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The whole sequence at a glance



Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)



Hardware Power Sequences:
The Pre-Pre-Boot

• When someone pushes the power button, the 
CPU can't simply jump up and start fetching 
code from flash memory

• The hardware waits for the power supply to 
settle to its nominal state

• Additional voltages must be supplied:
– On x86 systems: 1.5, 3.3, 5, and 12 V
– Power Sequencing: these must be provided in a 

particular order



Hardware Power Sequences:
The Pre-Pre-Boot

• The power is sequenced by controlling analog 
switches, typically field-effect transistors

• The sequence is often driven by a Complex 
Program Logic Device (CPLD)

• Platform clocks are derived from a small 
number of input clock and oscillator sources.
– The devices use phase-locked loop circuitry to 

generate the derived clocks used for the platform. 
– These clocks take time to converge.



Hardware Power Sequences:
The Pre-Pre-Boot



Initial life of the System

• The power-sequencing CPLD can de-assert the 
reset line to the processor

• At this point, the system is in a very basic state:
– Caches are disabled
– The Memory Management Unit (MMU) is disabled
– The CPU is executing in Real Mode (8086-

compatible)
– Only one core can run actual code
– Nothing is in RAM (what to execute?)



Segmented Memory

Segment A

Segment B

Segment C

logical address = <seg.id : offset> (es. <A : 0x10>)

Address space



Segmentation-based addressing
• There are 4 basic 16-bit segment registers:

– CS: code segment
– DS: data segment
– SS: stack segment
– ES: extra segment (to be used by the programmer)

• Intel 80386 (1985) added two new registers
– FS and GS, with no predefined usage



Segmentation-based addressing
• The CPU resolves addresses as:

Assembly 
Instructions 
in Program

Logical 
Address

Segmentation
Unit

x86 CPU with segmentation

Physical 
Address

Northbridge 
Chip

RAM 
Modules

Memory Address Translation



Segmentation Nowadays

• Segmentation is still present and always 
enabled

• Each instruction that touches memory 
implicitly uses a segment register:
– a jump instruction uses CS
– a push instruction uses SS

• Most segment registers can be loaded using a 
mov instruction

• CS can be loaded only with a jmp or a call



x86 Real Mode

• 16-bit instruction execution mode
• 20-bit segmented memory address space

– 1 MB of total addressable memory
• Address in segment registers is the 16-bits 

higher part
• Each segment can range from 1 byte to 65,536 

bytes (16-bit offset)



Real Mode Addressing Resolution



Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF



Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF

Weren't they
20 bits?



Addressing in x86 Real Mode

Growing
Physical
Addresses

0000:0000

FFFF:FFFF

Weren't they
20 bits?

Largest address
is FFFFF!



First Fetched Instruction

• The first fetched address is F000:FFF0
– This is known as the reset vector
– On IBM PCs this is mapped to a ROM: the BIOS
– This gives space only to 16 bytes from the top of 

ROM memory:
ljmp $0xf000,$0xe05b

• This is where the BIOS code is loaded



BIOS Operations

• The BIOS first looks for video adapters that may 
need to load their own routines
– These ROMs are mapped from C000:0000 to 

C780:0000
• Power-On Self-Test (POST)

– Depends on the actual BIOS
– Often involves testing devices (keyboard, mouse)
– Video Card Initialization
– RAM consistency check



BIOS Operations

• Boot configuration loaded from CMOS (64 bytes)
– For example, the boot order

• Shadow RAM initialization
– The BIOS copies itself into RAM for faster access

• The BIOS tries to identify the Stage 1 bootloader, 
(512 bytes) using the specified boot order and 
loads it to memory at 0000:7c00

• Control is given with:
ljmp $0x0000,$0x7c00



The RAM after the BIOS startup

Low Memory

VGA Display

16-bit devices,
expansion ROM

BIOS ROM

0x00000000

0x000A0000 (640 Kb)

0x000C0000 (768 Kb)

0x000F0000 (960 Kb)

0x00100000 (1 Mb)

The only available
"RAM" in the

early days

The bootloader
is loaded here



Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)



The Boot Sector
• The first device sector keeps the so called 

Master Boot Record (MBR)
• This sector keeps executable code and a 4-entry 

partition table, identifying different device 
partitions (in terms of its positioning on the 
device)

• In case the partition is extended, then it can 
additionally keep up to 4 sub-partitions 
(extended partition)



The Device Organization

Boot sector: it can contain additional boot code

Boot 
partition

Extended partition boot record

Partition table

Boot code

Partition 1 Partition 3 (extended)



The Master Boot Record (MBR)
• This implements the Stage 1 bootloader
• (Less than) 512 bytes can be used to load the 

operating system



The Master Boot Record (MBR)

• The initial bytes of the MBR can contain the 
BIOS Parameter Block (BPB)

• It is a data structure describing the physical 
layout of a data storage volume
– It is used, e.g., by FAT16, FAT32, and NTFS

• This eats up additional space, and must be 
placed at the beginning of the MBR!
– How to execute the code?



The Master Boot Record (MBR)
.code16
 .text
.globl _start;

_start:
jmp .stage1_start
 
OEMLabel:  .string "BOOT"
BytesPerSector:  .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats:  .byte 2
RootDirEntries:  .short 224
LogicalSectors:  .short 2880
MediumByte:  .byte 0x0F0
SectorsPerFat:  .short 9
SectorsPerTrack: .short 18

Sides:   .short 2
HiddenSectors:  .int 0
LargeSectors:  .int 0
DriveNo:  .short 0
Signature:  .byte 41 #41 = floppy
VolumeID:  .int 0x00000000
VolumeLabel:  .string "myOS"
FileSystem:  .string "FAT12"

 .stage1_start:
    cli # Disable interrupts
    xorw %ax,%ax # Segment zero
    movw %ax,%ds
    movw %ax,%es
    movw %ax,%ss
    ...



The Master Boot Record (MBR)
.code16
 .text
.globl _start;

_start:
jmp .stage1_start
 
OEMLabel:  .string "BOOT"
BytesPerSector:  .short 512
SectorsPerCluster: .byte 1
ReservedForBoot: .short 1
NumberOfFats:  .byte 2
RootDirEntries:  .short 224
LogicalSectors:  .short 2880
MediumByte:  .byte 0x0F0
SectorsPerFat:  .short 9
SectorsPerTrack: .short 18

Sides:   .short 2
HiddenSectors:  .int 0
LargeSectors:  .int 0
DriveNo:  .short 0
Signature:  .byte 41 #41 = floppy
VolumeID:  .int 0x00000000
VolumeLabel:  .string "myOS"
FileSystem:  .string "FAT12"

 .stage1_start:
    cli # Not safe here!
    xorw %ax,%ax # Segment zero
    movw %ax,%ds
    movw %ax,%es
    movw %ax,%ss
    ...

What about CS?



The Stage 1 Bootloader must...

• Enable address A20
• Switch to 32-bit protected mode
• Setup a stack
• Load the kernel

– Yet, the kernel is on disk: how to navigate the file 
system? There is not much space for code...

– Load the Stage 2 bootloader!



A20 Enable

• Intel 80286 increased the addressable memory 
to 16 Mb (24 address lines)

• How to keep backward compatibility with 8086?
– "wrap-around" problem
– By default address line 20 is forced to zero!

• How to enable/disable this line?
– Use the 8042 keyboard controller (sic!)
– It had a spare pin which they decided to route the 

A20 line through



A20 Enable
• The output port of the keyboard controller has a 

number of functions.
• Bit 1 is used to control A20:

– 1 = enabled
– 0 = disabled

• Port 0x64 is used to "communicate" an operation to 
the controller
– 0xd1 means "write"

• 0xdd and 0xdf enable/disable A20, when sent to port 
0x60
– You have to wait for previous operations to complete (the 

controller is slow)



A20 Enable

    call wait_for_8042
    movb $0xd1, %al #command write
    outb %al, $0x64
    call wait_for_8042
    movb $0xdf, %al # Enable A20
    outb %al, $0x60
    call wait_for_8042
    ...

  wait_for_8042:
    inb %al, $0x64
    tesb $2, %al    # Bit 2 set = busy
    jnz wait_for_8042
    ret



x86 Protected Mode

• This execution mode was introduced in 80286 
(1982) 

• With 80386 (1985) it was extended by adding 
paging

• CPUs start in Real Mode for backwards 
compatibility

• Still today, x86 Protected Mode must be 
activated during system startup



x86_64 Registers



x86_64 Registers



CR0



Entering Basic Protected Mode

• The code must set bit 0 (PE) of register CR0
• Setting PE to 1 does not immediately activate all 

its facilites
• It happens when the CS register is first updated
• This can be only done using a far jump (ljmp) 

instruction, as already mentioned.
• After this, code executes in 32/64-bit mode



Entering Basic Protected Mode
  ljmp 0x0000, PE_mode

 .code32
PE_mode:
 # Set up the protected-mode data segment registers
 movw $PROT_MODE_DSEG, %ax
 movw %ax, %ds
 movw %ax, %es
 movw %ax, %fs
 movw %ax, %gs
 movw %ax, %ss



Segment Registers in Protected Mode

• In Protected Mode, a segment is no longer a raw 
number

• It contains (also) an index into a table of 
segment descriptors

• There are three types of segments:
– code
– data
– system



Descriptor Table Entry

• Base: 32-bit linear addressing pointing to the 
beginning of the segment

• Limit: size of the segment
• G: Granularity. If set, size is to be multiplied by 4096
• Descriptor Privilege Level (DPL): a number in [0-3] 

to control access to the segment



Protected Mode: Privilege Levels

Ring 3 has restricted 
access to memory 
management, 
instructions execution 
(around 15 allowed 
only at ring 0), and 
I/O ports



Descriptor Tables

• Two tables are available on x86 architectures
• Global Descriptor Table (GDT):

– This is a system-wide table of descriptors
– It is pointed by the GDTR register

• Local Descriptor Table (LDT):
– Pointed by the LDTR register
– Not used anymore



Segment Selectors

• TI: set to 0 for the GDT, set to 1 for the LDT
• Index: specifies the segment selector within the 

associated table
• Requested Privilege Level (RPL): we'll come to 

that later



Segmented Addressing Resolution



Segmented Addressing Resolution

Segmentation cannot 
be disabled



Segment Caching
• Accessing the GDT for every memory access is 

not performance-wise
• Segment registers have a non-programmable 

hidden part to store the cached descriptor

Segment Register

Selector Descriptor
(non-programmable)

Descriptor
Table

Memory
Segment

Descriptor



x86 Enforcing Protection

• A Descriptor Entry has a DPL
• The firmware must check if an access to a 

certain segment is allowed
• There must be a way to change current privilege

Change always allowed

Should be controlled/denied



Data Segment vs Code Segment

• RPL is present only in data 
segment selectors (e.g. SS 
or DS)

• Current Privilege Level 
(CPL): this is only in CS, 
which can be loaded only 
with a ljmp/lcall

• Overall we have 3 different privilege-level fields:
CPL, RPL, and DPL



Protection upon Segment Load

• CPL is managed by the CPU: it's always equals to 
the current CPU privilege level

• CPU Memory protection comes at two points:
– Memory access via a linear address
– Data segment selector load operation



Protection upon Segment Load

For SS, the condition is:
CPL = RPL = DPL



Getting Higher Privileges

• Accessing segment with a higher privilege 
(lower ring) with no control might allow 
malicious code to subvert the kernel

• To control transfer, code must pass through a 
controlled gate

• Gate descriptors are used to identify possible 
gates through which control can pass



Controlled Access Through Gates

User routine

Kernel routine B

Kernel routine A

Cross-segment jump
through a gate

Non-admitted
cross-segment

jump

Kernel Space
(Ring 0)

User Space
(Ring 3)



Gate Descriptors

• A gate descriptor is a segment descriptor of type 
system:
– Call-gate descriptors
– Interrupt-gate descriptors
– Trap-gate descriptors
– Task-gate descriptors

• These are referenced by the Interrupt 
Descriptor Table (IDT), pointed by the IDTR 
register



Interrupts vs Traps

• Interrupts are asynchronous events not related 
to the current CPU execution flow

• Interrupts are generated by external devices, 
and can be masked or not (NMI)

• Traps (or exceptions) are synchronous events, 
strictly related to the current  CPU execution (e.g. 
division by zero)

• Traps are the historical way to demand access to 
kernel mode



IDT and GDT Relations

GDTR

IDTR

System IDT

System GDT

offset
selector

segment
descriptor

Kernel Text 
Segment

256
entries

Interrupt
Handler



GDT in Linux

There is one copy of this table for each core

Shared across all cores
Different for all cores



Task State Segment (TSS)

• Its an x86 structure holding information about a 
task

• It is intended to handle task management
• It stores:

– Processor registers state
– I/O Port Permissions
– Inner-level Stack Pointers
– Previous TSS link



Task State Segment (TSS)

• It can be everywhere in memory (hence the GDT 
entry required to access it)

• On Linux, it's in kernel data memory
• Each TSS is stored in the int_tss array.
• The selector is kept in the Task Register (TR)
• It can be loaded using the privileged ltr 

instruction



Task State Segment (TSS)
Pointer to

a bitmap

CPU State

Privilege-level stacks



Task State Segment (TSS)

• The Base field within the n-th core TSS register 
points to the  n-th entry of the int_tss array 

• G=0 and Limit=0xeb
– given that TSS is 236 bytes in size

• DPL=0
•TSS cannot be accessed in user mode



Entering Ring 0 from Ring 3



Protected Mode Paging

• Since 80386, x86 CPUs add an additional step in 
address translation

Assembly 
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in Program
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Memory Address Translation
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Unit
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Address



Protected Mode Paging

• Paging has to be explicitly enabled
– Entering Protected Mode does not enable it 

automatically
– Several data structures must be setup before

• Paging allows to manage memory protection at 
a smaller granularity than segmentation



i386 Paging Scheme



i386 Paging Scheme

• Both levels are based on 4 KB memory blocks 
• Each block is  an array of 4-byte entries
• Hence we can map 1 K x 1K pages
• Since each page is 4 KB in sixe, we get a 4 GB 

virtual addressing space



i386 PDE entries 

(Sticky bit)



i386 PTE entries

(Sticky bit)

(TLB caching policy)

(Used for COW)



Translation Lookaside Buffer
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Translation Lookaside Buffer



Relations to Trap/Interrupt Table
• Upon a TLB miss, firmware accesses the page table
• The first checked bit is PRESENT
• If this bit is zero, a page fault occurs which gives rise to a trap
• CPU registers (including EIP and CS) are saved on the system stack
• They will be restored when returning from trap: the trapped 

instruction is re-executed
• Re-execution might give rise to additional traps, depending on 

firmware checks on the page table
• As an example, the attempt to access a read only page in write mode 

will give rise to a trap  (which triggers the segmentation fault 
handler)



Linux memory layout on i386

0xBFFFFFFF

...

0x00000000

0xFFFFFFFF

...

0xC0000000

User Space
(3 GB)

Kernel
(1 GB)



Physical Address Extension (PAE)

• An attempt to extend over the 4GB limit on i386 
systems

• Present since the Intel Pentium Pro
• Supported on Linux since kernel 2.6
• Addressing is extended to 36 bits
• This allows to drive up to 64 GB of RAM memory
• Paging uses 3 levels
• CR4.PAE-bit (bit 5) tells if PAE is enabled 



Physical Address Extension (PAE)



x64 Paging Scheme

• PAE is extended via the so called “long addressing”
• 264 bytes of logical memory in theory
• Bits [49-64] are short-circuited

– Up to 248 canonical form addresses (lower and upper half)
– A total of 256 TB addressable memory

• Linux currently allows for 128 TB of logical 
addressing of individual processes and 64 TB for 
physical addressing



Canonical Addresses

64-bit 48-bit



Linux memory layout on x64

0x0000 0000 0000 0000

0xFFFF FFFF FFFF FFFF

TEXT

DATA

Kernel

0xFFFF 8000 0000 0000

0x0000 7FFF FFFF FFFF

Non-canonical
addressesStack

Heap
Shared Objects



48-bit Page Table (4KB pages)

Also referred to as Page 
General Directory (PGD)



CR3 and Paging Structure Entries



How to enable x64 longmode
• The first step is (of course) to setup a coherent page table
• We must then tell the CPU to enable Long Mode
• Refer to  arch/x86/include/uapi/asm/msr-index.h for the 

definition of the symbols
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
pushl $__KERNEL_CS
leal startup_64(%ebp), %eax
pushl %eax
movl $(X86_CR0_PG | X86_CR0_PE), %eax
movl %eax, %cr0
lret



Huge Pages

• Ideally x64 processors support them starting from 
PDPT

• Linux typically offers the support for huge pages 
pointed by the PDE (page size 512*4KB)

• See: /proc/meminfo and /proc/sys/vm/nr_hugepages
• These can be mmap'ed via file descriptors and/or 

mmap parameters (e.g. MAP_HUGETLB flag) 
• They can also be requested via the  madvise(void *, 

size_t, int) system call (with MADV_HUGEPAGE flag)



Back to the bootstrap

• We have enabled Protected Mode
• Addressing mode is still using segmentation
• We can address up to 16 Mb of RAM
• Paging is not yet setup

• It's time to start loading the actual kernel



Boot Sequence
BIOS/UEFI

Bootloader Stage 1

Bootloader Stage 2

Kernel Startup

Init

Runlevels/Targets

The actual Hardware Startup

Executes the Stage 2 bootloader
(skipped in case of UEFI)

Loads and starts the Kernel

The Kernel takes control of and initializes the machine
(machine-dependent operations)

First process: basic environment initialization
(e.g., SystemV Init, systemd)

Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)



Second Stage Bootloader
• There are various versions of this software

– In GRUB it is GRUB Stage 2
– In Win NT it is c:\ntldr

• The second stage bootloader reads a configuration 
file, e.g. to startup a boot selection menu
– grub.conf in GRUB, boot.ini in Win NT

• The kernel initial image is loaded in memory using 
BIOS disk I/O services
– For Linux, it is /boot/vmlinuz-*
– For Win NT, it is c:\Windows\System32\ntoskrnl.exe



Historical Linux Bootcode

• The historical bootsector code for LINUX (i386) is 
in arch/i386/bootsect.S (no longer used)

• It loaded arch/i386/bootsetup.S and the kernel 
image in memory

• The code in arch/i386/bootsetup.S initialized the 
architecture (e.g. the CPU state for the actual kernel 
boot)

• It ultimately gave control to the initial kernel image



Unified Extensible Firmware Interface 
(UEFI) 

• Modular (you can extend it with drivers)
• Runs on various platforms
• It's written in C
• It supports a bytecode (portability to other 

architectures)

• It's completely different from BIOS



UEFI Boot
• UEFI boot manager takes control right after the 

system is powered on
• It looks at the boot configuration
• It loads the firmware settings into RAM from 

nvRAM
• Startup files are stored on a dedicated EFI 

System Partition (ESP)
– It'a a FAT32 partition
– It has one folder for each OS on the system

• MBR cannot handle disks larger than 2TB



UEFI Boot

• It can automatically detect new uefi-boot targets
– UEFI uses standard path names

• /efi/boot/boot_x64.efi
• /efi/boot/bootaa64.efi

• UEFI programs can be easily written
#include <efi.h>
#include <efilib.h>

EFI_STATUS EFIAPI
efi_main(EFI_HANDLE ImageHandle, EFI_SYSTEM_TABLE *SystemTable) {

InitializeLib(ImageHandle, SystemTable);
Print(L"Hello World\n");

return EFI_SUCCESS;
}



GUID Partition Table



Secure Boot

• There is a kind of malware which takes control 
of the system before the OS starts
– MBR RootKits

• Usually, these RootKits hijack the IDT for I/O 
operations, to execute their own wrapper

• When the kernel is being loaded, the RootKit 
notices that and patches the binary code while 
loading it into RAM



Secure Boot

• UEFI allows to load only signed executables
• Keys to verify signatures are installed in UEFI 

configuration
– Platform Keys (PK): tells who “owns and controls” 

the hardware platform
– Key-Exchange Keys (KEK): shows who is allowed to 

update the hardware platform
– Signature Database Keys (DB): show who is allowed 

to boot the platform in secure mode



Dealing with multicores

• Who shall execute the startup code?
• For legacy reasons, the code is purely sequential
• Only one CPU core (the master) should run the 

code

• At startup, only one core is active, the others are 
in an idle state

• The startup procedure has to wake up other 
cores during kernel startup



Interrupts on Multicore Architectures

• The Advanced Programmable Interrupt Controller (APIC) is 
used for sophisticated interrupt sending/redirection

• Each core has a Local APIC (LAPIC) controller, which can 
send Inter-Processor Interrupts (IPIs)
– LAPICs are connected through the (logical) “APIC Bus”
– LINT 0 : normal interrupts — LINT 1 : Non-maskable Interrupts

• I/O APICs contain a redirection table, which is used to route 
the interrupts it receives from peripheral buses to one or 
more local APICs



LAPIC



Interrupt Control Register
• The ICR register is used to initiate an IPI
• Values written into it specify the type of 

interrupt to be sent, and the target core



Broadcast INIT-SIPI-SIPI Sequence
# address Local-APIC via register FS
     mov     $sel_fs, %ax
     mov     %ax, %fs

# broadcast 'INIT' IPI to 'all-except-self'
     mov     $0x000C4500, %eax ; 11 00 0 1 0 0 0 101 00000000
     mov     %eax, %fs:(0xFEE00300)
.B0: btl     $12, %fs:(0xFEE00300)
     jc    .B0

# broadcast 'Startup' IPI to 'all-except-self'
# using vector 0x11 to specify entry-point
# at real memory-address 0x00011000
     mov $0x000C4611, %eax ; 11 00 0 0 1 0 0 0 110 00010001
     mov    %eax,  %fs:(0xFEE00300)
.B1: btl  $12,  %fs:(0xFEE00300)
     jc  .B1


