
Starting and Managing
Userspace Processes

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2017/2018

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

Back to Kernel Initialization

rest_init()
• We need to start other processes than idle!
• A new kernel thread is created, referencing
kernel_init() as its entry point

• A call to schedule() is issued, to start
scheduling the newly-created process

• This is done right before PID 0 calls into
cpu_idle()

Starting /sbin/init
• /sbin/init is the first userspace process ever

started
• This process is commonly stored into the

ramdisk, to speedup the booting process
• init will have to load configuration files from the

hard drive
• We have to find out how to allow userspace

processes to access, e.g., a disk: VFS

File System: Representations
• In RAM:

– Partial/full representation of the current structure
and content of the File System

• On device:
– (possibly outdated) representation of the structure

and of the content of the File System
• Data access and manipulation:

– FS-independent part: interface towards other
subsystems within the kernel

– FS-dependent part: data access/manipulation
modules targeted at a specific file system type

• In UNIX: "everything is a file"

Connecting the two parts
• Any FS object (dir/file/dev) is represented in RAM

via specific data structures

• They keep a reference to the code which correctly
"speaks" to the actual device, if any

• The reference is accessed using File System
independent APIs by other kernel subsystems

• Function pointers are used to reference actual
drivers' functions

File System Initialization
• FS initialization takes place in start_kernel() according to

this sequence:
– vfs_caches_init() (in fs/dcache.c)
– mnt_init() (in fs/namespace.c)
– init_rootfs() (in fs/ramfs/inode.c)
– init_mount_tree() (in fs/namespace.c)

• In this way subsystems able to handle FS are setup

• Typically, at least two different FS types are supported:
– Rootfs (file system in RAM)
– EXT

• In principle, Linux could be configured to support no FS

File system types
• The file_system_type structure describes a file system (it is

defined in include/linux/fs.h)

• It keeps information related to:
– The file system name
– A pointer to a function to be executed upon mounting the file

system (superblock-read)
struct file_system_type {

const char *name;
int fs_flags;
struct super_block *(*read_super)(struct super_block *, void *, int);
struct module *owner;
struct file_system_type * next;
struct list_head fs_supers;

};

Declaring and Registering FS Types

• Any kind of File Systems can be linked to
another via mountpoints

• Instances must be recognized by the Kernel
• New file_system_types must be declared and

registered in the FS table (which is
implemented as a list)

DECLARE_FSTYPE(var, type, read, flags)
(in include/linux/fs.h)

int register_filesystem(struct file_system_type *)
(in fs/super.c)

Declaring and Registering Rootfs
• Rootfs is declared statically in init/do_mounts.c

• the variable is rootfs_fs_type
• The registration is done by init_rootfs()
static struct file_system_type rootfs_fs_type = {

.name = "rootfs",.mount = rootfs_mount,.kill_sb = kill_litter_super,};
int __init init_rootfs(void){ return register_filesystem(&rootfs_fs_type);
}

Mounting the Rootfs instance
• This is done in init_mount_tree()

• Four different data structures are involved:
struct vfsmount (in include/linux/mount.h)
struct super_block (in include/linux/fs.h)
struct inode (in include/linux/fs.h)
struct dentry (in include/linux/dcache.h)

• vfsmount and struct super_block keep information on the file
system (e.g. in terms of relation with other file systems)

• struct inode and struct dentry are instantiated for each
file/directory in the file system

vfsmount
struct vfsmount
{
 struct list_head mnt_hash;
 struct vfsmount *mnt_parent; /*fs we are mounted on */
 struct dentry *mnt_mountpoint; /*dentry of mountpoint */
 struct dentry *mnt_root; /*root of the mounted tree*/
 struct super_block *mnt_sb; /*pointer to superblock */
 struct list_head mnt_mounts; /*list of children, anchored

here */
 struct list_head mnt_child; /*and going through their

mnt_child */
 atomic_t mnt_count;
 int mnt_flags;
 char *mnt_devname; /* Name of device e.g.

/dev/dsk/hda1 */
 struct list_head mnt_list;
};

struct super_block
struct super_block {

struct list_head s_list; /* Keep this first */
……
unsigned long s_blocksize;
……
unsigned long long s_maxbytes; /* Max file size */
struct file_system_type *s_type;
struct super_operations *s_op;
……
struct dentry *s_root;
……
struct list_head s_dirty; /* dirty inodes */
……
union {

struct minix_sb_info minix_sb;
struct ext2_sb_info ext2_sb;
struct ext3_sb_info ext3_sb;
struct ntfs_sb_info ntfs_sb;
struct msdos_sb_info msdos_sb;
……
void *generic_sbp;

} u;
……

};

struct dentry
struct dentry {

unsigned int dflags;
……
struct inode * d_inode; /* Where the name belongs to */
struct dentry * d_parent; /* parent directory */
struct list_head d_hash; /* lookup hash list */
……
struct list_head d_child; /* child of parent list */
struct list_head d_subdirs; /* our children */
……
struct qstr d_name;
……
struct lockref d_lockref; /*per-dentry lock and refcount*/
struct dentry_operations *d_op;
struct super_block * d_sb; /* The root of the dentry tree*/
……
unsigned char d_iname[DNAME_INLINE_LEN]; /* small names */

};

struct qstr

• Eases parameter passing
• Saves "metadata" about the string

#define HASH_LEN_DECLARE u32 hash; u32 len
struct qstr {

union {
struct {

HASH_LEN_DECLARE;
};
u64 hash_len;

};
const unsigned char *name;

};

struct inode
struct inode {

……
struct list_head i_dentry;
……
uid_t i_uid;
gid_t i_gid;
……
unsigned long i_blksize;
unsigned long i_blocks;
……
struct inode_operations *i_op;
struct file_operations *i_fop;
struct super_block *i_sb;
wait_queue_head_t i_wait;
……
union {

……
struct ext2_inode_info ext2_i;
struct ext3_inode_info ext3_i;
……
struct socket socket_i;
……
void *generic_ip;

} u;
};

Global Organization

dentry

dentry dentry dentry

inode
child

children list

parent

superblock

vfsmount
file_system_type

Possibly belonging to other
file systems

Initializing the Rootfs instance
• The main tasks, carried out by init_mount_tree(), are:

1. Allocation of the 4 data structures for Rootfs
2. Linking of the data structures
3. Setting the name “/” to the root of the file system
4. Linking the idle process to Rootfs

• The first three are carried out by vfs_kern_mount() which
executes the super-block read-function for Rootfs

• The last is done via set_fs_pwd() and set_fs_root()

static void __init init_mount_tree(void)
{

struct vfsmount *mnt;
struct mnt_namespace *ns;
struct path root;
struct file_system_type *type;
type = get_fs_type("rootfs");
if (!type)

panic("Can't find rootfs type");mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
put_filesystem(type);
if (IS_ERR(mnt))

panic("Can't create rootfs");
………
root.mnt = mnt;
root.dentry = mnt->mnt_root;
mnt->mnt_flags |= MNT_LOCKED;
set_fs_pwd(current->fs, &root);
set_fs_root(current->fs, &root);

}

Initializing the Rootfs instance

VFS and PCBs
• In the PCB, struct fs_struct *fs points to information

related to the current directory and the root directory for the
associated process

• fs_struct is defined in include/fs_struct.h
struct fs_struct {

atomic_t count;
rwlock_t lock;
int umask;
struct dentry * root, * pwd, * altroot;
struct vfsmount * rootmnt, * pwdmnt,

* altrootmnt;
};

• The idle has both root and pwd pointing the only existing dentry (at
this point of the boot process)

fs_struct in 3.0

struct fs_struct {
 int users;
 spinlock_t lock;
 seqcount_t seq;
 int umask;
 int in_exec;
 struct path root, pwd;
 };

Superblock operations
• Superblock operations must:

– Manage statistic of the file system
– Create and manage i-nodes
– Flush to the device updated information on the

state of the file system

• Some File Systems might not use some operations
(think of File Systems in RAM)

• Functions to access statistics takes are invoked by
system calls statfs and fstatfs

struct super_operations
• It is defined in include/linux/fs.h
 struct super_operations {
 struct inode *(*alloc_inode)(struct super_block *sb);

void (*destroy_inode)(struct inode *);
void (*read_inode) (struct inode *);

 void (*read_inode2) (struct inode *, void *) ;
 void (*dirty_inode) (struct inode *);

void (*write_inode) (struct inode *, int);
void (*put_inode) (struct inode *);
void (*delete_inode) (struct inode *);
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
int (*sync_fs) (struct super_block *);
void (*write_super_lockfs) (struct super_block *);
void (*unlockfs) (struct super_block *);
int (*statfs) (struct super_block *, struct statfs *);
...

 };

Ramfs Example
• Defined in fs/ramfs/inode.c and fs/libfs.c

int simple_statfs(struct dentry *dentry,
 struct kstatfs *buf)

{
buf->f_type = dentry->d_sb->s_magic;
buf->f_bsize = PAGE_SIZE;
buf->f_namelen = NAME_MAX;
return 0;

}

static const struct super_operations ramfs_ops = {
.statfs = simple_statfs,
.drop_inode = generic_delete_inode,
.show_options = ramfs_show_options,

};

dentry operations
• They specify non-default operations for manipulating d-entries
• The table maintaining the associated function pointers is defined in
include/linux/dcache.h

• For the file system in RAM this structure is not used

struct dentry_operations {
int (*d_revalidate)(struct dentry *, int);
int (*d_hash) (struct dentry *, struct qstr *);
int (*d_compare) (struct dentry *,

struct qstr *, struct qstr *);
void (*d_delete)(struct dentry *);
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);

 ...
}; Removes the pointed i-node (when releasing the dentry)

Removes the dentry, when the reference counter is set to zero

i-node operations
• They specify i-node related operations
• The table maintaining the corresponding function pointers is defined in

include/linux/fs.h
struct inode_operations {
 ...
 int (*create) (struct inode *,struct dentry *,int);
 struct dentry * (*lookup) (struct inode *,struct dentry *);
 int (*link) (struct dentry *,struct inode *,struct dentry *);
 int (*unlink) (struct inode *,struct dentry *);
 int (*symlink) (struct inode *,struct dentry *,const char *);
 int (*mkdir) (struct inode *,struct dentry *,int);
 int (*rmdir) (struct inode *,struct dentry *);
 int (*mknod) (struct inode *,struct dentry *,int,int);
 ...
};

An example for the file system in RAM
• i-node operations for the File System in RAM are defined in fs/ramfs/inode.c

static struct inode_operations
ramfs_dir_inode_operations = {

.create = ramfs_create,

.lookup = simple_lookup,

.link = simple_link,

.unlink = simple_unlink,

.symlink = ramfs_symlink,

.mkdir = ramfs_mkdir,

.rmdir = simple_rmdir,

.mknod = ramfs_mknod,

.rename = simple_rename,
};

struct nameidata

• struct nameidata is used in several VFS operations (e.g., to
manipulate strings)

• It is defined in include/linux/fs.h:

struct nameidata {
struct dentry *dentry;
struct vfsmount *mnt;
struct qstr last;
unsigned int flags;
int last_type;

};

VFS Intermediate Functions
• A set of API which ensure consistency when managing a VFS (e.g.,

pathname lookup)

• A lot of different locking strategies on all data structures are used

static int path_lookupat(struct nameidata *nd,
unsigned flags, struct path *path) (in fs/namei.c)

– it is used when an existing object is wanted such as by
stat() or chmod(). It calls walk_component() on
the final component through a call to lookup_last().
path_lookupat() returns just the final dentry

– LOOKUP_FOLLOW allows to follow symlinks

VFS Intermediate Functions
int vfs_mkdir(struct inode *dir, struct dentry
*dentry, umode_t mode) (in fs/namei.c)

– Creates an i-node and associates it with dentry. dir points to a
parent i-node from which basic information for the setup of the
child is retrieved. mode specifies the access rights for the created
object

static __inline__ struct dentry * dget(struct
dentry *dentry) (in include/linux/dcache.h)

– Acquires a dentry (by incrementing the reference counter)

VFS Intermediate Functions
void dput(struct dentry *dentry) (in include/linux/dcache.c)

– Release a dentry. This will drop the usage count and if appropriate call the
dentry unlink function as well as removing it from the queues and
releasing its resources. If the parent dentries were scheduled for release
they too may now get deleted.

long do_mount(const char *dev_name, const char __user
*dir_name, const char *type_page, unsigned long flags,
void *data_page) (in fs/namespace.c)

– Mounts a device onto a target directory

static struct inode *alloc_inode(struct super_block
*sb)(in fs/inode.c)

– allocates an i-node and initializes it according to the specific file system
rules

VFS Intermediate Functions
struct dentry *d_hash_and_lookup(struct dentry *dir, struct
qstr *name) (in fs/dcache.c)

– hash the qstr then search for a dentry. dir is the directory to search in, name is
the qstr of name

– Relies on d_lookup()

struct dentry *d_lookup(const struct dentry *parent, const
struct qstr *name) (in fs/dcache.c)

– search the children of the parent dentry for the name in question. If the dentry
is found its reference count is incremented and the dentry is returned. The caller
must use dput() to free the entry when it has finished using it. NULL is returned
if the dentry does not exist.

int vfs_create(struct inode *dir, struct dentry *dentry,
umode_t mode, bool want_excl) (in fs/namei.c)

– Create an i-node linked to dentry, which is child of the i-node pointed by dir.
The parameter mode corresponds to the value of the permission mask passed in
input to the open system call. It relies on the i-node-operation create

Relations to kernel_init()
• Initialization of VFS and execution of init stems from kernel_init() at various points
• do_basic_setup(): initializes drivers, also ramfs drivers (after page table init)
• prepare_namespace() (in init/do_mounts.c):

• Wait for devices to complete their probing (delays in boot are often caused here)
• Mounts the /dev pseudofolder (devtmpfs)
• Loads initramfs
• Mounts initramfs as "/"

• run_init_process(): invoked multiple times over multiple binaries
• relies on do_execve() in (fs/exec.c)
if (!try_to_run_init_process("/sbin/init") ||
 !try_to_run_init_process("/etc/init") ||
 !try_to_run_init_process("/bin/init") ||
 !try_to_run_init_process("/bin/sh"))

return 0;

panic("No working init found. Try passing init= option to kernel. "
 "See Linux Documentation/admin-guide/init.rst for guidance.");

Device Numbers
• Each device is associated with a couple of numbers: MAJOR and MINOR
• MAJOR is the key to access the device driver as registered within a

driver database
• MINOR identifies the actual instance of the device driven by that driver

(this can be specified by the driver programmer)
• There are different tables to register devices, depending on whether

the device is a char device or a block device:
– fs/char_dev.c for char devices
– fs/block_dev.c for block devices

• In the above source files we can also find device-independent functions
for accessing the actual driver

Identifying Char and Block Devices

$ ls -l /dev/sda /dev/ttyS0
brw-rw---- 1 root disk 8, 0 9 apr 09.31 /dev/sda
crw-rw---- 1 root uucp 4, 64 9 apr 09.31 /dev/ttyS0

type major minor

Major and Minor Numbers
$ ls -l /dev/sd*
brw-rw---- 1 root disk 8, 0 9 apr 09.31 /dev/sda
brw-rw---- 1 root disk 8, 1 9 apr 09.31 /dev/sda1
brw-rw---- 1 root disk 8, 2 9 apr 09.31 /dev/sda2

• The same major can be given to both a character and a block device!
• Numbers are "assigned" by the Linux Assigned Names and Numbers

Authority (http://lanana.org/) and kept in
Documentation/devices.txt.

• Defines are in include/uapi/linux/major.h

Same driver, different disks or partitions

The Device Database
• Char and Block devices behave differently, but they are

organized in identical databases which are handled as hashmaps
• They are referenced as cdev_map and bdev_map
struct kobj_map {

struct probe {
struct probe *next;
dev_t dev;
unsigned long range;
struct module *owner;
kobj_probe_t *get;
int (*lock)(dev_t, void *);
void *data;

} *probes[255];
struct mutex *lock;

};

hasing is done as:
major % 255

The Device Database

[b,c]dev_map

data data data

struct probe struct probe struct probe

device-specific
structure

device-specific
structure

device-specific
structure

Device Numbers Representation

• The dev_t type keeps both the major and the minor
(in include/linux/types.h)
typedef __u32 __kernel_dev_t;
typedef __kernel_dev_t dev_t;

• In linux/kdev_t.h we find facilities to
manipulate it:
#define MINORBITS 20
#define MINORMASK ((1U << MINORBITS) - 1)
#define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

struct cdev
struct cdev {

struct kobject kobj;
struct module *owner;
const struct file_operations *ops;
struct list_head list;
dev_t dev;
unsigned int count;

} __randomize_layout;

Char Devices Range Database
• Defined in fs/char_dev.c
• Used to manage device number allocation to drivers

#define CHRDEV_MAJOR_HASH_SIZE 255
static struct char_device_struct {

struct char_device_struct *next;
unsigned int major;
unsigned int baseminor;
int minorct;
char name[64];
struct cdev *cdev;

} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

Registering Char Devices
• linux/fs.h provides the following wappers to

register/deregister a driver:
– int register_chrdev(unsigned int major, const char
*name, struct file_operations *fops): registration takes
place onto the entry at displacement MAJOR (0 means the choice is up o
the kernel). The actual MAJOR number is returned

– int unregister_chrdev(unsigned int major, const char
*name): releases the entry at displacement MAJOR

• They map to actual operations in fs/char_dev.c:
• int __register_chrdev(unsigned int major, unsigned
int baseminor, unsigned int count, const char *name,
const struct file_operations *fops)

• void __unregister_chrdev(unsigned int major,
unsigned int baseminor, unsigned int count, const
char *name)

struct file_operations

• It is defined in include/linux/fs.h
struct file_operations {

struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode*, struct file *, unsigned int,

unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
...

};

Registering Device Numbers
• A driver might require to register or allocate a

range of device numbers
• API are in fs/char_dev.c and exposed in
include/linux/fs.h

• int register_chrdev_region(dev_t from,
unsigned count, const char *name)
– Major is specified in from

• int alloc_chrdev_region(dev_t *dev,
unsigned baseminor, unsigned count,
const char *name)
– Major and first minor are returned in dev

Block Devices
• The structure corresponding to cdev for a block device is struct gendisk in

include/linux/genhd.h
struct gendisk {

int major; /* major number of driver */
int first_minor;
int minors; /* maximum number of minors, =1 for

 * disks that can't be partitioned. */
char disk_name[DISK_NAME_LEN];/* name of majordriver */
...
const struct block_device_operations *fops;
struct request_queue *queue;

};
• In block/genhd.c we find the following functions to register/deregister the

driver:
int register_blkdev(unsigned int major, const
char * name, struct block_device_operations *bdops)
int unregister_blkdev(unsigned int major, const char * name)

• It is defined in include/linux/fs.h

struct block_device_operations {
int (*open) (struct inode *, struct file *);
int (*release) (struct inode *, struct file *);
int (*ioctl) (struct inode *, struct file *,

unsigned, unsigned long);
int (*check_media_change) (kdev_t);
int (*revalidate) (kdev_t);
struct module *owner;

};

• There is nothing here to read and write from the device!

struct block_device_operations

Read/Write on Block Devices

• For char devices the management of read/write
operations is in charge of the device driver

• This is not the same for block devices

• read/write operations on block devices are
handled via a single API related to buffer cache
operations

• The actual implementation of the buffer cache
policy will determine the real execution activities
for block device read/write operations

Request Queues

• Request queues (strategies in UNIX) are the
way to operate on block devices

• Requests encapsulate optimizations to
manage each specific device (e.g. via the
elevator algorithm)

• The Request Interface is associated with a
queue of pending requests towards the block
device

Linking Devices and the VFS

• The member umode_t i_mode in struct inode tells the type of
the i-node:

– directory
– file
– char device
– block device
– (named) pipe

• The kernel function sys_mknod() creates a generic i-node

• If the i-inode represents a device, the operations to manage the device
are retrieved via the device driver database

• In particular, the i-node has the dev_t i_rdev member

The mknod() System Call

int mknod(const char *pathname, mode_t mode, dev_t dev)

• mode specifies permissions and type of node to be created

• Permissions are filtered via the umask of the calling process
(mode & umask)

• Different macros can be used to define the node type: S_IFREG,
S_IFCHR, S_IFBLK, S_IFIFO

• When using S_IFCHR or S_IFBLK, the parameter dev
specifies Major and Minor numbers of the device file to create,
otherwise it is a don’t care

Opening Device Files
• In fs/devices.c there is the generic
chrdev_open() function

• This function needs to find the dev-specific file
operations

• Given the device, number, kobject_lookup() is
called to find a corresponding kobject

• From the kobject we can navigate to the
corresponding cdev

• The device-dependent file operations are then in
cdev->ops

• This information is then cached in the i-node

i-node to File Operations Mapping

struct inode struct cdev

struct file

struct
file_operations

i_devices

i_cdev

list

f_op

ops

They are both struct list_head

The mount()system call
int mount(const char *source, const char *target,
const char *filesystemtype, unsigned long mountflags,

const void *data);

• MS_NOEXEC: Do not allow programs to be executed from this file system.

• MS_NOSUID: Do not honour set-UID and set-GID bits when executing
programs from this file system.

• MS_RDONLY: Mount file system read-only.

• MS_REMOUNT: Remount an existing mount. This allows you to change the
mountflags and data of an existing mount without having to unmount and
remount the file system. source and target should be the same values
specified in the initial mount() call; filesystem type is ignored.

• MS_SYNCHRONOUS: Make writes on this file system synchronous (as
though the O_SYNC flag to open(2) was specified for all file opens to this
file system).

Mount Points

• Directories selected as the target for the mount
operation become a “mount point”

• This is reflected in struct dentry by setting
in d_flags the flag DCACHE_MOUNTED

• Any path lookup function ignores the content of
mount points (namely the name of the dentry)
while performing pattern matching

File descriptor table
• The PCB has a member struct files_struct *files which points to

the descriptor table defined in include/linux/fdtable.h:
struct files_struct {atomic_t count;

bool resize_in_progress;
wait_queue_head_t resize_wait;
struct fdtable __rcu *fdt;struct fdtable fdtab;
spinlock_t file_lock ____cacheline_aligned_in_smp;unsigned int next_fd;
unsigned long close_on_exec_init[1];
unsigned long open_fds_init[1];
unsigned long full_fds_bits_init[1];
struct file __rcu *fd_array[NR_OPEN_DEFAULT];

};

struct fdtable
struct fdtable {

unsigned int max_fds;
struct file __rcu **fd
unsigned long *close_on_exec;
unsigned long *open_fds;
unsigned long *full_fds_bits;
struct rcu_head rcu;

};

bitmaps

struct file {
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
struct mutex f_pos_lock;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
...
struct address_space *f_mapping;
errseq_t f_wb_err;

}

struct file

Opening a file
• do_sys_open() in fs/open.c is logically

divided in two parts:
– First, a file descriptor is allocated (and a suitable

struct file is allocated)
– The second relies on an invocation of the

intermediate function struct file
*do_filp_open(int dfd, struct
filename *pathname, const struct
open_flags *op) which returns the address
of the struct file associated with the opened
file

filp_open()
• Two main tasks are executed here:

1. Setup of the current namei data (and later restore)
2. Navigation of the FS tree to create a struct file for the

working session on the file
• The first task is carried out via the function set_nameidata defined

in fs/namei.c which:
– Sets up a struct nameidata data structure and links that to the PCB

of the running process

– This structure keeps information about the current path and relations to
other elements in the VFS

• The second task exploits the path_openat()function in
fs/namei.c

path_openat()
• Get a zeroed free file descriptor via
get_empty_filp()(returns a pointer to a
struct file taken from the slab)

• Initializes internal data structures related to the
file path via init_path()

• Performs name resolution mapping the path to
the actual dentry representing the file
– static int link_path_walk(const char
*name, struct nameidata *nd):

– nd will reference the dentry

do_sys_open()
long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode) {

struct filename *tmp;
tmp = getname(filename);
if (IS_ERR(tmp))

return PTR_ERR(tmp);
fd = get_unused_fd_flags(flags);if (fd >= 0) {struct file *f = do_filp_open(dfd, tmp, &op);if (IS_ERR(f)) {put_unused_fd(fd);fd = PTR_ERR(f);} else {fsnotify_open(f);fd_install(fd, f);}}
putname(tmp);
return fd;

}

int __alloc_fd(struct files_struct *files, unsigned start, unsigned end, unsigned flags) {unsigned int fd;int error;struct fdtable *fdt;
spin_lock(&files->file_lock);repeat:fdt = files_fdtable(files);fd = start;if (fd < files->next_fd)fd = files->next_fd;if (fd < fdt->max_fds)fd = find_next_fd(fdt, fd);
error = -EMFILE;if (fd >= end)goto out;
error = expand_files(files, fd);if (error < 0)goto out;
if (error) /* fdt expansion is blocking */goto repeat;...}

get_unused_fd_flags()

Kernel Pointers and Errors
• From include/linux/err.h

#define IS_ERR_VALUE(x) unlikely((unsigned long)(void *)(x) >= (unsigned long)-MAX_ERRNO)

static inline void * __must_check ERR_PTR(long error) {
return (void *) error;

}

static inline long __must_check PTR_ERR(__force const void *ptr) {
return (long) ptr;

}

static inline bool __must_check IS_ERR(__force const void *ptr) {
return IS_ERR_VALUE((unsigned long)ptr);

}

Closing a file
• The close() system call is defined in fs/open.c as:

– SYSCALL_DEFINE1(close, unsigned int, fd)
• This function basically calls (in fs/file.c):
 int __close_fd(struct files_struct *files,

unsigned fd)
• __close_fd():

– Closes the file descriptor by calling into
__put_unused_fd();

– Calls filp_close(struct file *filp, fl_owner_t
id), defined in fs/open.c, which flushing the data
structures associated with the file (struct file, dentry and i-
node)

filp_close()
• This relies on the following internal functions:

void dnotify_flush(struct file *filp, fl_owner_t id)
(in fs/dnotify.c)

Notifies that file flushing has been finalized so that dentry and i-node
operations can be carried out

void locks_remove_posix(struct file *filp,
fl_owner_t owner) (in fs/locks.c)

Removes the lock on struct file

void fput(struct file * file) (in fs/file_table.c)
deallocates struct file

__close_fd()
int __close_fd(struct files_struct *files, unsigned fd)
{

struct file *file;
struct fdtable *fdt;

spin_lock(&files->file_lock);
fdt = files_fdtable(files);
if (fd >= fdt->max_fds)

goto out_unlock;
file = fdt->fd[fd];
if (!file)

goto out_unlock;
rcu_assign_pointer(fdt->fd[fd], NULL);
__put_unused_fd(files, fd);
spin_unlock(&files->file_lock);
return filp_close(file, files);

out_unlock:
spin_unlock(&files->file_lock);
return -EBADF;

}

__put_unused_fd()
static void __put_unused_fd(struct files_struct *files,
unsigned int fd) {

struct fdtable *fdt = files_fdtable(files);
__clear_open_fd(fd, fdt);
if (fd < files->next_fd)

files->next_fd = fd;
}

static inline void __clear_open_fd(unsigned int fd,
struct fdtable *fdt) {

__clear_bit(fd, fdt->open_fds);
__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);

}

The write() system call
• Defined in fs/read_write.c

SYSCALL_DEFINE3(write, unsigned int fd, const char __user
*, buf, size_t, count) {

struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_write(f.file, buf, count, &pos);
if (ret >= 0)

file_pos_write(f.file, pos);
fdput_pos(f);

}
return ret;

}

vfs_write()
• Performs some security checks and then calls:

ssize_t __vfs_write(struct file *file, const char __user *p,
size_t count, loff_t *pos) {

if (file->f_op->write)
return file->f_op->write(file, p, count, pos);

else if (file->f_op->write_iter)
return new_sync_write(file, p, count, pos);

else
return -EINVAL;

}

The read() system call
• Defined in fs/read_write.c

SYSCALL_DEFINE3(read, unsigned int, fd, char __user *,
buf, size_t, count) {

struct fd f = fdget_pos(fd);
ssize_t ret = -EBADF;

if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
if (ret >= 0)

file_pos_write(f.file, pos);
fdput_pos(f);

}
return ret;

}

vfs_read()
• Performs some security checks and then calls:

ssize_t __vfs_read(struct file *file, char __user *buf,
size_t count, loff_t *pos) {

if (file->f_op->read)
return file->f_op->read(file, buf, count, pos);

else if (file->f_op->read_iter)
return new_sync_read(file, buf, count, pos);

else
return -EINVAL;

}

proc File System
• An in-memory file system which provides information on:

– Active programs (processes)
– The whole memory content
– Kernel-level settings (e.g. the currently mounted modules)

• Common files on proc are:
– cpuinfo contains the information established by the kernel about the

processor at boot time, e.g., the type of processor, including variant and
features.

– kcore contains the entire RAM contents as seen by the kernel.
– meminfo contains information about the memory usage, how much of the

available RAM and swap space are in use and how the kernel is using them.
– version contains the kernel version information that lists the version

number, when it was compiled and who compiled it.

proc File System
• net/ is a directory containing network information.
• net/dev contains a list of the network devices that are compiled into the

kernel. For each device there are statistics on the number of packets that
have been transmitted and received.

• net/route contains the routing table that is used for routing packets on
the network.

• net/snmp contains statistics on the higher levels of the network protocol.
• self/ contains information about the current process. The contents are the

same as those in the per-process information described later.

proc File System
• pid/ contains information about process number pid. The kernel maintains a directory

containing process information for each process.
• pid/cmdline contains the command that was used to start the process (using null

characters to separate arguments).
• pid/cwd contains a link to the current working directory of the process.
• pid/environ contains a list of the environment variables that the process has

available.
• pid/exe contains a link to the program that is running in the process.
• pid/fd/ is a directory containing a link to each of the files that the process has open.
• pid/mem contains the memory contents of the process.
• pid/stat contains process status information.
• pid/statm contains process memory usage information.

proc Features
• The file_system_type is defined in fs/proc/root.c

static struct file_system_type proc_fs_type
= {

.name = "proc",

.mount = proc_mount,

.kill_sb = proc_kill_sb,

.fs_flags = FS_USERNS_MOUNT,
};

• This is a single-instance memory-mapped File System

Creation of the proc instance

• Done in proc_root_init()
• The File System is registered using

register_filesystem()
• Subfolders are created (such as net, sys,
sys/fs)

– This is done using proc_mkdir()

Core data structures for proc
• proc is represented using the data structure defined in fs/proc/internal.h

struct proc_dir_entry {
unsigned short low_ino;
unsigned short namelen;
const char *name;
mode_t mode;
nlink_t nlink; uid_t uid; gid_t gid;
unsigned long size;
struct inode_operations * proc_iops;
struct file_operations * proc_fops;
...
read_proc_t *read_proc;
write_proc_t *write_proc;
...

};

Mounting proc

• proc is mounted only if asked at compile-time in
makeconfig (see the macro CONFIG_PROC_FS)

• This File System is mounted by init
• proc can be remounted in userspace namespaces

Handling proc (include/linux/proc_fs.h)

struct proc_dir_entry *proc_mkdir(const char *name, struct
proc_dir_entry *parent)

– Creates a directory called name within the directory pointed by parent. Returns the
pointer to the new struct proc_dir_entry

static inline struct proc_dir_entry
*create_proc_read_entry(const char *name, mode_t mode, struct
proc_dir_entry *base, read_proc_t *read_proc, void * data)

– Creates a node called name, with type and permissions mode, linked to base, and
where the reading function is set to read_proc end the data field to data. It returns
the pointer to the new struct proc_dir_entry

struct proc_dir_entry *create_proc_entry(const char *name,
mode_t mode, struct proc_dir_entry *parent)

– Creates a node called name, with type and permissions mode, linked to parent. It
returns the pointer to the new struct proc_dir_entry

The Sysfs File System (since 2.6)
• Similar in spirit to proc, mounted to /sys
• It is an alternative way to make the kernel export

information (or set it) via common I/O operations
• Very simple API
• More clear structuring

Sysfs Core API

The owner field may be set by the caller to point to the module in which the code
to manipulate the attribute exists

Kernel Objects (knobs)

• Kobjects don't live on their own: they are
embedded into objects (think of struct cdev)

• They keep a reference counter (kref)

void kobject_init(struct kobject *kobj);
int kobject_set_name(struct kobject *kobj,
const char *format, ...);
struct kobject *kobject_get(struct kobject
*kobj);
void kobject_put(struct kobject *kobj);

struct kobject
struct kobject {

const char *name;
struct list_head entry;
struct kobject *parent;
struct kset *kset;
struct kobj_type *ktype;
struct kernfs_node *sd; /* sysfs

directory entry */
struct kref kref;

};

struct kobj_type
struct kobj_type {

void (*release)(struct kobject *);
struct sysfs_ops *sysfs_ops;
struct attribute **default_attrs;

};

• A specific object type is defined in terms of the
sysfs_ops to be executed on it, the defaul attributes
(if any), and the release function

Sysfs Read/Write Operations

• These operations are define in the kobject thanks to
the struct kobj_type *ktype member:
– struct kobject->ktype->sysfs_ops

struct sysfs_ops {
 /* method invoked on read of a sysfs file */
 ssize_t (*show) (struct kobject *kobj,
 struct attribute *attr,
 char *buffer);

 /* method invoked on write of a sysfs file */
 ssize_t (*store) (struct kobject *kobj,
 struct attribute *attr,
 const char *buffer,
 size_t size);
};

ksets

void kset_init(struct kset *kset);
int kset_add(struct kset *kset);
int kset_register(struct kset *kset);
void kset_unregister(struct kset *kset);
struct kset *kset_get(struct kset *kset);
void kset_put(struct kset *kset);
kobject_set_name(my_set->kobj, "The name");

Hooking into Sysfs

• When a kobject is created it does not
immediately appear in Sysfs

• It has to be explicitly added (although the
operation can fail):
– int kobject_add(struct kobject *kobj);

• To remove a kobject from Sysfs:
– void kobject_del(struct kobject
*kobj);

Device Classes

• Devices are organized into "classes"
• A device can belong to multiple classes
• Class membership is shown in /sys/class/

– Block devices are automatically placed under the
"block" class

– This is done automatically whe the gendisk structure
is registered in the kernel

• Most devices don't require the creation of new
classes

Managing New Classes
• Manage classes, we instantiate and register the struct class

declared in linux/device.h
static struct class sbd_class = {

.name = "class_name",

.class_release = release_fn
};

int class_register(struct class *cls);
void class_destroy(struct class *cls);

struct class *class_create(struct module *owner, const
char *name, struct lock_class_key *key)

Managing Devices in Classes
• struct device
*device_create(struct class *class,
struct device *parent, dev_t devt,
void *drvdata, const char
*fmt, ...)

• void device_destroy(struct class
*class, dev_t devt)

printf-like way to specify the device node in /dev

Device Class Attributes
• Specify attributes for the classes, and functions to

"read" and "write" the specific class attributes
• CLASS_DEVICE_ATTR(name, mode, show, store);
• This is expanded to a structure called
dev_attr_name

• ssize_t (*show)(struct class_device
*cd, char *buf);

• ssize_t (*store)(struct class_device *,
const char *buf, size_t count);

Creating Device Attribute Files
• Again placed in /sys

• int device_create_file(struct
device *dev,const struct
device_attribute *attr)

• void device_remove_file(struct
device *dev, const struct
device_attribute *attr)

udev

• udev is the userspace Linux device manager
• It manages device nodes in /dev
• It also handles userspace events raised when

devices are added/removed to/from the system

• The introduction of udev has been due to the
degree of complexity associated with device
management

• It is highly configurable and rule-based

udev rules
• Udev in userspace looks at /sys to detect changes and see whether new

(virtual) devices are plugged
• Special rule files (in /etc/udev/rules.d) match changes and create files in

/dev accordingly
• Syntax tokens in syntax files:

– KERNEL: match against the kernel name for the device
– SUBSYSTEM: match against the subsystem of the device
– DRIVER: match against the name of the driver backing the device
– NAME: the name that shall be used for the device node
– SYMLINK: a list of symbolic links which act as alternative names for the device

node

• KERNEL=="hdb", DRIVER=="ide-disk", NAME="my_spare_disk",
SYMLINK+="sparedisk"

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

Startup Services
• Hostname
• Timezone
• Check the hard drives
• Mount the hard drives
• Remove files from /tmp
• Configure network interfaces
• Start daemons and network services

Startup Run Levels

1 (S) Single user
2 Multiuser (no networking)
3 Full Multiuser
4 Unused
5 X11
6 Reboot
0 Halt

Run Level Scripts
• Actual scripts placed in: /etc/rc.d/init.d/
• /etc/rc.d/rc#.d/:

– Symbolic links to /etc/init.d scripts
– S## - Start scripts
– K## - Stop scripts
– /etc/sysconfig/: script configuration files

• chkconfig <script> on|off
• service <script> start|stop|restart

/etc/inittab
• Initializes system for use
• Format: id:rl:action:process

–id: uniquely identifies entry
–rl: what runlevels the entry applies to
–action: the type of action to execute
–process: process command line

• An example:
2:23:respawn:/sbin/getty 38400 tty2

Systemd
• Becoming more prevalent in Linux Distros
• Mostly compatible with the init system

– init scripts could be read as alternative format
• Based on the notion of "units" and "dependencies"

Systemd Targets
• The concept of "runlevel" is mapped to "targets" in systemd

jargon
• Runlevel is defined through a symbolic to one of the runlevel

targets
• Runlevel Target

– Runlevel 3:
/lib/systemd/system/multi-user.target

– Runlevel 5:
/lib/systemd/system/graphical.target

• Change Runlevel:
– Remove current link /etc/systemd/system/default.target
– Add a new link to the desired runlevel

Systemd Unit Types

• Different unit types control different aspects of the
operating system
– service: handles daemons
– socket: handles network sockets
– target: logical grouping of units (example: runlevel)
– device: expose kernel devices
– mount: controls mount points of the files system
– automount: mounts the file system
– snapshot: references other units (similar to targets)

Systemd Unit Section
• [Unit]

– Description: A meaningful description of the unit
– Requires: Configures dependencies on other units
– Wants: Configures weaker dependencies
– Conflicts: Negative dependencies
– Before: This unit must be started before these others
– After: This unit must be started after these others

(unlike Requires, it doest not start the unit if not
already active)

Systemd Service Section
• [Service]

– Type= simple|oneshot|forking|dbus|notify|idle
– ExecStart
– ExecReload
– ExecStop
– Restart=no|on-success|on-failure|on-abort|always

Systemd Install Section
• [Install]

– Wantedby=

• Used to determine when to start
(e.g. Runlevel)

An Example
[Unit]
Description=Postfix Mail Transport Agent
After=syslog.target network.target
Conflicts=sendmail.service exim.service

[Service]
Type=forking
PIDFile=/var/spool/postfix/pid/master.pid
EnvironmentFile=-/etc/sysconfig/network
ExecStartPre=-/usr/libexec/postfix/aliasesdb
ExecStartPre=-/usr/libexec/postfix/chroot-update
ExecStart=/usr/sbin/postfix start
ExecReload=/usr/sbin/postfix reload
ExecStop=/usr/sbin/postfix stop

[Install]
WantedBy=multi-user.target

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

How a Program is Started?

• We all know how to compile a program:
– gcc program.c –o program

• We all know how to launch the compiled
program:
– ./program

• The question is: why does all this work?
• What is the convention used between kernel and

user space?

In the beginning, there was init

Starting a Program from bash
static int execute_disk_command (char *command, int
pipe_in, int pipe_out, int async, struct fd_bitmap
*fds_to_close) {
 pid_t pid;
 pid = make_child (command, async);

 if (pid == 0) {
 shell_execve (command, args, export_env);
 }
}

Starting a Program from bash
pid_t make_child (char *command, int async_p) {
 pid_t pid;
 int forksleep;

 start_pipeline();

 forksleep = 1;
 while ((pid = fork ()) < 0 && errno == EAGAIN && forksleep < FORKSLEEP_MAX) {
 sys_error("fork: retry");

 reap_zombie_children();
 if (forksleep > 1 && sleep(forksleep) != 0)
 break;
 forksleep <<= 1;
 }

 if (pid < 0) {
 sys_error ("fork");
 throw_to_top_level ();
 }

 if (pid == 0) {
 sigprocmask (SIG_SETMASK, &top_level_mask, (sigset_t *)NULL);
 } else {
 last_made_pid = pid;
 add_pid (pid, async_p);
 }
 return (pid);
}

Starting a Program from bash
int shell_execve (char *command, char **args, char **env) {
 execve (command, args, env);
 READ_SAMPLE_BUF (command, sample, sample_len);
 if (sample_len == 0)
 return (EXECUTION_SUCCESS);
 if (sample_len > 0) {
 if (sample_len > 2 && sample[0] == '#' && sample[1] == '!')
 return (execute_shell_script(sample, sample_len, command, args, env));
 else if (check_binary_file (sample, sample_len)) {
 internal_error (_("%s: cannot execute binary file"), command);
 return (EX_BINARY_FILE);
 }
 }
 longjmp(subshell_top_level, 1);
}

fork()and exec*()
• To create a new process, a couple of fork()

and exec*() calls should be issued
– Unix worked mainly with multiprocessing (shared

memory)
– fork() relies on COW
– fork() followed by exec*() allows for fast

creation of new processes, both for sharing memory
view or not

do_fork()
• Fresh PCB/kernel-stack allocation
• Copy/setup of PCB information
• Copy/setup of PCB linked data structures
• What information is copied or inherited (namely

shared into the original buffers) depends on the
value of the flags passed as input to do_fork()

• Admissible values for the flags are defined in
include/linux/sched.h
– CLONE_VM: set if VM is shared between processes
– CLONE_FS: set if fs info shared between processes
– CLONE_FILES: set if open files shared between

processes
– CLONE_PID: set if pid shared
– CLONE_PARENT: set if we want to have the same

parent as the cloner

exec*()
• exec*() does not create a new process
• it just changes the program file that an existing

process is running:
– It first wipes out the memory state of the calling

process
– It then goes to the filesystem to find the program

file requested
– It copies this file into the program's memory and

initializes register state, including the PC
– It doesn't alter most of the other fields in the PCB

• the process calling exec*() (the child copy of the shell,
in this case) can, e.g., change the open files

struct linux_binprm

struct linux_binprm {
 char buf[BINPRM_BUF_SIZE];
 struct page *page[MAX_ARG_PAGES];
 unsigned long p; /* current top of mem */
 int sh_bang; struct file* file;
 int e_uid, e_gid;
 kernel_cap_t cap_inheritable, cap_permitted, cap_effective;
 int argc, envc;
 char *filename; /* Name of binary */
 unsigned long loader, exec;
};

do_execve()
int do_execve(char *filename, char **argv, char **envp, struct pt_regs
*regs) {
 struct linux_binprm bprm;
 struct file *file;
 int retval;
 int i;
 file = open_exec(filename);
 retval = PTR_ERR(file);
 if (IS_ERR(file))
 return retval;

 bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0]));
 bprm.file = file;
 bprm.filename = filename;
 bprm.sh_bang = 0;
 bprm.loader = 0;
 bprm.exec = 0;
 if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) { allow_write_access(file); fput(file); return bprm.argc; }

do_execve()
 if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) {
 allow_write_access(file);
 fput(file);
 return bprm.envc;
 }
 retval = prepare_binprm(&bprm);
 if (retval < 0)
 goto out;
 retval = copy_strings_kernel(1, &bprm.filename, &bprm);
 if (retval < 0)
 goto out;
 bprm.exec = bprm.p;
 retval = copy_strings(bprm.envc, envp, &bprm);
 if (retval < 0)
 goto out;

 retval = copy_strings(bprm.argc, argv, &bprm);
 if (retval < 0)
 goto out;
 retval = search_binary_handler(&bprm,regs);
 if (retval >= 0)
 /* execve success */
 return retval;

do_execve()
 out:
 /* Something went wrong, return the inode and free the argument pages*/
 allow_write_access(bprm.file);
 if (bprm.file)
 fput(bprm.file);
 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { struct page * page = bprm.page[i]; if (page) __free_page(page); }

 return retval;
}

search_binary_handler()
• search_binary_handler():

– Scans a list of binary file handlers registered in the
kernel;

– If no handler is able to recognize the image format,
syscall returs the ENOEXEC error (“Exec Format Error”);

• In fs/binfmt_elf.c:
– load_elf_binary():

• Load image file to memory using mmap;
• Reads the program header and sets permissions accordingly
• elf_ex = *((struct elfhdr *)bprm->buf);

Compiling Process

Linker
Script

File

Makefile

preprocessor

compiler assembler

Make

Object File

 Shared
Object

Relocatable
File

Executable
File

 Link Map
File

Linker

Archive (ar)

User-created files

C/C++ Sources
And Headers

Assembly
Sources

Library File

Object File Format

• For more than 20 years, *nix executable file
format has been a.out (since 1975 to 1998).

• This format was made up of at most 7 sections:
– exec header: loading information;
– text segment: machine instructions;
– data segment: initialized data;
– text relocations: information to update pointers;
– data relocations: information to update pointers;
– symbol table: information on variables and functions;
– string table: names associated with symbols.

Object File Format

• This format's limits were:
– cross-compiling;
– dynamic linking;
– creation of simple shared libraries;
– lack for support of initializers/finalizers (e.g.

constructors and destructors).
• Linux has definitively replaced a.out with ELF

(Executable and Linkable Format) in version 1.2
(more or less in 1995).

ELF Types of Files
• ELF defines the format of binary executables. There are

four different categories:
– Relocatable (Created by compilers and assemblers. Must be

processed by the linker before being run).
– Executable (All symbols are resolved, except for shared

libraries’ symbols, which are resolved at runtime).
– Shared object (A library which is shared by different

programs, contains all the symbols’ information used by the
linker, and the code to be executed at runtime).

– Core file (a core dump).
• ELF files have a twofold nature

– Compilers, assemblers and linkers handle them as a set of
logical sections;

– The system loader handles them as a set of segments.

ELF File’s Structure

Segments

Program
Header

Section
Header

ELF Header

Describes Sections

Describes segments

Sections

(optional, ignored)

(optional, ignored)

Relocatable File Executable File

ELF Header
#define EI_NIDENT (16)

typedef struct {
 unsigned char e_ident[EI_NIDENT];/* Magic number and other info */
 Elf32_Half e_type; /* Object file type */
 Elf32_Half e_machine; /* Architecture */
 Elf32_Word e_version; /* Object file version */
 Elf32_Addr e_entry; /* Entry point virtual address */
 Elf32_Off e_phoff; /* Program header table file offset */
 Elf32_Off e_shoff; /* Section header table file offset */
 Elf32_Word e_flags; /* Processor-specific flags */
 Elf32_Half e_ehsize; /* ELF header size in bytes */
 Elf32_Half e_phentsize; /* Program header table entry size */
 Elf32_Half e_phnum; /* Program header table entry count */
 Elf32_Half e_shentsize; /* Section header table entry size */
 Elf32_Half e_shnum; /* Section header table entry count */
 Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;

Relocatable File
• A relocatable file or a shared object is a

collection of sections
• Each section contains a single kind of

information, such as executable code, read-only
data, read/write data, relocation entries, or
symbols.

• Each symbol’s address is defined in relation to
the section which contains it.
– For example, a function’s entry point is defined in

relation to the section of the program which
contains it.

Section Header

typedef struct {
 Elf32_Word sh_name; /* Section name (string tbl index) */
 Elf32_Word sh_type; /* Section type */
 Elf32_Word sh_flags; /* Section flags */
 Elf32_Addr sh_addr; /* Section virtual addr at execution */
 Elf32_Off sh_offset; /* Section file offset */
 Elf32_Word sh_size; /* Section size in bytes */
 Elf32_Word sh_link; /* Link to another section */
 Elf32_Word sh_info; /* Additional section information */
 Elf32_Word sh_addralign; /* Section alignment */
 Elf32_Word sh_entsize; /* Entry size if section holds table */
} Elf32_Shdr;

Types and Flags in Section Header
PROGBITS: The section contains the program content (code, data, debug
information).
NOBITS: Same as PROGBITS, yet with a null size.
SYMTAB and DYNSYM: The section contains a symbol table.
STRTAB: The section contains a string table.
REL and RELA: The section contains relocation information.
DYNAMIC and HASH: The section contains dynamic linking information.

WRITE: The section contains runtime-writeable data.
ALLOC: The section occupies memory at runtime.
EXECINSTR: The section contains executable machine instructions.

Some Sections
• .text: contains program’s instructions

– Type: PROGBITS
– Flags: ALLOC + EXECINSTR

• .data: contains preinitialized read/write data
– Type: PROGBITS
– Flags: ALLOC + WRITE

• .rodata: contains preinitialized read-only data
– Type: PROGBITS
– Flags: ALLOC

• .bss: contains uninitialized data. Will be set to zero at
startup.
– Type: NOBITS
– Flags: ALLOC + WRITE

String Table
• Sections keeping string tables contain sequence of

null-terminated strings.
• Object files use a string table to represent symbols’

and sections’ names.
• A string is referenced using an index in the table.
• Symbol table and symbol names are separated

because there is no limit in names’ length in C/C++

Symbol Table

• The Symbol Table keeps in an object file the
information necessary to identify and
relocate symbolic definitions in a program
and its references.

typedef struct {
 Elf32_Word st_name; /* Symbol name */
 Elf32_Addr st_value; /* Symbol value */
 Elf32_Word st_size; /* Symbol size */
 unsigned char st_info; /* Symbol binding */
 unsigned char st_other; /* Symbol visibility */
 Elf32_Section st_shndx; /* Section index */
} Elf32_Sym;

Static Relocation Table
• Relocation is the process which connects

references to symbols with definition of
symbols.

• Relocatable files must keep information on
how to modify the contents of sections.

typedef struct {
 Elf32_Addr r_offset; /* Address */
 Elf32_Word r_info; /* Relocation type and symbol index */
} Elf32_Rel;

typedef struct {
 Elf32_Addr r_offset; /* Address */
 Elf32_Word r_info; /* Relocation type and symbol index */
 Elf32_Sword r_addend; /* Addend */
} Elf32_Rela;

Executable Files
• Usually, an executable file has only few

segments:
– A read-only segment for code.
– A read-only segment for read-only data.
– A read/write segment for other data.

• Any section marked with flag ALLOCATE is
packed in the proper segment, so that the
operating system is able to map the file to
memory with few operations.
– If .data and .bss sections are present, they are

placed within the same read/write segment.

Program Header

typedef struct {
 Elf32_Word p_type; /* Segment type */
 Elf32_Off p_offset; /* Segment file offset */
 Elf32_Addr p_vaddr; /* Segment virtual address */
 Elf32_Addr p_paddr; /* Segment physical address */
 Elf32_Word p_filesz; /* Segment size in file */
 Elf32_Word p_memsz; /* Segment size in memory */
 Elf32_Word p_flags; /* Segment flags */
 Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;

Linker’s Role

ELF Header

Prog. Header Table

Segment 1

Segment 2 Data

Executable
File

Segment 3

Segment 2

ELF Header

Sec. Header Table

Section 1
Section 2

Relocatable File 1

. . .
Section n

ELF Header

Sec. Header Table

Section 1
Section 2

Relocatable File 2

. . .
Section n

Static Relocation
 1bc1: e8 fc ff ff ff call 1bc2 <main+0x17fe>
 1bc6: 83 c4 10 add $0x10,%esp
 1bc9: a1 00 00 00 00 mov 0x0,%eax

 8054e59: e8 9a 55 00 00 call 805a3f8 <Foo>
 8054e5e: 83 c4 10 add $0x10,%esp
 8054e61: a1 f8 02 06 08 mov 0x80602f8,%eax

Variables’ addresses Functions’ entry pointsInstructions’ position

Directives: Linker Script

• The simplest form of linker script contains only
a SECTIONS directive;

• The SECTIONS directive describes memory
layout of the linker-generated file.

SECTIONS
{
 . = 0x10000;
 .text : { *(.text) }
 . = 0x8000000;
 .data : { *(.data) }
 .bss : { *(.bss) }
}

Sets location counter’s value

Places all input files’s .text sections
in the output file’s .text section at the
address specified by the location counter.

Example: C code
#include <stdio.h>

int xx, yy;

int main(void) {
 xx = 1;
 yy = 2;
 printf ("xx %d yy %d\n", xx, yy);
}

Example: ELF Header

$ objdump -x example-program

esempio-elf: file format elf32-i386
architecture: i386,
flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048310

Example: Program Header
 PHDR off 0x00000034 vaddr 0x08048034 paddr 0x08048034 align 2**2
 filesz 0x00000100 memsz 0x00000100 flags r-x
 INTERP off 0x00000134 vaddr 0x08048134 paddr 0x08048134 align 2**0
 filesz 0x00000013 memsz 0x00000013 flags r--
 LOAD off 0x00000000 vaddr 0x08048000 paddr 0x08048000 align 2**12
 filesz 0x000004f4 memsz 0x000004f4 flags r-x
 LOAD off 0x00000f0c vaddr 0x08049f0c paddr 0x08049f0c align 2**12
 filesz 0x00000108 memsz 0x00000118 flags rw-
 DYNAMIC off 0x00000f20 vaddr 0x08049f20 paddr 0x08049f20 align 2**2
 filesz 0x000000d0 memsz 0x000000d0 flags rw-
 NOTE off 0x00000148 vaddr 0x08048148 paddr 0x08048148 align 2**2
 filesz 0x00000020 memsz 0x00000020 flags r--
 STACK off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**2
 filesz 0x00000000 memsz 0x00000000 flags rw-
 RELRO off 0x00000f0c vaddr 0x08049f0c paddr 0x08049f0c align 2**0
 filesz 0x000000f4 memsz 0x000000f4 flags r--

Example: Dynamic Section

 NEEDED libc.so.6
 INIT 0x08048298
 FINI 0x080484bc
 HASH 0x08048168
 STRTAB 0x08048200
 SYMTAB 0x080481b0
 STRSZ 0x0000004c
 SYMENT 0x00000010
 DEBUG 0x00000000
 PLTGOT 0x08049ff4
 PLTRELSZ 0x00000018
 PLTREL 0x00000011
 JMPREL 0x08048280

There is the need to link to this
shared library to use printf()

Example: Section Header
Idx Name Size VMA LMA File off Algn

2 .hash 00000028 08048168 08048168 00000168 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
10 .init 00000030 08048298 08048298 00000298 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
11 .plt 00000040 080482c8 080482c8 000002c8 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
12 .text 000001ac 08048310 08048310 00000310 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
13 .fini 0000001c 080484bc 080484bc 000004bc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE
14 .rodata 00000015 080484d8 080484d8 000004d8 2**2
 CONTENTS, ALLOC, LOAD, READONLY, ATA
22 .data 00000008 0804a00c 0804a00c 0000100c 2**2
 CONTENTS, ALLOC, LOAD, DATA
23 .bss 00000010 0804a014 0804a014 00001014 2**2
 ALLOC

Example: Symbol Table
...
00000000 l df *ABS* 00000000 esempio-elf.c
08049f0c l .ctors 00000000 .hidden __init_array_end
08049f0c l .ctors 00000000 .hidden __init_array_start
08049f20 l O .dynamic 00000000 .hidden _DYNAMIC
0804a00c w .data 00000000 data_start
08048420 g F .text 00000005 __libc_csu_fini
08048310 g F .text 00000000 _start
00000000 w *UND* 00000000 __gmon_start__
...
08049f18 g O .dtors 00000000 .hidden __DTOR_END__
08048430 g F .text 0000005a __libc_csu_init
00000000 F *UND* 00000000 printf@@GLIBC_2.0
0804a01c g O .bss 00000004 yy
0804a014 g *ABS* 00000000 __bss_start
0804a024 g *ABS* 00000000 _end
0804a014 g *ABS* 00000000 _edata
0804848a g F .text 00000000 .hidden __i686.get_pc_thunk.bx
080483c4 g F .text 0000004d main
08048298 g F .init 00000000 _init
0804a020 g O .bss 00000004 xx

Symbols Visibility
• weak symbols:

– More modules can have a symbol with the same name of a
weak one;

– The declared entity cannot be overloaded by other modules;
– It is useful for libraries which want to avoid conflicts with

user programs.
• gcc version 4.0 gives the command line option

 -fvisibility:
– default: normal behaviour, the symbol is seen by other

modules;
– hidden: two declarations of an object refer the same object

only if they are in the same shared object;
– internal: an entity declared in a module cannot be referenced

even by pointer;
– protected: the symbol is weak;

Symbols Visibility
int variable __attribute__ ((visibility (“hidden”)));

#pragma GCC visibility push(hidden)
int variable;

int increment(void) {
 return ++variable;
}
#pragma GCC visibility pop

Entry Point for the Program

• main() is not the actual entry point for the
program

• glibc inserts auxiliary functions
– The actual entry point is called _start

• The Kernel starts the dynamic linker which is
stored in the .interp section of the program
(usually /lib/ld-linux.so.2)

• If no dynamic linker is specified, control is given
at address specified in e_entry

Dynamic Linker
• Initialization steps:

– Self initialization
– Loading Shared Libraries
– Resolving remaining relocations
– Transfer control to the application

• The most important data structures which are
filled are:
– Procedure Linkage Table (PLT), used to call

functions whose address isn't known at link time
– Global Offsets Table (GOT), similarly used to resolve

addresses of data/functions

Dynamic Relocation Data Structures
• .dynsym: a minimal symbol table used by the

dynamic linker when performing relocations
• .hash: a hash table that is used to quickly

locate a given symbol in the .dynsym, usually in
one or two tries.

• .dynstr: string table related to the symbols
stored in .dynsym

• These tables are used to populate the GOT table
• This table is populate upon need (lazy binding)

Steps to populate the tables
• The first PLT entry is special
• Other entries are identical, one for each function

needing resolution.
– A jump to a location which is specified in a

corresponding GOT entry
– Preparation of arguments for a resolver routine
– Call to the resolver routine, which resides in the first

entry of the PLT
• The first PLT entry is a call to the resolver

located in the dynamic loader itself

GOT and PLT after library loading

Steps to populate the tables

• When func is called for the first time:
– PLT[n] is called, and jumps to the address pointed

to it in GOT[n]
– This address points into PLT[n] itself, to the

preparation of arguments for the resolver.
– The resolver is then called, by jumping to PLT[0]
– The resolver performs resolution of the actual

address of func, places its actual address
into GOT[n] and calls func.

GOT and PLT after first call to func

Initial steps of the Program’s Life
• So far the dynamic linker has loaded the shared libraries in

memory
• GOT is populated when the program requires certain functions
• Then, the dynamic linker calls _start

<_start>:
 xor %ebp,%ebp
 pop %esi
 mov %esp,%ecx
 and $0xfffffff0,%esp
 push %eax
 push %esp
 push %edx
 push $0x8048600
 push $0x8048670
 push %ecx
 push %esi
 push $0x804841c
 call 8048338 <__libc_start_main>
 hlt
 nop
 nop

Suggested by ABI to mark outermost frame

the pop makes argc go into %esi
%esp is now pointing at argv. The mov puts argv into
%ecx without moving the stack pointer
Align the stack pointer to a multiple of 16 bytes

Prepare parameters to __libc_start_main
%eax is garbage, to keep the alignment

This instruction should be never executed!

__libc_start_main()
• This function is defined as:
int __libc_start_main(
 int (*main)(int, char **, char **),
 int argc, char **ubp_av,
 void (*init)(void),
 void (*fini)(void),
 void (*rtld_fini)(void),
 void *stack_end
);
• __start() pushes parameters in reverse

order on stack

Explanation of Parameters
int(*main)(int,
char**,char**)

main of our program called by __libc_start_main.
Return value of main is passed to exit() which
terminates our program.

arcg argc off of the stack.

char **ubp_av argv off of the stack.

void (*init)(void) __libc_csu_init - Constructor of this program.
Called by __libc_start_main before main.

void (*fini)(void)
__libc_csu_fini - Destructor of this program.
Registered by __libc_start_main with
__cxat_exit().

void
(*rtld_fini)(void)

Destructor of dynamic linker from loader passed in %edx.
Registered by __libc_start_main with
__cxat_exit() to call the FINI for dynamic libraries
that got loaded before us.

void (*stack_end) Our aligned stack pointer.

…what about environment variables?
• There are no environment variables passed here!
• __libc_start_main calls
__libc_init_first
– It finds the first argument after the NULL terminating
argv

– Sets the global variable __environ
• __libc_start_main uses the same trick

– After the NULL terminating envp there is another
vector

– This is the ELF Auxiliary table
– It holds information used by the loader

ELF Auxiliary Table
• Setting the environment variable LD_SHOW_AUXV=1

before running the program dumps its content
$ LD_SHOW_AUXV=1 ./example-program
AT_SYSINFO: 0xe62414
AT_SYSINFO_EHDR: 0xe62000
AT_HWCAP: fpu vme de pse tsc msr pae mce cx8 apic mtrr pge mca cmov pat pse36 clflush acpi mmx fxsr sse
sse2 ss ht tm pbe
AT_PAGESZ: 4096
AT_CLKTCK: 100
AT_PHDR: 0x8048034
AT_PHENT: 32
AT_PHNUM: 8
AT_BASE: 0x686000
AT_FLAGS: 0x0
AT_ENTRY: 0x80482e0
AT_UID: 1002 AT_EUID: 1002 AT_GID: 1000 AT_EGID: 1000 AT_SECURE: 0
AT_RANDOM: 0xbff09acb
AT_EXECFN: ./example-program
AT_PLATFORM: i686

__libc_start_main()
• Starts up threading
• Registers the fini (our program), and
rtld_fini (run-time loader) arguments to get
run by at_exit to run the program's and the
loader's cleanup routines

• Calls __libc_csu_init which calls __init
• Calls the main with the argc and argv arguments

passed to it and with the global __environ
argument as detailed above.

• Calls exit with the return value of main

_init()
• This is the program’s constructor

– Constructors came far before C++!
• Three main steps:

– If gmon_start in the PLT is not null, the program is
being profiled. So gmon_start is called to setup
profiling

– Call frame_dummy, which sets up parameters to
calls __register_frame_info: this sets up frame
unwinding for exceptions management

– Last call is done to invoke recursively actual
constructors: _do_global_ctors_aux

_do_global_ctors_aux()
• This is defined in gcc’s source code in
crtstuff.c

• __CTOR_END__ is a global variable
keeping the number of constructors
available for the program

__do_global_ctors_aux (void) {
 func_ptr *p;
 for (p = __CTOR_END__ - 1; *p != (func_ptr) -1; p--)
 (*p) ();
}

How to implement a Constructor
• It’s gcc stuff, so we can use a gcc attribute

• a_constructor() will be called right
before giving control to main()

#include <stdio.h>

void __attribute__ ((constructor)) a_constructor() {
 printf("%s\n", __FUNCTION__);
}

Back to __libc_csu_init()

• Again, we can directly run code here, getting
arguments as well

• We can hook a function pointer in this way:

__attribute__((section(".init_array")))
typeof(init_function) *__init = init_function;

void __libc_csu_init(int argc, char **argv, char **envp) {
 _init ();
 const size_t size = __init_array_end-__init_array_start;
 for (size_t i = 0; i < size; i++)
 (*__init_array_start [i])(argc, argv, envp);
}

The Final Picture

EXAMPLE SESSION
Using all facilities of program startup/finalization

Stack Layout at Program Startup
local variables of main
saved registers of main
return address of main
argc
argv
envp
stack from startup code
argc
argv pointers
NULL that ends argv[]
environment pointers
NULL that ends envp[]
ELF Auxiliary Table
argv strings
environment strings
program name
NULL

__libc_start_main()

actual main()

kernel

vDSO is here

Tasks vs Processes

• Different types of execution traces must be handled:
– User mode process/thread
– Kernel mode process/thread
– Interrupt management

• Non-determinism:
– Due to nesting of user/kernel mode traces and interrupt

management traces
• Performance:

– Non-determinism may give rise to inefficiency whenever the
evolution of the traces is tightly coupled (like on SMP and multi-
core machines)

– Timing expectations for critical sections can be altered

Design methodologies

• Temporal reconciliation
– Interrupt management is mapped to

process/thread traces and shifted in time
– Management of events in the system can be

aggregated (many-to-one aggregation)
– Priority-based scheduling mechanisms are

required not to induce starvation

A schematization

Wall-clock-time

Interrupt requests

Convenient reconciliation
point

Actual processing
of the requests

grab lock release lock

Critical section

Reconciliation points

• Guarantees:
– “Eventually”

• Conventional support:
– When returning from syscall:

• Application-level related techniques
– Upon context-switch:

• Idle-process related techniques
– Reconciliation in process-context:

• Kernel-thread realted techniques

The historical concept: top/bottom halves

• Management of tasks comes at two levels: top half and
bottom halves

• The top-half executes a minimal amount of work which
is mandatory to later finalize the whole interrupt
management

• The top-half code is typically managed according to a
non-interruptible scheme

• The finalization of the work takes place via the bottom-
half level

• The top-half takes care of scheduling the bottom-half
task by queuing a record into a proper data structure

An example: sockets

interrupt from network device

packet
extraction

IP level

TCP/UDP
level

VFS
Level

monolithic execution

additional delay
for, e.g., an
active
spin-lock

top/bottom half
interrupt from network device

packet
extraction

Task
queuing

additional delay
for, e.g., an
active
spin-lock

top
half

Task data
structures

interrupt

iret

bottom
half

Per-task information
(parameters and reference to the code)

trap/interrupt-handler
dispatcher

trigger of
different nature

The historical concept: top/bottom halves

time
execution flow

Historical Evolution in Linux

• Up to Kernel 2.5, there was one single facility:
– Task queues

• Later versions improved the organization
towards SMP/multicore systems

• More facilities have been added:
– Tasklet / Soft IRQs
– Work Queues
– Kernel Timers

Task Queues

• Queuing structures, which can be associated with
variable names

• Linux 2.2 already had some predefined task-queues:
– tq_immediate: task to be executed upon timer-

interrupt or syscall return
– tq_timer: task to be executed upon timer-

interrupt
– tq_scheduler: task to be executed in process

context

Task Queues' Data Structures
• Additional task queues could be declared using the macro
DECLARE_TASK_QUEUE(queuename) defined in
include/linux/tqueue.h
– this macro also initializes the task queue as empty

• The structure of a task was defined in include/linux/tqueue.h

struct tq_struct {
 struct tq_struct *next; /* l-list of active bh's*/
 int sync; /* must be initialized to zero */
 void (*routine)(void *); /* function to call */
 void *data; /* argument to function */
}

Task management API
• To register a task to a task queue: int queue_task(struct

tq_struct *task, task_queue *list)
• To flush tasks: void run_task_queue(task_queue
*list)
– All tasks were executed and deallocated
– Non-predefined queues must be explicitly flushed

• The tq_schedule queue had a specific function to run tasks:
int schedule_task(struct tq_struct *task)

• The return value of queuing functions is non-zero if the task is
not already registered in the queue
– The sync member is set to 1 when the task is queued

• A call to void mark_bh(IMMEDIATE_BH)is mandatory for
the immediate task queue

Bottom-half Activation and Caveats

• Linux called do_bottom_half() (defined in
kernel/softirq.c)
– In schedule()
– In ret_from_sys_call()

• The execution of a bottom half was done in
process context

• Yet, blocking services had not to be executed
– This could have created problems to the consistency

of the context

Task Queues Limitations
• Original task queues limitations:

– Single thread execution of the tasks
– Locality was not maximized
– Heavy interrupt load was problematic

• The newer approach:
– Multithread execution of bottom half tasks
– Binding of task execution to CPU cores

• Task Queues are no longer present in the Kernel
source

Tasklets
• Tasklets are data structures used to track a specific task,

related to the execution of a specific function in the kernel

• The function accepts a parameter (an unsigned long)
and is of type void

• Tasklets are declared as
(include/linux/interrupt.h):

– DECLARE_TASKLET(tasklet, function, data)
– DECLARE_TASKLET_DISABLED(tasklet, function, data)

• If declared as disabled, tasks will not be executed until
enabled

Enabling and Running Tasklets
tasklet_enable(struct tasklet_struct *tasklet)
tasklet_hi_enable(struct tasklet_struct *);
tasklet_disable(struct tasklet_struct *tasklet)
void tasklet_schedule(struct tasklet_struct *tasklet)

• Each tasklet represents a single task, it is not
equivalent to a Task Queue

• Subsequent reschedule of a same tasklet may still
result in a single execution, depending on whether the
tasklet was already flushed or not (no concept of
queueing)

Tasklet Execution

• Tasklets are executed on specific kernel
threads (CPU affinity could be used)

• If the tasklet has already been scheduled, it
will not be moved to another CPU if it's still
pending

• Tasklets have schedule levels similar to that of
tq_schedule

• Execution context should be an “interrupt-
context”: no-sleep phases within the tasklet

How Tasklets are Run

• Tasklets are run using Soft IRQs
«First of all, it's a conglomerate of mostly unrelated jobs,
which run in the context of a randomly chosen victim
w/o the ability to put any control on them».

• Enable functions are mapped to Soft IRQs:
– tasklet_enable() mapped to TASKLET_SOFTIRQ
– tasklet_hi_enable() mapped to HI_SOFTIRQ

• Soft IRQ management takes place in
kernel/softirq.c via per-CPU variables

Soft IRQ Firing

• There are two places where Soft IRQs are fired:
– At the end of the processing for a hardware

interrupt
• Drivers often set Soft IRQs
• It is cache-wise to check for them immediately

– Any time that kernel code re-enables softirq
processing (via a call to functions like
local_bh_enable() or spin_unlock_bh())

• A victim is randomly chosen here!

Work Queues

• More recent deferral mechanisms introduced in
2.5.41

• Made Task Queues deprecated
• They can have a latency higher than Tasklets,

but have a richer API and blocking calls can be
issued (although discouraged)

• Interrupts and bottom halves are both enabled
while the work queues are being run

• They are run in separate workers

Work Queue Main Datastructure
• This is defined in linux/workqueue.h as:

struct work_struct {
atomic_long_t data;
struct list_head entry;
work_func_t func;

};

typedef void (*work_func_t)(struct work_struct
*work);

Work Queues Main API Function
INIT_WORK(work, func);
INIT_DELAYED_WORK(work, func);
INIT_DELAYED_WORK_DEFERRABLE(work, func);

struct workqueue_struct *create_workqueue(name);
void destroy_workqueue(struct workqueue_struct *);
int schedule_work(struct work_struct *work);
int schedule_work_on(int cpu, struct work_struct *work);

int scheduled_delayed_work(struct delayed_work *dwork,
unsigned long delay);
int scheduled_delayed_work_on(int cpu, struct
delayed_work *dwork, unsigned long delay);

struct delayed_work
struct delayed_work {

struct work_struct work;
struct timer_list timer;
/* target workqueue and CPU -

>timer uses to queue ->work */
struct workqueue_struct *wq;
int cpu;

};

struct workqueue_struct
struct workqueue_struct {
 struct list_head pwqs;/* WR: all pwqs of this wq */
 struct list_head list;/* PR: list of all workqueues */
 struct mutex mutex; /* protects this wq */
 int work_color; /* WQ: current work color */
 ...
 struct list_head maydays; /* MD: pwqs requesting
rescue */
 struct worker *rescuer; /* I: rescue worker */
 char name[WQ_NAME_LEN]; /* I: workqueue name
*/
 ...
 struct pool_workqueue __percpu *cpu_pwqs;
 ...
};

Work Queue Summary

Kernel Timers

• In Linux, time is measured by a global variable
named jiffies, which identifies the number
of ticks that have occurred since the system was
booted (in kernel/time/jiffies.c)

• The jiffies global variable is used broadly in
the kernel for a number of purposes

• One purpose is the current absolute time to
calculate the time-out value for a timer

Kernel Timer Main Data Structure
• Defined in include/linux/timer.h

struct timer_list {
/*
 * All fields that change during normal runtime
 * grouped to the same cacheline
 */
struct hlist_node entry;
unsigned long expires;
void (*function)(struct timer_list *);
u32 flags;

};

Kernel Timer API
void init_timer(struct timer_list
*timer);
void setup_timer(struct timer_list
*timer, void
(*function)(unsigned long), unsigned long
data);
int mod_timer(struct timer_list *timer,
unsigned long expires);
void del_timer(struct timer_list
*timer);
int timer_pending(const struct
timer_list *timer);

Kernel Timer Management

• Early Linux implementations had timers
organized in a single list with nodes (slightly)
ordered according to expiration time

• This was significantly unreliable and inefficient
• The Timer Wheel

– A nested structure

The Timer Wheel (2005)

Generic Lists in Linux
struct workqueue_struct {
 struct list_head pwqs;/* WR: all pwqs of this wq */
 struct list_head list;/* PR: list of all workqueues */
 struct mutex mutex; /* protects this wq */
 int work_color; /* WQ: current work color */
 ...
 struct list_head maydays; /* MD: pwqs requesting
rescue */
 struct worker *rescuer; /* I: rescue worker */
 char name[WQ_NAME_LEN]; /* I: workqueue name
*/
 ...
 struct pool_workqueue __percpu *cpu_pwqs;
 ...
};

Generic Lists in Linux

Generic Lists in Linux

Look at include/linux/list.h for the API to manage and access lists

Timer Interrupts Management on 2.4

• They are handled according to the top/bottom half paradigm

• The top half executes the following actions:
– Flags the Task Queue tq_timer as ready for flushing
– Increments jiffies
– Checks whether the CPU scheduler needs to be activated,

and in the positive case flags need_resched (more on
this later)

– The bottom half is scheduled in the tq_timer Task
Queue

Timer Interrupt Top Half on 2.4
• Defined in linux/kernel/timer.c

void do_timer(struct pt_regs *regs) {
(*(unsigned long *)&jiffies)++;

 #ifndef CONFIG_SMP
/* SMP process accounting uses

the local APIC timer */

update_process_times(user_mode(regs));
 #endif

mark_bh(TIMER_BH);
if (TQ_ACTIVE(tq_timer))

mark_bh(TQUEUE_BH);
}

Timer Interrupt Bottom Half on 2.4

• Defined in linux/kernel/timer.c

void timer_bh(void)
{

update_times();
run_timer_list();

}

Timer Interrupt Activation on 2.4
Linux Timer IRQ
IRQ 0 [Timer]
 |
\|/
|IRQ0x00_interrupt // wrapper IRQ handler
 |SAVE_ALL ---
 |do_IRQ | wrapper routines
 |handle_IRQ_event ---
 |handler() -> timer_interrupt // registered IRQ 0 handler
 |do_timer_interrupt
 |do_timer
 |jiffies++;
 |update_process_times
 |if (--counter <= 0) { // if time slice ended then
 |counter = 0; // reset counter
 |need_resched = 1; // prepare to reschedule
 |}
 |do_softirq
 |while (need_resched) { // if necessary
 |schedule // reschedule
 |handle_softirq
 |}
 |RESTORE_ALL

Timer Interrupt Activation on 2.4
• IRQ0x00_interrupt, SAVE_ALL
[include/asm/hw_irq.h]

• do_IRQ, handle_IRQ_event
[arch/i386/kernel/irq.c]

• timer_interrupt, do_timer_interrupt
[arch/i386/kernel/time.c]

• do_timer, update_process_times
[kernel/timer.c]

• do_softirq [kernel/soft_irq.c]
• RESTORE_ALL [arch/i386/kernel/entry.S]

Timer Interrupt Activation on ≥2.6
__visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) {
 struct pt_regs *old_regs = set_irq_regs(regs);

 /*
 * NOTE! We'd better ACK the irq immediately,
 * because timer handling can be slow.
 *
 * update_process_times() expects us to have
 * done irq_enter().
 * Besides, if we don't timer interrupts ignore the global
 * interrupt lock, which is the WrongThing (tm) to do.
 */

entering_ack_irq();
trace_local_timer_entry(LOCAL_TIMER_VECTOR);
local_apic_timer_interrupt();
trace_local_timer_exit(LOCAL_TIMER_VECTOR);
exiting_irq();

set_irq_regs(old_regs);
}

Timer Interrupt Activation on ≥2.6
• In arch/x86/kernel/apic/apic.c

static DEFINE_PER_CPU(struct clock_event_device, lapic_events);

static void local_apic_timer_interrupt(void)
{
struct clock_event_device *evt = this_cpu_ptr(&lapic_events);

...
inc_irq_stat(apic_timer_irqs);

evt->event_handler(evt);
}

Clock Events

• They are an abstraction introduced in 2.6
• Clock Events are generated by Clock Event

Devices
• This interface allows to drive hardware which

can be programmed to send interrupts at
different grains (e.g. the i8253)

• They are currently being used to implement a
"tickless" kernel and a real-time kernel

High-Resolution Timers
• They are based on the ktime_t type (nanosecond scalar

representation) rather than jiffies

struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart(*function)(struct hrtimer *);
struct hrtimer_clock_base *base;
u8 state;
u8 is_rel;

};

High-Resolution Timers API
void hrtimer_init(struct hrtimer *time,
clockid_t which_clock, enum hrtimer_mode
mode);
int hrtimer_start(struct hrtimer *timer,
ktime_t time, const enum hrtimer_mode mode);
int hrtimer_cancel(struct hrtimer *timer);
int hrtimer_try_to_cancel(struct hrtimer
*timer);
int hrtimer_callback_running(struct hrtimer
*timer);

POSIX Clocks
• CLOCK_REALTIME: This clock provides a best effort estimate of UTC in a way

that is backwards compatible with existing practice. Very little is guaranteed for
this clock. It will never show leap seconds

• CLOCK_UTC: This clock is only available when the system knows with high
assurance Coordinated Universal Time (UTC) with an estimated accuracy of at
least 1 s

• CLOCK_TAI: This clock is only available when the system knows International
Atomic Time (TAI) with at least an accuracy of 1 s

• CLOCK_MONOTONIC: This clock never jumps, it is guaranteed to be available all
the time right after system startup, and its frequency never varies by more than
500 ppm

• CLOCK_THREAD: This clock started its Epoch when the current thread was
created and runs only when the current thread is running on the CPU

• CLOCK_PROCESS: This clock starts its Epoch when the current process was
created and runs only when a thread of the current process is running on the CPU

Timer Interrupts and the Scheduler

• At some specific points (e.g., when returning from a
syscall) the need_resched variable is checked

• In case of positive check, the actual scheduler is
activated

• It corresponds to the schedule() function,
defined in kernel/sched/core.c

• New versions replace need_resched with a call to
test_thread_flag(TIF_NEED_RESCHED)

Back to the Task State Segment

• Each core has one per-CPU TSS:
– DECLARE_PER_CPU_PAGE_ALIGNED(struct
tss_struct, cpu_tss_rw) in
arch/x86/include/asm/processor.h

• TSS is necessary to correctly support ring-
change operations

• Upon reschedule, the current TSS is stored into
the PCB of the about-to-be-descheduled process

Process Control Block
• This is struct task_struct in include/linux/sched.h
• One of the largest structures in the kernel (almost 600 LOCs)
• Relevant members are:

– volatile long state
– struct mm_struct *mm
– struct mm_struct *active_mm
– pid_t pid
– pid_t tgid
– struct fs_struct *fs
– struct files_struct *files
– struct signal_struct *sig
– struct thread_struct thread /* CPU-specific state:

TSS, FPU, CR2, perf events, ... */
– int prio; /* to implement nice() */
– unsigned long policy /* for scheduling */
– int nr_cpus_allowed;
– cpumask_t cpus_allowed;

The mm member
• mm points to a mm_struct defined in

include/linux/mm_types.h
• mm_struct is used for memory management purposes for

the specific process, such as
• Virtual address of the page table (pgd member)
• A pointer to a list of vm_area_struct records (mmap

field)

• Each record tracks a user-level virtual memory area which
is valid for the process

• active_mm is used to "steal" a mm when running in an
anonymous process, and mm is set to NULL

• Non-anonymous processes have active_mm == mm

vm_area_struct
• Describes a Virtual Memory Area (VMA):

– struct mm_struct *vm_mm: the address space the structure belongs to
– unsigned long vm_start: the start address in vm_mm
– unsigned long vm_end: the end address
– pgprot_t vm_page_prot: access permissions of this VMA
– const struct vm_operations_struct *vm_ops: operations to

deal with this structure
– struct mempolicy *vm_policy: the NUMA policy for this range of

addresses
– struct file *vm_file: pointer to a memory-mapped file
– struct vm_area_struct *vm_next, *vm_prev: linked list of VM

areas per task, sorted by address

vm_operations_struct
struct vm_operations_struct {

void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault

*vmf);
void (*map_pages)(struct vm_area_struct *vma, struct

vm_fault *vmf);

/* notification that a previously read-only page is about
 * to become writable, if an error is returned it will
 * cause a SIGBUS */
int (*page_mkwrite)(struct vm_area_struct *vma, struct

vm_fault *vmf);
...
int (*set_policy)(struct vm_area_struct *vma, struct

mempolicy *new);
struct mempolicy *(*get_policy)(struct vm_area_struct

*vma, unsigned long addr);
};

Userspace Memory Management

Userspace Memory Management

Userspace Memory Management

Userspace Memory Management

PCB Allocation up to 2.6

• PCBs can be dynamically allocated upon request
• The PCB is directly stored at the bottom of the

kernel-level stack of the process which the PCB
refers to

PCB

Usable
Stack

2 memory
frames

Kernel-level
Stack

PCB Allocation since 2.6

• The PCB is moved outside of the kernel-level
stack

• At the top, there is the thread_info data
structure

task thread_info

Usable
Stack

2 or 4
memory
frames

PCB

union thread_union
• This union is used to easily allocate thread_info at the base of the

stack, independently of its size.
• It works as long as its size is smaller than the stack's
• Of course, this is mandatory

union thread_union {
struct thread_info thread_info;
unsigned long stack[THREAD_SIZE/sizeof(long)];

};

struct thread_info
struct thread_info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int saved_preempt_count;
mm_segment_t addr_limit;
void __user *sysenter_return;
unsigned int sig_on_uaccess_error:1;
unsigned int uaccess_err:1; /* uaccess failed */

};

Virtually Mapped Kernel Stack

• Kernel-level stacks
have always been the
weak point in the
system design

• This is quite small: you
must be careful to
avoid overflows

• Stack overflows (and
also recursion
overwrite) have been
successfully used as
attack vectors

Old struct thread_info
struct thread_info {
 struct task_struct *task;
 struct exec_domain *exec_domain;
 __u32 flags;
 __u32 status;
 __u32 cpu;
 int preempt_count;
 mm_segment_t addr_limit;
 struct restart_block restart_block;
 ...
};

U/K Boundary!
(affect, e.g., access_ok())

(can write into kmem)

Has a function pointer!
(triggered by syscall restart())

(can be overridden with userspace pointers)

Virtually Mapped Kernel Stack

• When an overflow occurs, the Kernel is not
easily able to detect it

• Even less able to counteract on it!

• Stacks are in the ZONE_NORMAL memory and
are contiguous

• But access is done through the MMU via virtual
addresses

Virtually Mapped Kernel Stack
• There is no need to have a physically contiguous stack, so

stack was created relying on vmalloc()
• This introduced a 1.5μs delay in process creation which

was unacceptable
• A cache of kernel-level stacks getting memory from
vmalloc() has been introduced

• This allows to introduce surrounding unmapped pages
• thread_info is moved off the stack

– it's content is moved to the task_struct

current
• current always refers to the currently-scheduled process

– It is therefore architecture-specific

• It returns the memory address of its PCB (evaluates to a pointer
to the corresponding task_struct)

• On early versions, it was a macro current defined in
include/asm-i386/current.h

• It performed computations based on the value of the stack
pointer, by exploiting that the stack is aligned to the couple of
pages/frames in memory

• Changing the stack's size requires re-aligning this macro

current
• When thread_info was introduced, masking the stack gived

the address to task_struct
• To return the task_struct, the content of the task member of
task_struct was returned

• Later, current has been mapped to the static
__always_inline struct task_struct
*get_current(void) function

• It returns the per-CPU variable current_task declared in
arch/x86/kernel/cpu/common.c

• The scheduler updates the current_task variable when executing
a context switch

• This is compliant with the fact that thread_info has left the
stack

Linux Scheduler

• The scheduler is a fundamental subsystem of
the kernel

• Different scheduling strategies exist
– Take into account priority
– Take into account responsiveness
– Take into account fairness

• The history of Linux has seen different
algorithms

Process Priority
• Unix demands for priority based scheduling

– This relates to the nice of a process in [-20, 19]
– The higher the nice, the lower the priority
– This tells how nice a process is towards others

• There is also the notion of "real time" processes
– Hard real time: bound to strict time limits in which a

task must be completed (not supported in
mainstream Linux)

– Soft real time: there are boundaries, but don't make
your life depend on it

– Examples: burning data to a CD ROM, VoIP

Process Priority

• In Linux, real time priorieties are in [0, 99]
– Here higher value means higher priority

• Implemented according to the Real-Time
Extensions of POSIX

ps -eo pid,rtprio,cmd ('-' = no realtime)
chrt -p pid
chrt -p prio pid

Process Priority in the Kernel

• Both nice and rt priorities are mapped to a
single value in [0, 139] in the kernel

• 0 to 99 are reserved to rt priorities
• 100 to 139 for nice priorities (mapping exactly

to [-20, 19])
• Priorities are defined in
include/linux/sched/prio.h

Process Priority in the Kernel
#define MAX_NICE 19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE - MIN_NICE

 + 1)

#define MAX_USER_RT_PRIO 100
#define MAX_RT_PRIO MAX_USER_RT_PRIO
#define MAX_PRIO (MAX_RT_PRIO +
NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO +
NICE_WIDTH / 2)

Process Priority in the Kernel
/*
* Convert user-nice values [-20 ... 0 ... 19]
* to static priority [MAX_RT_PRIO..MAX_PRIO-1],
* and back.
*/
#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)

/*
* 'User priority' is the nice value converted to something we
* can work with better when scaling various scheduler parameters,
* it's a [0 ... 39] range.
*/
#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))

Process Priority in task_struct
• static_prio: priority given “statically” by a user (and

mapped into kernel’s representation)
• normal_priority: based on static_prio and

scheduling policy of a process: Tasks with the same static
priority that belong to different policies will get different
normal priorities. Child processes inherit the normal
priorities from their parent processes when forked.

• prio: “dynamic priority”. It can change in certain
situations, e.g. to preempt a process with higher priority

• rt_priority: the realtime priority for realtime tasks in
[0, 99]

Computing prio
• In kernel/sched/core.c
p->prio = effective_prio(p);

static int effective_prio(struct task_struct *p)
{

p->normal_prio = normal_prio(p);
if (!rt_prio(p->prio))

return p->normal_prio;
return p->prio;

} Returns static_priority or maps
rt_priority to kernel representation

Load Weights
• task_struct->se is a struct
sched_entity (in
include/linux/sched.h):
– It keeps a struct load_weight load:
struct load_weight {

unsigned long weight;
u32 inv_weight;

};
• Load weights are used to scale the time slice

assigned to a scheduled process

Load Weights
• From kernel/sched/core.c:
Nice levels are multiplicative, with a gentle 10% change for
every nice level changed. I.e. when a CPU-bound task goes from
nice 0 to nice 1, it will get ~10% less CPU time than another
CPU-bound task that remained on nice 0.
The "10% effect" is relative and cumulative: from _any_ nice
level, if you go up 1 level, it's -10% CPU usage, if you go down 1
level it's +10% CPU usage. (to achieve that we use a multiplier
of 1.25. If a task goes up by ~10% and another task goes down
by ~10% then the relative distance between them is ~25%.)

Load Weights
• From kernel/sched/core.c:

const int sched_prio_to_weight[40] = {
 /* -20 */ 88761, 71755, 56483, 46273, 36291,
 /* -15 */ 29154, 23254, 18705, 14949, 11916,
 /* -10 */ 9548, 7620, 6100, 4904, 3906,
 /* -5 */ 3121, 2501, 1991, 1586, 1277,
 /* 0 */ 1024, 820, 655, 526, 423,
 /* 5 */ 335, 272, 215, 172, 137,
 /* 10 */ 110, 87, 70, 56, 45,
 /* 15 */ 36, 29, 23, 18, 15,
};

• This array takes a value for each possible nice level in [-20, 19]

Some Examples

• Two tasks running at nice 0 (weight 1024)
– Both get 50% of time: 1024/(1024+1024) = 0.5

• Task 1 is moved to nice -1 (priority boost):
– T1: 1277/(1024+1277) ≈ 0.55
– T2: 1024/(1024+1277) ≈ 0.45 (10% difference)

• Task 2 is then moved to nice 1 (priority drop):
– T1: 1277/(820+1277) ≈ 0.61
– T2: 820/(820+1277) ≈ 0.39 (22% difference)

Different Scheduling Classes
• SCHED_FIFO: Realtime FIFO scheduler, in which a

process has to explicitly yield the CPU
• SCHED_RR: Realtime Round Robin Scheduler (might

fallback to FIFO)
• SCHED_OTHER/SCHED_NORMAL: the common round-

robin time-sharing scheduling policy
• SCHED_DEADLINE (since 3.14): Constant Bandwidth

Server (CBS) algorithm on top of Earliest Deadline First
queues

• SCHED_DEADLINE (since 4.13): CBS replaced with
Greedy Reclamation of Unused Bandwidth (GRUB).

Scheduling Classes
struct sched_class {
 const struct sched_class *next;
 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int

flags);
 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int

flags);
 void (*yield_task) (struct rq *rq);

 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int
flags);

 struct task_struct * (*pick_next_task) (struct rq *rq, struct
task_struct *prev, struct rq_flags *rf);

 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 ...
 void (*set_curr_task) (struct rq *rq);
 int (*select_task_rq)(struct task_struct *p, int task_cpu,

 int sd_flag, int flags);
 ...
};

Scheduler Code Organization

• General code base and specific scheduler classes
are found in kernel/sched/

• core.c: the common codebase
• fair.c: implementation of the basic scheduler

(CFS: Completely Fair Scheduler)
• rt.c: the real-time scheduler
• idle_task.c: the idle-task class

Run Queues
struct rq {

unsigned int nr_running;
#define CPU_LOAD_IDX_MAX 5
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
/* capture load from all tasks on this cpu */
struct load_weight load;
struct cfs_rq cfs;
struct rt_rq rt;
struct task_struct *curr, *idle, ...;
u64 clock;
/* cpu of this runqueue */
int cpu;

}

Run Queues
• Added in 2.6
• Defined in kernel/sched/sched.h

DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);

#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
#define this_rq() this_cpu_ptr(&runqueues)
#define task_rq(p) cpu_rq(task_cpu(p))
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)

Wait Queues
• Defined in include/linux/wait.h
• This is a set of data structures to manage

threads that are waiting for some condition to
become true

• This is a way to put threads to sleep in kernel
space

• It is a data structure which changed many times
in the history of the kernel

• Suffered from the "Thundering Herd"
performance problem

Thundering Herd Effect

Taken from 1999 Mindcraft study on Web and File Server Comparison

Wait Queues
#define WQ_FLAG_EXCLUSIVE 0x01

struct wait_queue_entry {
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head entry;

};

struct wait_queue_head {
spinlock_t lock;
struct list_head head;

};
typedef struct wait_queue_head wait_queue_head_t;

Wait Queue API
• Implemented as macros in include/linux/wait.h

static inline void init_waitqueue_entry(struct
wait_queue_entry *wq_entry, struct task_struct
*p)
wait_event_interruptible(wq_head, condition)
wait_event_interruptible_timeout(wq_head,
condition, timeout)
wait_event_hrtimeout(wq_head, condition,
timeout)
wait_event_interruptible_hrtimeout(wq,
condition, timeout)

Wait Queue API
void add_wait_queue(struct wait_queue_head *wq_head,
struct wait_queue_entry *wq_entry) {
 unsigned long flags;

 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 spin_lock_irqsave(&wq_head->lock, flags);
 list_add(&wq_entry->entry, &wq_head->head);
 spin_unlock_irqrestore(&wq_head->lock, flags);
}

Wait Queue API
void add_wait_queue_exclusive(struct wait_queue_head
*wq_head, struct wait_queue_entry *wq_entry) {
 unsigned long flags;

 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 spin_lock_irqsave(&wq_head->lock, flags);
 list_add_tail(&wq_entry->entry, &wq_head->head);
 spin_unlock_irqrestore(&wq_head->lock, flags);
}

Wait Queue API
void remove_wait_queue(struct wait_queue_head
*wq_head, struct wait_queue_entry *wq_entry) {
 unsigned long flags;

 spin_lock_irqsave(&wq_head->lock, flags);
 list_del(&wq_entry->entry);
 spin_unlock_irqrestore(&wq_head->lock, flags);
}

Wait Queue Exclusive

Wait Queue API
• Implemented as macros in include/linux/wait.h
• wake_up(x)
• wake_up_nr(x, nr)
• wake_up_all(x)
• wake_up_locked(x)
• wake_up_all_locked(x)

• wake_up_interruptible(x)
• wake_up_interruptible_nr(x, nr)
• wake_up_interruptible_all(x)
• wake_up_interruptible_sync(x)

Thread States
• The state field n the PCB tracks the current state of the

process/thread
• Values are defined in inlude/linux/sched.h

• TASK_RUNNING
• TASK_INTERRUPTIBLE
• TASK_UNINTERRUPTIBLE
• TASK_ZOMBIE
• TASK_STOPPED
• TASK_KILLABLE

• All the PCBs registered in the runqueue are TASK_RUNNING

Accessing PCBs

• In some circumstances, the kernel must derive
the task_struct given the PID of a process
– Think for example of the kill() system call

• Scanning a list of PCBs is inefficient
• There are multiple hash tables available

PID Relations

• task_struct maps
to Thread (beware of
the overload of the
word "task")

• Process groups can be
used to avoid scanning
the whole PID list

• struct pid links
together pids in the
namespace world

struct pid

PID Namespaces

A new PID namespace is created by calling clone() with the CLONE_NEWPID flag

struct pid
• struct pid is the kernel's internal notion of a process identifier. It refers to individual tasks,

process groups, and sessions. While there are processes attached to it the struct pid lives in
a hash table, so it and then the processes that it refers to can be found quickly from the numeric
pid value. The attached processes may be quickly accessed by following pointers from struct pid.

• Storing pid_t values in the kernel and refering to them later has a problem. The
process originally with that pid may have exited and the pid allocator wrapped, and
another process could have come along and been assigned that pid.

• Referring to user space processes by holding a reference to struct task_struct has
a problem. When the user space process exits the now useless task_struct is still
kept. A task_struct plus a stack consumes around 10K of low kernel memory. More
precisely this is THREAD_SIZE + sizeof(struct task_struct). By comparison a
struct pid is about 64 bytes.

• Holding a reference to struct pid solves both of these problems. It is small so
holding a reference does not consume a lot of resources, and since a new struct pid is
allocated when the numeric pid value is reused (when pids wrap around) we don't
mistakenly refer to new processes.

struct pid
• Defined in include/linux/pid.h

struct pid {
atomic_t count;
unsigned int level;
/* lists of tasks that use this pid */
struct hlist_head tasks[PIDTYPE_MAX];
struct rcu_head rcu;
struct upid numbers[1];

};

enum pid_type { PIDTYPE_PID, PIDTYPE_PGID, PIDTYPE_SID,
 PIDTYPE_MAX };

Accessing PCBs (up to 2.6.26)
• This function in include/linux/sched.h allows to retrieve the

memory address of the PCB by passing the process/thread pid as input

static inline struct task_struct
*find_task_by_pid(int pid) {
 struct task_struct *p,
 **htable = &pidhash[pid_hashfn(pid)];

 for(p = *htable; p && p->pid != pid;
 p = p->pidhash_next) ;
 return p;
}

Accessing PCBs (after 2.6.26)

• find_task_by_pid has been replaced :
– struct task_struct

*find_task_by_vpid(pid_t vpid)

• This is based on the notion of virtual pid

• It has to do with userspace namespaces, to
allow processes in different namespaces to
share the same pid numbers

Accessing PCBs (up to 4.14)
/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;

• There is a hash defined as below in include/linux/sched.h
– #define PIDHASH_SZ (4096 >> 2)
– extern struct task_struct *pid_hash[PIDHASH_SZ];
– #define pid_hashfn(x) ((((x) >> 8) ^ (x)) &
(PIDHASH_SZ - 1))

Accessing PCBs

• The hash data structure has been replaced by a
radix tree

• PIDs are replaced with Integer IDs (idr)
• idr is a kernel-level library for the management

of small integer ID numbers
• An idr is a sparse array mapping integer IDs

onto arbitrary pointers

Radix Trees
6 bits

Radix Tree API is in linux/radix-tree.h

Scheduler Entry Point
• The entry point for the scheduler is schedule(void) in
kernel/sched.c

• This is called from several places in the kernel
• Direct Invocation: an explicit call to schedule() is issued
• Lazy Invocation: some hint is given to the kernel indicating that
schedule() should be called soon (see need_resched)

• In general schedule() entails 3 distinct phases, which depend on the
scheduler implementation:

– Some checks on the current process (e.g., with respect to signal
processing)

– Selection of the process to be activated
– Context switch

Periodic Scheduling

• schedule_tick() is called from
update_process_times()

• This function has two goals:
– Managing scheduling-specific statistics
– Calling the scheduling method of the class

schedule_tick()
/*
* This function gets called by the timer code, with HZ
frequency.
* We call it with interrupts disabled.
*/
void scheduler_tick(void) {

int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
...
update_rq_clock(rq);
curr->sched_class->task_tick(rq, curr, 0);
update_cpu_load_active(rq);
...

}

Process Going to Sleep

• In case an operation cannot be completed
immediately (think of a read()) the process
goes to sleep in a wait queue

• While doing this, the task enters either the
TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE state

• At this point, the kernel thread calls
schedule() to effectively put to sleep the
currently-running one and pick the new one to
be activated

More on TASK_*INTERRUPTIBLE
• Dealing with TASK_INTERRUPTIBLE can be

difficult:
– At kernel level, understand that the task has been resumed

due to an interrupt
– Clean up all the work that has been done so far
– Return to userspace with -EINTR
– Userspace has to understand that a syscall was interrupted

(bugs here!)
• Conversely, a TASK_UNINTERRUPTIBLE might

never be woken up again (the dreaded D state in ps)
• TASK_KILLABLE is handy for this (since 2.6.25)

– Same as TASK_UNINTERRUPTIBLE except for fatal sigs.

Sleeping Task Wakes Up

• The event a task is waiting for calls one of the
wake_up*() functions on the corresponding
wait queue

• A task is set to runnable and put back on a
runqueue

• It the woken up task has a higher priority than
the other tasks on the runqueue,
TIF_NEED_RESCHED is flagged

O(n) Scheduler (2.4)

• It has a linear complexity, as it iterates over all
tasks

• Time is divided into epochs
• At the end of an epoch, every process has run

once, using up its whole quantum if possible
• If processes did not use the whole quantum,

they have half of the remaining timeslice added
to the new timeslice

O(n) Scheduler (2.4)
asmlinkage void schedule(void) {
 int this_cpu, c; /* weight */
 ...
 repeat_schedule:
 /* Default process to select.. */
 next = idle_task(this_cpu);
 c = -1000; /* weight */
 list_for_each(tmp, &runqueue_head) {
 p = list_entry(tmp, struct task_struct, run_list);
 if (can_schedule(p, this_cpu)) {
 int weight = goodness(p, this_cpu, prev->active_mm);

if (weight > c)
 c = weight, next = p;

 }
 }
}

Computing the Goodness

goodness (p)= 20 – p->nice (base time quantum)

+ p->counter (ticks left in time quantum)

+1 (if page table is shared
with the previous process)

+15 (in SMP, if p was last
running on the same CPU)

Computing the Goodness

• Goodness values explained and special cases:
– -1000: never select this process to run
– 0: out of timeslice (p->counter == 0)
– >0: the goodness value, the larger the better
– +1000: a realtime process, select this

Epoch Management
……………
/* Do we need to re-calculate counters? */
if (unlikely(!c)) {

struct task_struct *p;

spin_unlock_irq(&runqueue_lock);
read_lock(&tasklist_lock);
for_each_task(p)

p->counter = (p->counter >> 1) + NICE_TO_TICKS(p->nice);
read_unlock(&tasklist_lock);
spin_lock_irq(&runqueue_lock);
goto repeat_schedule;

}
…………… 6 - p->nice/4

Analysis of the O(n) Scheduler
• Disadvantages:

– A non-runnable task is also searched to determine
its goodness

– Mixture of runnable/non-runnable tasks into a
single runqueue in any epoch

– Performance problems on SMP, as the length of
critical sections depends on system load

• Advantages:
– Perfect Load Sharing
– No CPU underutilization for any workload type
– No (temporary) binding of threads to CPUs

Contention in the O(n) Scheduler on SMP

Core-0 calls schedule()

All other cores call schedule()
Core-0 returns

0
1
2
3

O(1) Scheduler (2.6.8)
• By Ingo Molnár
• Schedules tasks in constant time, indepentendly of

the number of active processes
• Introduced the global priority scale which we

discussed
• Early preëmption: if a task enters the
TASK_RUNNING state its priority is checked to see
whether to call schedule()

• Static priority for real-time tasks
• Dynamic priority for other tasks, recalculated at the

end of their timeslice (increases interactivity)

Runqueue Revisited

struct runqueue {
/* number of runnable tasks */
unsigned long nr_running;
...
struct prio_array *active;
struct prio_array *expired;
struct prio_array arrays[2];

}

Runqueue Revisited
• Each runqueue has two struct prio_array:

struct prio_array {
int nr_active;
unsigned long bitmap[BITMAP_SIZE];
struct list_head queue[MAX_PRIO];

};

Runqueue Revisited

Runqueue Revisited

X X

X

X

X

X

X X X X

bit 0, priority 0
schedule() → schedule_find_first_set()

bit 10, priority 10

bit 139
priority 139

Cross-CPU Scheduling
• Once a task lands on a CPU, it might use up its timeslice

and get put back on a prioritized queue for rerunning—but
how might it ever end up on another processor?

• If all the tasks on one CPU exit, might not one processor
stand idle while another round-robins three, ten or several
dozen other tasks?

• The 2.6 scheduler must, on occasion, see if cross-CPU
balancing is needed.

• Every 200ms a CPU checks to see if any other CPU is out of
balance and needs to be balanced with that processor. If
the processor is idle, it checks every 1ms so as to get
started on a real task earlier

2.6 O(1) Scheduler API

Function name Function description

schedule
The main scheduler function.
Schedules the highest priority
task for execution.

load_balance

Checks the CPU to see whether
an imbalance exists, and attempts
to move tasks if not balanced.

effective_prio

Returns the effective priority of a
task (based on the static priority,
but includes any rewards or
penalties).

2.6 O(1) Scheduler API
recalc_task_prio

Determines a task's bonus or
penalty based on its idle time.

source_load

Conservatively calculates the
load of the source CPU (from
which a task could be migrated).

target_load

Liberally calculates the load of a
target CPU (where a task has the
potential to be migrated).

migration_thread High-priority system thread that
migrates tasks between CPUs.

Stack Variables Refresh
asmlinkage void __sched schedule(void)
{

struct task_struct *prev, *next;
unsigned long *switch_count;
struct rq *rq;
int cpu;

need_resched:
preempt_disable();
cpu = smp_processor_id();
rq = cpu_rq(cpu);
rcu_qsctr_inc(cpu);
prev = rq->curr;
switch_count = &prev->nivcsw;

...

Stack Variables Refresh

...
if (unlikely(!rq->nr_running)) idle_balance(cpu, rq);

prev->sched_class->put_prev_task(rq, prev);
next = pick_next_task(rq, prev);

if (likely(prev != next)) {
sched_info_switch(prev, next);

rq->nr_switches++;
rq->curr = next;
++*switch_count;

context_switch(rq, prev, next); /* unlocks the rq */
/* the context switch might have flipped the stack from under
 us, hence refresh the local variables. */
cpu = smp_processor_id();
rq = cpu_rq(cpu);

} else spin_unlock_irq(&rq->lock);
...

Staircase Scheduler

• By Con Kolivar, 2004 (none of its schedulers in
the official Kernel tree)

• The goal is to increase "responsiveness" and
reduce the complexity of the O(1) Scheduler

• It is mostly based on dropping the priority
recalculation, replacing it with a simpler rank-
based scheme

• It is supposed to work better up to ~10 CPUs
(tailored for desktop environments)

Staircase Scheduler
• The expired array is removed and the staircase data

structure is used instead

• A process expiring its timeslice is moved to a lower
priority

• At the end of the staircase, it gets to a MAX_PRIO-1
level with one more timeslice

• If a process sleeps (i.e., an interactive process) it get
backs up in the staircase

• This approach favors interactive processes rather CPU-
bound ones

Completely Fair Scheduler (2.6.23)

• Merged in October 2007
• This is since then the default Scheduler
• This models an "ideal, precise multitasking CPU"

on real hardware
• It is based on a red-black tree, where nodes are

ordered by process execution time in
nanoseconds

• A maximum execution time is also calculated for
each process

Completely Fair Scheduler (2.6.23)

Context switch (2.4)
• Context switch is implemented in the switch_to()

macro in include/asm-i386/system.h
• It jumps to void __switch_to(struct

task_struct *prev_p, struct task_struct
*next_p) in arch/i386/kernel/process.c

• The macro is machine-dependent code

• __switch_to() mainly executes the following two tasks
– TSS update

– CPU control registers update

switch_to()
#define switch_to(prev,next,last) do { \

asm volatile("pushl %%esi\n\t" \
 "pushl %%edi\n\t" \
 "pushl %%ebp\n\t" \

 "movl %%esp,%0\n\t" /* save ESP */ \
 "movl %3,%%esp\n\t" /* restore ESP */ \

 "movl $1f,%1\n\t" /* save EIP */\
 "pushl %4\n\t" /* restore EIP */ \
 "jmp __switch_to\n" \
 "1:\t" \
 "popl %%ebp\n\t" \
 "popl %%edi\n\t" \
 "popl %%esi\n\t" \
 :"=m" (prev->thread.esp),"=m" (prev->thread.eip),\
 "=b" (last) \
 :"m" (next->thread.esp),"m" (next->thread.eip),\

 "a" (prev), "d" (next), \
 "b" (prev)); \

} while (0)

__switch_to()
void __switch_to(struct task_struct *prev_p,

struct task_struct *next_p){

struct thread_struct *prev = &prev_p->thread,
 *next = &next_p->thread;

struct tss_struct *tss = init_tss + smp_processor_id();
……

/* Reload esp0, LDT and the page table pointer: */
tss->esp0 = next->esp0;

/* Save away %fs and %gs. No need to save %es and %ds, as
 * those are always kernel segments while inside the kernel.
 */
asm volatile("movl %%fs,%0":"=m" (*(int *)&prev->fs));
asm volatile("movl %%gs,%0":"=m" (*(int *)&prev->gs));

/* Restore %fs and %gs. */
loadsegment(fs, next->fs);
loadsegment(gs, next->gs);
……

}

fork() initialization
• Initialization of the fork subsystem occurs via fork_init() in kernel/fork.c

• This sets some fields of the idle process PCB to values inherited by other processes

void __init fork_init(unsigned long mempages){
/*
 * The default maximum number of threads is set to a safe
 * value: the thread structures can take up at most half
 * of memory.
 */
max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 8;

init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

}

Process and thread creation

fork() pthread_create()

sys_fork() sys_clone()

__clone()[LINUX specific]
user level

kernel level

library call

do_fork()

sys_fork() and sys_clone()
asmlinkage int sys_fork(struct pt_regs regs)
{

return do_fork(SIGCHLD, regs.esp, ®s, 0);
}
asmlinkage int sys_clone(struct pt_regs regs)
{

unsigned long clone_flags;
unsigned long newsp;
clone_flags = regs.ebx;newsp = regs.ecx;
if (!newsp)

newsp = regs.esp;
return do_fork(clone_flags, newsp, ®s, 0);

}

Calling sys_clone() from Userspace

• When usign sys_clone(), we must allocate a new
stack first

• Indeed, a thread of the same process share the same
address space

• The VA base of the new stack must be passed into
ecx right before giving control to sys_clone()

• Thread activation flags must be passed in ebx
• The documented __clone() is thus a wrapper of

the actual system call

do_fork() (again)
• Fresh PCB/kernel-stack allocation
• Copy/setup of PCB information
• Copy/setup of PCB linked data structures
• What information is copied or inherited (namely

shared into the original buffers) depends on the
value of the flags passed in input to do_fork()

• Admissible values for the flags are defined in
include/linux/sched.h
– CLONE_VM: set if VM is shared between processes
– CLONE_FS: set if fs info shared between processes
– CLONE_FILES: set if open files shared between

processes
– CLONE_PID: set if pid shared
– CLONE_PARENT: set if we want to have the same

parent as the cloner

do_fork() (2.4)
int do_fork(unsigned long clone_flags, unsigned long stack_start,

 struct pt_regs *regs, unsigned long stack_size)
{

……
p = alloc_task_struct();
if (!p) goto fork_out;
*p = *current;

……
p->state = TASK_UNINTERRUPTIBLE;
……
p->pid = get_pid(clone_flags);
if (p->pid == 0 && current->pid != 0)

goto bad_fork_cleanup;

p->run_list.next = NULL;
p->run_list.prev = NULL;
……
init_waitqueue_head(&p->wait_chldexit);
……

do_fork() (2.4)
p->sigpending = 0;
init_sigpending(&p->pending);
...
p->start_time = jiffies;
...
/* copy all the process information */
if (copy_files(clone_flags, p)) goto bad_fork_cleanup;
if (copy_fs(clone_flags, p)) goto bad_fork_cleanup_files;
if (copy_sighand(clone_flags, p)) goto bad_fork_cleanup_fs;
if (copy_mm(clone_flags, p)) goto bad_fork_cleanup_sighand;
retval = copy_namespace(clone_flags, p);
if (retval) goto bad_fork_cleanup_mm;
retval = copy_thread(0, clone_flags, stack_start,

stack_size, p, regs);
if (retval) goto bad_fork_cleanup_namespace;
p->semundo = NULL;
...
p->exit_signal = clone_flags & CSIGNAL;
...

do_fork() (2.4)
/* "share" dynamic priority between parent and child thus
 * the total amount of dynamic priorities in the system
 * doesn't change, more scheduling fairness. This is only
 * important in the first timeslice, on the long run
 * the scheduling behaviour is unchanged. */
p->counter = (current->counter + 1) >> 1;
current->counter >>= 1;
if (!current->counter)

current->need_resched = 1;
/*
 * Ok, add it to the run-queues and make it
 * visible to the rest of the system.
 *
 * Let it rip!
 */
retval = p->pid;
...

do_fork() (2.4)
/* Need tasklist lock for parent etc handling! */
write_lock_irq(&tasklist_lock);
/* CLONE_PARENT re-uses the old parent */
p->p_opptr = current->p_opptr;
p->p_pptr = current->p_pptr;
if (!(clone_flags & CLONE_PARENT)) {

p->p_opptr = current;
if (!(p->ptrace & PT_PTRACED))

p->p_pptr = current;
}
……SET_LINKS(p);hash_pid(p);nr_threads++;
write_unlock_irq(&tasklist_lock);
……wake_up_process(p); /* do this last */
++total_forks;
……

 fork_out:return retval;
……

}

copy_thread() (2.4)

• Part of the job of do_fork() is carried out by
the copy_thread() function in
arch/i386/kernel/process.c

• This function prepares the PCB so that the user-
level stack pointer is correctly initialized

• It also sets up the return value (zero) for the
clone() system call thus indicating whether
we are running into the child process/thread

copy_thread() (2.4)
int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,

unsigned long unused,
struct task_struct * p, struct pt_regs * regs)

{
 struct pt_regs * childregs;
 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p)) - 1;
 struct_cpy(childregs, regs);
 childregs->eax = 0; childregs->esp = esp;
 p->thread.esp = (unsigned long) childregs;
 p->thread.esp0 = (unsigned long) (childregs+1);
 p->thread.eip = (unsigned long) ret_from_fork;
 savesegment(fs,p->thread.fs);
 savesegment(gs,p->thread.gs);
 unlazy_fpu(current);
 struct_cpy(&p->thread.i387, ¤t->thread.i387);
 return 0;
}

copy_mm() (2.4)
static int copy_mm(unsigned long clone_flags,

struct task_struct * tsk)
{

struct mm_struct * mm, *oldmm;
int retval;
……
tsk->mm = NULL;
tsk->active_mm = NULL;
……
oldmm = current->mm;
……if (clone_flags & CLONE_VM) {atomic_inc(&oldmm->mm_users);mm = oldmm;

goto good_mm;
}
retval = -ENOMEM;mm = allocate_mm();
if (!mm)

goto fail_nomem;

copy_mm() (2.4)
/* Copy the current MM stuff.. */memcpy(mm, oldmm, sizeof(*mm));if (!mm_init(mm)) goto fail_nomem;……
down_write(&oldmm->mmap_sem);retval = dup_mmap(mm);
up_write(&oldmm->mmap_sem);
if (retval) goto free_pt;

 // child gets a private LDT if there was an LDT in the parent
copy_segments(tsk, mm);

good_mm:
tsk->mm = mm;
tsk->active_mm = mm;
return 0;

free_pt:
mmput(mm);

fail_nomem:
return retval;

}

Support Functions for copy_mm()
• in kernel/fork.c

– mm_init()
• Allocation of a fresh PGD

– dup_mmap()
• Sets up any information for memory

management within the new process
context

mm_init() (2.4)
static struct mm_struct * mm_init(struct mm_struct

* mm)
{

atomic_set(&mm->mm_users, 1);
atomic_set(&mm->mm_count, 1);
init_rwsem(&mm->mmap_sem);
mm->page_table_lock = SPIN_LOCK_UNLOCKED;
mm->pgd = pgd_alloc(mm);
mm->def_flags = 0;
if (mm->pgd)

return mm;
free_mm(mm);
return NULL;

}

Notes on mm_init()
• pgd_alloc() in include/asm-
i386/pgalloc.h allocates a frame for the PGD and:
– Resets the PGD (the first 768 entries) for the

portion associated with user space addressing (0-3
GB)

– Copies into it kernel-level addressing information
from the current process PGD (from entry 768)

– This is implemented in get_pgd_slow() in
include/asm-i386/pgalloc.h

dup_mmap() (2.4)
static inline int dup_mmap(struct mm_struct * mm)
{
 struct vm_area_struct * mpnt, *tmp, **pprev;
 int retval;
 ...
 mm->mmap = NULL;
 mm->mmap_cache = NULL;
 mm->map_count = 0;
 ...
 pprev = &mm->mmap;
 ...
 for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next){
 ...
 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
 if (!tmp) goto fail_nomem;
 *tmp = *mpnt;
 tmp->vm_flags &= ~VM_LOCKED;
 tmp->vm_mm = mm;
 tmp->vm_next = NULL;
 ...
 retval = copy_page_range(mm, current->mm, tmp);
 ...
}

copy_page_range() (2.4)
• Defined in linux/mm/memory.c
• For any range of addresses associated with the
vm_area_struct structure, this function sets
the PTE page table

• This may lead to cover the user-level
addressing range only partially

• In this case, additional PTE tables will be
allocated as when userspace allocates new
memory

copy_page_range() and COW

int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
struct vm_area_struct *vma){

pgd_t * src_pgd, * dst_pgd;unsigned long address = vma->vm_start;unsigned long end = vma->vm_end;
 unsigned long cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;

……
for (;;) {
……

do {
pte_t * src_pte, * dst_pte;

………
src_pte = pte_offset(src_pmd, address);
dst_pte = pte_alloc(dst, dst_pmd, address);

……
do {

pte_t pte = *src_pte;
……

/* If it's a COW mapping, write protect it both in the parent and the child */if (cow && pte_write(pte)) {ptep_set_wrprotect(src_pte);pte = *src_pte;}
……

}

Kernel Thread Creation API

• Kthreads are stopped upon creation
• It must be activated with a call to wake_up_process()

struct task_struct *kthread_create(
int (*function)(void *data), void *data,
 const char namefmt[], ...)

The name of the thread
The thread entry point

Entry point parametersThis is seen as a task by the scheduler

__kthread_create_on_node()
struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),

void *data, int node,
const char namefmt[],
va_list args)

{
struct task_struct *task;
struct kthread_create_info *create = kmalloc(sizeof(*create), GFP_KERNEL);

if (!create)
return ERR_PTR(-ENOMEM);

create->threadfn = threadfn;
create->data = data;
create->node = node;
create->done = &done;

spin_lock(&kthread_create_lock);
list_add_tail(&create->list, &kthread_create_list);
spin_unlock(&kthread_create_lock);

wake_up_process(kthreadd_task);
...

} Kernel Thread Daemon

Task State Transition

Signal Handlers Management

• Once a non-masked
pending signal is found
for a certain process,
before returning
control to it a proper
stack is assembled

• Control is then
returned to the signal
handler

Out of Memory (OOM) Killer
• Implemented in mm/oom_kill.c
• This module is activated (if enabled) when the

system runs out of memory
• There are three possible actions:

– Kill a random task (bad)
– Let the system crash (worse)
– Try to be smart at picking the process to kill

• The OOM Killer picks a "good" process and kills
it in order to reclaim available memory

Out of Memory (OOM) Killer
• Entry point of the system is out_of_memory()
• It tries to select the "best" process checking for

different conditions:
– If a process has a pending SIGKILL or is exiting, this

is automatically picked (check done by task_will_free_mem())
– Otherwise, it issues a call to select_bad_process() which will return a

process to be killed
– The picked process is then killed
– If no process is found, a panic() is raised

select_bad_process()
• This iterates over all available processes calling
oom_evaluate_task() on them, until a
killable process is found

• Unkillable tasks (i.e., kernel threads) are
skipped

• oom_badness() implements the heuristic to
pick the process to be killed
– it computes the "score" associated with each process,

the higher the score the higher the probability of
getting killed

oom_badness()
• A score of zero is given if:

– the task is unkillable
– the mm field is NULL
– if the process is in the middle of a fork

• The score is then computed proportionally to
the RAM, swap, and pagetable usage:

points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
mm_pgtables_bytes(p->mm) / PAGE_SIZE;

Linux Watchdog

• A watchdog is a component that monitors a system
for “normal” behaviour and if it fails, it performs a
system reset to hopefully recover normal operation.

• This is a last resort to maintain system availability or
to allow sysadmins to remotely log after a restart and
check what happened

• In Linux, this is implemented in two parts:
– A kernel-level module which is able to perform a hard

reset
– A user-space background daemon that refreshes the timer

Linux Whatchdog
• At kernel level, this is implemented using a Non-

Maskable Interrupt (NMI)
• The userspace daemon will notify the kernel

watchdog module via the /dev/watchdog
special device file that userspace is still alive

while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
sleep(10);

}

