
x86 Initial Boot Sequence

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2017/2018

The whole sequence at a glance

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

Hardware Power Sequences:
The Pre-Pre-Boot

• When someone pushes the power button, the
CPU can't simply jump up and start fetching
code from flash memory

• The hardware waits for the power supply to
settle to its nominal state

• Additional voltages must be supplied:
– On x86 systems: 1.5, 3.3, 5, and 12 V
– Power Sequencing: these must be provided in a

particular order

Hardware Power Sequences:
The Pre-Pre-Boot

• The power is sequenced by controlling analog
switches, typically field-effect transistors

• The sequence is often driven by a Complex
Program Logic Device (CPLD)

• Platform clocks are derived from a small
number of input clock and oscillator sources.
– The devices use phase-locked loop circuitry to

generate the derived clocks used for the platform.
– These clocks take time to converge.

Hardware Power Sequences:
The Pre-Pre-Boot

Initial life of the System

• The power-sequencing CPLD can de-assert the
reset line to the processor

• At this point, the system is in a very basic state:
– Caches are disabled
– The Memory Management Unit (MMU) is disabled
– The CPU is executing in Real Mode (8086-

compatible)
– Only one core can run actual code
– Nothing is in RAM (what to execute?)

Segmented Memory

Segment A

Segment B

Segment C

logical address = <seg.id : offset> (es. <A : 0x10>)

Address space

Segmentation-based addressing
• There are 4 basic 16-bit segment registers:

– CS: code segment
– DS: data segment
– SS: stack segment
– ES: extra segment (to be used by the programmer)

• Intel 80386 (1985) added two new registers
– FS and GS, with no predefined usage

Segmentation-based addressing
• The CPU resolves addresses as:

Assembly
Instructions
in Program

Logical
Address

Segmentation
Unit

x86 CPU with segmentation

Physical
Address

Northbridge
Chip

RAM
Modules

Memory Address Translation

Segmentation Nowadays

• Segmentation is still present and always
enabled

• Each instruction that touches memory
implicitly uses a segment register:
– a jump instruction uses CS
– a push instruction uses SS

• Most segment registers can be loaded using a
mov instruction

• CS can be loaded only with a jmp or a call

x86 Real Mode

• 16-bit instruction execution mode
• 20-bit segmented memory address space

– 1 MB of total addressable memory
• Address in segment registers is the 16-bits

higher part
• Each segment can range from 1 byte to 65,536

bytes (16-bit offset)

Real Mode Addressing Resolution

Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF

Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF

Weren't they
20 bits?

Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF

Weren't they
20 bits?

Largest address
is FFFFF!

First Fetched Instruction

• The first fetched address is F000:FFF0
– This is known as the reset vector
– On IBM PCs this is mapped to a ROM: the BIOS
– This gives space only to 16 bytes from the top of

ROM memory:
ljmp $0xf000,$0xe05b

• This is where the BIOS code is loaded

BIOS Operations

• The BIOS first looks for video adapters that may
need to load their own routines
– These ROMs are mapped from C000:0000 to

C780:0000
• Power-On Self-Test (POST)

– Depends on the actual BIOS
– Often involves testing devices (keyboard, mouse)
– Video Card Initialization
– RAM consistency check

BIOS Operations

• Boot configuration loaded from CMOS (64 bytes)
– For example, the boot order

• Shadow RAM initialization
– The BIOS copies itself into RAM for faster access

• The BIOS tries to identify the Stage 1 bootloader,
(512 bytes) using the specified boot order and
loads it to memory at 0000:7c00

• Control is given with:
ljmp $0x0000,$0x7c00

The RAM after the BIOS startup

Low Memory

VGA Display

16-bit devices,
expansion ROM

BIOS ROM

0x00000000

0x000A0000 (640 Kb)

0x000C0000 (768 Kb)

0x000F0000 (960 Kb)

0x00100000 (1 Mb)

The only available
"RAM" in the

early days

The bootloader
is loaded here

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

The Boot Sector
• The first device sector keeps the so called

Master Boot Record (MBR)
• This sector keeps executable code and a 4-entry

partition table, identifying different device
partitions (in terms of its positioning on the
device)

• In case the partition is extended, then it can
additionally keep up to 4 sub-partitions
(extended partition)

The Device Organization

Boot sector: it can contain additional boot code

Boot
partition

Extended partition boot record

Partition table

Boot code

Partition 1 Partition 3 (extended)

The Master Boot Record (MBR)
• This implements the Stage 1 bootloader
• (Less than) 512 bytes can be used to load the

operating system

The Master Boot Record (MBR)

• The initial bytes of the MBR can contain the
BIOS Parameter Block (BPB)

• It is a data structure describing the physical
layout of a data storage volume
– It is used, e.g., by FAT16, FAT32, and NTFS

• This eats up additional space, and must be
placed at the beginning of the MBR!
– How to execute the code?

The Master Boot Record (MBR)
.code16
 .text
.globl _start;

_start:
jmp .stage1_start

OEMLabel: .string "BOOT"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats: .byte 2
RootDirEntries: .short 224
LogicalSectors: .short 2880
MediumByte: .byte 0x0F0
SectorsPerFat: .short 9
SectorsPerTrack: .short 18

Sides: .short 2
HiddenSectors: .int 0
LargeSectors: .int 0
DriveNo: .short 0
Signature: .byte 41 #41 = floppy
VolumeID: .int 0x00000000
VolumeLabel: .string "myOS"
FileSystem: .string "FAT12"

 .stage1_start:
 cli # Disable interrupts
 xorw %ax,%ax # Segment zero
 movw %ax,%ds
 movw %ax,%es
 movw %ax,%ss
 ...

The Master Boot Record (MBR)
.code16
 .text
.globl _start;

_start:
jmp .stage1_start

OEMLabel: .string "BOOT"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats: .byte 2
RootDirEntries: .short 224
LogicalSectors: .short 2880
MediumByte: .byte 0x0F0
SectorsPerFat: .short 9
SectorsPerTrack: .short 18

Sides: .short 2
HiddenSectors: .int 0
LargeSectors: .int 0
DriveNo: .short 0
Signature: .byte 41 #41 = floppy
VolumeID: .int 0x00000000
VolumeLabel: .string "myOS"
FileSystem: .string "FAT12"

 .stage1_start:
 cli # Not safe here!
 xorw %ax,%ax # Segment zero
 movw %ax,%ds
 movw %ax,%es
 movw %ax,%ss
 ...

What about CS?

The Stage 1 Bootloader must...

• Enable address A20
• Switch to 32-bit protected mode
• Setup a stack
• Load the kernel

– Yet, the kernel is on disk: how to navigate the file
system? There is not much space for code...

– Load the Stage 2 bootloader!

A20 Enable

• Intel 80286 increased the addressable memory
to 16 Mb (24 address lines)

• How to keep backward compatibility with 8086?
– "wrap-around" problem
– By default address line 20 is forced to zero!

• How to enable/disable this line?
– Use the 8042 keyboard controller (sic!)
– It had a spare pin which they decided to route the

A20 line through

A20 Enable
• The output port of the keyboard controller has a

number of functions.
• Bit 1 is used to control A20:

– 1 = enabled
– 0 = disabled

• Port 0x64 is used to "communicate" an operation to
the controller
– 0xd1 means "write"

• 0xdd and 0xdf enable/disable A20, when sent to port
0x60
– You have to wait for previous operations to complete (the

controller is slow)

A20 Enable

 call wait_for_8042
 movb $0xd1, %al #command write
 outb %al, $0x64
 call wait_for_8042
 movb $0xdf, %al # Enable A20
 outb %al, $0x60
 call wait_for_8042
 ...

 wait_for_8042:
 inb %al, $0x64
 tesb $2, %al # Bit 2 set = busy
 jnz wait_for_8042
 ret

x86 Protected Mode

• This execution mode was introduced in 80286
(1982)

• With 80386 (1985) it was extended by adding
paging

• CPUs start in Real Mode for backwards
compatibility

• Still today, x86 Protected Mode must be
activated during system startup

x86_64 Registers

x86_64 Registers

CR0

Entering Basic Protected Mode

• The code must set bit 0 (PE) of register CR0
• Setting PE to 1 does not immediately activate all

its facilites
• It happens when the CS register is first updated
• This can be only done using a far jump (ljmp)

instruction, as already mentioned.
• After this, code executes in 32/64-bit mode

Entering Basic Protected Mode
 ljmp 0x0000, PE_mode

 .code32
PE_mode:
 # Set up the protected-mode data segment registers
 movw $PROT_MODE_DSEG, %ax
 movw %ax, %ds
 movw %ax, %es
 movw %ax, %fs
 movw %ax, %gs
 movw %ax, %ss

Segment Registers in Protected Mode

• In Protected Mode, a segment is no longer a raw
number

• It contains (also) an index into a table of
segment descriptors

• There are three types of segments:
– code
– data
– system

Descriptor Table Entry

• Base: 32-bit linear addressing pointing to the
beginning of the segment

• Limit: size of the segment
• G: Granularity. If set, size is to be multiplied by 4096
• Descriptor Privilege Level (DPL): a number in [0-3]

to control access to the segment

Protected Mode: Privilege Levels

Ring 3 has restricted
access to memory
management,
instructions execution
(around 15 allowed
only at ring 0), and
I/O ports

Descriptor Tables

• Two tables are available on x86 architectures
• Global Descriptor Table (GDT):

– This is a system-wide table of descriptors
– It is pointed by the GDTR register

• Local Descriptor Table (LDT):
– Pointed by the LDTR register
– Not used anymore

Segment Selectors

• TI: set to 0 for the GDT, set to 1 for the LDT
• Index: specifies the segment selector within the

associated table
• Requested Privilege Level (RPL): we'll come to

that later

Segmented Addressing Resolution

Segmented Addressing Resolution

Segmentation cannot
be disabled

Segment Caching
• Accessing the GDT for every memory access is

not performance-wise
• Segment registers have a non-programmable

hidden part to store the cached descriptor

Segment Register

Selector Descriptor
(non-programmable)

Descriptor
Table

Memory
Segment

Descriptor

x86 Enforcing Protection

• A Descriptor Entry has a DPL
• The firmware must check if an access to a

certain segment is allowed
• There must be a way to change current privilege

Change always allowed

Should be controlled/denied

Data Segment vs Code Segment

• RPL is present only in data
segment selectors (e.g. SS
or DS)

• Current Privilege Level
(CPL): this is only in CS,
which can be loaded only
with a ljmp/lcall

• Overall we have 3 different privilege-level fields:
CPL, RPL, and DPL

Protection upon Segment Load

• CPL is managed by the CPU: it's always equals to
the current CPU privilege level

• CPU Memory protection comes at two points:
– Memory access via a linear address
– Data segment selector load operation

Protection upon Segment Load

For SS, the condition is:
CPL = RPL = DPL

Getting Higher Privileges

• Accessing segment with a higher privilege
(lower ring) with no control might allow
malicious code to subvert the kernel

• To control transfer, code must pass through a
controlled gate

• Gate descriptors are used to identify possible
gates through which control can pass

Controlled Access Through Gates

User routine

Kernel routine B

Kernel routine A

Cross-segment jump
through a gate

Non-admitted
cross-segment

jump

Kernel Space
(Ring 0)

User Space
(Ring 3)

Gate Descriptors

• A gate descriptor is a segment descriptor of type
system:
– Call-gate descriptors
– Interrupt-gate descriptors
– Trap-gate descriptors
– Task-gate descriptors

• These are referenced by the Interrupt
Descriptor Table (IDT), pointed by the IDTR
register

Interrupts vs Traps

• Interrupts are asynchronous events not related
to the current CPU execution flow

• Interrupts are generated by external devices,
and can be masked or not (NMI)

• Traps (or exceptions) are synchronous events,
strictly related to the current CPU execution (e.g.
division by zero)

• Traps are the historical way to demand access to
kernel mode

IDT and GDT Relations

GDTR

IDTR

System IDT

System GDT

offset
selector

segment
descriptor

Kernel Text
Segment

256
entries

Interrupt
Handler

GDT in Linux

There is one copy of this table for each core

Shared across all cores
Different for all cores

Task State Segment (TSS)

• Its an x86 structure holding information about a
task

• It is intended to handle task management
• It stores:

– Processor registers state
– I/O Port Permissions
– Inner-level Stack Pointers
– Previous TSS link

Task State Segment (TSS)

• It can be everywhere in memory (hence the GDT
entry required to access it)

• On Linux, it's in kernel data memory
• Each TSS is stored in the int_tss array.
• The selector is kept in the Task Register (TR)
• It can be loaded using the privileged ltr

instruction

Task State Segment (TSS)
Pointer to

a bitmap

CPU State

Privilege-level stacks

Task State Segment (TSS)

• The Base field within the n-th core TSS register
points to the n-th entry of the int_tss array

• G=0 and Limit=0xeb
– given that TSS is 236 bytes in size

• DPL=0
•TSS cannot be accessed in user mode

Entering Ring 0 from Ring 3

Protected Mode Paging

• Since 80386, x86 CPUs add an additional step in
address translation

Assembly
Instructions
in Program

Logical
Address

Segmentation
Unit

x86 CPU with segmentation and paging

Linear
Address

Northbridge
Chip

RAM
Modules

Memory Address Translation

Paging
Unit

Physical
Address

Protected Mode Paging

• Paging has to be explicitly enabled
– Entering Protected Mode does not enable it

automatically
– Several data structures must be setup before

• Paging allows to manage memory protection at
a smaller granularity than segmentation

i386 Paging Scheme

i386 Paging Scheme

• Both levels are based on 4 KB memory blocks
• Each block is an array of 4-byte entries
• Hence we can map 1 K x 1K pages
• Since each page is 4 KB in sixe, we get a 4 GB

virtual addressing space

i386 PDE entries

(Sticky bit)

i386 PTE entries

(Sticky bit)

(TLB caching policy)

(Used for COW)

Translation Lookaside Buffer

Assembly
Instructions
in Program

Logical
Address

Segmentation
Unit

x86 CPU with segmentation and paging

Linear
Address

Northbridge
Chip

RAM
Modules

Memory Address Translation

Paging
Unit

Physical
Address

Translation Lookaside Buffer

Relations to Trap/Interrupt Table
• Upon a TLB miss, firmware accesses the page table
• The first checked bit is PRESENT
• If this bit is zero, a page fault occurs which gives rise to a trap
• CPU registers (including EIP and CS) are saved on the system stack
• They will be restored when returning from trap: the trapped

instruction is re-executed
• Re-execution might give rise to additional traps, depending on

firmware checks on the page table
• As an example, the attempt to access a read only page in write mode

will give rise to a trap (which triggers the segmentation fault
handler)

Linux memory layout on i386

0xBFFFFFFF

...

0x00000000

0xFFFFFFFF

...

0xC0000000

User Space
(3 GB)

Kernel
(1 GB)

Physical Address Extension (PAE)

• An attempt to extend over the 4GB limit on i386
systems

• Present since the Intel Pentium Pro
• Supported on Linux since kernel 2.6
• Addressing is extended to 36 bits
• This allows to drive up to 64 GB of RAM memory
• Paging uses 3 levels
• CR4.PAE-bit (bit 5) tells if PAE is enabled

Physical Address Extension (PAE)

x64 Paging Scheme

• PAE is extended via the so called “long addressing”
• 264 bytes of logical memory in theory
• Bits [49-64] are short-circuited

– Up to 248 canonical form addresses (lower and upper half)
– A total of 256 TB addressable memory

• Linux currently allows for 128 TB of logical
addressing of individual processes and 64 TB for
physical addressing

Canonical Addresses

64-bit 48-bit

Linux memory layout on x64

0x0000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

TEXT

DATA

Kernel

0xFFFF 8000 0000 0000

0x0000 7FFF FFFF FFFF

Non-canonical
addressesStack

Heap
Shared Objects

48-bit Page Table (4KB pages)

Also referred to as Page
General Directory (PGD)

CR3 and Paging Structure Entries

How to enable x64 longmode
• The first step is (of course) to setup a coherent page table
• We must then tell the CPU to enable Long Mode
• Refer to arch/x86/include/uapi/asm/msr-index.h for the

definition of the symbols
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
pushl $__KERNEL_CS
leal startup_64(%ebp), %eax
pushl %eax
movl $(X86_CR0_PG | X86_CR0_PE), %eax
movl %eax, %cr0
lret

Huge Pages

• Ideally x64 processors support them starting from
PDPT

• Linux typically offers the support for huge pages
pointed by the PDE (page size 512*4KB)

• See: /proc/meminfo and /proc/sys/vm/nr_hugepages
• These can be mmap'ed via file descriptors and/or

mmap parameters (e.g. MAP_HUGETLB flag)
• They can also be requested via the madvise(void *,

size_t, int) system call (with MADV_HUGEPAGE flag)

Back to the bootstrap

• We have enabled Protected Mode
• Addressing mode is still using segmentation
• We can address up to 16 Mb of RAM
• Paging is not yet setup

• It's time to start loading the actual kernel

Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)

Second Stage Bootloader
• There are various versions of this software

– In GRUB it is GRUB Stage 2
– In Win NT it is c:\ntldr

• The second stage bootloader reads a configuration
file, e.g. to startup a boot selection menu
– grub.conf in GRUB, boot.ini in Win NT

• The kernel initial image is loaded in memory using
BIOS disk I/O services
– For Linux, it is /boot/vmlinuz-*
– For Win NT, it is c:\Windows\System32\ntoskrnl.exe

Historical Linux Bootcode

• The historical bootsector code for LINUX (i386) is
in arch/i386/bootsect.S (no longer used)

• It loaded arch/i386/bootsetup.S and the kernel
image in memory

• The code in arch/i386/bootsetup.S initialized the
architecture (e.g. the CPU state for the actual kernel
boot)

• It ultimately gave control to the initial kernel image

Unified Extensible Firmware Interface
(UEFI)

• Modular (you can extend it with drivers)
• Runs on various platforms
• It's written in C
• It supports a bytecode (portability to other

architectures)

• It's completely different from BIOS

UEFI Boot
• UEFI boot manager takes control right after the

system is powered on
• It looks at the boot configuration
• It loads the firmware settings into RAM from

nvRAM
• Startup files are stored on a dedicated EFI

System Partition (ESP)
– It'a a FAT32 partition
– It has one folder for each OS on the system

• MBR cannot handle disks larger than 2TB

UEFI Boot

• It can automatically detect new uefi-boot targets
– UEFI uses standard path names

• /efi/boot/boot_x64.efi
• /efi/boot/bootaa64.efi

• UEFI programs can be easily written
#include <efi.h>
#include <efilib.h>

EFI_STATUS EFIAPI
efi_main(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable) {

InitializeLib(ImageHandle, SystemTable);
Print(L"Hello World\n");

return EFI_SUCCESS;
}

GUID Partition Table

Secure Boot

• There is a kind of malware which takes control
of the system before the OS starts
– MBR RootKits

• Usually, these RootKits hijack the IDT for I/O
operations, to execute their own wrapper

• When the kernel is being loaded, the RootKit
notices that and patches the binary code while
loading it into RAM

Secure Boot

• UEFI allows to load only signed executables
• Keys to verify signatures are installed in UEFI

configuration
– Platform Keys (PK): tells who “owns and controls”

the hardware platform
– Key-Exchange Keys (KEK): shows who is allowed to

update the hardware platform
– Signature Database Keys (DB): show who is allowed

to boot the platform in secure mode

Dealing with multicores

• Who shall execute the startup code?
• For legacy reasons, the code is purely sequential
• Only one CPU core (the master) should run the

code

• At startup, only one core is active, the others are
in an idle state

• The startup procedure has to wake up other
cores during kernel startup

Interrupts on Multicore Architectures

• The Advanced Programmable Interrupt Controller (APIC) is
used for sophisticated interrupt sending/redirection

• Each core has a Local APIC (LAPIC) controller, which can
send Inter-Processor Interrupts (IPIs)
– LAPICs are connected through the (logical) “APIC Bus”
– LINT 0 : normal interrupts — LINT 1 : Non-maskable Interrupts

• I/O APICs contain a redirection table, which is used to route
the interrupts it receives from peripheral buses to one or
more local APICs

LAPIC

Interrupt Control Register
• The ICR register is used to initiate an IPI
• Values written into it specify the type of

interrupt to be sent, and the target core

Broadcast INIT-SIPI-SIPI Sequence
address Local-APIC via register FS
 mov $sel_fs, %ax
 mov %ax, %fs

broadcast 'INIT' IPI to 'all-except-self'
 mov $0x000C4500, %eax ; 11 00 0 1 0 0 0 101 00000000
 mov %eax, %fs:(0xFEE00300)
.B0: btl $12, %fs:(0xFEE00300)
 jc .B0

broadcast 'Startup' IPI to 'all-except-self'
using vector 0x11 to specify entry-point
at real memory-address 0x00011000
 mov $0x000C4611, %eax ; 11 00 0 0 1 0 0 0 110 00010001
 mov %eax, %fs:(0xFEE00300)
.B1: btl $12, %fs:(0xFEE00300)
 jc .B1

