
Advanced Computing Architecture

Alessandro Pellegrini

Department of Computer, Control, and
Management Engineering

Sapienza, University of Rome

A.Y. 2014/2015

Moore’s Law (1965)

2 of 100 - Advanced Computing Architecture

Effect of this Technological Trend

• Implications of Moore’s Law
have changed since 2003

• 130W is considered an upper
bound (the power wall)

P = ACV 2f

3 of 100 - Advanced Computing Architecture

Multicore Software Scaling

4 of 100 - Advanced Computing Architecture

Why should we parallelize?

Exploitation of Computing Power provided by more processing units
allows to solve more complex/larger problems

• SPEED-UP
To solve problems of a given size in less time

• SCALE-UP
To solve bigger-sized problems in comparable time

In general parallelism can improve cost/performance ratio

5 of 100 - Advanced Computing Architecture

Speedup Performance Models

6 of 100 - Advanced Computing Architecture

Amdahl Law—Fixed-size Model (1967)

• The workload is fixed: it studies how the behaviour of the same
program varies when adding more computing power

SAmdahl =
Ts

Tp
=

Ts

αTs + (1− α)Ts
p

=
1

α + (1−α)
p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

Ts : Serial execution time
Tp : Parallel execution time

• It can be expressed as well vs. the parallel fraction P = 1− α

7 of 100 - Advanced Computing Architecture

Fixed-size Model

8 of 100 - Advanced Computing Architecture

Speed-up According to Amdahl

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

Parallel Speedup vs. Serial Fraction

Linear
α = 0.95

α = 0.8
α = 0.5
α = 0.2

9 of 100 - Advanced Computing Architecture

How Real is This?

lim
p→∞

=
1

α + (1−α)
p

=
1

α

• So if the sequential fraction is 20%, we have:

lim
p→∞

=
1

0.2
= 5

• Speedup 5 using infinte processors!

10 of 100 - Advanced Computing Architecture

Gustafson Law—Fixed-time Model (1989)

• The execution time is fixed: it studies how the behaviour of a
scaled program varies when adding more computing power

W ′ = αW + (1− α)pW

SGustafson =
W ′

W
= α + (1− α)p

• where:

α ∈ [0, 1]: Serial fraction of the program
p ∈ N: Number of processors

W : Original Workload
W

′
: Scaled Workload

11 of 100 - Advanced Computing Architecture

Fixed-time Model

12 of 100 - Advanced Computing Architecture

Speed-up According to Gustafson

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

Parallel Speedup vs. Serial Fraction

Linear
α = 0.95

α = 0.8
α = 0.5
α = 0.2

13 of 100 - Advanced Computing Architecture

Amdahl vs. Gustafson—a Driver’s Experience

Amdahl Law:
A car is traveling between two cities 60 Kms away, and has already traveled

half the distance at 30 Km/h. No matter how fast you drive the last half, it

is impossible to achieve 90 Km/h average speed before reaching the second

city. It has already taken you 1 hour and you only have a distance of 60 Kms

total: Going infinitely fast you would only achieve 60 Km/h.

Gustafson Law:
A car has been travelling for some time at less than 90 Km/h. Given enough

time and distance to travel, the car’s average speed can always eventually

reach 90 Km/h, no matter how long or how slowly it has already traveled. If

the car spent one hour at 30 Km/h, it could achieve this by driving at 120

Km/h for two additional hours.

14 of 100 - Advanced Computing Architecture

Sun, Ni Law—Memory-bounded Model (1993)

• The workload is scaled, bounded by memory

SSun−Ni =
sequential time for Workload,W ∗

parallel time for Workload,W ∗ =

=
αW + (1− α)G (p)W

αW + (1− α)G (p)Wp
=
α + (1− α)G (p)

α + (1− α)G(p)
p

• where:
◦ G (p) describes the workload increase as the memory capacity increases
◦ W ∗ = αW + (1− α)G (p)W

15 of 100 - Advanced Computing Architecture

Memory-bounded Model

16 of 100 - Advanced Computing Architecture

Speed-up According to Sun, Ni

SSun−Ni =
α + (1− α)G (p)

α + (1− α)G(p)
p

• If G(p) = 1

SAmdahl =
1

α + (1−α)
p

• If G(p) = p
SGustafson = α + (1− α)p

In general G (p) > p giving an higher scale-up

17 of 100 - Advanced Computing Architecture

Application Model for Parallel Computers

Fixed-workload model
communication

bound

Memory

bound

Fixed-time model

Fixed-memory

model

W
o

rk
lo

a
d

Machine size

18 of 100 - Advanced Computing Architecture

Scalability

• Efficiency E = speed-up
number of processors

• Strong Scalability: If the efficiency is kept fixed while increasing
the number of processes and maintainig fixed the problem size

• Weak Scalability: If the efficiency is kept fixed while increasing at
the same rate the problem size and the number of processes

19 of 100 - Advanced Computing Architecture

Superlinear Speedup

• Can we have a Speed-up > p ? Yes!
◦ Workload increases more than computing power (G (p) > p)
◦ Cache effect: larger accumulated cache size. More or even all of the

working set can fit into caches and the memory access time reduces
dramatically

◦ RAM effect: enables the dataset to move from disk into RAM
drastically reducing the time required, e.g., to search it.

◦ The parallel algorithm uses some search like a random walk: the more
processors that are walking, the less distance has to be walked in total
before you reach what you are looking for.

20 of 100 - Advanced Computing Architecture

Parallel Architectures

21 of 100 - Advanced Computing Architecture

Processor Coupling

cpu

cpu

coprocessor

cpu

cpu
cpu

cpu

computer

computer

internet

private

memory

private

memory

shared

memory

thread

Tightly coupled Loosely coupled

22 of 100 - Advanced Computing Architecture

Classification of Parallelism

• Instruction Level Parallelism:
each core can process more instructions per time unit
◦ Pipelining
◦ Superscalar

• Thread/Process Level Parallelism:
workload is distributed over different threads/processes

23 of 100 - Advanced Computing Architecture

Pipelining

• Instruction processing is split into different stages

• Each stage executes independently of each other

IF

IF

IF

IF

IF

ID

ID

ID

ID

ID

EXE

EXE

EXE

EXE

EXE

WB

WB

WB

WB

WB

LD

LD

LD

LD

LD

Time

In
s
tr
u
c
ti
o
n
s

ck1 ck2 ck3 ck4

i1

i2

i3

i4

i5

ck5 ck6

24 of 100 - Advanced Computing Architecture

VLIW—Very Long Instruction Word

• An instruction represents multiple operations

• Each operation must operate on different hardware components

• This is done by (more complex!) compilers

Available Components:

Integer Operations

Integer Operations

Floating Point Operation

Load Operation

Store Operation

- - - L - - - - L - I - - L - I I F - S I - - L S I - F L -

L L I L I I F S I L S I F L

Sequence of VLIW

VLIW Stream boundled

25 of 100 - Advanced Computing Architecture

Superscalar Architecture

• More instructions are simultaneously executed on the same CPU

• There are redundant functional units that can operate in parallel

• Run-time scheduling (in contrast to compile-time)

• It might require speculation (for branch prediction)

26 of 100 - Advanced Computing Architecture

Speculation

• A guess on the outcome of a compare is made

◦ if wrong the result is discarded
◦ if right the result is flushed

a← b + c
if a ≥ 0 then

d ← b
else

d ← c
end if

27 of 100 - Advanced Computing Architecture

Speculation

• DEC Alpha 21264 Branch Prediction Unit
◦ Tournament branch prediction algorithm
◦ 35Kb of prediction information
◦ 2% of total die size
◦ Claim 0.7–1.0% misprediction

27 of 100 - Advanced Computing Architecture

Hardware Thread-Level Parallelism

(a) (b) (c): Three threads. In empty boxes the thread has stalled on
a memory access

• Fine-grain thread, switch thread at each clock cycle (d)

• Coarse-grain thread, switch thread upon slow operations (e)

• Simultaneous Multithreading, multiple threads can execute
simultaneously (superscalar processors)

28 of 100 - Advanced Computing Architecture

Hyperthreading

29 of 100 - Advanced Computing Architecture

Taxonomy (Flynn 1966)

Flynn classification is based on the number of concurrent instructions
(or controls) and data streams available in the architecture

• SISD: Single Instruction Stream, Single Data Stream

• SIMD: Single Instruction Stream, Multiple Data Stream

• MISD: Multiple Instruction Stream, Single Data Stream

• MIMD: Multiple Instruction Stream, Multiple Data Stream

30 of 100 - Advanced Computing Architecture

SISD—Single Instruction Stream, Single Data Stream

• One operation executed at a time on a single data item

• Classical Von Neumann architecture

PE DATA

INSTRUCTION

31 of 100 - Advanced Computing Architecture

SIMD—Single Instruction Stream, Multiple Data Stream

• One operation executed on a set of data (e.g., matrix operations)

• Data-level Parallelism

• Synchronous operation

• Available also in commodity processors as well

PE DATA

INSTRUCTION

PE DATA

PE DATA

32 of 100 - Advanced Computing Architecture

Vector Processor (or Array Processor)

• Vector registers
• Vectorized and pipelined functional units
• Vector instructions
• Interleaved memory
• Strided memory access and hardware scatter/gather

33 of 100 - Advanced Computing Architecture

Graphics Processing Unit (GPU)

• Born specifically for graphics, then re-adapted for scientific
computation

• The same operation is performed on a large set of objects (points,
lines, triangles)

• Large number of ALUs (∼100)

• Large number of registers (∼32k)

• Large bandwidth

34 of 100 - Advanced Computing Architecture

MISD—Multiple Instruction Stream, Single Data Stream

• More operations are executed at a time on a single data item

• Not of great interest, never became a real commercial product

PE

INSTRUCTION

PE DATA

PE

INSTRUCTION

INSTRUCTION

35 of 100 - Advanced Computing Architecture

MIMD—Multiple Instruction Stream, Multiple Data Stream

• More operations executed at a time on a set of data
• The winning category for high performance computing
• Asynchronous
• MIMD machines are mainly:
◦ Multiprocessors
◦ Multicomputers

PE

INSTRUCTION

PE DATA

PE

INSTRUCTION

INSTRUCTION

DATA

DATA

36 of 100 - Advanced Computing Architecture

Multiprocessors

• Shared Memory

• Each processor can see the whole memory

• Communication supported by shared memory

• Synchronization is mandatory to consistently access memory

MEMORY

CPU CPU CPU CPU

INTERCONNECTION

37 of 100 - Advanced Computing Architecture

Multiprocessors Classification

• UMA (Uniform Memory Access):
Processors can access any memory area uniformly (e.g., same
latency)

• NUMA (Non-Uniform Memory Access):
Processors have “nearer” memory areas which are accessed faster
than others
◦ NC-NUMA (Not-Caching NUMA)
◦ CC-NUMA (Coherent Caches NUMA)

• COMA (Cache-Only Memory Access):
The local memories (typically DRAM) at each node are used as
cache

38 of 100 - Advanced Computing Architecture

Uniform Memory Access

• Typical SMP (Symmetric Multiprocessing) memory access

• Each CPU can directly see the whole memory

• Tightly coupled system

MEMORY

CPU CPU CPU CPU

39 of 100 - Advanced Computing Architecture

Non-Uniform Memory Access

• Each CPU has its own local memory which is accessed faster

• Shared memory is the union of local memories

• The latency to access remote memory depends on the ‘distance’

CPU CPU CPU CPU

INTERCONNECTION

MEM MEM MEM MEM

CPU CPU

CPU CPU

MEM MEM

MEMMEM

40 of 100 - Advanced Computing Architecture

Cache Only Memory Access

• Each CPU has a private memory that operates as a cache

• The shared memory is the union of the caches

• A data element is owned by a single cache

• Data elements can migrate during the execution

• Search for a data element position is needed

41 of 100 - Advanced Computing Architecture

Cache Coherency problem

time Core 0 Core 1

0 x ← 2 y ← 1
1 y ← 2 ∗ x h← 0
2 a + + z ← y + h

z = ?

CORE 0 CORE 1

INTERCONNECTION

CACHE CACHE

MEMORY

42 of 100 - Advanced Computing Architecture

Snooping Cache Coherency

• Same principle as of bus systems. Each device connected to the
bus sees signals sent by others

• Upon a memory update the cache broadcasts update informations

• Other cores are snooping for updates

• Notifies have ‘cache line’ granularity

43 of 100 - Advanced Computing Architecture

Directory-based Cache Coherence

• Snooping does not scale because of the broadcast cost in large
networks

• (Distributed) directory structures store cache line information

• During a read, the directory is updated reflecting that the core
owns a new copy

• A write operation makes the copy of each core invalid

• Only the owners of a copy are contacted

44 of 100 - Advanced Computing Architecture

False Cache Sharing Problem

• Caches work at cache line granularity (typical values: 64B–256B)
• The problem arises whenever two cores access different data items

that lie on the same cache line
• It produces an invalidation although accessed data items are

different

1 struct foo {

2 int x;

3 int y;

4 };

5

6 struct foo f;

1 void inc_x(void)

2 {

3 int i;

4 for(i = 0; i <

1000000; i++)

5 f.x++;

6 }

1 int sum_y(void) {

2 int s = 0;

3 int i;

4 for (i = 0; i <

1000000; i++)

5 s += f.y;

6 return s;

7 }

45 of 100 - Advanced Computing Architecture

Multicomputers

• Distributed Memory

• Memories are private to single processors

• Communication is explicit through Message Passing

• Required support for send/receive primitives

CPU CPU CPU CPU

INTERCONNECTION

MEM MEM MEM MEM

46 of 100 - Advanced Computing Architecture

Multicomputer Classification

• MPP (Massively Parallel Processors): A huge number of nodes
connected by (in general) proprietary networks equipped with high
bandwidth and low latency

• Clusters (also known as Cluster of Workstation (COW) or
Network of Workstation (NOW)): Large number of commodity
computers connected through a commodity network

47 of 100 - Advanced Computing Architecture

Top 500—Architecture Types

48 of 100 - Advanced Computing Architecture

Multicomputer Interconnections

49 of 100 - Advanced Computing Architecture

Network performance

• Latency: Time to transmit the first single bit of a message in the
worst case

• Bandwidth: Network Data-Rate from the receipt of the first bit

• Hardware Complexity: Implementation cost, Links, Switch
connectors, Arbitration

• Scalability: Ability of the network to be expansible while
maintaining the same performance

Transmit Time = latency + size of the message / bandwidth

50 of 100 - Advanced Computing Architecture

Network Properties

Geometry:

• Node Degree: Number of edges coming into a node

• Diameter: Maximum shortest path between any two nodes

• Bisection: (Worst-case) number of links cut off to split the
network into two equal halves

• Bisection width: The bandwidth of the channels cut off by the
bisection

• Regularity: All nodes have the same degree

• Symmetry: Each node sees the same net

51 of 100 - Advanced Computing Architecture

Network Properties

Routing:
• Static Networks:
◦ Point-to-point networks
◦ Paths do not change during the lifetime of the system

• Dynamic Networks:
◦ Implemented through switched channels
• Single-stage
• Multi-stage

◦ Paths can change during the system operation (e.g., depending on
software)

Connectivity:
• Blocking Network:
◦ Not any input/output combination is allowed

• Non-blocking Network:
◦ All input/output combinations are allowed

52 of 100 - Advanced Computing Architecture

Interconnections

• Shared Medium
◦ All the nodes are directly connected to the medium

• Direct
◦ Nodes are connected to each other through point-to-point links
◦ The message is the information unit exchanged

• Indirect
◦ Nodes are connected through a network of interconnections
◦ The message is the information unit exchanged

53 of 100 - Advanced Computing Architecture

Fully Connected Mesh

• Each Node is connected to all
the others

• Static

• Symmetric

• Node degree = n − 1

• Diameter = 1

• Number of links = n(n−12)

• Bisection = (n2)2

54 of 100 - Advanced Computing Architecture

Ring

• Simple

• Static

• Symmetric

• Node degree = 2

• Diameter = bn2c
• Number of links = n

• Bisection = 2

55 of 100 - Advanced Computing Architecture

Fat-Tree

• Faces the problem of classical
tree’s root bottleneck

• Static

• Asymmetric

• Node degree = 3

• Diameter = 2(log n − 1)

• Number of links = n − 1

• Bisection = 1

56 of 100 - Advanced Computing Architecture

2D Torus

• Quite Simple

• Static

• Symmetric

• Node degree = 4

• Diameter = 2b
√
n
2 c

• Number of links = 2n

• Bisection = 2
√
n

57 of 100 - Advanced Computing Architecture

Hypercube

• d-sized Hypercube manages 2d

nodes

• Static

• Symmetric

• Node degree = d

• Diameter = d + 1

• Number of links = d n
2

• Bisection = n
2

58 of 100 - Advanced Computing Architecture

Static Networks Summary

Fully C Ring Fat-tree 2D-torus Hypercube

Node degree n - 1 2 3 4 d

Diameter 1 bn2c 2(log n − 1) 2b
√
n
2 c d + 1

Links n(n−12) n n - 1 2n d n
2

Bisection (n2)2 2 1 2
√
n n

2
Simmetry Y Y N Y Y

59 of 100 - Advanced Computing Architecture

Bus

• Dynamic

• All devices are linked to the same wires

• Presence of arbitration
• Increasing the number of connected devices:
◦ Increases contention
◦ Decreases performance

MEMORY

P1 P2 P3 P4 P5 P6

60 of 100 - Advanced Computing Architecture

Crossbar

• Dynamic
• Matrix with switching points
◦ Number of switches = pm

• There is contention only if two cores access the same memory bank

P1

P2

P3

M1 M2 M3

61 of 100 - Advanced Computing Architecture

Omega

• Dynamic

• Multistage Intectonnection Network (MIN)

• Each connection is a 2x2 crossbar

• Relies on perfect shuffle interconnection algorithm

• Some communications cannot happen simultaneously

62 of 100 - Advanced Computing Architecture

Dynamic Networks Summary

Bus MultiStage Crossbar

Minumum Latency Costant O(logkn) costant

CPU Bandwidth O(wn) to O(w) O(w) to O(nw) O(w) to O(nw)

Wiring Complexity O(w) O(nw logk n) O(n2w)

Switching Com-
plexity

O(n) O(n logk n) O(n2)

Connectivity and
routing capability

Only one to one
at time

Some
permutations and

broadcast if
network is
unblocked

All permutation,
one at time

63 of 100 - Advanced Computing Architecture

Scalable Manycore Architecture

IntelTM48 Cores
Single Chip Cloud Computing

64 of 100 - Advanced Computing Architecture

Single-chip Cloud Computing—SCC

• 48 Intel cores on a single die

• Power 125W cores @ 1GHz, Mesh @ 2Ghz

• Message Passing Architecture

• No coherent shared memory

• Proof of Concept of a scalable many-core solution

65 of 100 - Advanced Computing Architecture

Tiles and Cores

• 24 Tiles with 2 Intel cores each

• 32 KB (16KB I + 16KB D) L1 Cache per Core (inside each core)

• 256 KB L2 Cache per Core (inside each tile)

• Each tile has a Message Passing Buffer (MPB)

• Each tile has a Router

D
IM
M

D
IM
M

MC

MC

D
IM
M

MC

D
IM
M

MC

VRC SIF

R R R R R R

R R R R R R

R R R R R R

R R R R R R

tile tile tile tile tile tile

tile tile tile tile tile tile

tile tile tile tile tile tile

tile tile tile tile tile tile

L2

L2

Core 1

Core 0

MPBRouter

66 of 100 - Advanced Computing Architecture

Mesh Interface Unit—MIU

• 2D mesh (6 x 4)

• 2Tb/s Bisection bandwidth @ 2Ghz

• Connects the tile to the mesh

• Packs/Unpacks data in the tile

• Round-robin to arbitrate in-tile cores

67 of 100 - Advanced Computing Architecture

Power Management

• VRC (voltage regulator controller) is the SCC power controller
• It can change voltage and frequency of cores, as well as of other

parts of the die, upon request
• 7 voltage domain
• 24 frequency domain

D
IM

M
D

IM
M

MC

MC

D
IM

M

MC

D
IM

M

MC

VRC SIF

R R R R R R

R R R R R R

R R R R R R

R R R R R R

tile tile tile tile tile tile

tile tile tile tile tile tile

tile tile tile tile tile tile

tile tile tile tile tile tile

Voltage Domain

Frequency Domain

68 of 100 - Advanced Computing Architecture

Message Passing Buffer—MPB

• 16 KB buffer per tile

• 384 KB in the SCC

• Shared among all the cores on the chip

• Low latency Message Passing Support (through shared memory)

69 of 100 - Advanced Computing Architecture

Lookup Table—LUT

• Each core has a core address (up to 4 GB)

• The SCC has a system space (up to 64GB)

• MIU uses the LUT to translate the core address to a system
address

• Each core has its own LUT

• 256 entries for 4 GB addressable (each entry addressed 16 MB)

• An address request is placed in one of these queues:
◦ Router queue → memory controller → DDR3 memory
◦ MPB queue
◦ A queue to access local configuration registers

70 of 100 - Advanced Computing Architecture

SCC Memory

• On-chip SRAM (used for MPB)

• Off-chip DDR3 DRAM (accessed through 4 on-die memory
controller)

• Off-chip divided in core-private and shared memory

• The division is determined by LUT and configurable at boot time,
or dynamically after boot

• Tiles are organized in 4 regions, each one mapped to a different
memory controller (when accessing private off-chip memory)

• When accessing shared off-chip memory messages might pass
through each controller

71 of 100 - Advanced Computing Architecture

Address Translation

• bypass bit: if 1 the address is local to the tile’s MPB

• destID: identifies the tile containing the router (x , y coords)

• subdestId: specifies the port in the router

• DDR Memory controllers adjacent to some exterior tiles

bypass destID subdestID

1b 8b 3b

new address (34 b)

10b 24b

8b 24b

LUT

address

72 of 100 - Advanced Computing Architecture

Address Translation table

Sub Dest subdestID Description

Core0 0x0 Core 0 in the tile
Core1 0x1 Core 1 in the tile
CRB 0x2 Configuration Register
MPB 0x3 Message Passing Buffer
E-port 0x4 (0,5) and (2,5) select DDR3 MC
S-port 0x5 (0,3) System interface (SIF), (0,0) VRC
W-port 0x6 (0,0) and (2,0) select DDR3 MC
N-port 0x7 Nothing on this port of any edge router

73 of 100 - Advanced Computing Architecture

Cache Behaviour

• Core private Off-chip DRAM is cached through L1 and L2
accordind to classical rules

• No cache coherence among the cores

• Coherence is left to software:
◦ RCCE Library takes care of it
◦ Special tag and Instruction for developers customized solutions

• MPBT (Message Passing Buffer Type) tag identifies a cache line for a
data in the shared memory region

• CL1INVMB instruction marks all MPBT type data as invalid L1 lines
• Accessing an invalid data forces the update of the data in the L1

74 of 100 - Advanced Computing Architecture

How RCCE deals with cache incoherence

• MPB is of type MPBT

• If data is changed by another core and image is still in L1?
◦ Invalidate before read

• If the image of a line to write to is already in L1 (thus not to be
flushed in memory)?
◦ Invalidate before write

• L1 has write-combining buffer
◦ Always push whole cache lines

• MPB should be used only for data movement

75 of 100 - Advanced Computing Architecture

Programmer’s View of Memory

Private

DRAM
L2 L1

Private

DRAM
L2 L1 Core 47

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s

Core 0
t&st&s On-chip

Off-chip

76 of 100 - Advanced Computing Architecture

SIMD Architectures for
Supercomputing

NVIDIATM FERMI

77 of 100 - Advanced Computing Architecture

GP-GPU

• GPGPU is the usage of a GPU to perform general-purpose
scientific computation

• The model for GPU computing is to use a CPU and GPU(s)
together in a heterogeneous co-processing computing architecture

• The serial part of the program is left to the CPU, the parallel one
is deployed on the GPU

78 of 100 - Advanced Computing Architecture

From GPGPU to GPU Computing Model

• Classic GPUs had a reduced programmability, oriented only to
graphic computation

• All problems to be solved must be mapped to graphic ones

• CUDA (Compute Unified Device Architecture):
◦ Straight support to C and Fortran languages
◦ SIMT (Single Istruction Multiple Thread) Execution model
◦ Shared memory and barrier synchronization
◦ . . .

79 of 100 - Advanced Computing Architecture

GPGPU—GPU Computing Programming model

Memory

GPU

CPU

Device

Memory

80 of 100 - Advanced Computing Architecture

Fermi Streaming Multiprocessor

• Each SM can take up to
1536 CUDA threads

• Each SM can take up to
8 CUDA blocks

Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

CUDA CORE LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

Register File (32768 x 32-Bit)

Warp Scheduler Warp Scheduler

Dispatch UnitDispatch Unit

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Instruction Cache

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

core core

81 of 100 - Advanced Computing Architecture

Fermi Architecture

• Up to 512 CUDA
cores

• 16 SMs, 32 cores
each

• A FP or Integer
Istruction per clock
per thread

L2 Cache

D
R

A
M

H
o
s
t

In
te

rf
a
c
e

G
ig

a
T

h
re

a
d

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

82 of 100 - Advanced Computing Architecture

Cuda Programming model

• CUDA is a hardware/software architecture used to provide general
programming model support

• Data-Parallel portions are executed on the GPUs as kernels

• A kernel executes in parallel across a set of parallel threads

• CUDA threads are extremely lightweight

• The programmer (or the compiler) organizes these threads in
thread blocks and grids of thread blocks

83 of 100 - Advanced Computing Architecture

CUDA Thread

• Executed by one scalar processor

• Has its own Program counter

• Has its own Registers

• Has a Private memory

• Inputs data and output results

• Identified by a thread ID within a thread block

Local Memory

Thread

84 of 100 - Advanced Computing Architecture

CUDA Block

• Is a set of threads that share:
◦ (Shared) Memory
◦ Synchronization Barriers

• Up to 1024 threads

• Executed on a Multiprocessor

• Cannot migrate across Multiprocessors

• Several concurrent thread blocks can reside on a multiprocessor

• Identified by a block ID within a thread Grid

Shared Memory

Block

85 of 100 - Advanced Computing Architecture

CUDA Grid

• Is an array of blocks that execute the same kernel:
◦ Shared Global Memory
◦ Synchronization between dependent kernel calls

• Kernels are launched as grids of threads

Global Memory

Grid 0

Grid N

86 of 100 - Advanced Computing Architecture

CUDA Hardware Mapping

• A GPU can execute one or more kernel grids
◦ A kernel can execute as a 1D, 2D or 3D grid of thread blocks

• Each SM executes one or more thread blocks
◦ A thread block is a 1D, 2D or 3D batch of threads

• CUDA cores and other execution units in the SM execute threads

87 of 100 - Advanced Computing Architecture

How to Manage Grids and Blocks

• Cuda defines dim3 datatype

struct dim3 {
unsigned int x, y, z;

};

• gridDim: dimension of the Grid

• blockDim: dimension of the Block

• blockIdx: block index

• threadIdx: thread index

88 of 100 - Advanced Computing Architecture

GigaThread Scheduler

• At chip level thread blocks are scheduled onto various SMs

• At SM level The code is actually executed in groups of 32 threads,
what NVIDIA calls a warp
◦ Threads in a warp execute the same instructions at the same time
◦ Each SM can issue and execute 2 warps concurrently

• Managing warps faces performance not correctness
• One instruction per warp is executed
• No contention from two different warps

89 of 100 - Advanced Computing Architecture

Fermi Register File

• Up to 32768 32-bit register in each SM

• Dynamically partitioned among all the blocks assigned to the SM

• Once assigned to a block, it is not accessible by threads in other
blocks

• Each thread in a block can only access registers assigned to it

90 of 100 - Advanced Computing Architecture

Memory Hierarchy

• Local Memory—Thread Scope
◦ Private to threads

• Shared Memory—Block Scope
◦ Shared among threads within the same block
◦ Extremely fast, on-chip memory
◦ Not visible to threads in other blocks running concurrently

• Global—Application Scope
◦ Shared by all threads
◦ Allows inter-grid communication

91 of 100 - Advanced Computing Architecture

Considerations on Blocks

Example: Matrix multiplication via multiple blocks.

What is the best-suited size?

• 8x8 = 64 threads per block
Each SM can run at most 8 blocks
Only 256 threads will be run by the same SM

• 32x32 = 1024 threads per block
Each SM can run at most 1536 threads
Only 1 block can fit the SM

• 16x16 = 256 threads per block
With 6 blocks, SM works at its best

92 of 100 - Advanced Computing Architecture

Considerations on Registers

• How many threads can run on each SM with a block of 16x16
threads on register constraints?

◦ Each thread requires 30 registers
Each block requires 30x256 = 7680 registers
32768/7680 = 4 + remainder
Each SM can run 4 blocks

◦ Each thread requires 33 registers (+10%)
Each block require 33x256 = 8448 registers
32768/8448 = 3 + remainder
Each SM can run 3 blocks (-25% parallelism)

93 of 100 - Advanced Computing Architecture

Programming with CUDA (at a glance)

• Computation partitioning
◦ Functions are declared as: host , global and device
◦ Mapping of thread programs to device:
compute<<<gs,bs>>>(<args>)

• Data partitioning
◦ Data are declared as: shared , device , constant

• Data management and orchestration
◦ Functions to copy data from/to Host

• Concurrency management
◦ Functions like: synchthreads()

94 of 100 - Advanced Computing Architecture

Programming with CUDA: Summing two vectors

...

...

...

+ + + + + +

a

b

c

95 of 100 - Advanced Computing Architecture

Programming with CUDA: Summing two vectors

1 #define N 10

2 int main(void) {

3 int a[N], b[N], c[N];

4 int *dev_a, *dev_b, *dev_c;

5

6 // allocate the memory on the GPU

7 cudaMalloc((void**)&dev_a, N * sizeof(int));

8 cudaMalloc((void**)&dev_b, N * sizeof(int));

9 cudaMalloc((void**)&dev_c, N * sizeof(int));

10

11 // fill the arrays ’a’ and ’b’ on the CPU

12 for (int i=0; i<N; i++) {

13 a[i] = -i;

14 b[i] = i * i;

15 }

96 of 100 - Advanced Computing Architecture

Programming with CUDA: Summing two vectors (2)

16

17 // copy the arrays ’a’ and ’b’ to the GPU

18 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);

19 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);

20

21 // Perform addition on the GPU

22 add<<<N,1>>>(dev_a, dev_b, dev_c);

23

24 // copy the array ’c’ back from the GPU to the CPU

25 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);

26

27 // display the results

28 for(int i = 0; i < N; i++) {

29 printf("%d + %d = %d\n", a[i], b[i], c[i]);

30 }

31

97 of 100 - Advanced Computing Architecture

Programming with CUDA: Summing two vectors (3)

32 // free the memory allocated on the GPU

33 cudaFree(dev_a);

34 cudaFree(dev_b);

35 cudaFree(dev_c);

36

37 return 0;

38 }

39

40 __global__ void add(int *a, int *b, int *c) {

41 int tid = blockIdx.x; // handle the data at this index

42 if(tid < N)

43 c[tid] = a[tid] + b[tid];

44 }

98 of 100 - Advanced Computing Architecture

Vector Sum as seen by GPU

Block 0:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 0;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 2:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 2;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 1:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 1;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

Block 3:

1 __global__ void add(int *a, int *

b, int *c) {

2 int tid = 3;

3 if (tid < N)

4 c[tid] = a[tid] + b[tid];

5 }

99 of 100 - Advanced Computing Architecture

Bibliography

• Amdahl, G. M.: Validity of the Single-Processor Approach to
Achieving Large Scale Computing Capabilities. In AFIPS
Conference Proceedings. (1967)

• Gustafson, J. L.: Reevaluating Amdahl’s Law. Communications of
the ACM. (1988)

• Sun, X.-H., Ni, L.: Scalable Problems and Memory-Bounded
Speedup. Journal of Parallel and Distributed Computing. (1993)

• Kai Hwang - Advanced Computer Architecture Parallelism,
Scalability, Programmability

• Intel SCC Platform Overview

• NVIDIA NVIDIA Fermi Architecture Whitepaper

All trademarks and registered trademarks shown belong to their respective owners

100 of 100 - Advanced Computing Architecture

