
Distributed Programming Techniques

Alessandro Pellegrini

Dipartimento di Ingegneria Informatica,
Automatica e Gestionale

A.Y. 2014/2015

Lectures Outline

• Introduction to MPI

• Event-Driven Programming and Simulation

• Parallel Discrete Event Simulation

• Time Warp Synchronization Protocol

• The ROme OpTimistic Simulator (ROOT-Sim)

2 of 79 - Distributed Programming Techniques

MPI: Message Passing Interface [1]

• The world of MIMD computers is, for the most part, divided into:
◦ Distributed-memory systems
◦ Shared-memory systems

• To program distributed-memory systems we use message passing
◦ A program running on a core-memory pair is called a process
◦ Two processes can communicate through:

• send
• receive

• MPI is a library of functions that can be called from C, C++ and
Fortran programs
◦ It can generate and handle the group of processes
◦ Allows to exchange data between each other

3 of 79 - Distributed Programming Techniques

What do we expect from MPI

• Communication management functions
◦ Definition/identification of group of processes involved in the

communication
◦ Definition/handling of each process’ identity, within a group

• Explicit functions for exchanging messages
◦ Send/receive data from a process
◦ Send/receive data from a group of processes

4 of 79 - Distributed Programming Techniques

MPI Library Structure

5 of 79 - Distributed Programming Techniques

MPI Calls Format

• err = MPI Xxxxx(params, ...)

◦ MPI is a prefix used to identify every MPI call
◦ The first letter, after the prefix, is always capital
◦ Almost every function return an integer error code
◦ Constants are all capitalized

6 of 79 - Distributed Programming Techniques

Communicators

• A communicator describes a collection of processes and a set of
attributes

• Each process can has a unique ID, within a communicator

• Processes can send messages to each other only if they are in the
same communicator

• More than one communicator can exist

7 of 79 - Distributed Programming Techniques

Communication Environment

• int MPI Init(int *argc, char **argv);

◦ Is the first call in every MPI program
◦ Can be called only once
◦ Initializes the communication environment
◦ Defines the MPI COMM WORLD communicator, consisting of all the

processes started by the user upon program startup

• int MPI Finalize(void);

◦ Finalizes the communication environment
◦ Releases all MPI resources
◦ No additiona MPI call can appear after it

8 of 79 - Distributed Programming Techniques

Getting Information from the Communicator

• Communicator Size
◦ A communicator’s size is the (integer) cardinality of the set of

processes which it contains
◦ A process can get the size of the communicator it belongs to:

• int MPI Comm size(MPI Comm comm, int *size);

• Process Rank
◦ A process can get its unique ID (rank):

• int MPI Comm rank(MPI Comm comm, int *rank);

◦ Ranks are in the range [0, size − 1]

9 of 79 - Distributed Programming Techniques

Example: MPI First Program

1 #include <stdio.h>

2 #include <mpi.h>

3

4 void main (int argc, char *argv[]) {

5 int myrank, size;

6

7 /* Initialize MPI */

8 MPI_Init(&argc, &argv);

9 /* Get my rank and the total number of processes */

10 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

11 MPI_Comm_size(MPI_COMM_WORLD, &size);

12

13 printf("Process %d of %d\n", myrank, size);

14

15 /* Terminate MPI */

16 MPI_Finalize();

17 }

10 of 79 - Distributed Programming Techniques

Interprocess Communication

• Processes can communicate explicitly

• Messages can be exchanged between processes belonging to the
same communicator

• point-to-point is the easiest form of communication

11 of 79 - Distributed Programming Techniques

A Message

• A message is the communication means for transferring data
between processes

• Every message is divided into:
◦ Envelope

• source: ID of the sender
• destination: ID of the receiver
• communicator : communicator which both processes belong to
• tag : ID of a message, useful to differentiate messages exchanged

between the same processes

◦ Body
• buffer : message content
• datatype: type of data contained within the message
• count: number of occurrences of datatype to be sent

12 of 79 - Distributed Programming Techniques

How to Send a Message

• Sender process calls an MPI primitive used to uniquely identify the
message’s envelope and body
◦ Sender’s identity is implicit: it’s the caller’s
◦ Other elements are specified through the API call

• int MPI Send(void *buff, int count, MPI Datatype

dtype, int dest, int tag, MPI Comm comm);

13 of 79 - Distributed Programming Techniques

How to Receive a Message

• Destination process must call another MPI primitive to explicitly
tell the library to deliver a message

• Arguments passed to the API allow to uniquely identify the
envelope of the message to be delivered

• If no envelope matches the specified arguments, the operation
cannot complete until a matching one is found among the pending
messages

• Destination process must prepare a memory area large enough to
store the message’s body

• MPI Recv(void *buff, int count, MPI Datatype, int src,

int tag, MPI Comm comm, MPI Status *status);

14 of 79 - Distributed Programming Techniques

MPI Datatypes

MPI Datatype C Datatype

MPI INT signed int

MPI FLOAT float

MPI DOUBLE double

MPI CHAR signed char

• To send complex data types (e.g. a struct), MPI CHAR is used as
datatype, and sizeof(struct) as count

15 of 79 - Distributed Programming Techniques

Example: Sending and Receiving an integer

1 #include <stdio.h>

2 #include <mpi.h>

3

4 void main (int argc, char *argv[]) {

5 MPI_Status status;

6 int myrank, size;

7 int data_int; // What we want to communicate

8

9 /* Initialize Everything */

10 MPI_Init(&argc, &argv);

11 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

12 MPI_Comm_size(MPI_COMM_WORLD, &size);

13

14 if(rank == 0) {

15 data_int = 10;

16 MPI_Send(&data_int, 1, MPI_INT, 1, 123, MPI_COMM_WORLD);

16 of 79 - Distributed Programming Techniques

Example: Sending and Receiving an integer (2)

17 } else {

18 MPI_Recv(&data_int, 1, MPI_INT, 0, 123, MPI_COMM_WORLD, &

status);

19 printf("Process 1 receives %d from process 0.\n", data_int);

20 }

21

22 /* Quit */

23 MPI_Finalize();

24

25 return 0;

26 }

17 of 79 - Distributed Programming Techniques

Example: Sending and Receiving an array portion

start_recv_buf

Vector on

rank 0

Vector on

rank 1

start_send_buf

1 #include <stdio.h>

2 #include <mpi.h>

3

4 #define VSIZE 50

5 #define BORDER 12

6

7 void main (int argc, char *argv[]) {

8 MPI_Status status;

9 int i, rank, nprocs;

18 of 79 - Distributed Programming Techniques

Example: Sending and Receiving an array portion (2)

10 int start_send_buf = BORDER;

11 int start_recv_buf = VSIZE - BORDER;

12 int length = 10;

13 int vector[VSIZE];

14

15 /* Initialize Everything */

16 MPI_Init(&argc, &argv);

17 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

18 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

19

20 /* All processes must initialize vector */

21 for(i = 0; i < VSIZE; i++) vector[i] = rank;

22

23 if(rank == 0) {

24 MPI_Send(&vector[start_send_buf], length, MPI_INT, 1, 123,

MPI_COMM_WORLD);

19 of 79 - Distributed Programming Techniques

Example: Sending and Receiving an array portion (3)

25 } else {

26 MPI_Recv(&vector[start_recv_buf], length, MPI_INT, 0, 123,

MPI_COMM_WORLD, &status);

27 }

28

29 /* Quit */

30 MPI_Finalize();

31

32 return 0;

33 }

20 of 79 - Distributed Programming Techniques

OpenMPI: How to Compile

• MPI is a library, therefore we have to link our program with it

• We have to instruct the compiler on:
◦ the include files path (-I)
◦ the library path (-L)
◦ the library name (-l)

• There are not standard names...

• ...to ease the task, upon installation wrappers are created which
call the compiler accordingly:

mpicc source.c -o executable

21 of 79 - Distributed Programming Techniques

OpenMPI: How to Launch

• An MPI executable must initialize the library beforehand

• This entails setting up the whole communication environment and
starting a certain number of parallel/distributed processes

• To simplify, an MPI launcher exists, which performs these tasks
transparently.

• It will ask for:

◦ Number of processes
◦ ‘Name’ of processing nodes to use for computation
◦ Arguments to the parallel process

22 of 79 - Distributed Programming Techniques

OpenMPI: How to Launch (2)

• The launcher is mpiexec (on legacy implementations it’s mpirun)

• The number of processes is specified directly as an argument:

mpiexec -n 3

• The nodes identity can be specified in two ways:
◦ Directly in the command line:

mpiexec -H node1,node2,node3 -n 3

◦ Creating the hostfile text file, where each line contains the host to be
used followed by the keyword slots=XX, where XX is the number of
processes to be spawned on that node

mpiexec -hostfile my hostfile -np 6

23 of 79 - Distributed Programming Techniques

Exercise: The Trapezoidal Rule

• The Trapezoidal Rule allows to
approximate the area between:
◦ a function y = f (x)
◦ two vertical lines x0 = a, x1 = b
◦ The x-axis

• The interval is divided into n
equal subintervals

• The area is approximated as the
one of a trapezoid

y

xa b

y

xa b

24 of 79 - Distributed Programming Techniques

Exercise: The Trapezoidal Rule (2)

• If the endpoints of the
subinterval are xi and xi+1, its
length is h = xi+1 − xi

• The height of the two vertical
segments are f (xi) and f (xi+1).

y

xxi xi+1

f(xi)

f(xi+1)

y=f(x)

• The fourth side is the secant line joining the points where the
vertical segments cross the graph

• The area of the trapezoid is therefore:

Ai =
h

2
[f (x) + f (xi+1)]

25 of 79 - Distributed Programming Techniques

Exercise: The Trapezoidal Rule (3)

• Since the n subitervals all have the same length, we know that:

h =
b − a

n

• Thus if we call the leftmost endpoint x0 and the rightmost
endpoint xn, we have:

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn−1 = a + (n − 1)h, xn = b

• The sum of the areas of the trapezoids (our approximation) is:

A = h

[
f (x0)

2
+ f (x1) + f (x2) + . . . + f (xn−1) +

f (xn)

2

]

26 of 79 - Distributed Programming Techniques

Parallelizing the Trapezoidal Rule

• We can design a paralell program using four basic steps:

1. Partition the problem solution into tasks
2. Identify the communication channels between the task
3. Aggregate the tasks into composite tasks
4. Map the composite tasks to cores

Compute area

of trapezoid 1

Compute area

of trapezoid 2

Compute area

of trapezoid n
...

Sum up

all areas

27 of 79 - Distributed Programming Techniques

Trapezoidal Rule: the Code

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(void) {

5 int my_rank, comm_sz, n = 1024, local_n;

6 double a = 0.0, b = 3.0, h, local_a, local_b;

7 double local_int, total_int;

8 int source;

9

10 MPI_Init(NULL, NULL);

11 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

12 MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

13

14 h = (b-a)/n; // It’s the same for all processes

15 local_n = n/comm_sz; // It’s the same for all processes

16

28 of 79 - Distributed Programming Techniques

Trapezoidal Rule: the Code (2)

17 local_a = a + my_rank * local_n * h;

18 local_b = local_a + local_n * h;

19 local_int = Trap(local_a, local_b, local_n, h);

20

21 // Exchange the estimates

22 if(my_rank != 0) {

23 MPI_Send(&local_int, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

24 } else {

25 total_int = local_int;

26 for(source = 1; source < comm_sz; source++) {

27 MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);

28 total_int += local_int;

29 }

30 }

31

29 of 79 - Distributed Programming Techniques

Trapezoidal Rule: the Code (3)

32 if(my_rank == 0) {

33 printf("With %d trapezoids, the integral estimate from %f to %

f is %f\n", n, a, b, total_int);

34 }

35

36 MPI_Finalize();

37 return 0;

38 }

39

40 double Trap(double left_endpt, double right_endp, int trap_count,

double base_len) {

41 double estimate, x;

42 int i;

43

44 estimate = (f(left_endpt) + f(right_endpt)) / 2.0;

45 for(i = 1; i <= trap_count - 1; i++) {

30 of 79 - Distributed Programming Techniques

Trapezoidal Rule: the Code (4)

46 x = left_endpt + i * base_len;

47 estimate += f(x);

48 }

49

50 estimate = estimate * base_len;

51

52 return estimate;

53 }

31 of 79 - Distributed Programming Techniques

Dealing with Input

• What if in the previous program we want to specify a, b, c?

• Most MPI implementations only allow process 0 in
MPI COMM WORLD access to stdin.

• In order to use, say, scanf, we need to branch on process rank:

1 void get_input(int rank, int sz, double *a, double *b, int *n) {

2 int dest;

3

4 if(rank == 0) {

5 printf("Enter a, b, and n\n");

6 scanf("%lf %lf %d\n", a, b, n);

7 for(dest = 1; dest < sz; dest++) {

8 MPI_Send(a, 1, MPI_DOUBLE, dest, 0, MPI_COMM_WORLD);

9 MPI_Send(b, 1, MPI_DOUBLE, dest, 0, MPI_COMM_WORLD);

32 of 79 - Distributed Programming Techniques

Dealing with Input (2)

10 MPI_Send(n, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);

11 }

12 } else {

13 MPI_Recv(a, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

14 MPI_Recv(b, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

15 MPI_Recv(n, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

16 }

17 }

33 of 79 - Distributed Programming Techniques

Dealing with Output

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(void) {

5 int my_rank, comm_sz;

6

7 MPI_Init(NULL, NULL);

8 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

9 MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

10

11 printf("Proc %d of %d: Hello World!\n", my_rank, comm_sz);

12

13 MPI_Finalize();

14 }

34 of 79 - Distributed Programming Techniques

Dealing with Output (2)

• The order of the output lines is unpredictable, e.g.:

Proc 0 of 6 > Hello World!

Proc 1 of 6 > Hello World!

Proc 2 of 6 > Hello World!

Proc 5 of 6 > Hello World!

Proc 4 of 6 > Hello World!

Proc 3 of 6 > Hello World!

• MPI processes are competing for accessing to the shared stdout

output device

• It’s impossible to predict the order in which the processes’ output
will be queued up: nondeterminism

35 of 79 - Distributed Programming Techniques

Some potential pitfalls

• If a process tries to receive a message and there’s no matching
send, the process will hang

• We need to be sure that every receive has a matching send

• If the tags don’t match, or there is an error in the
destination/source id
◦ either a process will hang
◦ or the receive will match another send!

• If there is no matching receive to an
MPI Send, the sender will hang!

• Use MPI Isend and MPI Irecv as non-blocking counterparts

• MPI Wait and MPI Test allow to check if a receive has completed

36 of 79 - Distributed Programming Techniques

Periodic Circular Shift

PROC 0 PROC 1 PROC 2

send(1)

recv(2)

send(2)

recv(0)

send(0)

recv(1)

• Each process generates an array, containing its rank in each item

• Each process sends the array to the neighbour process

• Each process receives the array from the neighbour and stores it
into another array

37 of 79 - Distributed Programming Techniques

Periodic Circular Shift (2)

1 int my_rank, comm_sz, to, from, i, A[SIZE], B[SIZE];

2

3 MPI_Init(NULL, NULL);

4 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

5 MPI_Comm_size(MPI_COMM_WORLD, &comm_sz);

6

7 for(i = 0; i < SIZE; i++) A[i] = my_rank;

8

9 to = (my_rank + 1) % comm_sz;

10 from = (my_rank + comm_sz - 1) % comm_sz;

11 MPI_Send(A, SIZE, MPI_INT, to, TAG, MPI_COMM_WORLD);

12 MPI_Recv(B, SIZE, MPI_INT, from, TAG, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

13

14 MPI_Finalize();

38 of 79 - Distributed Programming Techniques

Communication Mechanism

• MPI Send doesn’t return until the delivery of the message is
complete, according to two policies:

◦ Buffered : the message is copied into a system buffer
◦ Synchronous: the message is directly copied into the receiver’s buffer

• The actual behaviour depends on message’s size:
◦ System buffer is fixed-size, thus can be too small to contain a message
◦ An alternative is to use

MPI Bsend which allows to specify a user buffer for message passing

• If buffered, MPI Send returns after the message has been copied in
the local buffer

39 of 79 - Distributed Programming Techniques

Communication Mechanism (2)

Process 1 Process 2

code

bufferMPI_Send

code

code

MPI_Recv

code

tsend < trecv

40 of 79 - Distributed Programming Techniques

Communication Mechanism (3)

Process 1 Process 2

code

MPI_Send

code

code

MPI_Recv

code

tsend = trecv

41 of 79 - Distributed Programming Techniques

Why Deadlock?

• The algorithm can be summarized as:

if(rank == 0) {

send A to process 1

receive B from process 1

} else if (rank == 1) {

send B to process 1

receive A from process 1

}

• For large SIZE, there a 2 send operations waiting for a receive.

• Receives can complete only after the sends complete!

42 of 79 - Distributed Programming Techniques

Deadlock: naive solution

• We can rearrange the operations:

if(rank == 0) {

send A to process 1

receive B from process 1

} else if (rank == 1) {

receive A from process 1

send B to process 1

}

• What if there are more than 2 processes?

43 of 79 - Distributed Programming Techniques

MPI Sendrecv

• We need a facility which internally orders send and receive
operations to avoid deadlock

• MPI Sendrecv can be used when a process must send and receive
data at the same time

int MPI Sendrecv(void *sbuf, int scount, MPI Datatype

s dtype, int dest, int stag, void *dbuf, int dcount,

MPI Datatype d type, int src, int dtag, MPI Comm comm,

MPI Status *status);

44 of 79 - Distributed Programming Techniques

Collective Communications

• Several applications need to communicate among all (or a group)
of processes
◦ For example, the trapezoidal rule implementation

• MPI provides some communication primitives implementing
collective communications
◦ They ease the programmer from the burden of sending information

multiple times
◦ They are more efficient!

• There are three classes:
◦ all-to-one
◦ one-to-all
◦ all-to-all

45 of 79 - Distributed Programming Techniques

Reduce

P0

P1

P2

P3

AP0

AP1

AP2

AP3

P0

P1

P2

P3

X

Σ{}

• Collects data from all involved processes

• Applies an operator to reduce the values to a single one

• Stores the result in the root process

46 of 79 - Distributed Programming Techniques

Reduce (2)

int MPI Reduce(void *sbuf, void *rbuf, int count,

MPI Datatype dtype, MPI Op op, int root, MPI Comm comm);

• Principal operators are
◦ Sum (MPI SUM) and Product (MPI PROD)
◦ Maximum (MPI MAX) and Minimum (MPI MIN)
◦ Logical And (MPI LAND) and Bitwise And (MPI BAND)
◦ Logical Or (MPI LOR) and Bitwise Or (MPI BOR)
◦ Logical Xor (MPI LXOR) and Bitwise Xor (MPI BXOR)

• Reduce default operators are associative and commutative

• User-defined operators can be created via MPI Op create

47 of 79 - Distributed Programming Techniques

Broadcast

P0

P1

P2

P3

A P0

P1

P2

P3

A

A

A

A

• Copies data from send buffer to every process’ receive buffer

• Belongs to the one-to-all class

int MPI Bcast(void *buf, int count, MPI Datatype dtype,

int root, MPI Comm comm);

48 of 79 - Distributed Programming Techniques

Scatter

P0

P1

P2

P3

A P0

P1

P2

P3

A

B

C

D

B C D

• Root process
◦ divides the data into N equal parts
◦ send one part to each process in rank order

• Belongs to the one-to-all class

int MPI Scatter(void *sbuf, int scount, MPI Datatype

s dtype, void *rbuf, int rcount, MPI Datatype r dtype,

int root, MPI Comm comm);
49 of 79 - Distributed Programming Techniques

Gather

P0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D

B C DA

B

C

D

• Every process (including root) sends its data to root

• Root receives the data and orders them according to the rank

• Belongs to the all-to-one class

int MPI Gather(void *sbuf, int scount, MPI Datatype

s dtype, void *rbuf, int rcount, MPI Datatype r dtype,

int root, MPI Comm comm);
50 of 79 - Distributed Programming Techniques

All Gather

P0

P1

P2

P3

P0

P1

P2

P3

A B C DA

B

C

D

A B C D

A B C D

A B C D

• It’s equivalent to a gather operation

• Every process receives the data

• More efficient than a gather + broadcast operation

• Belongs to the all-to-all class

int MPI Allgather(void *sbuf, int scount, MPI Datatype

s dtype, void *rbuf, int rcount, MPI Datatype r dtype,

MPI Comm comm);
51 of 79 - Distributed Programming Techniques

Other Collective Communication Primitives

• MPI Barrier: processes susped their execution until every process
has reached the barrier (synchronization primitive)

• MPI All reduce: the reduction result is sent to every process (it’s
equivalent to a reduce + broadcast, but more efficient)

• MPI Scatterv and MPI Gatherv: the logic is the same as
scatter ’s and gather ’s, but chunks of different size can be
exchanged

52 of 79 - Distributed Programming Techniques

Event-Driven Programming

• Event-Driven Programming is a programming paradigm in which
the flow of the program is determined by events
◦ Sensors outputs
◦ User actions
◦ Messages from other programs or threads

• This paradigm is based on a main loop divided into two phases:
◦ Event selection/detection
◦ Event handling

• Events resemble what interrupts do in hardware systems

53 of 79 - Distributed Programming Techniques

Event Handlers

• An event handler is an asynchronous callback

• Each event represents a piece of application-level information,
delivered from the underlying framework
◦ In a GUI events can be mouse movements, key pression, action

selection, . . .

• Events are processed by an event dispatcher which manages
associations between events and event handlers and notifies the
correct handler

• Events can be queued for later processing if the involved handler is
busy at the moment

54 of 79 - Distributed Programming Techniques

Discrete Event Simulation (DES) [2, 6]

• Simulation is the imitation of the operation of a real-world process
or system over time

• A discrete event occurs at an instant in time and marks a change
of state in the system

• DES represents the operation of a system as a chronological
sequence of events

• This technique allows to analyze complex systems, even before
they are actually built (what-if analysis)

• If the simulation is run on top of a parallel/distributed system, it’s
named Parallel Discrete Event Simulation (PDES) [3]

55 of 79 - Distributed Programming Techniques

DES Building Blocks

• Clock
◦ Independently of the measuring unit, the simulation must keep track

of the current simulation time
◦ Being discrete, time hops to the next event’s time

• Events List
◦ At least the pending event set must be maintained by the simulation

architecture
◦ Events can arrive at a higher rate than they can be processed

• Random-Number Generators
◦ Simulation often rely on distributions, in order to model real world’s

aspects

• Statistics
• Ending Condition
◦ Real systems can often run forever, so the designer of the model must

decide when the simulation will halt

56 of 79 - Distributed Programming Techniques

DES Skeleton

1: procedure Init
2: End ← false
3: initialize State, Clock
4: schedule INIT
5: end procedure
6:

7: procedure Simulation-Loop
8: while End == false do
9: Clock ← next event’s time

10: process next event
11: Update Statistics
12: end while
13: end procedure

57 of 79 - Distributed Programming Techniques

PDES Logical Architecture

Communication Network

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

... ...

...

58 of 79 - Distributed Programming Techniques

PDES Modern Architecture

Communication Network

Machine

CPU

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP LP
LP

LP

...

...

CPU CPU CPU

Machine

CPU

Kernel

...CPU CPU CPU

Kernel

59 of 79 - Distributed Programming Techniques

The Synchronization Problem

• Consider a simulation program composed of several logical
processes exchangin timestamped messages

• Consider the sequential execution: this ensures that events are
processed in timestamp order

• Consider the parallel execution: the greatest opportunity arises
from processing events from different LPs concurrently on different
processors

• Is correctness always ensured?

60 of 79 - Distributed Programming Techniques

The Synchronization Problem

LPi

LPj 15

5 10

20

12

LPk Execution Time7 17 25

10

17

Execution Time

Execution Time

This is called Causality Violation

61 of 79 - Distributed Programming Techniques

Conservative Synchronization: Lookahead

• Consider the LP with the smallest clock value at some instant T in
the simulation’s execution

• This LP could generate events relevant to every other LP in the
simulation wiith a timestamp T

• No LP can process any event with timestamp larger than T

• If each LP has a lookahead of L, then any new message sent by an
LP must have a timestamp of at least T + L

• Any event in the interval [T ,T + L] can be safely processed

• L is intimately related to details of the simulation model

62 of 79 - Distributed Programming Techniques

Optimistic Synchronization: Time Warp [4]

• There are no state variables that are shared between LPs

• Communications are assumed to be reliable

• LPs need not to send messages in timestamp order

• Local Control Mechanism
◦ Events not yet processed are stored in an input queue
◦ Events already processed are not discarded

• Global Control Mechanism
◦ Event processing can be undone
◦ A-posteriori detection of causality violation

63 of 79 - Distributed Programming Techniques

Rollback Operations

LPi

LPj 15

5 10

20 12

Straggler Message

12

LPk Execution Time7 17 25

10

17

17 17

Anti-message

anti-message

reception

Rollback Execution:

Recovering state at

LVT 10

Rollback Execution:

Recovering State at

LVT 7

Execution Time

Execution Time

64 of 79 - Distributed Programming Techniques

Copy State Saving

LPi

LPj

WCT

WCT7

5 10

15 12

18

events'

timestamp
straggler message

12

15

x 5

y 7

snapshots'

timestamp
Rollback Execution:

restoring simulation

state at T = 7

Snapshot taken

before the execution

of every simulation event

10

12

65 of 79 - Distributed Programming Techniques

Sparse State Saving

LPi

LPj

WCT

WCT7

5 10

13 19

28

19

24

16 21 34

16 24 13 16

Snapshot taken

periodically

197

5 21

straggler message

reception

snapshot timestamp

event timestamp
Rollback Execution:

restoring simulation

state at T = 7

Coasting Forward of

events at T = 13

and T = 16

66 of 79 - Distributed Programming Techniques

Global Virtual Time

LPi

LPj 15

5 10

20 12

Straggler Message

12

LPk Execution Time7 17 25

10

17

17 17

Anti-message

anti-message

reception

Rollback Execution:

Recovering state at

LVT 10

Rollback Execution:

Recovering State at

LVT 7

Execution Time

Execution Time

67 of 79 - Distributed Programming Techniques

Reverse Computation

• It can reduce state saving overheads

• Each event is associated (manually or automatically) with a reverse
event

• A majority of the operations that modify the state variables are
constructive in nature
◦ the undo operation for such operations requires no history

• Destructive operations (assignments, bit-wise computation, . . .)
can only be restored via traditional state saving

68 of 79 - Distributed Programming Techniques

Reversible Operations

69 of 79 - Distributed Programming Techniques

if/then/else

1 if(qlen > 0) {

2 qlen--;

3 sent++;

4 }

1 if(qlen "was" > 0) {

2 sent--;

3 qlen++;

4 }

• the reverse event must check an “old” state variables’ value, which
is not available when processing it!

70 of 79 - Distributed Programming Techniques

if/then/else

• Regular events are modified by inserting “bit variables”

• They are transparently-added state variables telling whether a
particular branch was taken or not during the forward execution

1 if(qlen > 0) {

2 b = 1;

3 qlen--;

4 sent++;

5 }

1 if(b == 1) {

2 sent--;

3 qlen++;

4 }

71 of 79 - Distributed Programming Techniques

Time Warp Fundamentals

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

72 of 79 - Distributed Programming Techniques

The ROme OpTimistic Simulator (ROOT-Sim) [5]

• Simulation Platform built according to the Time Warp
Synchronization Protocol

• Supports ANSI-C programming

• Simulation state is scattered around dynamically allocated memory

• Supports Full, Incremental and Autonomic Logging

• http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

73 of 79 - Distributed Programming Techniques

ROOT-Sim’s Architecture

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent
ScheduleNewEvent
OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries and Third Party Libraries

Third Party

Library Wrappers

hook
malloc/free

74 of 79 - Distributed Programming Techniques

An Example Simulation Model: Data Definition

1 #include <ROOT-Sim.h>

2

3 #define INIT 0

4

5 #define PACKET 1

6 #define PACKETS 1000000

7 #define DELAY 1.5

8

9 typedef struct event_content_t {

10 time_type send_time;

11 } event_content_t;

12

13 typedef struct lp_state_t {

14 int pckt_count;

15 } lp_state_t;

75 of 79 - Distributed Programming Techniques

An Example Simulation Model: Events Processing

1 void ProcessEvent(int me, time_type now, int event_t,

event_content_t *event content, unsigned int size, void *ptr) {

2 event_content_t new_evt;

3 lp_state_t *pointer = (lp_state_t *)ptr;

4 time_type ts;

5 int r;

6

7 switch(event_type) {

8 case INIT:

9 pointer = (lp_state_t *)malloc(sizeof(lp_state_t));

10 pointer->pckt_count = 0;

11

12 ts = (time_type)(20 * Random());

13 ScheduleNewEvent(me, ts, PACKET, NULL, 0);

14

15 break;

76 of 79 - Distributed Programming Techniques

An Example Simulation Model: Events Processing (2)

16 case PACKET:

17 pointer->pckt_count++;

18 new_evt.sent_at = now;

19 r = n_prc_tot * Random();

20 ts = now + Expent(DELAY);

21 ScheduleNewEvent(r, ts, PACKET, &new_evt, sizeof(new_evt));

22

23 }

24 }

25 bool OnGVT(lp_state_t *snapshot, int gid) {

26 if(snapshot->pckt_count < PACKETS)

27 return false;

28 return true;

29 }

77 of 79 - Distributed Programming Techniques

Bibliography

[1] Message Passing Interface: http://www.mpi-forum.org/.

[2] J. Banks, J. Carson, B. L. Nelson, and D. Nicol.
Discrete-Event System Simulation (4th Edition).
Prentice Hall, 4 edition, Dec. 2004.

[3] R. M. Fujimoto.
Parallel discrete event simulation.
In WSC ’89: Proceedings of the 21st conference on Winter
simulation, pages 19–28. ACM Press, 1989.

78 of 79 - Distributed Programming Techniques

Bibliography (2)

[4] D. R. Jefferson.
Virtual Time.
ACM Transactions on Programming Languages and System,
7(3):404–425, July 1985.

[5] A. Pellegrini, R. Vitali, and F. Quaglia.
The ROme OpTimistic Simulator: Core internals and
programming model.
Proceedings of the 4th ICST Conference of Simulation Tools and
Techniques (SIMUTools), 0, 2011.

[6] S. Robinson.
Simulation: The Practice of Model Development and Use.
John Wiley & Sons, 2004.

79 of 79 - Distributed Programming Techniques

