
Parallel Programming Techniques

Alessandro Pellegrini

Dipartimento di Ingegneria Informatica,
Automatica e Gestionale

Sapienza, Università di Roma

A.Y. 2014/2015

Lectures Outline

• Parallel Programs Properties
◦ Correctness Conditions
◦ Progress Conditions

• Concurrent Data Structures
◦ Fine Grain Parallelization

• Important Assembly Instructions: CAS and LL/SC

◦ Non-blocking Stack Implementation
◦ Non-blocking Linked List Implementation

2 of 36 - Parallel Programming Techniques

Parallel Programming

• Development Tools
◦ Compilers try to optimize the code
◦ MPI, OpenMP, Libraries...
◦ Tools to ease the task of debugging parallel code (gdb, valgrind, ...)

• Writing parallel code is for artists, not scientists!
◦ There are approaches, not prepackaged solutions
◦ Every machine has its own singularities
◦ Every problem to face has different requisites
◦ The most efficient parallel algorithm is not the most intuitive one

3 of 36 - Parallel Programming Techniques

Classical Approach to Parallel Programming

• Based on blocking primitives
◦ Semaphores
◦ Locks acquiring
◦ . . .

PRODUCER

Semaphore p, c = 0;

Buffer b;

while(1) {

<Write on b>

signal(p);

wait(c);

}

CONSUMER

Semaphore p, c = 0;

Buffer b;

while(1) {

wait(p);

<Read from b>

signal(c);

}
4 of 36 - Parallel Programming Techniques

Parallel Programs Properties

• Safety: nothing wrong happens
◦ It’s called Correctness as well
◦ What does it mean for a program to be correct?

• What’s exactly a concurrent FIFO queue?
• FIFO implies a strict temporal ordering
• Concurrent implies an ambiguous temporal ordering

◦ Intuitively, if we rely on locks, changes happen in a non-interleaved
fashion, resembling a sequential execution

◦ We can say a parallel execution is correct only because we can
associate it with a sequential one, which we know the functioning of

• Liveness: eventually something good happens
◦ It’s called Progress as well
◦ Opposed to Starvation

5 of 36 - Parallel Programming Techniques

Correctness Conditions

• The linearizability property [3] tries to generalize the intuition of
correctness

• A history is a sequence of invocations and replies generated on an
object by a set of threads

• A sequential history is a history where all the invocations have an
immediate response

• A history is called linearizable if:
◦ Invocations/responses can be reordered to create a sequential history
◦ The so-generated sequential history is correct according to the

sequential definition of the object
◦ If a response precedes an invocation in the original history, then it

must precede it in the sequential one as well

• An object is linearizable if every valid history associated with its
usage can be linearized

6 of 36 - Parallel Programming Techniques

Progress Conditions [2]

• Deadlock-free:
Some thread acquires a lock eventually

• Starvation-free:
Every thread acquires a lock eventually

• Lock-free:
Some method call completes

• Wait-free:
Every method call completes

• Obstruction-free:
Every method call completes, if they execute in isolation

7 of 36 - Parallel Programming Techniques

Maximum and Minimum Progress

• Minimum Progress:
◦ Some method call completes eventually

• Maximum Progress:
◦ Every method call completes eventually

• Progress is a per-method property:
◦ A real data structure can combine blocking and wait-free methods
◦ For example, the Java Concurrency Package:

• Skiplists
• Hash Tables
• Exchangers

8 of 36 - Parallel Programming Techniques

Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Deadlock-
free

9 of 36 - Parallel Programming Techniques

Scheduler’s Role

Progress conditions on multiprocessors:

• Are not about guarantees provided by a method implementation

• Are about the scheduling support needed to provide maximum of
minimum progress

10 of 36 - Parallel Programming Techniques

Scheduler Requirements

Non-Blocking Blocking

For everyone Nothing Thread exe-
cutes alone

No thread
locked in CS

For some Nothing No thread
locked in CS

11 of 36 - Parallel Programming Techniques

Dependent Progress

• A progress condition is said dependent if maximum (or minimum)
progress requires scheduler support

• Otherwise it is called independent

• Progress conditions are therefore not about guarantees provided by
the implementations

• Programmers develop lock-free, obstruction-free or deadlock-free
algorithms implicitly assuming that modern schedulers are
benevolent, and that therefore every method call will eventually
complete, as they were wait-free

12 of 36 - Parallel Programming Techniques

Progress Taxonomy

Non-Blocking Blocking

For everyone Wait-free Obstruction-
Free

Starvation-
Free

For some Lock-free Clash-Free Deadlock-
free

• The Einsteinium of progress conditions: it does not exists in nature
and has no value

• It is known that clash freedom is a strictly weaker property than
obstruction freedom

13 of 36 - Parallel Programming Techniques

Concurrent Data Structures

• Developing data structures which can be concurrently accessed by
more threads can significantly increase programs’ performance

• Synchronization primitives must be avoided

• Result’s correctness must be guaranteed (recall linearizability)

• We can rely on atomic operations provided by computer
architectures

14 of 36 - Parallel Programming Techniques

Lock Granularity

Shared

Resources

(25%)

Private

Resources

(75%)

C C

C C

C C

C C

C C

C C

C

C

C

C

C

C

C

C

Fine-grain locking gives good performance

15 of 36 - Parallel Programming Techniques

Compare-and-Swap

• Compare-and-Swap (CAS) is an atomic instruction used in
multithreading to achieve synchronization

◦ It compares the contents of a memory area with a supplied value
◦ If and only if they are the same
◦ The contents of the memory area are updated with the new provided

value

• Atomicity guarantees that the new value is computed based on
up-to-date information

• If, in the meanwhile, the value has been updated by another
thread, the update fails

• This instruction has been introduced in 1970 in the IBM 370 trying
to limit as much as possible the use of spinlocks

16 of 36 - Parallel Programming Techniques

Compare-and-Swap

• On x86 architectures the CAS instruction is called CMPXCHG8B or
CMPXCHG16B.

• AT&T syntax uses the names cmpxchgl and cmpxchgq,
respectively.

inline int CAS(volatile unsigned long *ptr,

unsigned long oldVal,

unsigned long newVal) {

unsigned long res;

asm volatile("lock;"

"cmpxchgq %1, %2;"

: "=a"(res)

: "r"(newVal), "m"(*ptr), "a"(oldVal)

: "memory");

return (int)res;

}

17 of 36 - Parallel Programming Techniques

ABA Problem

• ABA problem happens during the synchronization, when a memory
location is read twice.

• If both reads provide the same value, then this means that nothing
has changed

What happens if:

• Process P1 reads the value A from shared memory;

• Process P2 is scheduled, and writes B on shared memory;

• Process P3 is scheduled, and writes A on shared memory;

• Process P1 is again scheduled, checks the memory, notices that A
is still present and continues

18 of 36 - Parallel Programming Techniques

Load-Link/Store-Conditional

• Load-Link (LL) and Store-Conditional (SC) are a couple of
instructions which, altogether, implement a lock-free
read-modify-write operation

• LL returns the current value of a memory location

• A subsequent SC on the same memory location performs the
update only if in the meanwhile no other update was performed

• It is an instruction specifically created to solve the ABA problem

• It is available only on Alpha, PowerPC, MIPS and ARM
architectures

19 of 36 - Parallel Programming Techniques

Non-Blocking Stack (Treiber’s Stack [4])

• Available Methods:
◦ push(x);
◦ pop();

• Linearizable LIFO ordering

• Both methods are lock-free

20 of 36 - Parallel Programming Techniques

Non-Blocking Stack: Pop()

TOP

21 of 36 - Parallel Programming Techniques

Non-Blocking Stack: Implementation

typedef struct _treiber {

int key;

struct _treiber *next;

} treiber;

void push(int k) {

treiber *f;

treiber *t = malloc(sizeof(treiber));

t->key = k;

do {

f = top.next;

t->next = f;

if(CAS(&top.next, f, t))

return;

} while(1);

}

int pop(void) {

int key;

do {

treiber *f = top.next;

treiber *f_nxt = top.next->next;

if(CAS(&top.next, f, f_nxt)) {

key = f->key;

free(f);

return key;

}

} while(1);

}

22 of 36 - Parallel Programming Techniques

Non-Blocking Stack: Efficiency

23 of 36 - Parallel Programming Techniques

Non-Blocking Linked List [1]

• Non-Blocking Linked List uses CAS operation to concurrently
update pointers connecting nodes

• Each node has a key, ordered throughout the list

• Correctness criterion: linearizability
◦ Replies received in every concurrent history are equivalent to the ones

received in some sequential history for the same requests
◦ Operations’ reordering is coherent with the real-time ordering

• Let us consider an ordered list, keeping the nodes 10 and 30, along
with sentinel head and tail nodes:

H 10 30 T

24 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Insert

• Insert operation is easy:

◦ A new node is created
◦ Using a single CAS on the next field of the predecessor node it gets

connected to the list

H 10 30 T

◦ CAS’ atomicity ensures that both nodes at the opposite ends of the
newly created one remain adjacent to it

25 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Deletion

• CAS’ atomicity is not a sufficient guarantee for the deletion
operation

• In fact, it is sufficient to guarantee that a node is correctly deleted,
but cannot prevent removal of other nodes concurrently added
after the one being removed

H 10 30 T

26 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Deletion

• Therefore, we need to use a couple of CAS operations:
◦ With the first one, the node is marked as “under deletion”
◦ The second one is used to actually delete the node

H 10 30 T H 10 30 T

• A marked node is considered as logically deleted

• After the second CAS a node is physically deleted

27 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

class List<KeyType> {

Node<KeyType> *head;

Node<KeyType> *tail;

List() {

head = new Node<KeyType>();

tail = new Node<KeyType>();

head.next = tail;

}

}

class Node<KeyType> {

KeyType key;

Node *next;

Node (KeyType key) {

this.key = key;

}

}

28 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

public boolean List::insert (KeyType key) {

Node *new_node = new Node(key);

Node *right_node, *left_node;

do {

right_node = search (key, &left_node);

if((right_node != tail) && (right_node.key == key))

return false;

new_node.next = right_node;

if(CAS(&(left_node.next), right_node, new_node))

return true;

} while(true);

}

29 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

public boolean List::delete (KeyType search_key) {

Node *right_node, *right_node_next, *left_node;

do {

right_node = search(search_key, &left_node);

if((right_node == tail) || (right_node.key != search_key))

return false;

right_node_next = right_node.next;

if(!is_marked_reference(right_node_next))

if (CAS(&(right_node.next), right_node_next,

get_marked_reference (right_node_next)))

break;

} while(true);

if(!CAS(&(left_node.next), right_node, right_node_next))

right_node = search(right_node.key, &left_node);

return true;

}

30 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

public boolean List::find (KeyType search_key) {

Node *right_node, *left_node;

right_node = search(search_key, &left_node);

if ((right_node == tail) || (right_node.key != search_key))

return false;

else

return true;

}

31 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

private Node *List::search (KeyType search_key, Node **left_node) {

Node *left_node_next, *right_node;

search_again:

do {

Node *t = head;

Node *t_next = head.next;

/* 1: Find left and right node */

do {

if(!is_marked_reference(t_next)) {

(*left_node) = t;

left_node_next = t_next;

}

t = get_unmarked_reference(t_next);

if(t == tail) break;

t_next = t.next;

} while (is_marked_reference(t_next) || (t.key < search_key));

right_node = t;

32 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Implementation

/* 2: Check if the nodes ad adjacent */

if(left_node_next == right_node)

if((right_node != tail) && is_marked_reference(right_node.next))

goto search_again;

else

return right_node;

/* 3: Remove one or more marked nodes */

if(CAS(&(left_node.next), left_node_next, right_node))

if((right_node != tail) && is_marked_reference(right_node.next))

goto search_again;

else

return right_node;

} while (true);

}

}

33 of 36 - Parallel Programming Techniques

Non-Blocking Linked List: Efficiency

Workload: insert/delete operations of 65K elements with keys chosen
randomly in between [0, 8200]

34 of 36 - Parallel Programming Techniques

Bibliography

[1] T. Harris.
A pragmatic implementation of non-blocking linked-lists.
In J. Welch, editor, Distributed Computing, volume 2180 of
Lecture Notes in Computer Science, pages 300–314. Springer
Berlin / Heidelberg, 2001.

[2] M. Herlihy and N. Shavit.
On the nature of progress.
In OPODIS, pages 313–328, 2011.

[3] M. P. Herlihy and J. M. Wing.
Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12:463–492, July 1990.

35 of 36 - Parallel Programming Techniques

Bibliography (2)

[4] R. K. Treiber.
Systems programming: Coping with parallelism.
Technical Report RJ 5118, IBM Almaden, Apr. 1986.

36 of 36 - Parallel Programming Techniques

