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Moore’s Law (1965)
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Effect of this Technological Trend

• Implications of Moore’s Law
have changed since 2003

• 130W is considered an upper
bound (the power wall)

P = ACV 2f
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Multicore Software Scaling
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Why should we parallelize?

Exploitation of Computing Power provided by more processing units
allows to solve more complex/larger problems

• SPEED-UP
To solve problems of a given size in less time

• SCALE-UP
To solve bigger-sized problems in comparable time

In general parallelism can improve cost/performance ratio
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Speedup Performance Models
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Amdahl Law—Fixed-size Model (1967)

• The workload is fixed: it studies how the behaviour of the same
program varies when adding more computing power

SAmdahl =
Ts

Tp
=

Ts

αTs + (1− α)Ts
p

=
1

α + (1−α)
p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

Ts : Serial execution time
Tp : Parallel execution time

• It can be expressed as well vs. the parallel fraction P = 1− α
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Fixed-size Model
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Speed-up According to Amdahl
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How Real is This?

lim
p→∞

=
1

α + (1−α)
p

=
1

α

• So if the sequential fraction is 20%, we have:

lim
p→∞

=
1

0.2
= 5

• Speedup 5 using infinte processors!
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Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the behaviour of a
scaled program varies when adding more computing power

W ′ = αW + (1− α)pW

SGustafson =
W ′

W
= α + (1− α)p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

W : Original Workload
W

′
: Scaled Workload
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Fixed-time Model
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Speed-up According to Gustafson
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Amdahl vs. Gustafson—a Driver’s Experience

Amdahl Law:
A car is traveling between two cities 60 Kms away, and has already traveled

half the distance at 30 Km/h. No matter how fast you drive the last half, it

is impossible to achieve 90 Km/h average speed before reaching the second

city. It has already taken you 1 hour and you only have a distance of 60 Kms

total: Going infinitely fast you would only achieve 60 Km/h.

Gustafson Law:
A car has been travelling for some time at less than 90 Km/h. Given enough

time and distance to travel, the car’s average speed can always eventually

reach 90 Km/h, no matter how long or how slowly it has already traveled. If

the car spent one hour at 30 Km/h, it could achieve this by driving at 120

Km/h for two additional hours.
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Sun, Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

SSun−Ni =
sequential time for Workload,W ∗

parallel time for Workload,W ∗ =

=
αW + (1− α)G (p)W

αW + (1− α)G (p)Wp
=
α + (1− α)G (p)

α + (1− α)G(p)
p

• where:
◦ G (p) describes the workload increase as the memory capacity increases
◦ W ∗ = αW + (1− α)G (p)W
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Memory-bounded Model
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Speed-up According to Sun, Ni

SSun−Ni =
α + (1− α)G (p)

α + (1− α)G(p)
p

• If G(p) = 1

SAmdahl =
1

α + (1−α)
p

• If G(p) = p
SGustafson = α + (1− α)p

In general G (p) > p giving an higher scale-up
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Application Model for Parallel Computers
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Scalability

• Efficiency E = speed-up
number of processors

• Strong Scalability: If the efficiency is kept fixed while increasing
the number of processes and maintainig fixed the problem size

• Weak Scalability: If the efficiency is kept fixed while increasing at
the same rate the problem size and the number of processes
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Superlinear Speedup

• Can we have a Speed-up > p ? Yes!
◦ Workload increases more than computing power (G (p) > p)
◦ Cache effect: larger accumulated cache size. More or even all of the

working set can fit into caches and the memory access time reduces
dramatically

◦ RAM effect: enables the dataset to move from disk into RAM
drastically reducing the time required, e.g., to search it.

◦ The parallel algorithm uses some search like a random walk: the more
processors that are walking, the less distance has to be walked in total
before you reach what you are looking for.
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Parallel Architectures
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Processor Coupling
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Classification of Parallelism

• Instruction Level Parallelism:
each core can process more instructions per time unit
◦ Pipelining
◦ Superscalar

• Thread/Process Level Parallelism:
workload is distributed over different threads/processes
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Pipelining

• Instruction processing is split into different stages

• Each stage executes independently of each other
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VLIW—Very Long Instruction Word

• An instruction represents multiple operations

• Each operation must operate on different hardware components

• This is done by (more complex!) compilers

Available Components:

Integer Operations

Integer Operations

Floating Point Operation

Load Operation

Store Operation

- - - L - - - - L - I - - L - I I F - S I - - L S I - F L -

L L I L I I F S I L S I F L

Sequence of VLIW

VLIW Stream boundled 
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Superscalar Architecture

• More instructions are simultaneously executed on the same CPU

• There are redundant functional units that can operate in parallel

• Run-time scheduling (in contrast to compile-time)

• It might require speculation (for branch prediction)
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Speculation

• A guess on the outcome of a compare is made

◦ if wrong the result is discarded
◦ if right the result is flushed

a← b + c
if a ≥ 0 then

d ← b
else

d ← c
end if
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Speculation

• DEC Alpha 21264 Branch Prediction Unit
◦ Tournament branch prediction algorithm
◦ 35Kb of prediction information
◦ 2% of total die size
◦ Claim 0.7–1.0% misprediction
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Hardware Thread-Level Parallelism

(a) (b) (c): Three threads. In empty boxes the thread has stalled on
a memory access

• Fine-grain thread, switch thread at each clock cycle (d)

• Coarse-grain thread, switch thread upon slow operations (e)

• Simultaneous Multithreading, multiple threads can execute
simultaneously (superscalar processors)
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Hyperthreading
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Taxonomy (Flynn 1966)

Flynn classification is based on the number of concurrent instructions
(or controls) and data streams available in the architecture

• SISD: Single Instruction Stream, Single Data Stream

• SIMD: Single Instruction Stream, Multiple Data Stream

• MISD: Multiple Instruction Stream, Single Data Stream

• MIMD: Multiple Instruction Stream, Multiple Data Stream
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SISD—Single Instruction Stream, Single Data Stream

• One operation executed at a time on a single data item

• Classical Von Neumann architecture

PE DATA

INSTRUCTION
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SIMD—Single Instruction Stream, Multiple Data Stream

• One operation executed on a set of data (e.g., matrix operations)

• Data-level Parallelism

• Synchronous operation

• Available also in commodity processors as well

PE DATA

INSTRUCTION

PE DATA

PE DATA
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Vector Processor (or Array Processor)

• Vector registers
• Vectorized and pipelined functional units
• Vector instructions
• Interleaved memory
• Strided memory access and hardware scatter/gather
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Graphics Processing Unit (GPU)

• Born specifically for graphics, then re-adapted for scientific
computation

• The same operation is performed on a large set of objects (points,
lines, triangles)

• Large number of ALUs (∼100)

• Large number of registers (∼32k)

• Large bandwidth
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MISD—Multiple Instruction Stream, Single Data Stream

• More operations are executed at a time on a single data item

• Not of great interest, never became a real commercial product
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INSTRUCTION
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MIMD—Multiple Instruction Stream, Multiple Data Stream

• More operations executed at a time on a set of data
• The winning category for high performance computing
• Asynchronous
• MIMD machines are mainly:
◦ Multiprocessors
◦ Multicomputers

PE

INSTRUCTION

PE DATA

PE

INSTRUCTION

INSTRUCTION

DATA

DATA
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Multiprocessors

• Shared Memory

• Each processor can see the whole memory

• Communication supported by shared memory

• Synchronization is mandatory to consistently access memory

MEMORY

CPU CPU CPU CPU

INTERCONNECTION
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Multiprocessors Classification

• UMA (Uniform Memory Access):
Processors can access any memory area uniformly (e.g., same
latency)

• NUMA (Non-Uniform Memory Access):
Processors have “nearer” memory areas which are accessed faster
than others
◦ NC-NUMA (Not-Caching NUMA)
◦ CC-NUMA (Coherent Caches NUMA)

• COMA (Cache-Only Memory Access):
The local memories (typically DRAM) at each node are used as
cache
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Uniform Memory Access

• Typical SMP (Symmetric Multiprocessing) memory access

• Each CPU can directly see the whole memory

• Tightly coupled system

MEMORY

CPU CPU CPU CPU
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Non-Uniform Memory Access

• Each CPU has its own local memory which is accessed faster

• Shared memory is the union of local memories

• The latency to access remote memory depends on the ‘distance’

CPU CPU CPU CPU

INTERCONNECTION

MEM MEM MEM MEM

CPU CPU

CPU CPU

MEM MEM

MEMMEM
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Cache Only Memory Access

• Each CPU has a private memory that operates as a cache

• The shared memory is the union of the caches

• A data element is owned by a single cache

• Data elements can migrate during the execution

• Search for a data element position is needed
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Cache Coherency problem

time Core 0 Core 1

0 x ← 2 y ← 1
1 y ← 2 ∗ x h← 0
2 a + + z ← y + h

z = ?

CORE 0 CORE 1

INTERCONNECTION

CACHE CACHE

MEMORY
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Snooping Cache Coherency

• Same principle as of bus systems. Each device connected to the
bus sees signals sent by others

• Upon a memory update the cache broadcasts update informations

• Other cores are snooping for updates

• Notifies have ‘cache line’ granularity
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Directory-based Cache Coherence

• Snooping does not scale because of the broadcast cost in large
networks

• (Distributed) directory structures store cache line information

• During a read, the directory is updated reflecting that the core
owns a new copy

• A write operation makes the copy of each core invalid

• Only the owners of a copy are contacted
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False Cache Sharing Problem

• Caches work at cache line granularity (typical values: 64B–256B)
• The problem arises whenever two cores access different data items

that lie on the same cache line
• It produces an invalidation although accessed data items are

different

1 struct foo {

2 int x;

3 int y;

4 };

5

6 struct foo f;

1 void inc_x(void)

2 {

3 int i;

4 for(i = 0; i <

1000000; i++)

5 f.x++;

6 }

1 int sum_y(void) {

2 int s = 0;

3 int i;

4 for (i = 0; i <

1000000; i++)

5 s += f.y;

6 return s;

7 }
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Multicomputers

• Distributed Memory

• Memories are private to single processors

• Communication is explicit through Message Passing

• Required support for send/receive primitives

CPU CPU CPU CPU

INTERCONNECTION

MEM MEM MEM MEM
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Multicomputer Classification

• MPP (Massively Parallel Processors): A huge number of nodes
connected by (in general) proprietary networks equipped with high
bandwidth and low latency

• Clusters (also known as Cluster of Workstation (COW) or
Network of Workstation (NOW)): Large number of commodity
computers connected through a commodity network
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Top 500—Architecture Types
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Multicomputer Interconnections
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Network performance

• Latency: Time to transmit the first single bit of a message in the
worst case

• Bandwidth: Network Data-Rate from the receipt of the first bit

• Hardware Complexity: Implementation cost, Links, Switch
connectors, Arbitration

• Scalability: Ability of the network to be expansible while
maintaining the same performance

Transmit Time = latency + size of the message / bandwidth
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Network Properties

Geometry:

• Node Degree: Number of edges coming into a node

• Diameter: Maximum shortest path between any two nodes

• Bisection: (Worst-case) number of links cut off to split the
network into two equal halves

• Bisection width: The bandwidth of the channels cut off by the
bisection

• Regularity: All nodes have the same degree

• Symmetry: Each node sees the same net
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Network Properties

Routing:
• Static Networks:
◦ Point-to-point networks
◦ Paths do not change during the lifetime of the system

• Dynamic Networks:
◦ Implemented through switched channels
• Single-stage
• Multi-stage

◦ Paths can change during the system operation (e.g., depending on
software)

Connectivity:
• Blocking Network:
◦ Not any input/output combination is allowed

• Non-blocking Network:
◦ All input/output combinations are allowed
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Interconnections

• Shared Medium
◦ All the nodes are directly connected to the medium

• Direct
◦ Nodes are connected to each other through point-to-point links
◦ The message is the information unit exchanged

• Indirect
◦ Nodes are connected through a network of interconnections
◦ The message is the information unit exchanged
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Fully Connected Mesh

• Each Node is connected to all
the others

• Static

• Symmetric

• Node degree = n − 1

• Diameter = 1

• Number of links = n(n−12 )

• Bisection = (n2 )2
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Ring

• Simple

• Static

• Symmetric

• Node degree = 2

• Diameter = bn2c
• Number of links = n

• Bisection = 2
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Fat-Tree

• Faces the problem of classical
tree’s root bottleneck

• Static

• Asymmetric

• Node degree = 3

• Diameter = 2(log n − 1)

• Number of links = n − 1

• Bisection = 1
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2D Torus

• Quite Simple

• Static

• Symmetric

• Node degree = 4

• Diameter = 2b
√
n
2 c

• Number of links = 2n

• Bisection = 2
√
n

57 of 100 - Advanced Computing Architecture



Hypercube

• d-sized Hypercube manages 2d

nodes

• Static

• Symmetric

• Node degree = d

• Diameter = d + 1

• Number of links = d n
2

• Bisection = n
2
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Static Networks Summary

Fully C Ring Fat-tree 2D-torus Hypercube

Node degree n - 1 2 3 4 d

Diameter 1 bn2c 2(log n − 1) 2b
√
n
2 c d + 1

Links n(n−12 ) n n - 1 2n d n
2

Bisection (n2 )2 2 1 2
√
n n

2
Simmetry Y Y N Y Y
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Bus

• Dynamic

• All devices are linked to the same wires

• Presence of arbitration
• Increasing the number of connected devices:
◦ Increases contention
◦ Decreases performance

MEMORY

P1 P2 P3 P4 P5 P6
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Crossbar

• Dynamic
• Matrix with switching points
◦ Number of switches = pm

• There is contention only if two cores access the same memory bank

P1

P2

P3

M1 M2 M3
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Omega

• Dynamic

• Multistage Intectonnection Network (MIN)

• Each connection is a 2x2 crossbar

• Relies on perfect shuffle interconnection algorithm

• Some communications cannot happen simultaneously
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Dynamic Networks Summary

Bus MultiStage Crossbar

Minumum Latency Costant O(logkn) costant

CPU Bandwidth O(wn ) to O(w) O(w) to O(nw) O(w) to O(nw)

Wiring Complexity O(w) O(nw logk n) O(n2w)

Switching Com-
plexity

O(n) O(n logk n) O(n2)

Connectivity and
routing capability

Only one to one
at time

Some
permutations and

broadcast if
network is
unblocked

All permutation,
one at time
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Scalable Manycore Architecture

IntelTM48 Cores
Single Chip Cloud Computing
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Single-chip Cloud Computing—SCC

• 48 Intel cores on a single die

• Power 125W cores @ 1GHz, Mesh @ 2Ghz

• Message Passing Architecture

• No coherent shared memory

• Proof of Concept of a scalable many-core solution
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Tiles and Cores

• 24 Tiles with 2 Intel cores each

• 32 KB (16KB I + 16KB D) L1 Cache per Core (inside each core)

• 256 KB L2 Cache per Core (inside each tile)

• Each tile has a Message Passing Buffer (MPB)

• Each tile has a Router
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Mesh Interface Unit—MIU

• 2D mesh (6 x 4)

• 2Tb/s Bisection bandwidth @ 2Ghz

• Connects the tile to the mesh

• Packs/Unpacks data in the tile

• Round-robin to arbitrate in-tile cores
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Power Management

• VRC (voltage regulator controller) is the SCC power controller
• It can change voltage and frequency of cores, as well as of other

parts of the die, upon request
• 7 voltage domain
• 24 frequency domain
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Message Passing Buffer—MPB

• 16 KB buffer per tile

• 384 KB in the SCC

• Shared among all the cores on the chip

• Low latency Message Passing Support (through shared memory)
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Lookup Table—LUT

• Each core has a core address (up to 4 GB)

• The SCC has a system space (up to 64GB)

• MIU uses the LUT to translate the core address to a system
address

• Each core has its own LUT

• 256 entries for 4 GB addressable (each entry addressed 16 MB)

• An address request is placed in one of these queues:
◦ Router queue → memory controller → DDR3 memory
◦ MPB queue
◦ A queue to access local configuration registers
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SCC Memory

• On-chip SRAM (used for MPB)

• Off-chip DDR3 DRAM (accessed through 4 on-die memory
controller)

• Off-chip divided in core-private and shared memory

• The division is determined by LUT and configurable at boot time,
or dynamically after boot

• Tiles are organized in 4 regions, each one mapped to a different
memory controller (when accessing private off-chip memory)

• When accessing shared off-chip memory messages might pass
through each controller
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Address Translation

• bypass bit: if 1 the address is local to the tile’s MPB

• destID: identifies the tile containing the router (x , y coords)

• subdestId: specifies the port in the router

• DDR Memory controllers adjacent to some exterior tiles

bypass destID subdestID

1b 8b 3b

new address (34 b)

10b 24b

8b 24b

LUT

address
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Address Translation table

Sub Dest subdestID Description

Core0 0x0 Core 0 in the tile
Core1 0x1 Core 1 in the tile
CRB 0x2 Configuration Register
MPB 0x3 Message Passing Buffer
E-port 0x4 (0,5) and (2,5) select DDR3 MC
S-port 0x5 (0,3) System interface (SIF), (0,0) VRC
W-port 0x6 (0,0) and (2,0) select DDR3 MC
N-port 0x7 Nothing on this port of any edge router
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Cache Behaviour

• Core private Off-chip DRAM is cached through L1 and L2
accordind to classical rules

• No cache coherence among the cores

• Coherence is left to software:
◦ RCCE Library takes care of it
◦ Special tag and Instruction for developers customized solutions

• MPBT (Message Passing Buffer Type) tag identifies a cache line for a
data in the shared memory region

• CL1INVMB instruction marks all MPBT type data as invalid L1 lines
• Accessing an invalid data forces the update of the data in the L1
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How RCCE deals with cache incoherence

• MPB is of type MPBT

• If data is changed by another core and image is still in L1?
◦ Invalidate before read

• If the image of a line to write to is already in L1 (thus not to be
flushed in memory)?
◦ Invalidate before write

• L1 has write-combining buffer
◦ Always push whole cache lines

• MPB should be used only for data movement
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Programmer’s View of Memory

Private

DRAM
L2 L1

Private

DRAM
L2 L1 Core 47

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s

Core 0
t&st&s On-chip

Off-chip
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SIMD Architectures for
Supercomputing

NVIDIATM FERMI
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GP-GPU

• GPGPU is the usage of a GPU to perform general-purpose
scientific computation

• The model for GPU computing is to use a CPU and GPU(s)
together in a heterogeneous co-processing computing architecture

• The serial part of the program is left to the CPU, the parallel one
is deployed on the GPU
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From GPGPU to GPU Computing Model

• Classic GPUs had a reduced programmability, oriented only to
graphic computation

• All problems to be solved must be mapped to graphic ones

• CUDA (Compute Unified Device Architecture):
◦ Straight support to C and Fortran languages
◦ SIMT (Single Istruction Multiple Thread) Execution model
◦ Shared memory and barrier synchronization
◦ . . .
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GPGPU—GPU Computing Programming model

Memory

GPU

CPU

Device

Memory
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Fermi Streaming Multiprocessor

• Each SM can take up to
1536 CUDA threads

• Each SM can take up to
8 CUDA blocks

Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

CUDA CORE LD/ST
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Register File (32768 x 32-Bit)

Warp Scheduler Warp Scheduler

Dispatch UnitDispatch Unit

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Instruction Cache

core core
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core core
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core core

core core

core core

core core
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Fermi Architecture

• Up to 512 CUDA
cores

• 16 SMs, 32 cores
each

• A FP or Integer
Istruction per clock
per thread

L2 Cache
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Cuda Programming model

• CUDA is a hardware/software architecture used to provide general
programming model support

• Data-Parallel portions are executed on the GPUs as kernels

• A kernel executes in parallel across a set of parallel threads

• CUDA threads are extremely lightweight

• The programmer (or the compiler) organizes these threads in
thread blocks and grids of thread blocks
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CUDA Thread

• Executed by one scalar processor

• Has its own Program counter

• Has its own Registers

• Has a Private memory

• Inputs data and output results

• Identified by a thread ID within a thread block

Local Memory

Thread
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CUDA Block

• Is a set of threads that share:
◦ (Shared) Memory
◦ Synchronization Barriers

• Up to 1024 threads

• Executed on a Multiprocessor

• Cannot migrate across Multiprocessors

• Several concurrent thread blocks can reside on a multiprocessor

• Identified by a block ID within a thread Grid

Shared Memory

Block
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CUDA Grid

• Is an array of blocks that execute the same kernel:
◦ Shared Global Memory
◦ Synchronization between dependent kernel calls

• Kernels are launched as grids of threads

Global Memory

Grid 0

Grid N
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CUDA Hardware Mapping

• A GPU can execute one or more kernel grids
◦ A kernel can execute as a 1D, 2D or 3D grid of thread blocks

• Each SM executes one or more thread blocks
◦ A thread block is a 1D, 2D or 3D batch of threads

• CUDA cores and other execution units in the SM execute threads
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How to Manage Grids and Blocks

• Cuda defines dim3 datatype

struct dim3 {
unsigned int x, y, z;

};

• gridDim: dimension of the Grid

• blockDim: dimension of the Block

• blockIdx: block index

• threadIdx: thread index
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GigaThread Scheduler

• At chip level thread blocks are scheduled onto various SMs

• At SM level The code is actually executed in groups of 32 threads,
what NVIDIA calls a warp
◦ Threads in a warp execute the same instructions at the same time
◦ Each SM can issue and execute 2 warps concurrently

• Managing warps faces performance not correctness
• One instruction per warp is executed
• No contention from two different warps
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Fermi Register File

• Up to 32768 32-bit register in each SM

• Dynamically partitioned among all the blocks assigned to the SM

• Once assigned to a block, it is not accessible by threads in other
blocks

• Each thread in a block can only access registers assigned to it
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Memory Hierarchy

• Local Memory—Thread Scope
◦ Private to threads

• Shared Memory—Block Scope
◦ Shared among threads within the same block
◦ Extremely fast, on-chip memory
◦ Not visible to threads in other blocks running concurrently

• Global—Application Scope
◦ Shared by all threads
◦ Allows inter-grid communication
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Considerations on Blocks

Example: Matrix multiplication via multiple blocks.

What is the best-suited size?

• 8x8 = 64 threads per block
Each SM can run at most 8 blocks
Only 256 threads will be run by the same SM

• 32x32 = 1024 threads per block
Each SM can run at most 1536 threads
Only 1 block can fit the SM

• 16x16 = 256 threads per block
With 6 blocks, SM works at its best
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Considerations on Registers

• How many threads can run on each SM with a block of 16x16
threads on register constraints?

◦ Each thread requires 30 registers
Each block requires 30x256 = 7680 registers
32768/7680 = 4 + remainder
Each SM can run 4 blocks

◦ Each thread requires 33 registers (+10%)
Each block require 33x256 = 8448 registers
32768/8448 = 3 + remainder
Each SM can run 3 blocks (-25% parallelism)
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Programming with CUDA (at a glance)

• Computation partitioning
◦ Functions are declared as: host , global and device
◦ Mapping of thread programs to device:
compute<<<gs,bs>>>(<args>)

• Data partitioning
◦ Data are declared as: shared , device , constant

• Data management and orchestration
◦ Functions to copy data from/to Host

• Concurrency management
◦ Functions like: synchthreads()
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Programming with CUDA: Summing two vectors

...

...

...

+ + + + + +

a

b

c
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Programming with CUDA: Summing two vectors

1 #define N 10

2 int main(void) {

3 int a[N], b[N], c[N];

4 int *dev_a, *dev_b, *dev_c;

5

6 // allocate the memory on the GPU

7 cudaMalloc((void**)&dev_a, N * sizeof(int));

8 cudaMalloc((void**)&dev_b, N * sizeof(int));

9 cudaMalloc((void**)&dev_c, N * sizeof(int));

10

11 // fill the arrays ’a’ and ’b’ on the CPU

12 for (int i=0; i<N; i++) {

13 a[i] = -i;

14 b[i] = i * i;

15 }
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Programming with CUDA: Summing two vectors (2)

16

17 // copy the arrays ’a’ and ’b’ to the GPU

18 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

19 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

20

21 // Perform addition on the GPU

22 add<<<N,1>>>(dev_a, dev_b, dev_c);

23

24 // copy the array ’c’ back from the GPU to the CPU

25 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

26

27 // display the results

28 for(int i = 0; i < N; i++) {

29 printf("%d + %d = %d\n", a[i], b[i], c[i]);

30 }

31
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Programming with CUDA: Summing two vectors (3)

32 // free the memory allocated on the GPU

33 cudaFree(dev_a);

34 cudaFree(dev_b);

35 cudaFree(dev_c);

36

37 return 0;

38 }

39

40 __global__ void add(int *a, int *b, int *c) {

41 int tid = blockIdx.x; // handle the data at this index

42 if(tid < N)

43 c[tid] = a[tid] + b[tid];

44 }
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Vector Sum as seen by GPU

Block 0:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 0;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 2:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 2;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 1:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 1;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 3:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 3;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }
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