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Effect of this Technological Trend
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Multicore Software Scaling
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Why should we parallelize?

Exploitation of Computing Power provided by more processing units
allows to solve more complex/larger problems

e SPEED-UP
To solve problems of a given size in less time

e SCALE-UP
To solve bigger-sized problems in comparable time

In general parallelism can improve cost/performance ratio
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Speedup Performance Models
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Amdahl Law—Fixed-size Model (1967)

e The workload is fixed: it studies how the behaviour of the same
program varies when adding more computing power

Ts Ts 1

To  aTs+(1 —a)% o+ (1;0‘)

SAmdahl =

e where:

a € [0,1]: Serial fraction of the program
p € N: Number of processors

T, : Serial execution time
T, : Parallel execution time

e It can be expressed as well vs. the parallel fraction P =1 — «
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Fixed-size Model
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Speed-up According to Amdahl

Parallel Speedup vs. Serial Fraction
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How Real is This?

1

1
p—0 o _|_ 5 «

e So if the sequential fraction is 20%, we have:

lim = =5

1
p—oo 0.2

e Speedup 5 using infinte processors!
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Gustafson Law—Fixed-time Model (1989)

e The execution time is fixed: it studies how the behaviour of a
scaled program varies when adding more computing power

W' =aW + (1 —a)pW

W/
SGustafson — W = o+ (1 - Oé)p

e where:

a € [0,1]: Serial fraction of the program
p € N: Number of processors

W : Original Workload

W' : Scaled Workload
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Fixed-time Model
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Speed-up According to Gustafson

Parallel Speedup vs. Serial Fraction

Speedup

Number of Processors
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Amdahl vs. Gustafson—a Driver's Experience

Amdahl Law:

A car is traveling between two cities 60 Kms away, and has already traveled

half the distance at 30 Km/h. No matter how fast you drive the last half, it
is impossible to achieve 90 Km/h average speed before reaching the second

city. It has already taken you 1 hour and you only have a distance of 60 Kms
total: Going infinitely fast you would only achieve 60 Km/h.

Gustafson Law:

A car has been travelling for some time at less than 90 Km/h. Given enough
time and distance to travel, the car’s average speed can always eventually
reach 90 Km/h, no matter how long or how slowly it has already traveled. If
the car spent one hour at 30 Km/h, it could achieve this by driving at 120
Km/h for two additional hours.
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Sun, Ni Law—Memory-bounded Model (1993)

e The workload is scaled, bounded by memory

S ~_sequential time for Workload, W™
Sun—Ni = parallel time for Workload, W*
_aW+(1-a)G(p)W  a+(1—-a)G(p)
oW +(1-a)G(p) T a+(1-a)s2
e where:

o G(p) describes the workload increase as the memory capacity increases
o W*=aW+ (1 —-«a)G(p)W
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Memory-bounded Model
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Speed-up According to Sun, Ni

a+(1—a)G(p)
G

Ssun—Ni =
a+(1-— a)%
e If G(p) =1
1
SAmdahl = —— oy
o+ 5
°* IfG(p) = p

SGustafson = o+ (1 - a)p

In general G(p) > p giving an higher scale-up
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Application Model for Parallel Computers

Fixed-memory
model

Workload

Fixed-time model

Fixed-workload model

Machine size
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Scalability

e Efficiency E =

speed-up
number of processors

e Strong Scalability: If the efficiency is kept fixed while increasing
the number of processes and maintainig fixed the problem size

e Weak Scalability: If the efficiency is kept fixed while increasing at
the same rate the problem size and the number of processes
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Superlinear Speedup

e Can we have a Speed-up > p 7 Yes!

(@]
o

Workload increases more than computing power (G(p) > p)

Cache effect: larger accumulated cache size. More or even all of the
working set can fit into caches and the memory access time reduces
dramatically

RAM effect: enables the dataset to move from disk into RAM
drastically reducing the time required, e.g., to search it.

The parallel algorithm uses some search like a random walk: the more
processors that are walking, the less distance has to be walked in total
before you reach what you are looking for.
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Parallel Architectures
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Processor Coupling

private
memory
computer
coprocessor
thread cpu cpu
\ cpu shared @
memory
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opu cpu
computer
private
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Tightly coupled Loosely coupled

22 of 100 - Advanced Computing Architecture




Classification of Parallelism

¢ Instruction Level Parallelism:
each core can process more instructions per time unit

o Pipelining
o Superscalar

e Thread/Process Level Parallelism:
workload is distributed over different threads/processes
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-]
Pipelining

e Instruction processing is split into different stages

e Each stage executes independently of each other

(7))
C
i5 | S
N1g IF | ID | LD | EXE | WB
4| 2 F | D | LD | EXE | WB
i3 F | D | LD | EXE | wB
i2 IF ID LD | EXE | WB
i1 IF D | LD | EXE | WB

ck1 ck2 ck3 ck4 ckb5 ck6 Time
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VLIW—Very Long Instruction Word

e An instruction represents multiple operations

e Each operation must operate on different hardware components

e This is done by (more complex!) compilers

Available Components:
Integer Operations

Integer Operations

Floating Point Operation

Load Operation

Store Operation

VLIW Stream boundled

---L-|---L-|I--L-|IIF-S|I--LS]|I-FL-
Sequence of VLIW
LILJIL|IITFS|ILS|IFL
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Superscalar Architecture

e More instructions are simultaneously executed on the same CPU

e There are redundant functional units that can operate in parallel

IF ID | EX MEM| WB
IF ID | EX MEM| WB
IF ID | EX [MEM| WB
IF ID | EX [MEM| WB
IF ID | EX |MEM| WB
IF ID | EX |MEM| WB
IF ID | EX MEM| WB
IF ID | EX [MEM| WB
IF | ID | EX I[MEM| WB
IF | ID | EX I[MEM| WB

Run-time scheduling (in contrast to compile-time)

It might require speculation (for branch prediction)
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Speculation
a<b+c
e A guess on the outcome of a compare is made if 23> 0 then
d<« b
o if wrong the result is discarded else
o if right the result is flushed d « ¢
end if
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Speculation

Program Global History

Counter | |

Global
Prediction

Local
Prediction

Final Prediction

e DEC Alpha 21264 Branch Prediction Unit
o Tournament branch prediction algorithm

35Kb of prediction information

2% of total die size

Claim 0.7-1.0% misprediction

o O O
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Hardware Thread-Level Parallelism

(@) |a1|a2] | [as|a4|as| | |ae|a7|as| (d) [a1]|B1|c1|A2|B2[c2|A3|B3|C3|A4|BA4|CA4|

®) [B1] | [B2] | [Ba3|B4|Bs|Bs|B7|BS|

(0) [c1]c2|[c3|ca] | |[cs|ce| | |c7|cs| (e) [a1]a2] [B1| |c1|c2|cs|ca|as|asa|as]
Cycle —»— Cycle —»—

(a) (b) (c): Three threads. In empty boxes the thread has stalled on
a memory access

e Fine-grain thread, switch thread at each clock cycle (d)

e Coarse-grain thread, switch thread upon slow operations (e)

e Simultaneous Multithreading, multiple threads can execute
simultaneously (superscalar processors)
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Hyperthreading
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Taxonomy (Flynn 1966)

Flynn classification is based on the number of concurrent instructions
(or controls) and data streams available in the architecture

e SISD: Single Instruction Stream, Single Data Stream
e SIMD: Single Instruction Stream, Multiple Data Stream

e MISD: Multiple Instruction Stream, Single Data Stream
e MIMD: Multiple Instruction Stream, Multiple Data Stream
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SISD—Single Instruction Stream, Single Data Stream

e One operation executed at a time on a single data item

e (Classical Von Neumann architecture

INSTRUCTION

PE DATA
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SIMD—Single Instruction Stream, Multiple Data Stream

e One operation executed on a set of data (e.g., matrix operations)

e Data-level Parallelism

e Synchronous operation

e Available also in commodity processors as well

INSTRUCTION
PE DATA
PE DATA
PE DATA
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Vector Processor (or Array Processor)

e Vector registers

e Vectorized and pipelined functional units

e \ector instructions
¢ Interleaved memory

e Strided memory access and hardware scatter/gather

| IF | D MEM| WB |

MEM| WB |

| IF | D

|MEM| WB |
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Graphics Processing Unit (GPU)

e Born specifically for graphics, then re-adapted for scientific
computation

® The same operation is performed on a large set of objects (points,
lines, triangles)

e Large number of ALUs (~100)
e Large number of registers (~32k)
e lLarge bandwidth
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MISD—NMultiple Instruction Stream, Single Data Stream

e More operations are executed at a time on a single data item

e Not of great interest, never became a real commercial product

INSTRUCTION

PE

INSTRUCTION

PE DATA

INSTRUCTION

PE
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MIMD—Multiple Instruction Stream, Multiple Data Stream

e More operations executed at a time on a set of data
The winning category for high performance computing

Asynchronous

MIMD machines are mainly:
o Multiprocessors

o Multicomputers

INSTRUCTION

PE DATA
INSTRUCTION ———

PE DATA
INSTRUCTION

PE DATA
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Multiprocessors

Shared Memory

Each processor can see the whole memory

e Communication supported by shared memory

Synchronization is mandatory to consistently access memory

MEMORY

INTERCONNECTION

CPU CPU CPU CPU
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Multiprocessors Classification

e UMA (Uniform Memory Access):
Processors can access any memory area uniformly (e.g., same
latency)

e NUMA (Non-Uniform Memory Access):
Processors have “nearer” memory areas which are accessed faster
than others

o NC-NUMA (Not-Caching NUMA)
o CC-NUMA (Coherent Caches NUMA)

e COMA (Cache-Only Memory Access):
The local memories (typically DRAM) at each node are used as
cache
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Uniform Memory Access

e Typical SMP (Symmetric Multiprocessing) memory access
e Each CPU can directly see the whole memory

e Tightly coupled system

MEMORY

CPU CPU CPU CPU
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Non-Uniform Memory Access

e Each CPU has its own local memory which is accessed faster
e Shared memory is the union of local memories

e The latency to access remote memory depends on the ‘distance’

INTERCONNECTION
MEM CPU CPU MEM
CPU CPU CPU CPU
MEM CPU CPU MEM
MEM ‘ MEM ‘ MEM ‘ MEM ‘
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Cache Only Memory Access

e Each CPU has a private memory that operates as a cache
e The shared memory is the union of the caches

e A data element is owned by a single cache

e Data elements can migrate during the execution

e Search for a data element position is needed
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Cache Coherency problem

CORE 0 CORE 1
time Core 0 Core 1
0 X <2 y+1 CACHE CACHE
1 y<2*xx h<0
2 a+ + z<—y—+h
INTERCONNECTION
z="7"7
MEMORY
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Snooping Cache Coherency

e Same principle as of bus systems. Each device connected to the
bus sees signals sent by others

e Upon a memory update the cache broadcasts update informations
e Other cores are snooping for updates

e Notifies have ‘cache line' granularity
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Directory-based Cache Coherence

® Snooping does not scale because of the broadcast cost in large

networks

o (Distributed) directory structures store cache line information

e During a read, the directory is updated reflecting that the core

owns a new copy

e A write operation makes the copy of each core invalid

e Only the owners of a copy are contacted
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False Cache Sharing Problem

e Caches work at cache line granularity (typical values: 64B—256B)

e The problem arises whenever two cores access different data items
that lie on the same cache line
e |t produces an invalidation although accessed data items are

D A W N =

different

struct foo {
int x;
int y;

};

struct foo f;
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void inc_x(void)

{

int 1i;

for(i = 0; i <
1000000; i++)
f.x++;

1 int sum_y(void) {

2
3

int s = 0;

int 1i;

for (i = 0; i <
1000000; i++)
s += f.y;

return s;




Multicomputers

Distributed Memory
e Memories are private to single processors

e Communication is explicit through Message Passing

Required support for send/receive primitives

INTERCONNECTION
CPU CPU CPU CPU
MEM MEM MEM MEM
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Multicomputer Classification

e MPP (Massively Parallel Processors): A huge number of nodes
connected by (in general) proprietary networks equipped with high
bandwidth and low latency

e Clusters (also known as Cluster of Workstation (COW) or
Network of Workstation (NOW)): Large number of commodity
computers connected through a commodity network
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Top 500—Architecture Types

D Single Processor

I ver

Constellations

B s

SMP

. Cluster

Share

1995 2000 2005 2010
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2015

Multicomputer Interconnections
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Network performance

e Latency: Time to transmit the first single bit of a message in the
worst case

e Bandwidth: Network Data-Rate from the receipt of the first bit

e Hardware Complexity: Implementation cost, Links, Switch
connectors, Arbitration

e Scalability: Ability of the network to be expansible while
maintaining the same performance

Transmit Time = latency + size of the message / bandwidth
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Network Properties

Geometry:
e Node Degree: Number of edges coming into a node
e Diameter: Maximum shortest path between any two nodes

e Bisection: (Worst-case) number of links cut off to split the
network into two equal halves

e Bisection width: The bandwidth of the channels cut off by the
bisection

e Regularity: All nodes have the same degree

e Symmetry: Each node sees the same net
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Network Properties

Routing:
e Static Networks:

o Point-to-point networks
o Paths do not change during the lifetime of the system

e Dynamic Networks:
o Implemented through switched channels
e Single-stage
e Multi-stage
o Paths can change during the system operation (e.g., depending on
software)
Connectivity:
e Blocking Network:
o Not any input/output combination is allowed
e Non-blocking Network:
o All input/output combinations are allowed
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Interconnections

e Shared Medium
o All the nodes are directly connected to the medium
e Direct

o Nodes are connected to each other through point-to-point links
o The message is the information unit exchanged

e |ndirect

o Nodes are connected through a network of interconnections
o The message is the information unit exchanged

53 of 100 - Advanced Computing Architecture




Fully Connected Mesh

e Each Node is connected to all
the others

e Static

e Symmetric

e Node degree = n—1

e Diameter = 1

e Number of links = n(”;l)

* Bisection = ()3

54 of 100 - Advanced Computing Architecture

Ring

e Simple

e Static

e Symmetric

e Node degree = 2
e Diameter = | 7]
e Number of links = n

e Bisection = 2
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Fat-Tree

e Faces the problem of classical
tree's root bottleneck

e Static

e Asymmetric

e Node degree = 3

e Diameter = 2(logn—1)
e Number of links = n—1

e Bisection =1
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2D Torus

Quite Simple
Static

Symmetric

Node degree = 4
Diameter = 2L4J
Number of links = 2n
Bisection = 2y/n
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Hypercube

e d-sized Hypercube manages 2¢ C/@ @)
nodes \ %
/\

e Static

e Symmetric

e Node degree = d
e Diameter = d +1

-
e Number of links = dg % \/
. .,
e Bisection = 5 o,

Static Networks Summary

Fully C Ring Fat-tree 2D-torus Hypercube

Node degree n-1 2 3 4 d
Diameter 1 2] 2(logn—1) 2|¥"] d+1
Links n(t) n n-1 2n 7
Bisection (5)? 2 1 2v/n 7
Simmetry Y Y N Y Y
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Bus

e Dynamic
e All devices are linked to the same wires
e Presence of arbitration

e Increasing the number of connected devices:

o Increases contention
o Decreases performance

MEMORY

KRR
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Crossbar

e Dynamic
e Matrix with switching points
o Number of switches = pm

e There is contention only if two cores access the same memory bank

CftF—t—F]

®
11
LI

1]
L]
[1]
[
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Omega

Dynamic
Multistage Intectonnection Network (MIN)
Each connection is a 2x2 crossbar

Relies on perfect shuffle interconnection algorithm
e Some communications cannot happen simultaneously
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Dynamic Networks Summary

Bus MultiStage Crossbar
Minumum Latency Costant O(logyn) costant
CPU Bandwidth O(%) to O(w) O(w) to O(nw)  O(w) to O(nw)
Wiring Complexity O(w) O(nw log, n) O(n°w)
Switching  Com- O(n) O(nlogy n) O(n?)
plexity
Some

permutations and

Connectivity and _ broadcast if All permut.atlon,
at time one at time

routing capability network is
unblocked

Only one to one
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Scalable Manycore Architecture

Intel ™48 Cores
Single Chip Cloud Computing
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Single-chip Cloud Computing—SCC

48 Intel cores on a single die
Power 125W cores @ 1GHz, Mesh @ 2Ghz

Message Passing Architecture

e No coherent shared memory
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Proof of Concept of a scalable many-core solution




Tiles and Cores

24 Tiles with 2 Intel cores each

32 KB (16KB | + 16KB D) L1 Cache per Core (inside each core)
256 KB L2 Cache per Core (inside each tile)

Each tile has a Message Passing Buffer (MPB)

Each tile has a Router

= file] [—file] [—tile] tile] [ftile] [tile
S — ,: ; '::I ':: ; ':: ; ': MC——
g \R\ i \R\ i i E L2
file] file] file] file] file] file] Core 1
5 o v
1 I I I I I < A >
tlle: R tile] tlle: = tlle: tlle:E;Rjne < Router < ! > MPB
= I file] 1 file] I file] I file] I file] I file] = A
= MC — —] —] —] MC—— =
E:F R R R L2 > Core 0
VRC SIF
\

66 of 100 - Advanced Computing Architecture

Mesh Interface Unit—MIU

e 2D mesh (6 x 4)

e 2Tb/s Bisection bandwidth @ 2Ghz
e Connects the tile to the mesh

e Packs/Unpacks data in the tile

e Round-robin to arbitrate in-tile cores
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Power Management

e VRC (voltage regulator controller) is the SCC power controller

e |t can change voltage and frequency of cores, as well as of other
parts of the die, upon request

e 7 voltage domain

e 24 frequency domain

ile ile ile ile ile ile| |~
IR AR HRI AR R

DIMM

3
[Div]

[tile] [ligile] [Lfile] [lfile] [lfile] [ file
[RISARARARAR R
Voltage Domain
Utile| ptile| [Ltile| [Lltile| [Lltile| [Utile
[RISARARARARR
= IHile] [Ugile] [UHdile] [Hile] [ile]| [lfile =
E RIHREHR AR HRE RIS v %
=)

VRC SIF

Frequency Domain
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Message Passing Buffer—MPB

e 16 KB buffer per tile
e 384 KB in the SCC
e Shared among all the cores on the chip

e Low latency Message Passing Support (through shared memory)
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Lookup Table—LUT

e Each core has a core address (up to 4 GB)
e The SCC has a system space (up to 64GB)

e MIU uses the LUT to translate the core address to a system
address

e Each core has its own LUT

e 256 entries for 4 GB addressable (each entry addressed 16 MB)

e An address request is placed in one of these queues:

o Router queue — memory controller — DDR3 memory
o MPB queue
o A queue to access local configuration registers
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- 00000000
SCC Memory

e On-chip SRAM (used for MPB)

e Off-chip DDR3 DRAM (accessed through 4 on-die memory
controller)

e Off-chip divided in core-private and shared memory

e The division is determined by LUT and configurable at boot time,
or dynamically after boot

e Tiles are organized in 4 regions, each one mapped to a different
memory controller (when accessing private off-chip memory)

e When accessing shared off-chip memory messages might pass
through each controller

71 of 100 - Advanced Computing Architecture




Address Translation

bypass bit: if 1 the address is local to the tile's MPB

destlID: identifies the tile containing the router (x, y coords)

subdestld: specifies the port in the router

DDR Memory controllers adjacent to some exterior tiles

| 8b | 24b |
address

LUT

b || 8b | 3 | | 100 | 24b |
bypass  destID subdestID new address (34 b)
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Address Translation table

Sub Dest subdestID Description

Core0 0x0 Core 0 in the tile

Corel Ox1 Core 1 in the tile

CRB 0x2 Configuration Register

MPB 0x3 Message Passing Buffer

E-port 0x4 (0,5) and (2,5) select DDR3 MC

S-port 0x5 (0,3) System interface (SIF), (0,0) VRC
W-port 0x6 (0,0) and (2,0) select DDR3 MC
N-port 0x7 Nothing on this port of any edge router
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Cache Behaviour

e Core private Off-chip DRAM is cached through L1 and L2
accordind to classical rules

e No cache coherence among the cores

e Coherence is left to software:

o RCCE Library takes care of it
o Special tag and Instruction for developers customized solutions

e MPBT (Message Passing Buffer Type) tag identifies a cache line for a
data in the shared memory region

e CL1INVMB instruction marks all MPBT type data as invalid L1 lines

e Accessing an invalid data forces the update of the data in the L1
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How RCCE deals with cache incoherence

e MPB is of type MPBT
e If data is changed by another core and image is still in L17?
o Invalidate before read

e If the image of a line to write to is already in L1 (thus not to be
flushed in memory)?

o Invalidate before write
e L1 has write-combining buffer
o Always push whole cache lines

e MPB should be used only for data movement
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Programmer’s View of Memory

Shared off-chip DRAM (variable size)

H On-chip
O Off-chip

Private
DRAM

Private
DRAM

76 of 100 - Advanced Computing Architecture

SIMD Architectures for
Supercomputing

NVIDIA™ FERMI
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GP-GPU

e GPGPU is the usage of a GPU to perform general-purpose
scientific computation

e The model for GPU computing is to use a CPU and GPU(s)
together in a heterogeneous co-processing computing architecture

e The serial part of the program is left to the CPU, the parallel one
is deployed on the GPU
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From GPGPU to GPU Computing Model

e (Classic GPUs had a reduced programmability, oriented only to
graphic computation

e All problems to be solved must be mapped to graphic ones

e CUDA (Compute Unified Device Architecture):

Straight support to C and Fortran languages
SIMT (Single Istruction Multiple Thread) Execution model
Shared memory and barrier synchronization

(@]

@)
@)
@)
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GPGPU—GPU Computing Programming model

CPU

Memory
-
-—

Device -

Memory | < | CPU
-—
-—
-
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Fermi Streaming Multiprocessor

‘ Instruction Cache ‘

[ Warp Scheduler | [ Warp Scheduler |

[ Dispatch Unit | [ Dispatch Unit \
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Fermi Architecture

e Up to 512 CUDA
cores

e 16 SMs, 32 cores
each
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Cuda Programming model

e CUDA is a hardware/software architecture used to provide general
programming model support

e Data-Parallel portions are executed on the GPUs as kernels
e A kernel executes in parallel across a set of parallel threads
e CUDA threads are extremely lightweight

e The programmer (or the compiler) organizes these threads in
thread blocks and grids of thread blocks
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CUDA Thread

e Executed by one scalar processor

e Has its own Program counter

e Has its own Registers

e Has a Private memory

e |nputs data and output results

e |dentified by a thread ID within a thread block

Thread

% <—>| Local Memory
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CUDA Block

e |s a set of threads that share:

o (Shared) Memory
o Synchronization Barriers

e Up to 1024 threads

e Executed on a Multiprocessor

e Cannot migrate across Multiprocessors

e Several concurrent thread blocks can reside on a multiprocessor
e |dentified by a block ID within a thread Grid

Block

§§§§§§ Shared Memory
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CUDA Grid

e Is an array of blocks that execute the same kernel:

o Shared Global Memory
o Synchronization between dependent kernel calls

e Kernels are launched as grids of threads

T

CUDA Hardware Mapping

e A GPU can execute one or more kernel grids
o A kernel can execute as a 1D, 2D or 3D grid of thread blocks

e Each SM executes one or more thread blocks
o A thread block is a 1D, 2D or 3D batch of threads

e CUDA cores and other execution units in the SM execute threads
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How to Manage Grids and Blocks

e Cuda defines dim3 datatype

struct dim3 {
unsigned int x, y, z;

I¥

e gridDim: dimension of the Grid

e blockDim: dimension of the Block
e blockldx: block index

e threadldx: thread index
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GigaThread Scheduler

e At chip level thread blocks are scheduled onto various SMs

e At SM level The code is actually executed in groups of 32 threads,
what NVIDIA calls a warp
o Threads in a warp execute the same instructions at the same time
o Each SM can issue and execute 2 warps concurrently

e Managing warps faces performance not correctness
e One instruction per warp is executed
¢ No contention from two different warps
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Fermi Register File

e Up to 32768 32-bit register in each SM
e Dynamically partitioned among all the blocks assigned to the SM

e Once assigned to a block, it is not accessible by threads in other
blocks

e Each thread in a block can only access registers assigned to it
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Memory Hierarchy

e Local Memory—Thread Scope
o Private to threads

e Shared Memory—Block Scope

o Shared among threads within the same block
o Extremely fast, on-chip memory
o Not visible to threads in other blocks running concurrently

e Global—Application Scope

o Shared by all threads
o Allows inter-grid communication
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Considerations on Blocks

Example: Matrix multiplication via multiple blocks.

What is the best-suited size?

e 38x8 = 64 threads per block
Each SM can run at most 8 blocks
Only 256 threads will be run by the same SM

e 32x32 = 1024 threads per block
Each SM can run at most 1536 threads
Only 1 block can fit the SM

e 16x16 = 256 threads per block
With 6 blocks, SM works at its best
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Considerations on Registers

e How many threads can run on each SM with a block of 16x16
threads on register constraints?

o Each thread requires 30 registers
Each block requires 30x256 = 7680 registers
32768/7680 = 4 + remainder
Each SM can run 4 blocks

o Each thread requires 33 registers (+10%)
Each block require 33x256 = 8448 registers
32768/8448 = 3 + remainder
Each SM can run 3 blocks (-25% parallelism)
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Programming with CUDA (at a glance)

Computation partitioning

o Functions are declared as: __host__, __global__and __device__
o Mapping of thread programs to device:
compute<<<gs,bs>>>(<args>)

Data partitioning
o Data are declared as: __shared__, __device__, __constant__

Data management and orchestration
o Functions to copy data from/to Host

o Concurrency management
o Functions like: __synchthreads()
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Programming with CUDA: Summing two vectors

PEPPPG
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Programming with CUDA: Summing two vectors

1 ##define N 10
> int main(void) {
3 int a[N], b[N], c[N];

4 int *dev_a, *dev_b, *dev_c;

5

6 // allocate the memory on the GPU

7 cudaMalloc((void**)&dev_a, N * sizeof(int));
8 cudaMalloc ((void**)&dev_b, N * sizeof(int));
9 cudaMalloc((void**)&dev_c, N * sizeof(int));
10

11 // £ill the arrays ’a’ and ’b’ on the CPU

12 for (int i=0; i<N; i++) {

13 ali] = -1i;

14 bli] = i * i;

15 }
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Programming with CUDA: Summing two vectors (2)

17 // copy the arrays ’a’ and ’b’ to the GPU

18 cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
19 cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
20

21 // Perform addition on the GPU

22 add<<<N,1>>>(dev_a, dev_b, dev_c);

23

24 // copy the array ’c’ back from the GPU to the CPU

25 cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
26

27 // display the results

28 for(int i1 = 0; i < N; i++) {

29 printf("%d + %d = %d\n", alil, b[il, cl[il);

30 }
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Programming with CUDA: Summing two vectors (3)

32 // free the memory allocated on the GPU

33 cudaFree(dev_a);

34 cudaFree(dev_b);

35 cudaFree(dev_c);

36

37 return O;

38 }

39

40 __global__ void add(int *a, int *b, int *c) {
a1 int tid = blockIdx.x; // handle the data at this index
42 if (tid < N)

43 cltid] = altid] + b[tid];

44}
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Vector Sum as seen by GPU

Block O: Block 1:
1 __global__ void add(int *a, int * 1 __global__ void add(int *a, int *
b, int *c) { b, int *c) {
2 int tid = O; 2 int tid = 1;
3 if (tid < N) 3 if (tid < N)
4 c[tid] = al[tid] + b[tid]; 4 c[tid] = altid] + b[tid];
5 } 5 }
Block 2: Block 3:
1 __global__ void add(int *a, int * 1 __global__ void add(int *a, int *
b, int *c) { b, int *c) {
2 int tid = 2; 2 int tid = 3;
3 if (tid < N) 3 if (tid < N)
4 c[tid] = al[tid] + b[tid]; 4 cltid] = al[tid] + b[tid];
5 } 5 }
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