame based access control
– Full log of run-time events
– DOS prevention by putting limitation on

• Max num of per-service instances
• Max num of total server instances
• Log file size
• Per machine source-connections

• Its configuration file is /etc/xinetd.conf
• It can be generated relying on the PERL utility xconv.pl

TCP daemons: tcpd
• The tcpd daemon wraps the services managed via inetd, so as to support access

control rules
• tcpd is the actual server that is activated upon a request accepted by inetd
• tcpd receives as input the service specification
• Service management takes place by relying on rules coded in /etc/hosts.deny

and /etc/hosts.allow
• Here we can find the specification of allowed or denied sources for a given service
• Each line is structured as daemon_list : client_list
• ALL is used to identify the whole set of managed services and all the hosts
• An example (access to all inetd services allowed from the local host)

– # /etc/hosts.allow
– ALL: 127.0.0.1

Reverse DNS tampering
• Usually host/domain specification occurs via symbolic

names, rather than IP addresses
• Upon receiving a request/connection, tcpd checks

with the source IP and queries the “reverse DNS” to
get the symbolic name of the source host

• An attacker can tamper with the reverse DNS query so
as to reply with an allowed host/domain name

• To cope with this attack, tcpd typically performs both
“forwards DNS” and “reverse DNS” queries so as to
determine whether there is matching

An example scheme

inetd

tcpd

client

IP x.y.z.h
DNS

reverse
IP to name

forward
name to IP

if equal to a x.y.z.h access is granted,
otherwise not

Secure Operating Systems
• A secure operating system is different from a conventional one

because of the different granularity according to which we can specify
resource access rules

• In this way, an attacker has lower possibility to make damages (e.g. in
term of data access/manipulation) with respect to a conventional
system

• Secure operating systems examples are:
– SELinux (by NSA)
– SecurLinux (by HP)

• Secure operating systems rely on the Mandatory Access Control

Security policies
• A security policy is named discretionary if

ordinary users (including the
administrator/root user) are involved in the
definition of security attributed (e.g. protection
domains)

• A security policy is named mandatory if its
logics and the actual definition of security
attributes is demanded to a security policies’
administrator (who is not an actual user/root
of the system)

Boot Time Attacks

Boot
Loader

Linux
Kernel

Init Ram
Disk systemd your

stuff

Startup
Rootkits

Horse
Pills

Services

Userspace System Internal Attacks
• An attack is said to be internal if it exploits an application

that is installed and/or active in the system
• The attacker can either be an external user or one

registered as a legitimate system user
• The classical internal attacks are:

– Trojan horses
– Login spoofing
– Logical bombs
– Backdoors
– Buffer overflows

Buffer overflow protection methods
• Stack randomization (upon exec calls)
• Canary random tags as cross checks in the stack before

returning

Exploit-based DOS: Ping of Death
• This attack appeared in 1996, and is based on an inconsistency within

the IP protocol in common kernels

• IPv4 forbids a packet to be larger than 64 Kb

• IP allows for packet fragmentation, with reconstruction at the
destination

• However, the offset of a fragment has been based on 16 bits within the
header, so that we might specify a fragment that stands beyond the
maximum packet bound

• In this case the operating system kernel writes the fragment out of the
boundaries of the actual buffer selected for the receipt

Non-Executable Address Space Regions

• x86_64 architectures provide page/region protection
against instruction fetch

• The XD flag in the entries of the page tables

• This support was not available on i386 machines
• This is one reason why the PROT_READ/PROT_EXEC flags

of mmap() are sometimes collapsed into the same
protection semantic

• To enable instruction fetch from the stack on x86_64 you
can use the “-z execstack” option of gcc

Intrusion Detection Systems (IDS)
• Security can be improved, not definitely guaranteed

• We need systems able to detect that something wrong is going
on

• This allows for:
– Designing countermeasures for new attacks
– Protect resources in case of an ongoing attack

• Intrusion detection systems (IDS) rely on two classical
paradigms:
– Anomaly Detection
– Misuse Detection

Anomaly Detection
• This paradigm relies on the assumption that attacks are anomalous

(infrequent), hence any anomalous event is assumed to represent an
attack

• It is based on defining what are the admissible (normal) events, and in
identifying any other event as an attack

• Events that are normal (but not identified as normal ones) can be
identified as attacks (false positives)

• False positives can trigger countermeasures (e.g. system halt) that
might not be actually required

• We might also experience false negatives in case an attack only relies
on a sequence of admissible (normal) events

Misuse Detection

• It is based on a-priori identification of attack
events which are registered into the IDS

• A true attack cannot be identified as such in
case it is not coded in the a priori knowledge
base, hence we can experience false negatives

Classical IDS types

• Honeypots
• File integrity checkers

– Useful for libraries and modules
– They can fail if the system is subverted

• Log checkers
– Typically do not work in real time

• Network intrusion detection systems

Intrusion Prevention System:
the Reference Monitor

