LLoadable Kernel Modules

Advanced Operating Systems and Virtualization
Alessandro Pellegrini
AY.2017/2018

Basics

A Loadable Kernel Module (LKM) is a software
component which can be added to the memory image
of the Kernel while it is already running

* The kernel does not need to be recompiled to add
new software facilities

* They are also used to develop new parts of the Kernel
that can be then integrated in the final image once
stable

* They are also used to tailor the start up of a kernel
configuration, depending on specific needs

Module Initialization and Description

MODULE LICENGSE ("GPL") ;
MODULE AUTHOR ("Author <me(@example.com>");
MODULE DESCRIPTION ("My Fancy Module");

module 1nit(rs ktblmgr 1init);

module exit (rs ktblmgr cleanup);

Reference Counters

The Kernel keeps a reference counter for each loaded
LKM

If the reference counter is greater than zero, then the
module is locked

This means that there are other services in the
system which rely on facilities exposed by the module

[f not forced, unloading of the module fails

1smod gives also information on who is using the
module

Reference Counters

* try module get ():try toincrement the
reference counter

* module put ():decrement the reference
counter

* CONFIG MODULE UNLOAD is a global macro
which allows the kernel to unload modules

— it can be used to check unloadability

Module Parameters

* We can pass parameters to modules

* These are not passed as actual function

parameters

* Rather, they are passed as initial values of global

variables declarec

' in the module source code

 These variables, af
marked as “modu

ter being declared, need to be
le parameters” explicitly

Module Parameters

Defined in include/linux/module.h or
include/linux/moduleparm.h

— MODULE PARM (variable, type) (deprecated)
— module param(variable, type, perm)

— module param array(name, type, num, perm);

These macros specify the name of the global variable
which "receives" the input, its type, and 1ts permission
(when mapped to a pseudofile)

Pseudofiles are placed in SysFS

Initialization is done upon module load

Module Parameters

module param(myshort, short, S TRUSR | S IWUSR |
S IRGRP | S IWGRP);

MODULE PARM DESC (myshort, "A short integer");

module param(myint, int, S IRUSR | S IWUSR | S IRGRP
| S _IROTH) ;

MODULE PARM DESC (myint, "An integer");

module param(mylong, long, S IRUSR);
MODULE PARM DESC (mylong, "A long integer");

module param(mystring, charp, 0000);
MODULE PARM DESC (mystring, "A character string");

module param array (myintArray, int, &arr argc, 0000);
MODULE PARM DESC (myintArray, "An array of integers");

y 4 1. W y & 4 A Y

aZYB

Loading/Unloading a Module

A module is loaded by the administrator via the shell
command insmod

[t can also be used to pass parameters
(variable=value)

[t takes as a parameter the path to the object file generated
when compiling the module

A module is unloaded via the shell command rmmod

We can also use modprobe, which by default looks for the

actual module in the directory /1ib/modules/$ (uname
—r)

Steps to Load a Module

* We need memory to load in RAM both code and
data structures

 We need to know several memory locations to
perform a dynamic resolution:

 Base address of the module, for internal references

* Locations in memory of static Kernel facilities
(functions and data)

Loading Scheme

Kernel image

<« get zeroed page()
code -~

data {
Free space
obtained via Free
vmalloc () room

Module stuff

0x0
Internal

-> ' reference

External
reference

-y (@

Who does the job?

* Up to kernel 2.4 most of the job is done is userspace
— A moduleis a.o ELF

— Applications reserve memory, resolve the
symbols’ addresses and load the module in RAM

* From kernel 2.6 most of the job is kernel-internal
— A moduleis a.ko ELF

— Shell commands are used to trigger the kernel

actions for memory allocation, module loading,
and address resolution

System Calls up to 2.4

#include <linux/module.h>
caddr t create module (const char *name, size t size);

DESCRIPTION
create module attempts to create a loadable module entry and reserve the kernel

memory that will be needed to hold the module. This system call 1s only open to the
superuser.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error -1 1s

returned and errno is set appropriately.

y 4 1. W y & 4 A Y

aZYB

System Calls up to 2.4

#include <linux/module.h>
int 1nit module(const char *name, struct module *image);

DESCRIPTION
init module loads the relocated module image into kernel space and runs the

module's init function. The module image begins with a module structure and is followed by
code and data as appropriate. The module structure is defined as follows:

struct module {
unsigned long size of struct;

struct module *next; const char *name;

unsigned long size; long usecount;

unsigned long flags; unsigned int nsyms;
unsigned int ndeps; struct module symbol *syms;
struct module ref *deps; struct module ref *refs;

int (*init) (void); wvoid (*cleanup) (void) ;
const struct exception table entry *ex table start;
const struct exception table entry *ex table end;

Y

y 4 1. W y & 4 A Y

aZYB

System Calls up to 2.4

#finclude <linux/module.h>
int delete module (const char *name);

DESCRIPTION
delete module attempts to remove an unused loadable module entry. If name is NULL,

all unused modules marked autoclean will be removed. This system call is only open to the
superuser.

RETURN VALUE
On success, zero is returned. On error, -1 1s returned and errno is set appropriately.

y 4 1. W y & 4 A Y

aZYB

System Calls since 2.6

SYNOPSIS
int init module (vold *module image, unsigned long len,
const char *param values);
int finit module (int fd, const char *param values,
int flags);
int delete module (const char *name, int flags);

Note: glibc provides no header file declaration of init_ module() and no wrapper
function for finit module(); see NOTES.

DESCRIPTION

init_ module() loads an ELF image into kernel space, performs any necessary sym-
bol relocations, initializes module parameters to values provided by the call-

er, and then runs the module's init function. This system call requires privi-

lege.

The module 1mage argument points to a buffer containing the binary image to be
loaded; len specifies the size of that buffer. The module image should be a
valid ELF image, built for the running kernel.

1. W y & 4

aZYB

Dynamic Resolution on 2.6

To make a .ko file, we start with a regular .o file.

The modpost program creates (from the .o file)
a C source file that describes the additional
sections that are required for the .ko file

The C file is called .mod file

The .mod file is compiled and linked with the
original .o file to make a .ko file

insmod Operations

Up to Kernel 2.4 Since Kernel 2.6

insmod | insmod

1/ 2 3
create_module init module init_ module

Relocate module
(exploiting symtab, e.g.
exposed via /proc/ksyms)

Kernel Exported Symbols

* Symbols from the Kernel or from modules can be exported
* An exported symbol can be referenced by other modules

* Ifamodule references a symbol which is not exported, then
loading the module will fail

* EXPORT SYMBOL (symbol) defined in
include/linux/module.h

* This must be configured:

CONFIG KALLSYMS =y
CONFIG KALLSYMS ALL = vy (include all symbols)

Exported symbols are placed inthe ksymtab section

Kprobes

* Kprobes are meant as a support for dynamic tracing in the
Kernel

* int register kprobe (struct kprobe *p) In
include/linux/kprobes.h specifies where the probe
is to be inserted and what pre and post handlers are to
be called when the probe is hit.

* unreglster kprobe (struct kprobe *p)
* typedef int (*kprobe pre handler t)

(struct kprobe *, struct pt regs *)
* To enable kprobes:

— CONFIG KPROBES=y and CONFIG KALLSYMS=y or
CONFIG KALLSYMS ALL=y

(RYESYS)

Kprobes

* Use breakpoints and single-step on copied code

- (1)Copy original and
(2) Put an int3 Modify rip-relative instruction
(1) Hit an int3
Running Kernel code - int3

BI’EEk Oint (5) Fixup registers and return
F?t, (- o next instruction
ErEE Kprobes Kprobes
pre (3)Set TF=1 post -
. —— { Singlestep]
opy buffer :
(4) Trap single-stepping exceptlon .

User handler

(2) Invokes User pre_handler

y 4 iaw y & & A Y

-y (@

Kprobes

* Kprobes can be installed anywhere in the kernel
— Multiple probes at the same address

— Multiple handlers (or multiple instances of the same handler) may run
concurrently on different CPUs.

— Registered kprobes are visible under the
/sys/kernel/debug/kprobes/ directory

— when registered, probes are saved in a hash table hashed by the address of
the probe

— Hash table is protected by kprobe 1lock (a spinlock)
 Kprobes cannot probe itself

— use a blacklist to prevent recursive traps
* Probe handlers are run with preemption disabled.

— Depending on the architecture and optimization state, handlers may also
run with interrupts disabled (not on x86 /x86-64).

— In any case, should not yield the CPU (e.g., by attempting to acquire a
semaphore).

y 4 1. W y & 4 A Y

aZYB

Kprobes and Non-Exported Symbols

// Get a kernel probe to access flush tlb all
memset (&kp, 0, sizeof (kp))

kp.symbol name = "flush tlb all';
1f (!register kprobe (&kp)) |
flush tlb all lookup = (void *)kp.addr;

unreglster kprobe (&kp);

Linux Kernel Versioning

* include/linux/version.h is automatically included via the inclusion of
include/linux/module.h (except for cases wherethe NO VERSION
macro is used)

* include/linux/version.h provides macros that can be used to get
information related to the "current” kernel version such as:
— UTS RELEASE: expanded to a string defining the kernel version (e.g.
“4.1.7")
— LINUX VERSION CODE: expanded to the binary representation of the
kernel version (wit_h one byte for each number specifying the version)
— KERNEL VERSION (major,minor, release): expanded to the binary

value representing the version number as defined by major, minor and
release

y 4 1. W y & 4 A Y

aZYB

/sys/module

 /sys/module/MODULENAME: The name of the module that is
in the kernel. This module name will always show up if the
module is loaded as a dynamic module.

 /sys/module/MODULENAME/parameters: This directory
contains individual files that are each individual parameters of
the module that are able to be changed at runtime.

* /sys/module/MODULENAME/refcnt: If the module is able to
be unloaded from the kernel, this file will contain the current
reference count of the module.

— Note: If CONFIG MODULE UNLOAD Kkernel configuration value is not
enabled, this file will not be present.

Hands on Kernel Modules

EXAMPLE SESSION

