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Abstract

Parallel Discrete Event Simulation (PDES) is a classical means to achieve
high performance simulations. This is especially important on contexts en-
tailing real-time constraints, as for the case of decision making tools, where
target configurations have to be identified, via simulation, within bounded
time. PDES is based on splitting the model to simulate in different simulation
objects, that are mapped onto logical processes (LPs), which can process sim-
ulation events in parallel, thus potentially allowing for (large) speedups when
compared to traditional serial execution of the simulation model. On the other
hand, synchronization mechanisms need to be actuated in order to allow the
parallel run to provide correct results, hence correct evolution of the objects’
state along the simulation time axis.

In this dissertation we cope with performance of PDES systems, with spe-
cial focus on deploys of the PDES platforms onto multi-core architectures.
These architectures represent the current CPU trend and nowadays it is com-
mon to have chips with a significant number of cores, sometimes enough for
effectively performing parallel computations within a single chip. By design,
these architectures share most of the CPU internal components across different
cores, and physical memory across the different CPUs. This implies several
drawbacks, mainly due to the contention, but at the same time, such a shar-
ing can become a resource, if well exploited through sector specific software
design.

The base building block for our work is the optimistic PDES synchro-
nization paradigm, which has been shown to be highly promising in terms of
potential for fruitful parallelism exploitation.

As a first contribution, we will present the design and implementation
of optimized supports for state log/restore operations, which are at the base
of the rollback procedures used to guarantee consistency in the optimistic
paradigm. System requirements for these supports only entail the x86 instruc-
tion set, with no particular additional facilities to be offered by the underlying
computing platform. On the other hand, the provided solution has a further
reflection on performance for deploys on multi-core systems since it aims at

1



2

automatizing the optimization of a set of CPU/memory tradeoffs among which
we also find virtual memory usage, which may impact physical memory (e.g.
cache) contention for the case of multi-core architectures.

Secondly, we address the issue of optimizing the behavior of the caching hi-
erarchy by providing an innovative buffer delivery mechanism suited for mem-
ory demands in optimistic PDES systems. This is a quite relevant aspect to
cope with, given the intrinsic high-demand of virtual memory by optimistic
PDES runs. The proposed solution tends to reduce the impact of virtual
memory demand on physical memory, which is achieved in a highly general
manner, thus making the approach applicable to differentiated types of hard-
ware architectures. However, by nature, it reveals particularly suited for the
case of multi-core systems, given the aforementioned issue if physical memory
contention across the cores.

Finally, we provide an additional contribution, specifically tailored to the
multi-core architecture, which introduces an innovative load-sharing paradigm
for optimistic PDES platforms. It is aimed at improving performance and
fruitful resource usage in a fully orthogonal manner with respect to tradi-
tional load-balancing. In fact, it allows the computing resources to be (dy-
namically) assigned to each simulation platform instance on the basis of its
current workload, instead of migrating the workload from one kernel to an-
other. This also has the advantage of not suffering from all the issues related
to workload (namely LPs) remapping (i.e. data and metadata migration),
leading to the simplification of the job of both application programmers and
simulation-system developers.

To assess the real benefits, all the above approaches have been implemented
within ROOT-Sim, an open source C-based Optimistic Simulation platform
targeting the optimistic synchronization paradigm, and several experimental
studies have been conducted, whose outcomes are reported in the thesis.

Chapter Organization

This dissertation is structured as follows. The first chapter provides details
on the PDES approach, with the special focus on the optimistic synchroniza-
tion paradigm. It also provides hints on multi-core architectures, which have
been used as the reference hardware environment for this study. In chapter
two, state of the art results in the context of PDES systems, which are more
or less related to the presented approaches, are discussed. The third chapter
provides an overview of both hardware and software environments exploited
to ultimately assess the effectiveness of our proposals. Original contributions
by this dissertation start form chapter four, where an Autonomic State Sav-
ing architecture is designed, implemented and tested. Chapter five introduces
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our innovative memory delivery mechanism, explicitly targeted at optimistic
PDES systems, and reports experimental data demonstrating its viability and
advantages. Chapter six presents the load-sharing approach/model, which ex-
plicitly targets multi-core environment, its implementation and profiling/per-
formance data showing its dynamics and effectiveness. Finally, chapter seven
concludes the dissertation by summarizing the provided contributions.

Most of the material provided by this dissertation has been presented in
(or has contributed to the production of) the following technical articles I have
coauthored:

B1 Francesco Quaglia, Alessandro Pellegrini and Roberto Vitali. Reshuf-
fling PDES Platforms for Multi/Many-core Machines: a Perspective with
focus on Load Sharing. In Modeling and Simulation-based Systems En-
gineering Handbook, 2014 (To appear). Editors: Daniele Gianni, Andrea
D’Ambrogio and Andreas Tolk.

J1 Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Auto-
nomic state management for optimistic simulation platforms. In sub-
mission to IEEE Transactions on Parallel and Distributed Systems.

J2 Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Load
sharing for optimistic parallel simulations on multi-core machines. ACM
Performance Evaluation Review. vol.4, no.3, 2012.

IC1 Pierangelo Di Sanzo, Francesco Antonacci, Bruno Ciciani, Roberto Palmieri,
Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia, Diego Rughetti,
Roberto Vitali. A Framework for High Performance Simulation of Trans-
actional Data Grid Platforms. In Proceedings of the 6th ICST Confer-
ence of Simulation Tools and Techniques, SIMUTools.ICST, 2013.
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Quaglia. Transparent and Efficient Shared-State Management for Opti-
mistic Simulations on Multi-core Machines. Proc. 20th IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems MASCOTS, IEEE Computer Society
Press, August 2012.

IC3 Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. A load
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In Proceedings of the 19th International Conference on High Perfor-
mance Computing, HiPC. IEEE Computer Society, December 2012.
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Chapter 1

Introduction

Simulation is an attractive and well consolidated methodology to study real
world phenomena. Simulation is also important when it is used as a prediction
support, e.g. for the weather forecast or for business-oriented processes (as a
what-if analysis decision-making tool).

For some application contexts, one relevant aspect relates to the timeliness
according to which simulation results are provided to end-users or applications,
such as when exploiting simulation as a tool supporting time-critical decision
making. Hence, performance aspects while delivering simulation output is a
core issue to cope with. In the next sections we overview the typical approach
used to achieve high performance simulation in the context of discrete event
models, namely Parallel Discrete Event Simulation (PDES), posing the atten-
tion to the PDES optimistic synchronization mechanism, which forms the base
ground for the thesis. Then, we present an overview of the specific problems
targeted by the thesis and of the achieved outcomes.

1.1 Parallel Discrete Event Simulation

In the context of Discrete Event Simulation (DES), high performance has been
targeted via the Parallel-DES (PDES) paradigm [Fujimoto(1990)], which al-
lows exploiting the computing power offered by (high-end) parallel/distributed
platforms in order to speedup model execution and to make (very) large and/or
accurate models tractable. The basic idea underlying PDES is to partition the
simulation model into several distinct simulation objects, which are the core
of the simulation process from the model writer’s point of view. In fact, each
object represents a portion of the real world being simulated, the evolution of
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6 CHAPTER 1. INTRODUCTION

which is described by object state transitions, driven by a set of logical/math-
ematical properties. In order to represent real-world interactions, simulation
objects can communicate with each other, by exchanging pieces of information
in the form of events. From a technical point of view, simulation objects are
handled by Logical Processes (LP), which undertake the concurrent execution
of simulation events. Traditionally, a PDES run entails a number of concurrent
LPs, uniquely identified by a numerical code in the range [0, N − 1], and the
overall simulation model keeps track of the evolution of the simulated world
by relying on a global simulation state, which is partitioned into various LPs’
private and disjoint simulation states 1.

In PDES, simulation events are timestamped and their execution is im-
pulsive, meaning that there is no notion of time evolution during an event
processing. The current simulation time at each individual LP is known as
Local Virtual Time (LVT), and can be expressed in any measure unit (i.e.,
one LVT unit can represent seconds, hours, or even years, depending on the
actual simulation model). This notion of time is opposed to the Wall-Clock
Time (WCT), which is the actual notion of time we are used to. Therefore, in
one WCT unit, the LVT advancement can be of one or several units, depend-
ing on the actual complexity of the simulation model and on the efficiency of
the simulation run.

During the execution of an event, other events can be generated, destined
to any simulation object in the system, and are associated with a timestamp
value which is greater than or equal to the one of the event currently being
executed, i.e. during the execution of the event ex associated with the times-
tamp tx, a new event ey associated with timestamp ty can be generated and
sent to another simulation object, ensuring that ty ≥ tx. Therefore, event
generation evolves according to a causality pattern where the present cannot
affect the past.

LPs are in charge of delivering simulation events to the hosted simula-
tion objects, via the invocation of proper event handlers. Simulation-kernel
instances take care of the dispatching event processing activities across the
various LPs, and of managing inter-LP communication. In particular, they
handle the LPs’ event queues, by reflecting the updates associated with in-
coming messages, and determine the best LP to be dispatched in order to
optimize specific execution metrics.

On the other hand, when running the LPs concurrently on multiple CPU-

1Some approaches have studied variations where some portion of the state is shared

across multiple LPs [Pellegrini et al.(2012)Pellegrini, Vitali, Peluso, and Quaglia, Ghosh and

Fujimoto(1991)]. However, the traditional case of disjointness of the LPs’ states represents

the most studied and exploited approach.
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cores provided by the underlying parallel/distributed platform, synchroniza-
tion mechanisms are required in order to ensure that the causality pattern
is maintained not only for event generation but also for actual event pro-
cessing at any LP. Although differentiated approaches to the definition of
causally consistent execution have been devised in literature [Madhava Rao
et al.(Dec)Madhava Rao, Thondugulam, Radhakrishnan, and Wilsey, Quaglia
and Baldoni(1999), Fujimoto(1999), Cai et al.(2005)Cai, Turner, Lee, and
Zhou], the most widely known and exploited causality criterion expresses
that model execution is correct if each LP processes its input events in non-
decreasing timestamp order.

To maintain causal consistency (namely local timestamp ordering at any
individual LP) two main approaches have been proposed: conservative and
optimistic. The conservative approach consists in avoiding at all the possi-
bility of a causal violation, i.e., it can not happen that an event is executed
out of order. To support this synchronization approach, block-until-safe poli-
cies are employed, which suspend event processing activities at an LP until it
is determined that the execution of the next pending event is coherent with
logical-time ordering. On the other hand, with the optimistic approach, event
execution is never suspended at any LP, hence giving rise to speculative pro-
cessing, under the optimistic assumption that causality is not violated. If any
violation is detected, rollback recovery mechanisms are used to bring the in-
volved LPs back to a correct state snapshot, starting from which execution of
is resumed.

Literature results show that the optimistic approach is prone to higher
parallelism exploitation, and to deliver performance which is less influenced
by the message (event) delivery delay and by the lookahead within the sim-
ulation model 2. These advantages are reflected also on the side of scalabil-
ity, as demonstrated by the study in [Carothers and Perumalla(2010)], where
very large platforms (entailing on the order of thousands of CPU-cores) are
employed for a comparative analysis of conservative vs optimistic approaches.
By this study, it clearly emerges that the conservative approach delivers better
performance only for (very) high look-ahead values, which represent relatively
uncommon cases. Further, such an advantage is reduced as the number of
CPU-cores gets increased. Overall, better scalability of the optimistic ap-
proach in general contexts has been demonstrated.

2The lookahead expresses the capability of a model to predict the non-occurrence of events

within an given interval of simulated time, starting from the current time.
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1.2 Optimistic Synchronization Overview

In this section we provide an overview of optimistic synchronization, such
as the Time Warp protocol presented in [Jefferson(1985)]. The overview is
tailored to the description of basic dynamics proper of the optimistic approach,
and of some details that are more closely related to the specific topics of
interest for this thesis. A deeper discussion on literature results coping with
the topics addressed by the thesis is delayed to Chapter 2.

As hinted before, the optimistic approach aims at full exploitation of the
parallelism offered by the underlying computing platform, which is achieved
via the avoidance of block-until-safe policies for event execution, and on the
adoption of speculative processing. With this approach, causality violations
can occur upon the delivery of a so called straggler message to any LP involved
in the run. A straggler message carries a scheduled event associated with a
timestamp t1 which is lower than the timestamp t2 of some event that has
already been processed by the recipient LP. In other words, the destination
LP ran far ahead in simulation time with respect to some event that should
have instead affected its evolution (an example of this situation is shown in
Figure 1.1). In such a case, all the events that have already been processed by
the recipient LP, having timestamp t included in the interval t1 < t ≤ t2 are
no longer causally consistent (with respect to the local timestamp ordering
criterion).

Anytime a causality violation is detected, some rollback recovery mecha-
nism needs to be actuated which involve, at the same time, two orthogonal
issues:

• restoring the state of the rolling back LP to a past snapshot that is still
consistent;

• undoing the effects of inconsistent local processing activities on other
LPs.

The task in the last item is generally supported via the employment of
so called anti-messages, which are used to annihilate events that have been
scheduled by the rolling back LP as a result of causally inconsistent processing
activities. An anti-message is therefore a negative copy of a previously sent
message, and is used to signal the destination to discard the original message.
Clearly, in case the event carried by the original message was already processed
by the destination LP, we experience a spreading of the rollback occurrence
along a chain of LPs (this phenomenon is also known as cascading rollback).

We note that messages (events) are inserted within the system by usu-
ally employing proper APIs offered by the underlying simulation environment
as a support of typical PDES programming models. This implies that the
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management of anti-messages upon the occurrence of rollback does not pose
particular transparency problems with respect to the application-level code.
In fact, the environment can log outgoing messages and generate the corre-
sponding anti-messages if requested (e.g. by marking a “sign” bit within the
messages’ meta-data). As a consequence, research efforts in the management
of anti-messages are primarily related to reducing the management overhead
and the need for actually sending out the anti-messages associated with given
messages, such as when employing “lazy cancellation” schemes [Gafni(1985)]
3.

On the other hand, recoverability of the LPs’ states poses problems on the
side of both performance and application transparency. As for performance,
we need to consider both CPU usage for supporting tasks enabling state recov-
erability and actual state recovery actions, as well as memory usage for keeping
recoverability related data/meta-data. On this side, a wide literature exists
that has proposed the employment of log/restore techniques (see, e.g., [Bel-
lenot(1990), Preiss et al.(1994)Preiss, Loucks, and MacIntyre, Palaniswamy
and Wilsey(1993)]), where snapshots of the state of the LPs are taken ac-
cording to some (infrequent) policy in order to optimize the tradeoff be-
tween log costs and restore latency 4. Also, these techniques deal either
with non-incremental or incremental logging, the latter approach (see, e.g.,
[Rönngren et al.(1996)Rönngren, Liljenstam, Ayani, and Montagnat, Santoro
and Quaglia(2005), West and Panesar(1996)]) being also oriented to reduce
the usage of memory for log buffers. On the other hand, transparency issues
deal with supporting log/restore tasks with no need for having log/restore
modules to be implemented within the application-level code (hence masking
the actual synchronization paradigm to the application programmer). This is
a non-trivial aspect since it relates to the flexibility according to which the ap-
plication programmer is allowed to organize the data structures representing
the LP state image. As an example, the reliance on dynamic memory usage at
the application level requires the optimistic simulation platform to entail com-
plex memory management mechanisms [Toccaceli and Quaglia(2008)] in order
to be able to make generic and scattered memory layouts to be recoverable

3Lazy cancellation, as opposed to aggressive cancellation, tends to avoid sending out an

anti-message as soon as an original message is detected to have been produced by out-of-

order computation. This helps reducing the spreading of rollback in case the message would

have been reproduced after resuming computation.
4Taking a snapshot of the LP state less frequently increases the likelihood that the state

to be restored is not logged, hence must be reconstructed by starting from a previous logged

snapshot via fictitious re-processing of intermediate events. This re-processing phase is also

known as coasting forward.
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transparently and efficiently. On the other hand, this problem is exacerbated
in case the target is incremental logging, since such a memory layout needs
to be managed also on the side of identifying updates occurring within it, at
a granularity level that allows providing advantages with respect to logging
the whole state image. Recently, the memory demand problem associated
with logging has been also tackled via so called reverse computing approaches
[Carothers et al.(1999b)Carothers, Perumalla, and Fujimoto], where a state-
restore operation is supported via application-level compensation logic that
applies backward computation steps until the correct snapshot for resuming
the LP is built. For this approach we still find issues in relation to how to
generate the reverse code version transparently to the application programmer.

Still in relation to memory usage and recovery, optimistic synchronization
is intrinsically linked to the notion of Global Virtual Time (GVT). It represents
the commit horizon of the optimistic simulation run, namely the simulation
time barrier currently separating the set of committed events from the ones
which can still be subject to a rollback. This barrier corresponds to the min-
imum timestamp of not-yet-processed or in-transit messages/anti-messages,
hence it is typically computed via global reduction protocols, which can be
optimized for specific platform organizations (e.g., shared-memory systems
vs clusters [Bauer et al.(2005)Bauer, Yaun, Carothers, Yuksel, and Kalya-
naraman, Fujimoto and Hybinette(1997), Riley et al.(2000)Riley, Fujimoto,
and Ammar]). Once the new GVT is available, all the memory buffers keep-
ing the events that have been committed and the state logs related to the
committed portion of the simulation can be released 5. The procedure of re-
covering memory buffers is usually termed fossil collection. We note that the
GVT protocol cannot be executed with unbounded frequency since it imposes
overhead. This leads to further exacerbating the memory demand problem
in optimistic simulation platforms, since they are requested to allocate and
(temporarily keep) memory for information related to both speculative out-
comes (e.g. speculatively scheduled events) and already committed actions
(i.e. already committed events). Particularly, this may impose large memory
usage especially for LPs’ event and message queues, given that on the side
of state recoverability infrequent logging and/or incremental schemes and/or
reverse computing already tend to reduce such memory demand.

An additional central point in optimistic simulation platforms relates to
the CPU-scheduling approach used to determine which LP, among the ones

5For infrequent logging schemes, the only exception is related to the need for keeping

data/meta-data for at least one logged state image with time t less than GVT, and the

events with time in between t and the GVT value, in order to be able to recover the LP

state image to any point in time arbitrarily close, or coinciding with, the GVT value.
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hosted by a given simulation-kernel instance, must take control for actual event
processing activities. Although several proposals have been made [Som and
Sargent(1998), Quaglia and Cortellessa(2002), Rönngren and Ayani(1994a),
Palaniswamy and Wilsey(1994)], the common choice is represented by the
Lowest-Timestamp-First (LTF) algorithm [Lin and Lazowska(1991)]. It se-
lects the LP whose next pending event has the minimum timestamp, compared
to next pending events of other LPs hosted by the same kernel. Coupled with
the traditional single-threaded approach for the implementation of the simu-
lation kernel, LTF has the advantage of avoiding the generation of causality
violations across the LPs hosted by the same kernel instance. This is because
these LPs are dispatched in a way similar to what would happen on top of
a sequential simulation engine, which imposes a timestamp-ordered sequence
of CPU-schedule operations for all the events (across all the LPs). Hence,
rollbacks can be generated only in relation to events scheduled between LPs
hosted by different kernels, which contributes to reduce the amount of roll-
backs, and to make the optimistic paradigm effective.

On the other hand, another aspect that can potentially hamper perfor-
mance, due to excessive generation of rollbacks (possibly giving rise to thrash-
ing phenomena), is the unbalanced advancement in simulation time of LPs
hosted by different kernel instances. In other words, the optimistic paradigm
needs to be complemented by proper mechanisms aimed at making computing
resources exploited for fruitful simulation work (not for work that is eventually
rolled back, thus only causing waste of resource usage). Waste of computing
resources can also be observed on long-distance basis, namely when the final
portion of the computation has no inter-kernel messages exchanges. In such a
scenario, the less-loaded kernels would terminate sooner with respect to others,
and the associated computing resources may remain unused until the termi-
nation of the slower kernel. Similar under-utilization scenarios may occur in
case some kernel instance hosts LPs that have no event to process for a specific
simulation time interval. In such a case, the computing power assigned to that
kernel instance remains unused for a while (namely for the wall-clock-time pe-
riod required for repopulating the event queues of those LPs, depending on
proper dynamics of the simulation model). Beyond traditional load-balancing
solutions [Glazer and Tropper(1993), Carothers and Fujimoto(2000), Jiang
et al.(1994)Jiang, Shieh, and Liu, Peluso et al.(2011)Peluso, Didona, and
Quaglia], the issue of balanced advancement in simulation time across dif-
ferent kernel instances has also been tackled via variants of the optimistic
approach based on reduction of the level of optimism (hence reduction of the
possibility for some LPs to run excessively ahead of others) [Srinivasan and
Reynolds(1998), Ferscha(1995)]. The tradeoff provided by these approaches
usually leads to reducing the likelihood of causality violation via reduction of
the exploitation of the available computing power (the typical case is when
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execution of some LPs is explicitly throttled).

1.3 Thesis Contributions

Along the line of the provided overview on optimistic synchronization, we can
identify the contributions by this thesis as related to three core topics:

State log/restore: as for this topic (see Chapter 4), we present a fully in-
novative state log/restore architecture, which allows time interleaved
co-existence of incremental and non-incremental log/restore operating
modes on a per LP basis. The architecture is based on a dual-coding
scheme, which is fully transparent to the application-level programmer,
and enables the application code to rely on most of the ANSI-C standard.
Dual coding is achieved via instrumentation of the ELF associated with
the application, hence it is tailored for UNIX based systems. Further,
the architecture performs the dynamic selection of the best-suited log
mode (and of its optimal parameterization, e.g., in terms of frequency
of the log operation) on the basis of an innovative analytical approach,
which complements existing literature results.

Buffer delivery: as for this topic (see Chapter 5), we provide an innovative
buffer-delivery architecture which is explicitly oriented to reduce the
impact of virtual memory usage by the simulation platform on the effec-
tiveness of the caching hierarchy. The architecture is based on a char-
acterization of buffer access patterns proper of the optimistic paradigm,
which we also propose within the thesis. Essentially, the architecture
reserves a cache partition to hot data, favoring the residence in cache of
part of the working set. Although this solution is generally applicable in
different architectural contexts, it gives rise to a reduction of the bus con-
tention, which is especially relevant in multi-core and multi-processors
architectures.
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Balanced resource usage: as for this topic (see Chapter 6), we present a
reshuffle of the design approach of optimistic simulation platforms in
order to generate a final architecture oriented to maximizing the ex-
ploitation of the computing power offered by multi-core machines in
order to perform fruitful work. The reshuffle is based on a symmetric
multi-threading paradigm, which allows supporting load-sharing policies
(as opposed to traditional load-balancing) suited for enabling balanced
advancement of the LPs along the simulation time axis with no need for
migrating them. Specifically, the approach that has been taken is based
on dynamic reassignment of the computing power to the active kernel
instances. A specific load sharing policy, based on an analytical model
of the expected computing power requested to sustain the workload by
the different kernel instances, is also provided.
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Chapter 2

Literature Survey

In order to frame the contributions by this thesis within literature results,
a sight on what is the state of the art in relation to the addressed topics is
provided. Particularly, we start with an overview of results dealing with state
recoverability. Then we discuss approaches explicitly oriented to cope with
memory demand in optimistic simulation platforms. Finally we discuss litera-
ture solutions aimed at balanced and fruitful usage of the computing resources
in optimistic synchronization, including more recent approaches based on the
concept of multi-threading.

2.1 State Recoverability

As hinted, one main means to support recoverability of the LP state in opti-
mistic simulation systems is represented by logging approaches, where the state
image is (infrequently) logged in order to generate restoration points along the
simulation time axis. Several studies in this direction have been aimed at pro-
viding analytical models describing the expected log/restore overhead when
experiencing a given rollback pattern (e.g. in terms of frequency of rollback
occurrence at the LP) and when taking state logs, namely checkpoints, at spe-
cific points of the execution (for instance each χ event executions, according to
a periodic scheme) [Rönngren and Ayani(1994b), Lin et al.(1993)Lin, Preiss,
Loucks, and Lazowska, Quaglia(2001)]. By monitoring the independent pa-
rameters appearing within the analytical expressions, the models can be used
to (dynamically) determine the position of checkpoints in order to keep the
whole log/resore overhead at minimum values. We recall that a lower number
of checkpoints taken along a given execution path reduces the log cost, but is

15



16 CHAPTER 2. LITERATURE SURVEY

expected to give rise to an increase in the restore cost. Particularly, the state
to be recovered might not be immediately available within the log, and would
need to be reconstructed by restoring an older snapshot and by reprocessing
the intermediate events up to the target restoration point. Hence, the afore-
mentioned approaches provide models for determining the well-suited balance
among these two opposite overhead tendencies.

The provided models deal either with the case of non-incremental logging
or with incremental logging, and some of them even cope with the case where
the two approaches are used in combination (e.g. by taking incremental logs
between subsequent non-incremental logs) [Soliman and Elmaghraby(1998)]
or are considered comparatively [Palaniswamy and Wilsey(1993)]. However,
these proposals have been mainly tailored to the evaluation of log/restore
policies (once known the costs for basic operations, such as the copy of the
whole or part of the LP state image into the log buffer), not to provide log/re-
store architectures explicitly tackling transparency of log/restore tasks to the
application level code.

The issue of transparency has been dealt with by other studies. For in-
cremental log/restore schemes this has been done by either instrumenting ap-
plication level code (in order to transparently insert code portions aimed at
identifying the write operations occurring onto the state image, thus allowing
identification of the dirty portions of the state) [West and Panesar(1996)] or
by employing operator overloading schemes, as for the case of the proposal
in [Rönngren et al.(1996)Rönngren, Liljenstam, Ayani, and Montagnat] which
has been tailored to object oriented technologies. For both the provided ap-
proaches there is anyhow the need for compile time identification of the mem-
ory portions forming the actual state image of the LP. Hence the approaches
are not fully suited for supporting a general programming model where the
memory layout of the LP state can rely on, e.g., dynamic memory allocation
and/or can be updated via third party libraries. On the other hand, the so-
lution in [Toccaceli and Quaglia(2008)] provides supports for transparency in
the context of dynamic memory based state layouts, but limitedly to the case
of non-incremental logging.

Other proposals have provided log architectures based on specialized hard-
ware [Quaglia and Santoro(2003), Fujimoto et al.(1992)Fujimoto, Tsai, and
Gopalakrishnan], which have been designed in order to achieve some level of
transparency, while also offloading the CPU, at the price of limiting the pro-
gramming model, e.g., by imposing contiguousness or static determination of
the memory area maintaining the state image of the LP.

The case of dynamic memory usage at the application level has been ad-
dressed by the proposals in [speedes(), Das et al.(1994)Das, Fujimoto, Panesar,
Allison, and Hybinette], which provide recoverability for memory scattered
LP state images. However, the level of transparency is not maximized since
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ad-hoc dynamic memory allocation/deallocation APIs are used to notify the
underlying simulation platform that the corresponding operation needs to be
rollbackable.

Full transparency, in combination with incremental logging, has been pro-
vided by the proposal in [Santoro and Quaglia(2005)], which has been tai-
lored to parallel/distributed simulation platforms adhering to the High-Level-
Architecture (HLA) specification [IEEE Std 1516-2000 (2000)(2000)]. This
approach exploits a page-based memory update tracking mechanism relying
on facilities (e.g. SEGFAULT tracking) offered by the underlying operat-
ing system. Hence the granularity according to which incremental logs are
taken cannot be set arbitrarily, and cannot be optimized depending on the
actual needs. Overall, these proposal are mostly suited for federations of sim-
ulation components where a middleware layer (namely the HLA Run-Time-
Infrastructure) is used to operate distributed coordination and data exchange,
whose overhead tends to mask the one imposed by the page-based logging
approach. They result less suited for traditional PDES platforms, relying on
highly optimized low-overhead engine level coordination and data exchange
facilities.

An approach to state recoverability which is orthogonal to the aforemen-
tioned solutions has been provided in [Carothers et al.(1999b)Carothers, Peru-
malla, and Fujimoto]. Instead of relying on state logs, this proposal is based on
reverse computing schemes where the forward execution code (namely the na-
tive implementation of the application level simulation code) is coupled with
a reverse code version which is in charge of backward compensating (hence
undoing) the updates occurred onto the LP state in case a rollback occurs.
The issue of automation of the generation of the reverse code, which targets
transparency to the application programmer, is also faced. The reverse com-
puting approach has been recently exploited, and has been demonstrated to
be effective, for several applications [Bauer and Page(2007), Seal and Peru-
malla(2011)]. Particularly, one main advantage by this approach is the re-
duction of memory demand for state-log buffers, while also nullifying the log
overhead (since logs are not taken at all). On the other hand, the tradeoff
is towards a potential increase of the restore latency in case very long roll-
backs occur, which would require log reverse computing paths to achieve the
restoration point. On the other hand, this approach can be complemented
with periodic state logging in order to both (a) avoid excessively log backward
computation phases, and (b) to deal with non-reversible operations (such as
flat assignments within the state image).

Advancement by the thesis. As for state recoverability, the thesis ad-
vances the state of the art by providing a log/restore solution, inspired to the
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autonomic computing paradigm, which does not rely on any specialized hard-
ware, and jointly addressed transparency and performance issues by exhibiting
all together the following features:

• It allows the application level programmer to use standard constructs
for dynamic memory allocation/deallocation operations, hence allowing
the LP state to be scattered across non-contiguous memory chunks.

• It transparently enables phase-interleaved adoption of incremental and
non-incremental log/restore modes.

• It runs each log/restore mode in a highly optimized fashion, via the
adoption dual-coding approaches and of classical schemes for the opti-
mization of typical parameters determining the actual overhead for each
mode.

• It dynamically (and transparently) switches to the best suited operating
mode (incremental vs non-incremental) depending on proper execution
dynamics of the optimistic simulation run.

While individual, or subsets, of the above points are dealt with by literature
results, none of these proposals fully covers the whole set of listed issues.

2.2 Memory Management

Although optimized approaches and/or architectures supporting state recov-
erability can also be considered as solutions aimed at reducing the memory
demand by the optimistic simulation environment (this is especially true when
considering reverse computing approaches), such a reduction can be consid-
ered as a reflection of the whole optimization process leading to well suited
tradeoffs between log and restore overheads. On the other hand, the memory
demand problem in optimistic simulation platforms, and its reflection on the
effectiveness of the underlying caching hierarchy and virtual memory system,
have also been addressed via sector specific approaches.

As hinted, the memory demand by optimistic platforms does not only in-
volve log operations, but the need for temporary maintaining events that are
not yet detected as already committed (since GVT is typically re-evaluated
periodically), and the need for supporting speculative scheduling of future
events. The latter aspect may entail high frequency for buffer allocation re-
quests just due to the fact that purely optimistic approaches can allow the
LPs to run far ahead of the currently committed horizon given the absence of
blocking or throttling strategies.
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As for memory requirements related to the already committed portion
of the computation, some advanced fossil collection mechanisms have been
proposed [Chetlur and Wilsey(2006)] that, by means of dissemination of infor-
mation about causality relations among events, are aimed at the identification
of the fossils (hence of memory to be recovered) in an complementary manner
compared to the classical ones based on GVT computation.

The effects of the caching hierarchy and of the underlying virtual mem-
ory system on the performance of specific tasks (such as state saving) and/or
of the overall simulation run has also been studied by several works [Carothers
et al.(1999a)Carothers, Perumalla, and Fujimoto, Akyildiz et al.(1993)Akyildiz,
Chen, Das, Fujimoto, and Serfozo, Akyildiz et al.(1992)Akyildiz, Chen, Das,
Fujimoto, and Serfozo, Das and Fujimoto(1997a)]. Outcomes by these studies
show how both caching and virtual memory may have a relevant impact on
performance, thus posing the need for optimizing platform level configuration
and/or design in order to limit the performance degradation phenomenon.

Interesting proposals aimed at the integration of advanced memory man-
agement schemes specifically tailored to optimistic PDES platforms can be
found in [Lin and Preiss(1991), Das and Fujimoto(1997b), Jefferson(1990),
Preiss and Loucks(1995)]. Here the authors propose techniques, such as can-
celback, pruneback or artificial rollback, which are aimed at achieving effi-
cient executions of the optimistic paradigm when considering limited available
memory. This is achieved by, e.g., artificially squashing portions of speculated
computation in order to avoid maintaining the related information (such as
the record for speculatively scheduled events) when memory demand becomes
critical (such as when swapping phenomena within the virtual memory sys-
tem would tent to appear). With this type of integrations, the optimistic
approach has been shown to be able to complete the run at reasonable per-
formance by using an amount of memory similar (or slightly larger than) the
one requested by a sequential, non-speculative run of the same simulation ap-
plication. Further, the performance tradeoffs associated with these schemes
have been thoroughly investigated both analytically and empirically (see, e.g.,
[Das and Fujimoto(1993)]).

Different approaches, still tailored to the tradeoff between memory man-
agement and performance, relate to the reduction of the number of memory
copies for supporting event exchanges within the optimistic platform. Particu-
larly, the proposal in [Swenson and Riley(2012)] provides a so called zero-copy
message passing approach, suited for both conservative and optimistic simula-
tion, which allows reducing the whole memory demand due to message buffer-
ing on shared memory architectures, thanks to the reduction of the amount
of virtual memory buffers used for keeping the messages.

The only work in literature that directly faces the cache hierarchy misuse
in optimistic simulators is [Fuj95], whose main target is to point out the rele-



20 CHAPTER 2. LITERATURE SURVEY

vance of buffer delivery mechanisms that are cache-friendly in shared memory
contexts. The work exclusively accounts for buffers reserved for exchanged
messages. It presents a new approach that partitions the memory destined to
messages in a way that the pages are accessed only by the two processes that
participate in the communication, providing a reduction of the cache-coherence
overhead and the cache invalidation. Our proposal is orthogonal since it does
not account for message-related buffers only, and can be deployed on both
shared and non-shared memory platforms.

Advancement by the thesis. In this thesis we address the effects on per-
formance due to the memory system in an orthogonal manner with respect
to all the aforementioned solutions. Particularly, we concentrate on caching
phenomena and propose an innovative architecture which supports a cache-
aware memory delivery mechanism specifically tailored to optimistic simula-
tion platforms. Hence our approach could be used in combination with other
approaches which have been targeted to the reduction of virtual memory usage
by the platform.

We must say that cache-aware memory allocation is not a new topic in
general (namely, outside the PDES area). However, our approach differs from
existing solutions. As an example, when considering cache-aware buffer deliv-
ery within operating system kernels (such as the LINUX Slab-allocator [Bon-
wick(1994)]), the main objective is the minimization of the RAM/cache data
movement (e.g. via the minimization of false cache sharing on multi-core ma-
chines). Compared to these approaches, we further target the concept of hot vs
cold data in the context of optimistic simulation runs, and tailor cache usage
in order to optimize the management of hot data (namely buffers associated
with information that requires a more frequent access).

As for the maximization of cache hits, some buffer allocation policies have
been proposed in [Chilimbi et al.(2000)Chilimbi, Hill, and Larus]. These are
based either on proper APIs to notify the memory management system that
different memory areas are correlated in terms of expected future accesses
(hence they should be located such in a way to be loaded into, e.g., the same
cache line) or on run-time profiling mechanisms aimed at clustering memory
accesses and reorganizing the layout to maximize cache efficiency. Compared
to these approaches we do not require the usage of proper APIs (hence the
simulation platform can rely on traditional memory allocation services) and
do not require run-time profiling (hence we avoid the associated costs) since
buffer relevance in terms of cache hits/misses are predefined via a general
scheme tailored to optimistic PDES systems.

In terms of employed cache management methods, the work more close
to our approach is the one in [Mueller(1995)] which presents a software-
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partitioned cache system to allow predictable task execution for real-time
environments. However, the final target of this work is completely orthog-
onal to our one since it is focused on memory latency predictability, achieved
at the cost of performance drops caused by the non-minimal number of cache
partitions that are typically required to support the different real-time tasks.
Conversely our goal is to increase exploitation of the cache system, which is
achieved by partitioning the cache to host buffers accessed in different exe-
cution patterns in two different cache partitions. The two-partition division
reduces cache pollution due to infrequently accessed buffers, favoring the per-
manence of (part of) the working set in one of the two partitions.

2.3 Balanced and Fruitful Usage of Resources

Balancing the usage of resources and its reflection on balanced and performance-
effective advancement in simulation time by different LPs is a fundamental
issue to be addressed for both conservative and optimistic simulation systems.
While in conservative simulation a non-balanced scenario could lead to un-
derutilization of the resources, in optimistic simulation platforms we may also
experience thrashing phenomena due to excessive rollback generation. This
issue has been traditionally tackled via load-balancing schemes where the LPs
are dynamically migrated from one simulation kernel instance to another de-
pending on the actual load they impose in a specific phase of the simulation
run. Along this direction we can find several solutions, such as [Glazer and
Tropper(1993), Carothers and Fujimoto(2000), Choe and Tropper(1999), Mer-
aji et al.(2010)Meraji, Zhang, and Tropper], which share the common feature
of being targeted to provide metrics for detecting imbalance scenarios and poli-
cies to re-balance the load, but that are not targeted to provide architectural
solutions for full transparency of the LP migration task to the application
programmer. Other studies have addressed the issue of load re-balance in
optimistic simulation systems for specific application fields, such as logic cir-
cuit simulation [Meraji and Tropper(June)], hence providing sector specific
policies.

As for transparency, a recent work in [Peluso et al.(2011)Peluso, Didona,
and Quaglia] provides a global memory management architecture that allows
reinstalling the LP state image (even in case it is formed by memory scat-
tered dynamically allocated chunks) across different kernel instances with no
intervention by the application level code. The architecture has been then
combined with already existing balancing policies (particularly the one in
[Carothers and Fujimoto(2000)]) in order to provide fully fledged supports
for the re-balance problem in general application contexts.

All the above approaches have been targeted to scenarios where the dif-
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ferent kernel instances can be run on either shared memory or distributed
memory systems. Hence they do not explicitly consider the possibility of ex-
ploiting the actual sharing of memory across different processes/threads within
the simulation platforms. Given the relevance of the multi-core architectural
organization, which natively offers sharing facilities, more recent approaches
have been tailored to balanced and fruitful resource usage in the context of
shared-memory platforms.

Along this path, the work in [Chen et al.(2011)Chen, Lu, Yao, Peng, and
Wu] presents a global schedule mechanism relying on a distributed event queue
that can be accessed by different threads, which is used to fairly distribute the
actual simulation load across the whole set of CPU-cores within the underly-
ing platform. However, the global event queue represents a synchronization
point which tends to hamper scalability of the proposed solution. In fact, the
effectiveness of the approach has been tested limitedly to the case of a maxi-
mum of 8 CPU-cores. Similar considerations can be made for the case of the
ThreadedWarped architecture in [Miller(2010)], which uses a global priority
queue across subsets of the threads within the platform. While this approach
reduces contention (given that a queue is shared by a subset of threads, rather
than all the active ones), it does not allow to redistributed the load (i.e. the
LPs) across different subsets of threads. Hence, execution of a specific LP
remains confined onto a given subset of the CPU-cores within the platform.

Finally, one recent work specifically oriented to improve the performance
of simulation platforms on multi-core machines can be found in [Liu and
Wainer(2012)]. This work is targeted at the IBM Cell processor [Kahle(2005)],
thus not being immediately suited for differentiated multi-core platforms.

Advancement by the thesis. As for balanced and fruitful usage of re-
sources, the thesis provides an innovative approach explicitly targeted to multi-
core machines, which is based on a paradigm shift from load-balancing to
load-sharing. Particularly, in our proposal, a simulation kernel instance is a
dynamic entity structured according to a symmetric multi-threaded paradigm,
which has the ability to acquire or release computing power depending on the
actual workload to be sustained. As a result, the hosted LPs can potentially
run on any CPU-core (given that any core can be incorporated for usage by
the kernel instance hosting the LP). Hence higher flexibility is provided in
terms of mapping of LPs to CPU-cores, and hence in terms of determining a
well suited balance of the whole workload over the underlying platform.

We note that this approach is fully orthogonal to load-balancing, hence
they could be used in combination, for example for optimizing resource usage
in clusters of multi-core machines (where load-sharing can optimize intra-
machine dynamics, while load-balancing and the associated LP migration
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schemes can optimize inter-machine dynamics).
Finally, we note that the architectural proposal for the reshuffle to load-

sharing has been also complemented with an innovative analytical model for
the determination of how to reassign the computing power to the different
kernel instances, which constitutes an additional contribution by the thesis.
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Chapter 3

Reference Environment

In this chapter we illustrate the hardware and software environment that has
been exploited for integrating and experimentally evaluating the proposals
by this thesis. We will start by over-viewing the hardware platform and the
lower-level software facilities (such as the operating system and the used com-
piling tools). Then we present the target open source optimistic simulation
platform where the solutions provided by the thesis have been integrated,
namely ROOT-Sim. Finally, we describe the applications that have been used
as benchmarks in the experimental studies.

3.1 Hardware and Base Software

Our reference computing platform is an HP ProLiant server equipped with
four 2 GHz AMD Opteron 6128 processors working at 64-bits. Each processor
is composed by 8 cores, for a total amount of 32 cores. Each core has a
private 128 KB L1 cache (64 KB data-cache and 64 KB instruction-cache)
and a private 512KB L2 cache. The last level of cache (LLC), having 5118 KB
capability, is shared among four cores within a single processor, for a total of
10236 KB within the same processor. The machine is equipped with 64 GB of
RAM based on a NUMA (Non-Uniform Memory Access) architecture, where
each group of cores that share the LLC sees 8 GB as close memory and the
remaining 56 GB as far memory 1. The schematized machine-architecture is

1In NUMA architectures several CPU-cores share memory resources, and the memory is

split in a way that each bank is “close to” a subset of the CPU-cores, commonly called node.

Each node accesses its close memory banks in fast way, while slower access is experienced for

25
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Figure 3.1: Schematized machine architecture

L1 Data L1 Inst L2 L3

Ways of associativity 2 2 16 48

Type Data Instruction Unified Unified

Size (KB) 64 64 512 5118

Coherence line size (B) 64 64 64 64

Shared vs Private Private Private Private Shared (4 cores)

Table 3.1: Opteron cache details

shown in Figure 3.1, while details related to the caching system are provided
in Table 3.1.

The operating system installed on the machine is 64-bit Debian 6, with
Linux Kernel version 2.6.32.5. The compiling and linking tools that have been
exploited are gcc 4.3.4 and binutils (as and ld) 2.20.0.

memory banks that are close to others node. The access type is called non-uniform because

all the nodes see the whole memory, but each node accesses different memory portions with

different latencies.
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3.2 The ROOT-Sim Platform

The simulation platform that has been taken as the reference for integrating
all the proposals by this thesis is the ROme OpTimistic Simulator (ROOT-
Sim) [Pellegrini et al.(2011)Pellegrini, Vitali, and Quaglia, HPDCS Research
Group(2012)]. This is a C/MPI-based open source optimistic simulation plat-
form based on the Time Warp protocol [Jefferson(1985)] and tailored for
UNIX-like systems. This platform has been designed as a general purpose
solution, hence being suited for supporting differentiated simulation models
adhering to a very simple programming model (as we shall also discuss in Sec-
tion 3.2.1). The platform transparently handles all the mechanisms associated
with parallelization, (e.g., mapping of LPs on different kernel instances) and
optimistic synchronization (e.g., state recoverability). A schematization of the
internal architecture of ROOT-Sim, as it was standing before integrating the
proposals by this thesis, is shown in Figure 3.2.

At the core of the architecture, there is an event-queue manager that main-
tains multiple input/output queues storing incoming (or already processed)
and outgoing simulation events. Each pair of input/output queues is logi-
cally associated with a same locally-hosted LP. The interaction between the
event-queue manager and the MPI layer, in order to support event notification
across different instances of the ROOT-Sim kernel, is mediated by a messag-
ing manager which multiplexes ROOT-Sim defined message tags (e.g., EVENT
or ANTI EVENT) travelling across different ROOT-Sim instances over the same
MPI channel. The scheduling sub-system gives control to the application layer
along the same thread running the scheduler. Hence, simulation events (and
the associated LPs) are dispatched for execution according to a classical time-
interleaved mode, where the scheduling priority for the next-to-be-executed
event across all the hosted LPs is based on the Lowest-Timestamp-First (LTF)
algorithm. The scheduler can run in two differentiated modes. The first one
is a stateless O(n) mode, resembling the linux-2.4 scheduler, which queries
the event-queue manager at each dispatch operation for getting information
about the next-event timestamp (and hence the scheduling goodness) of all
the LPs. The second mode [Santoro and Quaglia(2010)] operates in constant
time (at least statistically), and is based on pre-populated meta-data that are
constantly kept updated by reflecting the updates of the input queues of the
locally hosted LPs. It results well suited for (very) large models, for which the
advantages in terms of reduced scheduling latency overstep any overhead for
scheduler-state maintenance.

As for state recoverability (and hence of data structures maintained at
the application level), which is a crucial aspect for the design of effective opti-
mistically synchronized environments, two main architectural approaches have
been adopted. First, dynamic memory allocation and release via the standard
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Figure 3.2: ROOT-Sim architecture

malloc library are hooked by the kernel and redirected to a wrapper. Second,
the simulation platform is “context-aware”, i.e., it has an internal state which
distinguishes whether the current execution flow belongs to the application-
level code or the platform’s internals. In the former case, the hooked calls
are redirected via the wrapper to an internal Memory Map Manager (called
DyMeLoR), which handles allocation/deallocation operations by maximizing
memory locality for the state layout of each single LP, and by maintaining
meta-data allowing the memory map to be recoverable to past values [Toc-
caceli and Quaglia(2008)]. This aspect will be further discussed in Chapter 4
since the internal architecture of DyMeLor has been exploited as a starting
point for our autonomic log/restore proposal. Overall, thanks to DyMeLoR,
ROOT-Sim complies to a model where an LP is a (dynamically allocated) set
of data structures updated by subsequent calls to an event handler. This
semantic will be maintained via the autonomic management.

Concerning GVT calculation, ROOT-Sim relies on an optimized asyn-
chronous approach based on a message acknowledgment scheme to solve the
well-known transient message problem. Within this scheme, each kernel in-
stance keeps track of all the messages sent to the other instances in an ag-
gregate manner (i.e., via counters). Also, to reduce the communication over-
head, each instance sends cumulative acknowledgment messages according to
a window-based approach. Finally, to overcome the simultaneous reporting
problem, each kernel instance temporarily stops sending acknowledgment mes-
sages during the execution of the GVT protocol.

ROOT-Sim also supports a very peculiar service that, once a new GVT
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value is available, transparently rebuilds a Committed and Consistent Global
Snapshot (CCGS), formed by a collection of individual LPs’ states (see [Cu-
cuzzo et al.(2007)Cucuzzo, D’Alessio, Quaglia, and Romano]). This occurs via
update operations applied to local committed checkpoints of individual LPs
so to eliminate mutual dependencies among the final-achieved state values.
The checkpoint update operation is completely transparent since ROOT-Sim
realigns the logged state images by triggering the execution of event handlers
natively present within the application code, by passing as input already com-
mitted events not yet discarded by memory recovery procedures. Once the
CCGS is built, each LP gains control via an ad-hoc callback within the API,
by also having access to the copy of its state image belonging to the CCGS.
Such a service can support, e.g., termination detection schemes based on global
predicates evaluated on a committed and consistent global snapshot.

3.2.1 Exposed API

Beyond auxiliary functions, e.g., for accessing recoverable random number
generators, ROOT-Sim supports the following API:

(A ) int ProcessEvent(int me, time type now, int event type, void *content,

int size, void *state) - a callback to be implemented within the ap-
plication layer, which provides control to the application for the actual
processing of simulation events. me is the identifier of the LP being
dispatched, now is the current value for the local clock, event type is
the numerical code for the event to be processed, content is the buffer
maintaining the event payload (made of size bytes), and state is the
pointer to the top data structure forming the LP state layout.

(B) int ScheduleNewEvent(int where, time type timestamp, int event type,

void *content, int size) - this function allows injecting a new simu-
lation event within the system, to be destined to whichever simulation
object identified via where (the other parameters have the above de-
scribed meaning).

(C) int onGVT(int me, void *snapshot) - this callback passes control to the
application by providing the LP snapshot belonging to the CCGS.

By the above description, it is clear that the application programmer is
requested to reason on no aspect in relation to parallelism of the model exe-
cution. The programmer is only requested to understand that what is coded
within the ProcessEvent callback will be executed speculatively. Hence, any
audit on the simulation model state-trajectory (when considering committed
state updates) will need to be carried out via inspection on the LPs’ states
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through the onGVT callback. No other aspect in relation to the actual execution
mode and synchronization dynamics is seen by the programmer.

3.2.2 Code Examples

In this section we present some code snippets to implement a working ROOT-

Sim application which models a set of N nodes connected as a mesh, sending

packets randomly to each other. The simulation model implementation is

straitforward thanks to the fact that all the tasks related to parallelization

or other housekeeping operations are completely hidden. The first important

thing is to define the possible events handled by the model, the content of an

event message, and the structure of the state:

#inc lude <ROOT−Sim . h>

#de f i n e INIT 0

#de f i n e PACKET 1

#de f i n e PACKETS 1000000

#de f i n e DELAY 20

extern seed type master seed ;

typede f s t r u c t even t con t en t type {

t ime type s en t a t ;

} event content type ;

typede f s t r u c t l p s t a t e t y p e {

i n t pckt count ;

s e ed type s e e d s t a t e ;

} l p s t a t e t y p e ;

Notice that in this application we allow just two events: INIT, sent by the
simulation kernel to startup the simulation, and PACKET, which identifies the
transit of a packet in the mesh. PACKETS is a macro that will be used in the
termination check, while master seed is an initial seed for random functions
exposed by the platform.

Then, we must specify the actual logic for the ProcessEvent() callback.

This is the only entry point at application level for processing events, so we

must rely on a switch construct to demultiplex them:
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void ProcessEvent ( i n t me , t ime type now , i n t event type ,

event content type ∗ event content ,

i n t s i z e , void ∗ptr ) {

event content type new event content ;

l p s t a t e t y p e ∗ po in t e r = ( l p s t a t e t y p e ∗) ptr ;

t ime type timestamp ;

switch ( event type ) {

case INIT :

po in t e r = ( l p s t a t e t y p e ∗) mal loc ( s i z e o f ( l p s t a t e t y p e ) ) ;

po inter−>pckt count = 0 ;

po inter−>s e e d s t a t e = master seed ;

timestamp = ( t ime type ) (DELAY ∗ Random( ( unsigned long ∗) \

&pointer−>s e e d s t a t e ) ) ;

ScheduleNewEvent (me , timestamp , PACKET, NULL, 0 ) ;

break ;

case PACKET: {

po inter−>pckt count++;

new event content . s e n t a t = now ;

i n t rcv = (N PRC TOT ∗ Random( ( unsigned long ∗) \

&pointer−>s e e d s t a t e ) ) ;

timestamp = now + (Expent ( ( ( unsigned long ∗) \

&pointer−>s e e d s t a t e ) , DELAY) ) ;

ScheduleNewEvent ( rcv , timestamp , PACKET, \

&new event content , s i z e o f ( new event content ) ) ;

}

}

}

The logic in the code is fairly simple: upon INIT event, the LP’s state is
malloc’d and initialized, and an initial packet is sent to the LP itself. When-
ever a PACKET event is received, a local counter is increased, and a packet is
sent back to a random LP in the simulation environment. Timestamps asso-
ciated to these events are computed according to an exponential distribution,
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exploiting the internal Expent() function.

onGVT() is the second callback to be implemented in the application-level

code, and it performs a local check on the LP’s state. In particular, if the

number of packets passed in the LP is smaller than PACKETS, it tells the sim-

ulation platform that the simulation cannot be halted yet:

i n t onGVT( in t gid , void ∗ snapshot ) {

i f ( snapshot−>pckt count < PACKETS)

return 0 ;

r e turn 1 ;

}

3.2.3 ROOT-Sim audience

ROOT-Sim is a general purpose simulation platform, this means the possible
audience is represented by eachone needs to perform simulation. Its intrinsic
parallelism make it suited in particular to be adopted when the model to sim-
ulate is complex, both from a computational point of view or from a resource
requirements one, or when there are some real-time constraints to be matched.
In addition its reduced API and the trasparency of all the housekeeping opera-
tions make it suited to be adopted also by who do not have good programming
skills.

3.3 Benchmark Applications

We exploited two different benchmark applications in this thesis, namely:

• PCS (Personal Communication System), and

• Traffic

Both the applications are described in details in what follows.

3.3.1 Personal Communication System

Personal Communication System (PCS) models a cellular (connected) network
adhering to GSM technology, where each LP models the evolution of the state
of an individual cell, and the whole set of cells provides wireless coverage on
a square region of variable size (which depends on the total number of cells
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included in the model, each one assumed to cover an hexagonal region, as
in typical modeling approaches [Boukerche et al.(1999)Boukerche, Das, Fab-
bri, and Yildz]). Each cell handles a parameterizable number N of wireless
channels, thus the whole model can be tailored for being representative of
micro-cell vs macro-cell technology. Wireless channels are modeled in a high
fidelity fashion via explicit simulation of power regulation/usage and interfer-
ence/fading phenomena on the basis of the current state of the corresponding
cell. The power regulation model has been implemented according to the
results in [Kandukuri and Boyd(2002)].

The event types which can occur at any LP are:

• Start Call, which is intended to simulate a new call installation on a
target cell;

• End Call which is intended to simulates a call termination;

• Handoff Leave which is intended to simulate the leave of an on-going
call (i.e. of an active device) from the current residence cell;

• Handoff Receive which is intended to simulate the installation of a call
handed-off from an adjacent cell;

• Recompute Fading, which is intended to simulate the effects of climatic
variations onto the fading (and consequently interference) phenomena
for ongoing calls.

Upon the start of a call destined to a mobile device currently hosted by a
given wireless cell, a call-setup record is instantiated via dynamically-allocated
data structures, which gets linked to a list of already active records within
that same cell. Each record gets released when the corresponding call ends
or is handed-off towards an adjacent cell. In the latter case, a similar call-
setup procedure is executed at the destination cell. Upon call-setup, power
regulation is performed, which involves scanning the aforementioned list of
records for computing the minimum transmission power allowing the current
call-setup to achieve the threshold-level SIR value. Data structures keeping
track of fading coefficients are also updated while scanning the list, according
to a meteorological model defining climatic conditions (and related variations).
The climatic model accounts for variations of the climatic conditions (e.g. the
current wind speed).

This application is highly parameterizable, so that several different con-
figurations have been exploited in this thesis in order to better tailor the
experiments to the specific objective. Beyond the already mentioned number
N of wireless channels per cell, the set of configurable application parameters
entails:
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• τA, which expresses the inter-arrival time of subsequent calls to any
target cell;

• τduration, which expresses the expected call duration;

• τchange, which expresses the residual residence time of a mobile device
into the current cell, as evaluated since the time instant of installation
of the call within the cell.

Different distributions can be used for determining samples of the above
parameters, among which this thesis mostly rely on the exponential one.

A relevant dependent parameter within PCS models is the channel uti-
lization factor, expressing the percentage of time during which the channel is
busy. Particularly, the channel utilization factor depends on other parameters
according to the following expression:

utilizationfactor =
τduration
τA ∗N

The value of this parameter impacts the granularity of the events since the
more the busy channels, the more power-management records are allocated
and consequently scanned (or updated, as when fading gets recomputed on
the basis of climatic variations) during the processing of different events. On
the other hand, higher values of the channel utilization factor lead to higher
memory requirements for the state image of individual LPs. Both the above
dependencies (namely, CPU demand and memory) are anyhow bounded de-
pending on the total number N of per-cell managed channels.

3.3.2 Traffic

This application simulates a complex highway system (at a single car granu-
larity), where the topology is a generic graph, where nodes represent cities or
junctions and edges represent the actual highways. Every node is described
in terms of car inter-arrival time and car leaving probability, while edges are
described in terms of their length.

At startup phase, the simulation model is asked to distribute the highway’s
topology on a given number of LPs. Every LP therefore handles the simulation
of a node or a portion of a segment, the length of which depends on the total
highway’s length and the number of available LPs.

Cars enter the system according to an Erlang probability distribution, with
a mean interarrival time specified (for each node) in the topology configuration
file. They can join the highway starting from cities/junctions only, and are
later directed towards highway segments with a uniform probability. Whenever
a car is received, it is enquequed in the LP’s list of traversing cars, and its
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speed (for the particular LP it is entering in) is determined according to a
Gaussian probability distribution, the mean and the variance of which are
specified at startup time. Then, the model computes the time the car will
need to traverse the node, adding traffic slowdowns which are again computed
according to a Gaussian distribution. In particular, the probability of finding
a traffic jam is a function of the number of cars which are currently passing
through the node.

Accidents are derived according to a probability function as well. In par-
ticular, they are more likely to occur when the amount of cars traversing an
LP is about half of the cars which can be hosted altogether. In fact, if few
cars are in, accidents are less frequent. Similarly, if there are many, the traf-
fic factor produces a speed slowdown, entailing the probability of an accident
to occur to be reduced. Therefore, the model discretizes a Normal distri-
bution, computing the Cumulative Density Function in a contour defined as
cars in the node± 1

2 , having as the mean half of the total number of cars which
are at the current moment in the system, and as variance a factor which can
be specified at startup. The total number of cars which can be hosted by an
LP is computed according to the actual length of the simulated road, which is
determined when the model is initialized. When an accident occurs, the cars
are not allowed to leave the LP, until the road is freed. The duration of an
accident phase is determined according to a Gaussian distribution, the mean
and the variance of which are again specified at startup.

For the experiments in this thesis, we have exploited this application to
simulate the whole Italian highway network on top of 1024 LPs. We have dis-
carded the highways segments in the islands in order to simulate an undirected
connected graph, which allows to have the actual workload migrating overall
the highway. The topology has been derived from [AUTOMAP()], and the
traffic parameters have been tuned according to the measurements provided
in [Autostrade per L’Italia S.p.A.()]. The average speed has been set to 110
Km/h, with a variance of 20 Km/h, and accident durations have been set to
1 hour, with 30 minutes variance. This model has provided results which are
statistically close to the real measurements provided in [ACI()].



36 CHAPTER 3. REFERENCE ENVIRONMENT



Chapter 4

Autonomic Log/Restore

As shown by literature studies (see, e.g., [Palaniswamy and Wilsey(1993)]),
depending on the application profile (e.g., in terms of memory access pattern)
and on synchronization related dynamics (e.g., the frequency of causality vi-
olations to be recovered), no one among the traditional non-incremental or
incremental logging schemes can be considered as the unique winner solution.
The autonomic log/restore approach we present in this chapter exactly aims
at tackling this issue, which is done via time-interleaved co-existence of both
non-incremental and incremental modes, with per-LP dynamic selection of
the best suited mode (and of the associated optimal parameterization) based
on an analytical approach. Such an approach also exhibits the feature of ex-
plicitly accounting for stability of each log mode versus fluctuations of the
simulation model execution dynamics. The presented solution provides com-
plete transparency towards the final programmer, supporting (as already done
by ROOT-Sim via DyMeLoR) an ANSI-C oriented programming model that
can make use of dynamically allocated memory provided through standard
allocation/deallocation functions (namely malloc and free services) in order
to determine the memory layout of the LP state.

4.1 Co-existence of Different Log/Restore Modes

4.1.1 Starting from Non-Incremental State Saving Supports:

DyMeLor Details

The autonomic state saving architecture has been built on top of the mem-
ory manager already present in ROOT-Sim, namely DyMeLor, which sup-

37
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ports transparent log/restore facilities for LPs with generic memory layout.
DyMeLoR offers the possibility to allocate/deallocate memory chunks via stan-
dard memory allocation/deallocation API, supporting a general programming
model where the state of an LP can be scattered on dynamically allocated
memory chunks. It operates as a wrapper of ANSI-C malloc/free services,
which is completely transparent thanks to the adoption of ad-hoc compile/link-
ing time directives. For each LP to be handled, the library maintains a meta-
data table of malloc area entries. Each malloc area handles a set of same-
sized chunks. As soon as a new allocation request is performed, if there is no
free chunk to be delivered, a block of chunks is newly allocated (pre-reserved)
and linked to the malloc area. Pre-reserving provides good locality, resulting
as an efficient solution for both, caching alignment and memory access. In ad-
dition, contiguousness of the memory chunks to be delivered upon LP (future)
requests allows an efficient management, by the usage of a simple bitmap for
the recognition of in-use and free chunks.

Also, the chunk allocation logic within each memory block is similar to the
LINUX algorithm for the selection of the next file descriptor to be assigned
while opening an I/O channel. This logic keeps block fragmentation low and
tends to have busy chunks clustered at the head of the memory block.

4.1.2 Incremental State Saving Supports

Our solution extends DyMeLor allowing application transparent identification
of memory chunks that have been updated during event processing for support-
ing Incremental State Saving. This is achieved via a software instrumentation
approach. Particularly, a software instrumentation tool (IT) has been built
which parses and modifies the application object files. It is designed for ana-
lyzing and rewriting ELF (Executable and Linkable Format) objects generated
by standard gcc compilers (versions 3 and 4) for IA-32 and x86-64 architec-
tures. IT parses the object file, identifies all the write-to-memory instructions,
and inserts a call instruction to an update tracker module right before the
memory-write instruction, edited in assembly language, which performs the
recognition of the exact memory areas that are being written (in terms of
base address and size of the write operation).

The insertion of the call to update tracker before a memory-write in-
struction leads to shift of all the subsequent instructions, to a resize of the
sections associated with the object file and to the shift of other memory lo-
cations inside the object layout. Hence, IT also has to rewrite the headers
associated with the ELF object, the relocation tables, and the offsets used for
the identification of memory addresses referenced by the software, e.g., the
destination addresses for jmp instructions.
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Given that the update tracker module must operate in real-time, the
instruction decode is not performed at run-time, which could be onerous, es-
pecially due to the complexity and variable format/length of the x86 (and
x86-64) instruction set. Instead, at compile and linking time IT creates, pop-
ulates, and links with the simulator code a table of disassembled memory-write
operations, providing a hybrid approach where some compile-time tasks help
reducing run-time overhead. In particular, what is demanded to run-time
computation only consists of (a) the identification of the memory address of
the area to be updated, since it may depend on information not known at
compile-time, and (b) the branch correction for all those branches that de-
pend on dynamic values, i.e., register values.

In order for IT to be able to build the table of update tracker entry

records via correct insertion of the absolute addresses of memory-writing in-
structions, we have exploited incremental linking facilities offered by standard
linkers (e.g. ld on UNIX systems). In particular, the instrumentation process
interacts with the linker for the definition of the exact (absolute) position of
the symbols associated with application level software inside the executable
layout.

In IA-32/x86-64 architectures, the address of each memory-write opera-
tion depends on a set of up to four parameters, namely base, index, scale
and displacement. The former two parameters correspond to register values
(hence the parameters identify the registers containing the values), while the
latter two correspond to specific values of fields inside the instruction. The
instruction opcode reveals which of those parameters are relevant. Also, the
opcode, together with its prefixes, establish the real size of the memory area
touched by the write operation. Hence, to cache the results of the disassem-
bling process, IT builds a table where each entry is structured as follows:

struct update_tracker_entry {

unsigned long ret_addr;

unsigned int size;

char flags;

char base;

char index;

char scale;

long displacement;

};
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• ret addr indicates to update tracker where control will be returned
after its execution. It corresponds to the memory address of the write
instruction which immediately follows the current instance of the call to
update tracker;

• size indicates the size of the memory area that is being written by the
instruction 1;

• flags is used to identify which of the four parameters potentially defin-
ing the target memory address are actually relevant and should be con-
sidered by update tracker for computing the exact address for the
memory-write operation.

The remaining fields (base, index, scale, displacement) have the same
meanings as the corresponding fields in the memory access instruction.

The access to the update tracker entry occurs each time a write-to-
memory is executed during event processing by any LP, thus it is a perfor-
mance critical operation directly impacting the event execution costs. Also,
the percentage of write-to-memory instructions can be quite huge depending
on the specific application logic. For this reason we have decided to adopt a
fast search hash-with-buckets table.

Upon its activation, update tracker checks inside its own stack frame
the return address value, which is used as the key for accessing the hash table
maintaining update tracker entry records, and is compared to the ret addr

field inside these records for selecting the correct entry within the bucket.

Once completed the search the base address and the size of the memory
area being written can easily be computed by a few machine instructions.

Actually, IT can be parameterized in order to optimize the trade-off be-
tween the size of the hash-with-bucket table, and the access cost. Specifically,
the instrumentation process can check whether the level of collision inside the
hash table exceeds a pre-specified threshold. In such a case, IT can resize the
hash-with-bucket table in order to reduce the actual bucket size. The poten-
tial drawback is the increase of unused table entries, while the benefit is the
reduction of the update tracker overhead when accessing the table (thanks
to the tendency towards O(1) time complexity, as the best case).

IT avoids to process instructions associated with memory accesses related
to automatic variables (those allocated inside the stack). These instructions

1The only exception is for string movement instructions (movs and stos), used for moving

arbitrary size memory blocks. These instructions keep the information for identifying the

destination address and the current size of the memory block being written into predefined

registers, namely EDI and ECX, which are directly accessible by update tracker.
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can be recognized since they address memory via stack pointer registers (rbp,
rsp registers, in 64-bit architectures and ebp, esp in 32-bit architectures).
Automatic variables are not considered given that they do not belong to the
actual LP state image, since they do not survive across different invocations
of the event handler.

In IA-32/x86-64 processors the destination addresses for some jmp instruc-
tions, namely register jumps, are computed at run-time, thus they cannot be
corrected at compile-time by rewriting relocation tables. For register jumps,
also referred to as indirect branches, the destination address is dynamically
identified via the content of CPU registers.

To deal with this type of instructions, we have implemented a complemen-
tary monitoring module, called brach corrector, for supporting on-the-fly
correction of indirect branches destination addresses. It works similarly to the
aforementioned monitoring mechanism since a call to the brach corrector

is inserted right before any indirect branch, whose objective is to correct the
destination address. It relies on another hash table, similar to the previously
described one, where each entry corresponds to a different register jump in the
original code, and keeps information regarding which are the registers used for
the computation of the destination address for that instruction. This table is
again built and populated at compile-time to avoid run-time overhead. The
brach corrector then corrects the destination address depending on shifts
operated to the instructions. It determines the shift value thanks to another
table, again generated at compile-time, where all the shifts originated dur-
ing the instrumentation phase are listed as pairs < address, offset >. The
address represents the original linear address within the ELF from which a
shift operation had to take place due to instrumentation, while offset is the
actual generated shift. The table is ordered on the basis of the address field,
and the branch corrector performs a logarithmic-cost binary search to re-
trieve the interval containing the original destination for the register jump
to correct. The jump correction is not performed by modifying the regis-
ter value since it would result in an incorrect processor status, instead at
compile-time we substitute all the register jumps with offset jumps, and the
branch corrector just computes the destination address and overwrites the
offset field. In order to support run-time instruction rewrite, without im-
pacting typical settings associated with memory protection, the offset jump
instruction has been moved to an ELF section which is writable at run-time,
properly created by exploiting compiler/linker facilities. Also, at compile-time
the register jump in the original code has been substituted with a jump-label
instruction that points to the offset jump present in the run-time writable sec-
tion. This multi-layered jump allows run-time modification of the destination
address by maintaining all the application code non-writable, except for the
ad-hoc section just containing the offset jump instruction, which is updated
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whenever required by the branch corrector in order to give rise to correct
branches.

We note that efficient solutions for correcting register jumps (e.g. via the
avoidance of run-time disassembling) have practical relevance since register
jumps are typically generated by standard compilers (e.g. gcc version 3) for
machine language translation of Switch-Case constructs. These constructs are
quite relevant in simulation applications (e.g. for flow control inside the event
handler on the basis of the type of event to dispatch), which supports the
relevance of our optimizations aimed at limiting the cost of on-the-fly address
correction.

The original DyMeLoR data structures and modules managing the LP
memory map have been extended/modified in order to explicitly cope with
the possibility to build complete state logs by incrementally logging only data
that have been dirtied since the last log operation. To guarantee recoverability
of each type of operation permitted on the memory map, namely chunk allo-
cation/deallocation and chunk update, we need to deal with incremental log
of both dirty data, namely dirty chunks, and dirty meta-data, namely dirty
malloc area entries associated with the memory map.

To track dirty chunks, a second bitmap, of so called dirty bits, has been
associated with each block of pre-allocated chunks destined to a specific sim-
ulation object. This bitmap is placed inside the same contiguous memory
segment pointed by the corresponding malloc area and containing the origi-
nal status bitmap and the chunks destined for use by the overlying application
in case of malloc requests. In terms of real storage, the dirty bitmap inherits
the same features of the original status bitmap since its allocation occurs only
in case the corresponding chunks gets really pre-allocated. Hence, the extra
storage occupancy for detecting chunks that have been dirtied since the last
log operation scales well with the size of application destined storage. The
bits inside the dirty bitmap are treated as sticky flags vs the memory-write
monitoring mechanism previously described. Hence, a memory-write opera-
tion performed by the application software can only result in a set operation
of the dirty bit associated with the chunk being dirtied.

To track dirty meta-data we have added the following two integer fields
inside the malloc area data structure:

• dirty area, which is used as a flag indicating whether any type of op-
eration (allocation, deallocation or chunk dirtying) has occurred in the
malloc area since the last log.

• dirty chunks, which explicitly counts the current number of in use
chunks that have been dirtied in the malloc area since the last log
operation.
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Once the memory map manager receives the address and the size of the
memory area being dirtied from the memory tracker, it identifies all the
chunks that will be dirtied, and the associated malloc area entry. Then the
dirty bitmap and the dirty chunks field are updated. Again in compliance
with DyMeLoR’s memory model, in case the address and the memory area
being dirtied refer to locations outside the memory map of the currently exe-
cuting simulation object (e.g. they refer to global variables outside the heap,
for which recoverability is not provided), the memory map manager simply
returns control to the memory tracker module. The dirty area field inside
the malloc area is anyway set to 1 each time a malloc/free call insisting on
that area is performed by the application software.

4.1.3 State Log Operations

Via the exploitation of the additional fields inside each malloc area, and of
the dirty bitmaps, logging activities have been differentiated in full and in-
cremental logs. Both types of logs still result in packing the information to
be logged inside a contiguous buffer allocated via the underlying malloc ser-
vices. However, they pack different things (with consequently different costs).
A full-log operation coincides with the original log supported by DyMeLoR.
Hence, the active malloc area entries are packed inside the log buffer together
with the in-use chunks in the corresponding memory blocks, while the dirty
bitmaps are not logged. On the other hand, an incremental log performs dif-
ferentiated pack operations depending on the current value of data structures
explicitly used for tracking dirty data/meta-data. Specifically, for each active
malloc area entry we have the following cases:

A: dirty area is set and dirty chunks is zero. In this case the
malloc area is packed into the log buffer together with the status
bitmap indicating the current allocation of chunks inside a given block.
But the dirty bitmap and the currently in-use chunks are not logged.

B: dirty area is set and dirty chunks is greater than zero. In this case
the malloc area is packed into the log buffer together with the status
bitmap, the dirty bitmap and the chunks that are currently in use, which
have been dirtied.

C: dirty area is not set. In this case, no information associated with the
area is logged at all.

Full and incremental logs both involve the re-set of all the data structures
tracking dirty data/meta-data. For incremental logs, this occurs indepen-
dently of the actual case among the aforementioned ones.
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We finally underline that incremental state log operations no way require
to be forced at each simulation event, but can be taken periodically. In fact
they are based on recognizing memory portions that have been dirtied since
the last log, independently of the amount of events actually performing the
dirtying operations. Hence, state reconstruction at whichever simulation time
can be supported via a mix of state restore from the log (see next section),
and classical coasting forward.

4.1.4 State Restore Operations

Each log is stamped with the current simulation time, and all the logs (full
and incremental) are linked together in a timestamp-ordered chain. When a
restore operation needs to be executed at simulation time T , the log chain is
searched to determine the more recent log with time less than or equal to T
(logs with time greater than T are simply discarded since they refer to causally
inconsistent memory maps). In case the log found is a full one, then a restore
operation is executed by simply unpacking all the logged data and putting
them back in place. A different restore algorithm is executed in case the log
found is an incremental one. Specifically, the following steps are iterated by
backward traversing the chain of logs:

1. A malloc area found inside the log buffer, which has not been restored,
is put back in place inside the meta-data table. The associated status
bitmap is also copied back from the log buffer (recall that independently
of the type of log and of the specific case for incremental logging, a
logged malloc area is always associated with the corresponding status
bitmap inside the log buffer to guarantee recoverability of chunk alloca-
tion/deallocation operations).

2. Each dirty chunk found inside the log and associated with the
malloc area, which has not yet been restored in a previous iteration
while backward traversing the log, is copied back in its correct position
inside the corresponding memory block.

The iterative restore procedure stops when all the active malloc area en-
tries have been restored and all the in-use chunks that have been dirtied are
also restored. Although in principles this could entail an indefinite number
of iterative backward steps along the log chain, in practice the restore op-
eration can be immediately finalized once we find a full log while backward
re-traversing the log chain. In fact, all the in-use chunks that have not yet
been restored are immediately available inside the full log for copy-back oper-
ations. Actually, to optimize the detection of already restored chunks, which
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must therefore not be copied-back again from the log, the iterative restore
procedure has been based on temporary bitmaps (each associated with an ac-
tive malloc area) on which a couple of fast bitwise OR-XOR operations are
executed each time a dirty bitmap (associated with that same malloc area)
is extracted from the incremental log.

4.1.5 Caching Write References for Latency Reduction while

Managing the Memory Map

Our implementation is based on the avoidance of per-chunk headers. This de-
sign choice is aimed at minimizing the amount of meta-data to be logged/re-
stored 2. Hence, when a chunk gets released, no header information can be
exploited for fast access to the malloc area involved in the deallocation oper-
ation. To speed up deallocation, via the avoidance of scan operations over all
the active malloc area entries, DyMeLoR originally provided a software-level
direct-map caching subsystem, implemented as a hash table, with cache line
formed by the tuple <chunk addr,m area index>.

The issue of identifying the correct malloc area starting from the memory
address associated with a chunk becomes even more critical in our architecture.
Specifically, the memory map manager needs to retrieve the malloc area for
updating the information about dirty data/meta-data each time an instru-
mented memory-write operation dirtying whichever chunk inside the memory
map occurs. Also, we need to retrieve the correct malloc area starting from a
memory address which does not necessarily coincide with the chunk boundary
address (as instead occurs for free operations).

To cope with such an issue, the original cache has been extended by hav-
ing the cache line augmented with the chunk-end-address and represented by
the tuple <chunk start addr, chunk end addr,m area index>. The start ad-
dress for a memory write operation intercepted by update tracker is stripped
of n less significant bits by the memory map manager and is then used as the
key for accessing the hash table. The value of n is chosen with the aim at
making the whole range of addresses belonging to each single chunk collide
into a single cache line. Actually, given that the size of the chunks delivered
to the application software can be different, n has been set as the mean value
between the number of bits needed to make the smallest and the greatest
chunks collide, biased to the smaller sizes.

2Flexibility in memory management via partitioning/aggregating free memory buffers

according to the so called “boundary tagging” scheme [Lea(1996)] is anyway inherited from

the original DyMeLoR design thanks to per-chunk headers used at the level of the underlying

malloc library.
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4.1.6 Interaction with Third Party Libraries

With the original DyMeLoR, any memory write operation on allocated chunks
was allowed to occur inside functions in third party libraries, provided that
these functions did not allocate any further memory buffer (as is the case for
most functions inside the C standard library stdlib). This is no longer auto-
matically the case when using our architecture and its incremental log/restore
facilities. In fact, libraries are not instrumented hence it would not be possible
for update tracker to catch memory changes made inside those libraries.

We have explicitly addressed the case of update operations performed by
third party software, just focusing on stdlib. Specifically, we have implemented
a set of function wrappers for all those functions whose signature allows the
overlying software to pass a pointer for a memory write operation to be per-
formed by the library. Those wrappers simply throw back the call to the un-
derlying standard-library function, and then pass control to the memory map
manager with explicit indication of the address of the updated buffer, and the
size of the updated memory block. In case the size cannot be retrieved by
the library function signature (as for pointers to buffers used for strings), the
memory map manager is provided with a special flag, which triggers the man-
ager to update the dirty bits for all the currently allocated contiguous chunks
starting from the pointed address. This is obviously a conservative way of
managing the memory map which can only result in an increased log/restore
overhead (due to the fact that some chunks that have not been really dirtied
by the library are actually considered as dirty ones). Correctness is no way
touched given that the wrapped library functions are all stateless, thus posing
no issue on the side of memory log/restore.

Anyway, we are currently working on techniques for application transpar-
ent management, and integration of all those library functions which explicitly
allocate memory and/or have an internal state.

4.1.7 The Dual-Coding Scheme

We have expanded the above design in order to provide an optimized co-
existence of the two different log modes. One way to possibly achieve such
a co-existence would have been to simply add a (per LP) flag indicating to
the memory-update tracking monitor whether the logging layer is currently
executing in incremental mode or not. In the latter case, the monitor does not
actually need to perform identification of the memory chunk to be dirtied, and
to flag the corresponding dirty-bit. It could simply return right after check-
ing the flag value. However, this solution would actuate the non-incremental
logging mode by running application level modules that actually experience
part of the overhead associated with the memory-update tracking monitoring
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mechanism (caused by a set of machine instructions, which include an explicit
call for flow control variation and the associated stack-frame setup). This
would mean running a non-optimized application layer configuration vs the
current operating mode of the underlying log layer.

We have instead adopted a different approach where automatic ELF rewrit-
ing schemes have been again used in order to create, starting from the same
set of application level modules, two different text sections within the ELF,
one containing a non-instrumented version of the compiled modules, and the
other one containing the instrumented counterpart. These two sections are
then transparently placed within different virtual memory sections thanks to
standard ld facilities. However, the corresponding symbol tables are modi-
fied by our preprocessing/instrumenting tool in order to expose the application
interface requested by the underlying simulation kernel, namely the event han-
dler callback, via differentiated symbols. The rodata sections corresponding
to the two different text sections are modified in order to provide correct ad-
justment of the displacement information associated with the position of code
and data within the virtual memory addressing. Also, the replicated data/BSS
sections associated with the two versions of the application object code have
been collapsed on the same virtual addressing range in order to provide a single
actual copy of initialized and non-initialized data, accessible by both the gen-
erated code versions. A schematization of the whole process supporting such
a dual-version code generation is provided in Figure 4.1, where we explicitly
indicate the steps carried out by our ad-hoc automatic compile/linking time
instrumentation tool. Once the executable is finally built and run, a kernel
level switch between the two different log modes simply involves reassigning
the event-handler callback pointer to the entry point symbol associated with
the corresponding version of the duplicated application executable modules.
Adopting this solution, each log mode is supported according to an optimized
run-time scheme where any overheads are at all avoided while processing sim-
ulation events in case no tracking of memory update operations is requested
by the currently active log mode.

The above scheme would only entail additional virtual addresses consump-
tion due to the presence of two versions of the executable modules associated
with the application layer. However, this should not represent a real problem
when considering the tendency of vendors towards 64-bit processors, enabling
extremely wide span of virtual memory addressing, and the fact that text
sections usually fill a reduced percentage of the available virtual addresses.
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Figure 4.1: Dual-version code generation via compile/linking time ELF rewrit-

ing

4.2 Log/Restore Overhead Modeling

After having enabled the optimized co-existence of incremental and non-
incremental log/restore modes, as explained in the previous section, we pro-
vide the models assessing the corresponding overhead per event (due to both
log and restore operations). These models borrow from the one presented in
[Rönngren and Ayani(1994b)] for periodic non-incremental logging, for which
we provide both (i) a specialization to capture internal mechanisms proper
of our advanced memory-map manager (i.e. the cost of managing meta-data
identifying scattered memory layouts), and (ii) an extension to accommodate
the case of incremental logging as supported by our architecture. Note that
the model in [Rönngren and Ayani(1994b)] describes the log/restore overhead
on a per-LP basis. We inherit this feature in our modeling approach, thus pro-
viding an autonomic scheme allowing dynamic optimization of the log/restore
mode for any individual LP. Consequently, from now on, overhead modeling
and autonomic optimization are implicitly referred to what experienced for
each single LP.

For the non-incremental case, borrowing from [Rönngren and
Ayani(1994b)] and recalling the aforementioned specialization, the log/restore
overhead per event can be expressed as

OHF =
SF
χF

δLB + Pr(SF δRB +
χF − 1

2
δe) (4.1)

where
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δe is the average event execution cost.

SF is the average size of a full (non-incremental) log.

δLB is the average cost for logging a single byte belonging to the state image,
which we consider to also include the per-byte cost for logging the meta-
data maintained by the memory-map manager.

δRB is the average cost for restoring a single byte from the log, which we again
assume to include the per-byte cost associated with the restore of the
state layout meta-data.

Pr is the rollback probability (frequency of rollback occurrences over event
executions).

χF is the selected log interval when operating according to the non-
incremental mode, which determines the expected length of the coasting
forward phase, occurring after the latest log preceding the causality vi-
olation is reloaded.

By the result in [Rönngren and Ayani(1994b)], the above overhead gets

minimized for χF =
⌈√

2
Pr

δLBSF
δe

⌉
, and we denote as χoptF the optimal non-

incremental log-interval according to this equation.
For the incremental mode, as supported by our architecture, log opera-

tions no way require to be forced at each simulation event, but can be taken
periodically. In fact they are based on recognizing memory portions that have
been dirtied since the last log, independently of the amount of events actu-
ally performing the dirtying operations. Accordingly, state reconstruction at
whichever simulation time can be supported via a mix of state restore from
the log, and classical coasting forward. Also, full logs can be (infrequently)
interleaved with incremental logs to enable fossil collection of incremental log
records with timestamp less than the timestamp of the latest committed full
log. These full logs are anyway exploitable during recovery procedures since,
while backward traversing the log chain, the restore operation of a complete
state image gets finalized by extracting from the log all the in-use chunks that
have not yet been restored via the scan of incremental logs, and putting them
back in place within the state layout. To account for such optimized internal
mechanisms offered by the memory-map manager, the above equation can be
adapted as shown below to model the log/restore overhead for the incremental
mode

OHI =
SP
χI
δLB +

(SF − SP )

χIχI,F
δLB + (4.2)

Pr

[
SF δRB +

χI − 1

2
(δe + δm)

]
+ δm



50 CHAPTER 4. AUTONOMIC LOG/RESTORE

where the additional/different terms in the equation have the following mean-
ing

SP is the average size of a partial (incremental) log.

XI is the selected log-interval when operating according to the incremental
mode, which again determines the expected length of the coasting for-
ward phase after the reload of the latest valid state image from the log.

XI,F is the interleave step between full and incremental logs (number of in-
cremental log operations after which a full-log is taken).

δm is the cost for running the memory-update tracking module.

In equation (4.2), the term SF δRB accounting for the cost of state reload
from the log is comparable to the one in equation (4.1), due to the aforemen-
tioned mechanism, according to which all the in-use chunks belonging to the
state image are restored (by retrieving them either from the incremental logs
along the log chain, or the first full log found during the log chain backward
traversing procedure). Further, each event is charged with the memory-update
monitoring overhead δm, which also appears during costing forward. By ex-
ploiting the same arguments used in [Rönngren and Ayani(1994b)] for the min-
imization of the overhead vs the log interval in the context of non-incremental
logging, we get that the optimum value for the interval of incremental logs

can be computed as χI =
⌈√

2
Pr

δLBSP
δe+δm

⌉
, and we denote as χoptI the optimal

interval according to this equation. Also, by the benchmarking results in [Vi-
tali et al.(2009)Vitali, Pellegrini, and Quaglia], a well suited value for χI,F ,
providing no significant additional overhead due to full logs, while ensuring
efficient memory recovery during fossil collection, is on the order of 10. We
have used such a value as a configuration setting for the autonomic log/restore
layer.

4.3 Autonomic Optimization

By the analysis in the previous section we have, for each of the two co-existing
log modes, the description of their overhead, together with the indication
of the optimum value of the corresponding independent parameters, namely
the log-intervals. In our autonomic log/restore architecture, these models
are not used to simply select as the best operating log mode the one for
which the corresponding expected overhead is minimal (once identified the
best log-interval value). Instead, the best suited mode is identified as the one
providing the best performance despite plausible fluctuations that can affect
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the parameters appearing within the overhead models (e.g. the expected event
execution cost δe), which cannot be directly controlled since they depend on
proper run-time dynamics related to the simulation model execution within
the optimistic run. This set involves all the parameters appearing within the
performance models, except the log-intervals χoptF and χoptI (or χI,F ), that can
be controlled at run-time by the autonomic log/restore architecture.

Such an approach, actually aimed at pro-actively providing stability of the
optimal performance, exactly matches characterizing aspects of the innovative
autonomic-computing paradigm. Also, it well fits performance optimization
when the set of possible operating modes is differentiated, each of them provid-
ing different overhead sensibility vs parameter fluctuations and/or variations.
Literature approaches for log/restore optimization do not cope with such a
multiple operating-mode scenario, which is the reason why sensibility of the
a-priori uniquely selected operating mode vs parameter variations did not re-
quire to be addressed. Overall, our autonomic scheme for the selection of the
best suited operating mode is based on a cost function CF (χoptF , χoptI ) defined
as

CF (χoptF , χoptI ) = OHF (χoptF )−OH(χoptI ) (4.3)

and on the result of the integration of this cost function over a
multi-dimensional domain defined by the values of the parameters
(δe, δm, δLB, δRB, Pr, SF , SP ). The integral function allows us to take into ac-
count the possible fluctuations of the parameters the cost function is evaluated
on. ∫

· · ·
∫
D
CF (χoptF , χoptI )dD =

∫
· · ·
∫
D

(
SF

χoptF

−
(χI,F − 1)SP + SF

χoptI χI,F
)δLB+Pr(

χoptF − χ
opt
I

2
δe−

(χoptI − 1)

2
δm)−δm dD

(4.4)

where D = {δe, δm, δLB, δRB, Pr, SF , SP }

For each parameter x defining a dimension of the integration domain, we
integrate the cost function over the interval x̄±αx̄, where we suggest α = 0.1
to capture statistically relevant fluctuations of the parameters that can be
envisaged at the time the dynamic selection is carried out. If the integra-
tion result is negative, then the selected operating mode is non-incremental
(with the log-interval set to χoptF ), otherwise the incremental mode is selected

(with log-interval set to χoptI ). Assuming the independence of the parameters
defining the integration domain (which is reasonable in our approach since
the mean values are operatively determined by direct sampling of the corre-
sponding stochastic processes - see Section 4.3.1), the integral function for
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CF (χoptF , χoptI ) is a polynomial, having the following simple form, which allows
non-costly evaluation

(
S2
F

2χoptF

−
(χI,F − 1)S2

P + S2
F

2χoptI χI,F

)
δ2LB

2
+

Pr2

2

(
χoptF − χ

opt
I

2

δ2e
2
−
χoptI − 1

2

δ2m
2

)
− δ2m

2
(4.5)

After the substitution of the integral domain variables we obtain the fol-
lowing result:

(
2αS̄F

χoptF

−
(χI,F − 1)2αS̄P + 2αS̄F

χoptI χI,F

)
2α ¯δLB +

2αP̄r

(
χoptF − χ

opt
I

2
2αδ̄e −

χoptI − 1

2
2αδ̄m

)
− 2αδ̄m (4.6)

Given that we only need to determine the sign of the above expressed
value, we have finally divided it by 2α, in order to get rid of some machine
instructions for multiplications.

The above optimization procedure requires defining a trigger for the eval-
uation of the integral function in order to dynamically actuate the selection
of the best suited log-mode. In our autonomic system, we assume that the
simulation run is partitioned into a startup phase and a normal phase. For
the startup phase one of the two possible log modes is selected by default, and
is kept until the end of that phase. Then, before starting the normal phase,
the integral function is evaluated by using the mean x̄ and the corresponding
relevant statistical fluctuation αx̄ for the above parameters defining the inte-
gration domain, on the basis of samples observed during the startup phase.
Actually, the mean can be computed in a very fast incremental manner not
requiring the store of individual samples, thus not even impacting memory
consumption.

Once the best suited log mode is selected at the end of the startup phase,
subsequent re-selections can occur during the normal phase. The re-selection
trigger is based on the current value of the mean x̄ of any of the parame-
ters defining the integration domain, and a predicate involving the values x̄∗

and αx̄∗ that were used upon the last log mode autonomic selection. If for
whichever parameter x the expression |x̄− x̄∗| > αx̄∗ becomes verified during
the run, then the integral function is recalculated on the basis of current mean
values. The reason for such a trigger is that the last dynamic selection of the
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best suited log mode has been actuated on the basis of statistical parameter
values x̄∗ and αx̄∗ that can be considered no more representative of actual run-
time dynamics and related fluctuations. In case the current mean goes outside
the integration interval for the corresponding parameter, it is likely that some
relevant variation has actually occurred within the run time dynamics, which
requires re-evaluating the decision about the best suited log/restore mode. In
other words, fluctuations (around expected parameter values) accounted for
in last log-mode selection step are no more representative of the current sys-
tem behavior. As a last observation, instead of using the arithmetic mean, we
relied on the exponential mean, with weighting parameter set to 0.1, which
allows better reactiveness of the mean value vs variations of the corresponding
stochastic process.

4.3.1 Run-time Parameter Sampling

As hinted, our approach relies on the mean value of the parameters appearing
in the performance models in (4.1)-(4.2), which are used to define the in-
tegration boundaries within the corresponding multi-dimensional integration
domain. We rely on a run-time sampling process for computing the mean of
each parameter. One relevant difficulty is related to the fact that the mean
value of every parameter x appearing in the performance models actually re-
quires to be tracked by the sampling process over time, independently of the
current operating mode of the log layer (incremental vs non-incremental). This
is because the mean is used both to trigger the re-selection process of the best
suited log mode, and to determine the actual outcome of the selection. Accord-
ingly, the parameters δm and SP , specifically used to capture run-time costs
proper of the incremental log mode, require to be sampled even when the non-
incremental mode is currently operating. Ad-hoc schemes to address this issue
will be provided and discussed in this section. We do not explicitly address
the issue of sampling the value of Pr since we rely on typical approaches (such
as [Rönngren and Ayani(1994b)]) based on counting the number of rollbacks
over a given interval of executed events.

Event and Memory-Update Tracking Costs

To determine event and memory-update tracking costs δtracking, our autonomic
layer implements a sampling mechanism based on the hardware tick counter,
offering a single clock tick granularity. This approach is not intrusive at all
since it relies on a single machine instruction, namely rdtsc, to retrieve the
current number of ticks from the machine start up.

A per-LP counter Count internal to the autonomic layer is kept, which
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is used to determine the number of invocations of the memory-write tracking
routine occurring during the processing of each event. In case the current log
mode is incremental, the application level modules whose execution is currently
triggered with invocation of the proper callback entry point (according to
the dual-version-code scheme presented in Section 4.1.7) embeds the memory-
update tracking routine, which increments Count upon its execution.

Given that the monitor is active only when running in incremental log
mode, its value must be estimated during a non-incremental phase. To this
end, we have slightly modified the dual-version code generation procedure in
such a way that the code version running when non-incremental log/restore is
active embeds a very light instrumentation scheme where each memory-write
instruction is preceded by a single ADD-r/m32,imm8 assembly instruction al-
lowing the update of Count. In this way, we can infer the value of δim by simply
multiplying the i-th sample of the counter value by an estimated value δtracking,
exactly as if the incremental mode were active. We note that this approach re-
quires instrumenting memory-writes via a negligible overhead (just thanks to
the single machine-instruction instrumentation approach), hence not altering
the validity of the overhead model in expression (4.1), describing the case of
non-incremental logging, which excludes costs associated with instrumenting
instructions within the application code.

Of course, to estimate an accurate value of monitor’s execution time when
running in non-incremental mode, some samples coming from real executions
of the monitoring routine should be used. To cope with this issue, we can
starup the simulation by adopting the incremental mode as the default initial
mode and exploit the estimation of δtracking performed during the initial phase.

We note that the above mechanisms based on real-time clocks accessed
by rdts directly fits cases where the computing platform is dedicated to the
parallel simulation run, as typical of scenarios where performance is a critical
factor. In case of time-sharing with other applications, such an approach needs
to be complemented with solutions based on code pre-analysis and lightweight
run-time profiling such as the one discussed in [Quaglia(2001)].

Size of Full and Partial Logs

Samples SiF of the size of full (non-incremental) logs can immediately be taken
by the autonomic layer independently of the currently active log mode since the
memory-map manager maintains meta-data (i.e. an accumulator) recording
at any time the real memory occupancy of the object state image (in terms of
the amount of bytes associated with currently allocated chunks). Hence, SiF
samples can be taken by simple querying the memory-map manager for the
value of the accumulator. In our implementation, the autonomic layer queries
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the memory-map manager each time a log (incremental or non-incremental)
is taken.

A different approach is instead required for taking SiP samples of partial
(incremental) logs. Specifically, when the currently active log mode is incre-
mental, the memory-map manager updates a second accumulator accounting
for the amount of bytes associated with chunks that have been dirtied since
the last log. The accumulator is updated on the basis of actual memory-write
operations that are tracked at run-time. This accumulator was already in-
cluded within the extended DyMeLoR design we have presented since it was
used to determine the size of the buffer destined to keep the incrementally
dirtied chunks. The value of this accumulator is therefore directly used as a
valid SiP sample when the incremental log mode is active.

In case the current log mode within the autonomic scheme is non-
incremental, the above accumulator does not get updated. Hence, we have
decided to infer the value of SiP according to the following different approach.
Each K × χoptF non-incremental log operations, we flag the corresponding LP
so that, after the subsequent event is executed by the LP, we compare chunk
by chunk the current memory image content after the event with the last one
packed within the log buffer. The comparison is carried out only over chunks
that belong both to the memory image packed within the log buffer, and to
the current memory image, hence taking into account the portion of the state
layout that is stable across the two subsequent snapshots.

Obviously, the cost of this operation depends on the value of K and on
specific optimizations for the comparison of each couple of chunks. As for
the second aspect, we have not employed the traditional memcmp() service
since, depending on the implementation, it might not provide early stop upon
detection of the first different byte between the two memory chunks. We
have therefore developed efficient, ad-hoc assembly modules that iteratively
compare memory areas by fully exploiting the size of CPU registers at each
compare-step, and that exactly implement the early stop procedure upon the
detection of the first different byte between the two chunks. This matches
the chunk-based granularity offered by the log/restore approach within the
autonomic layer. Also, these modules are optimized in order to maximize the
likelihood of actual early stop in case of different chunks between the two snap-
shots according to the following scheme. Small size chunks are checked within
the comparison process by starting from the top byte, and then going towards
the bottom. Instead, for large chunks, we have implemented a procedure that
checks the bytes in an interleaved mode starting from the top and from 3/4 of
the chunk size. The above approach well fits typical programming practices,
which tend to structure records in such a way that the most frequently touched
data are at the top of the record and/or at the bottom (see, e.g., pointers for
linking between memory scattered dynamically allocated records). Hence, for
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large chunks, it is better to check top/bottom portions with higher priority.
Also, starting from 3/4 of the chunk size accounts for internal chunk fragmen-
tation, due to the typical un-correlation between the size of the record to be
placed by the application software within the allocated chunk, and the actual
size of the chunk that best fists the allocation request, among those managed
by the memory management subsystem (defined according to power-of-two
values). Once identified the dirty chunks according to the above scheme, on
the basis of the aforementioned stable portion of the snapshot, the correspond-
ing percentage p of dirty bytes is applied to the total current state size SiF to

generate the j-th SP sample as SjP = p× SiF .

Concerning the value of K, namely the second factor determining the ac-
tual overhead due to the estimation of SP samples when the non-incremental
log mode is active, we have used a static approach where K is set to the value
20. Given that the cost associated with the estimation procedure for a single
sample is, at worst, comparable with the one for a full-log operation 3, this
would simply increase the real overhead experienced when the non-incremental
mode is active by, at worst, 5% of the corresponding logging overhead.

By the above optimizations, the overhead for determining SP samples when
the non-incremental mode is operative is expected to be negligible, thus again
not altering the validity of the non-incremental overhead model in equation
(4.1).

Per-Byte Log/Restore Costs

The last parameters involved in the sampling process are the per-byte log/re-
store costs, namely δLB and δRB. However, δRB does not appear in the final
formula and we concentrate on δLB. To sample δLB, we have again exploited
rdts, in combination with the sampling process of SF and SP depicted in
the previous section. In particular, the i-th log operation latency, say ∆i

log, is
sampled via rdts and is normalized to either the corresponding SF sample,
or the corresponding SP sample, just depending on the currently active log
mode. Given that ∆i

log also accounts for the cost of manipulating and logging
meta-data associated with the logged chunks, the normalization allows taking
samples for δLB actually expressing how the meta-data management cost is
charged on the log operation of each single byte.

3Memory compare operations are in fact similar in cost to memory copies, since they

both involve similar memory/register data moves. Also, the early stop for chunk compare

operations should additionally favor the latency of comparing the chunks across the stable

portion of the snapshot.
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4.4 Experimental Results

In this section we report an experimental study for the assessment of the ef-
fectiveness of the autonomic log/restore proposal. To this end, we use two
different configurations of the PCS application. In one configuration we sim-
ulate 1024 cells, each one managing up to 1000 wireless channels, where the
expected duration of a call τduration has been set to 120 sec, the residual resi-
dence time for an active call in the current cell τchange has been set to the value
300 sec, while the inter-arrival time τA has been varied during the simulation
so to generate a configuration where the actual load on the cells depends on the
period of the day. Specifically, 17 hours of operativity of the cellular system
have been simulated (from 00:00 AM to 17:00 PM) with variations of τA in the
interval [0.64, 3.20], with peak intensity of the workload during the morning till
lunch time, and minimum load very early in the morning (around breakfast).
Consequently, the utilization factor has been varied in the interval [0.31, 0.06].
For this configuration of the PCS model, climatic conditions have been set as
good and steady, thus not causing the need for frequent recalculation fading
coefficients. On the other hand, the second configuration of PCS that has
been considered has been parameterized by having the expected inter-arrival
time τA fixed to the value 0.8 (which gives rise to channel utilization values
on the order of 25%), which leads to focusing the simulation on a morning
operativity scenario, but where the climatic conditions exhibit variations that
lead to periods where frequent recalculation of fading coefficients need to be
operated. Both the above configurations lead to run time dynamics that vary,
e.g., in terms of event granularity and portion of the LP state that needs to
be updated by the events, however this is achieved in different manners in the
different scenarios.

For the two configurations, we report in Figure 4.2 and in Figure 4.3 the cu-
mulated committed events achieved by the parallel run vs the wall-clock-time.
These values refer to what observed on a single simulation kernel instance
(over the 32 active instances, which exhibit anyhow very similar dynamics)
and have been computed as the average over ten runs (done with different
pseudo-random seeds), with a minimal variance observed across different runs.
This parameter (and the pendency of the associated curve) indicates the speed
according to which a given platform configuration commits events, and hence
how fast the configuration allows model execution. We report three plots refer-
ring to (i) the case in which the autonomic layer is active (ii) the case in which
the autonomic layer is active, but we always force the incremental log/restore
mode, with the corresponding optimized value for χI and (iii) the case in
which the layer is active but the non-incremental (full) log/restore mode is
forced, with the corresponding optimized value for χF . The plots for cases (ii)
and (iii) express performance levels that could be achieved via an optimized
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Figure 4.2: Simulation throughput for Autonomic Memory Manager: PCS

benchmark variable τA

log/resotre mode (adaptive in the selection of the log interval) based on either
the incremental or the non-incremental log mode, but not allowing autonomic
switch between the two modes on the basis of run-time dynamics.

By the results, we see that, depending on the specific phase within the
simulation run, (e.g. early morning vs lunch time for the case of variable τA)
forced-incremental and forced-full modes alternately exhibit better execution
speed (which is indicated by the different pendency of the cumulated commit-
ted events curve while the run is in progress). Anyway, the most important
outcome by the cumulated event rate plots is that the autonomic configuration
always switches to the best performing mode (incremental vs non-incremental)
depending on the currently simulated period, and hence depending of the ac-
tual dynamics (e.g. in terms of state size, event granularity, memory update
pattern and so on). The overall effect is that the autonomic mode actually
allows faster execution, on the order of 10% to 14% over the other modes for
the case of the variable τA configuration, and on the order of 11% to 27% for
the case of fixed τA and variable climatic conditions. Given that the other
modes represent anyway optimized configurations, the achieved improvements
support high effectiveness by the autonomic approach.

We also report in Table 4.1 the execution time values for running the PCS
applications (same identical code used for the parallel runs) in serial mode on
top of a calendar queue scheduler. By the data we see how the parallel runs
with the autonomic log/restore scheme allow significant speedups, especially
for the case of fixed τA and variable climatic conditions (since the application is
less local in terms of accesses to the LP state layout thus further not favoring
the sequential run due to reduced effectiveness of the cache). Overall, the
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Figure 4.3: Simulation throughput for Autonomic Memory Manager: PCS

benchmark fixed τA and variable climatic conditions

PCS execution speedup by the parallel run

configuration time with autonomic log/restore

variable τA 6400 25.6

fixed τA - frequent fading recalc. 4442 40

Table 4.1: Results for serial execution of the PCS application and speedup

values

experimental study has been carried out in a scenario entailing competitive
parallel dynamics.

The above discussed results provide a view of the overall performance
achievable by the autonomic proposal. To complement these results, we report
two additional plots related to the goodness of internal tasks/dynamics within
the autonomic layer. In particular, we report in Figure 4.4 data related to
the estimation of the dirty portion of the LP state, when executing according
to the non-incremental mode. These data refer to the case of PCS configured
with fixed τA and variable climatic conditions, since with this configuration
we have a relatively stable size of the whole LP state but with a very variable
read/write access pattern within the state image, which represents a good
test case for the target objective. We recall that the estimation is based on
chunk comparison between successive state images only over the stable portion
of the state snapshot (see Section 4.3.1). In particular, we report the ratio
between the estimated size of the dirty portion of the LP and the actual size
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Figure 4.4: Estimation of the dirty portion of the LP state
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Figure 4.5: Effects of early stopping schemes

(as observed by actually tracking memory updates while executing according
to the incremental mode). The plotted curve refers to a fraction of the whole
simulated time interval, however, the data are representative of the overall
simulation model execution dynamics. By the data we see that the error in
the estimation process is on the order of no more than 20%. Finally, in Figure
4.5 we show, for the same PCS configuration, the effects of the early stop
approach to chunk comparison (see again Section 4.3.1). In particular, we
report the ratio between the actual number of compared bytes (across two
subsequent state images) and the total amount of bytes forming the dirty
portion of the reached state image. Given that our implementation of the
GSM system collocates frequently accessed fields associated with on-going call
records at the top of the records, the early stop approach provides actual
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advantages by allowing chunk comparison to be executed only over 5% of
the stable portion of the snapshot. We expect such an optimization to even
provide scale-up advantages for generic simulation models entailing scaled-up
LP state size, compared to the simulated GSM system, provided that the
above, common field-collocation approach onto the used memory chunks is
adopted.
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Chapter 5

Cache Aware Memory

Delivery Mechanisms

In this chapter we present an approach for improving the exploitation of the
caching system in the context of optimistic PDES platforms. We envisage two
motivations for this type of work. First, optimistic simulation platforms may
suffer from non-local behavior, since several housekeeping tasks, which are
mandatory for correctness of the execution, may exhibit access to endemically
sparse data structures, thus potentially leading to in-cache replacement of
access-intensive data structures. These can be replaced in cache by data that
could be no longer accessed while the run is in progress (as for the case of
a state-log which is not eventually used for recovery purposes). Second, the
current trend towards many-core architectures can be expected to give rise,
in the long period, to scenarios characterized by a tighter match between the
amount of LPs and cores. This would be expected even for relatively large
simulation models, and for model execution on top of off-the-shelf machines.
As a consequence, an increased amount of per-LP available cache-storage is
expected, which, if effectively exploited, could provide further enhancement
of the overall system performance. Further, the relevance of effective cache
exploitation in optimistic PDES systems hosted by multi/many-core machines
also arises since cache-misses, beyond directly leading to increased memory
access latency, also give rise to higher bus contention.
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5.1 Cache-Aware Memory Manager Design

5.1.1 Rationale

In order to increase the portion of the working set which is resident in cache,
we propose to allocate the buffers used by the optimistic PDES system, which
are expected not be further accessed (or to be accessed with reduced proba-
bility), in a way such that they will collide with each other (i.e their addresses
will be mapped to the same cache regions) leaving untouched cache areas that
are meant to contain data structures which are likely to be accessed more
frequently. To this purpose, we have to discriminate between memory buffers
which are access-intensive and access-mild. In order to perform this classifi-
cation correctly, we have to follow through our analysis in a separate way for
the application level and the simulation kernel.

By the typical organization and the typical tasks supported by the op-
timistic PDES system, we can classify the input message queues of the LPs
as access-intensive data structures. In fact, upon the scheduling of any new
event within the system (which is an inherently frequent operation) the target
queue must be scanned for insertion and/or re-balanced, according to its actual
implementation. Other data structures are instead commonly accessed at par-
ticular positions, except for cases where rollback is actually triggered or when
periodic memory management (e.g., recovery) activities are executed. As an
example, the output queues are typically accesses only at the tail (upon log-
ging a newly scheduled event) and are partially scanned only when generating
antimessages or when collecting fossils from the queue. Therefore giving these
structures the possibility to invalidate cache buffers which can be accessed in
the near future can make the system suffer from secondary effects.

As far as the application-level software is concerned, an a-priori decision is
hard, given that we want to provide the user with complete transparency, and
considering that we target general purpose optimistic simulation platforms.
Therefore, the actual access pattern of the simulation model cannot be inferred
with no additional knowledge. However, considering that event execution re-
lies only on the LP state layout to produce advancements of computation,
we can conservatively assume that the whole simulation state is formed by
access-intensive buffers. This might seem a strong assumption, but in fact
it provides no performance decrease even when the application shows a com-
pletely non-local behaviour. In fact, if we suppose that a simulation model has
no locality at all in its memory accesses, then cache usage will become similar
to the one shown by an application which makes no assumptions at all. The
exhibited performance will therefore be similar to the one of a simulation not
using our Memory Manager. Thus, provided that most operations in the simu-
lation kernel have a large (sparsely/infrequently-accessed) working set as well,
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memory accesses will show to be more cache-miss prone. In order to increase
the in-cache resident set, we propose a Memory Management subsystem which
partitions the cache between access-intensive and access-mild memory buffers,
trying to embank the cache-miss phenomenon typical of optimistic simulation
platforms. Basically, our proposal preallocates a cache-aligned portion of the
available address space and serves memory requests in a differentiated way
depending on their expected access rate, as it will be discussed in the next
section.

5.1.2 Design Details

This memory manager works preallocating a cache-aligned memory area used
to serve requests, called stock. The stock is split in portions, called blocks,
with a size equals to the lower-level cache available in the system. Each block

is split in two regions, one for hosting access-intesive buffers, and the other
for access-mild buffers. Memory buffer requests are served from fixed-size
chunks within memory blocks, and depending on their access patterns, they
are clustered in a way such that they will be mapped to separate cache re-
gions of different sizes (i.e. the access-mild region will be smaller than the
access-intensive one). Following this policy, whenever the execution under-
goes a housekeeping or management operation, memory accesses will not in-
validate application-level data related to the actual simulation working set in
the caching architecture, thus providing an enhancement in event execution
data locality. In order to reduce internal fragmentation, chunk size contained
into a memory block is determined at runtime upon receiving a request. In this
way, a memory block can contain chunks of different sizes for the application
and the kernel levels. This is important because usually kernel and application
level memory requirements are different, simulation models requiring smaller
buffers and simulation kernels requiring larger ones. If a memory block were
to contain same-sized chunks for both layers, internal fragmentation could
arise, since blocks containing application-level chunks of a certain size would
not likely contain any kernel-level chunk of the same size, and vice versa. Of
course, in order to enhance even more cache locality, memory chunks should
be allocated in a cache-stripe aligned way. This choice allows the underlying
hardware architecture to reduce the number of cache misses and, whenever one
is encountered, the number of memory chunks replaced in cache is minimum,
as a chunk is overlapped to more than one stripe only if its size is greater than
the stripe’s. We note that if the whole preallocated memory is cache-aligned,
then this behaviour can be easily obtained by fine tuning chunks’ sizes as
powers of 2. Given that the cache is partitioned between access-intensive and
-mild buffers, we note that to avoid interfering with the alignment, the separa-
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tion between the two regions must be stripe-aligned as well. The last general
consideration we want to point out is concerned about the transient behaviour
at the beginning of the simulation execution, which can in turn affect the en-
tire simulation as well (in the context of multicore cache sharing). In fact,
considering that simulation kernels are handling memory addresses separately
(i.e. there is no run-time agreement between different kernel instances on how
the memory should be allocated), at the beginning of the execution, different
simulation kernel instances will start allocating buffers which will be mapped
to the same cache locations, as long as the memory manager’s behaviour is
deterministic. If the application-level execution pattern is likely to allocate
memory during the whole execution (i.e. the simulation state can grow indef-
initely) and operate uniformly at random on it, this transient behaviour will
produce an increase in cache invalidations mostly in the initial part of the sim-
ulation. On the other hand, let us consider the case where the application level
allocates the whole simulation state at simulation startup (i.e. an operational
behaviour where the simulation state is non-growing). Cache conflicts related
to allocation determinism will produce a bias in cache exploitation which will
produce a performance much smaller than the one generated by a common
allocator which tries not to optimize with respect to the caching architecture.
In fact, different kernel instances’ (i.e. processes’) buffers will conflict during
the whole simulation, producing a large number of cache misses. This prob-
lem can be faced by forcing the memory manager to serve memory requests
starting from different memory addresses according to the actual simulation
kernel instance it is running within, following some circular allocation policy.

5.2 Details on Actual ROOT-Sim Integration

Integration within an operating environment requires allocation/deallocation
requests to be wrapped in order to redirect them towards the cache-aware
memory manager. If the simulation platform is “context aware”, i.e., it can dis-
tinguish when running in kernel mode or in application mode, the integration is
straightforward. ROOT-Sim already relies on a malloc hooking facility, which
allows to determine whether an invocation is issued by the application-level
software or the simulation kernel. In such a scenario, we need anyhow to dis-
criminate among input queue allocations and all other kernel-level allocations.
To accomplish this task, new function called intensive buffer(int true))

has been added within the system, which is used to override the invocation-
context-based decision, where the parameter indicates whether the allocation
should be served via an access-intensive or access-mild buffer. This approach
is still transparent to the application level.

The core data structure of the cache-aware memory allocator is the
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Figure 5.1: memory block structure

memory block (shown in figure 5.1). These blocks are preallocated as in an
array to form a stock. Each memory block is split in two region, one for serv-
ing access-intensive buffers and one for serving access-mild ones. Depending
on the current request to serve a memory chunk is taken by the former or the
latter region. Each region within a memory block has a different chunk size for
serving different memory requests. In fact, as explained in section 5.1, the two
regions can have different chunks sizes. The part of memory block reserved
for one area or the other is based on a threshold set at compile time. The
importance of the threshold selection will be experimentally shown in section
5.3. Particularly, a too large access-intensive area would leave some cache en-
tries unused, that could have been exploited by kernel-level data structures, on
the other hand a too small access-intensive area, could increase the collisions
within this area, that is counterproductive. In fact, thanks to the locality be-
havior of the data within this area, less cache-misses could have been achieved
sharing the whole cache with the (non-local) kernel-level data structures.

Upon a stock allocation all its memory blocks are marked as invalid. In
fact, initialization of memory blocks’ internal data structures is performed
in a lazy way, delaying it until a memory request actually requires a chunk
to be acquired from the not-yet-valid memory block. Both the areas in a
memory block maintain some header information, including a bitmap for the
chunks status, put at the head, or at the tail, of the memory block. The header
is structured as follows:

struct memory_block {

void *init_address;

int num_chunks;
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int busy_chunks;

size_t chunk_size;

int next_chunk;

};

• init address indicates where the chunks being part of the
memory block start. As depicted in Figure 5.1, chunks are allocated
stacked upon each other, with opposite growing direction depending on
whether they are regarded as access-intensive or not. It is used also as
a valid flag, in fact if it is null, it means that the block is not valid;

• num chunks indicates the number of chunks being part of the block. In
fact, given that the chunks size within blocks is variable, each block
would show its own number of chunks;

• busy bitmap is a bitmap indicating if the corresponding chunk is in use
or not;

• chunks size indicates the chunk size for the current block;

• next chunk is used as starting point for the identification of the next
available chunk;

• next size - prev size are used to link memory blocks in an ordered
list, where, for each (active) size, the firstly activated block belongs to
the list;

• next same size - prev same size are used to link the memory blocks
of the same size in a bucket-list.

The manipulation of next chunk is based on the algorithm used by Linux
for the identification of a process next free file descriptor. In particular it
gets increased upon a new chunk reservation, to avoid scanning the bitmap
from the beginning for any new allocation, and upon a release it is set to the
released chunk index because it will be the first free position. It uses a best-fit
policy, although all the chunks within the block are same sized, which is aimed
at reducing both free-chunks and bitmap fragmentation by having allocated
chunks mostly aggregated in the initial part of the block.

The next size - prev size are used to fast detect a block of a cer-
tain area. Upon a new allocation request, the list ordered on chunk-size it
is scanned. It keeps a pointer to the first active block for each size of already
in use chunks, thus returning the memory block that can deliver the request
reply, avoiding a scan on all the active blocks. If no-block is present for the
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specified size, a non-active block is activated and linked to the list. If the
block found is full, thanks to the fields next size - prev size, it is linked
to all the same-sized active blocks, thus providing a search only on the blocks
that fit the request, bypassing all the blocks that cannot match the requested
size. If also in this list of same-sized blocks, no available chunks can be found,
again a non-active block is activated and inserted in the bucket-list, this or-
ganization is depicted in Figure 5.2. If there is no more memory block, a new
memory stock is allocated, relying again on posix memalign().

We have decided to not rely on a per-chunk meta-data structure to save
space and enhance locality even more. Note that memory block-wise meta-
data, thanks to the strategic position, at the head or at the tail of the block,
and to the fact that each one is cache-aligned, can be fast accessed with a few
arithmetics operations (even upon a free operation).

In particular, as stated above, memory stocks must be cache-aligned, and
memory blocks must be cache-sized. To this purpose, the /proc file system is
accessed, in order to obtain the actual lowest-level cache size. This information
is later used to determine which is the most suitable memory block’s size, so
that an accurate mapping between memory buffers and cache regions can be
created.

The cache information retrieved is also used to insert some padding within
the block’s metadata, to reduce possible conflicts between these and the
boundary chunks, other than for putting chunks cache-aligned. In fact, we
consider that metadata are more likely to be accessed frequently since, in-
dependently of the application-level allocation patterns, they are used also
for allocating all the data structures necessary for the platform execution, in
both the regions, i.e., access-intensive and access-mild. The choice of inserting
some padding would further reduce data conflicts among metadata accesses
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and chunk accesses (independently of whether they belong to the same meta-
data’s memory chunk or not).

The last point of the auto-setup phase deals with the computation of the
first chunk associated with the blocks belonging to each kernel. As indicated in
Section 5.1.2 this choice helps avoiding possible biasing problems with the allo-
cation addresses associated with cache stripes. The first chunk to be mapped
for each kernel is computed as:

cache size

num cores
· core

where core is the numerical id of the core hosting a kernel instance.

The memory stock size is again decided at compile-time, its allocation re-
lies on the posix memalign allocator, which in simulation-dedicated environ-
ments supports the effectiveness of the access-mild vs access-intensive areas’
separation. Actual conflicts between the two areas might arise since the cache
lower levels operate on conventional architectures behind hardware Memory
Management Units, therefore working at physical address level. This case
is avoided since internally posix memalign relies on standard malloc that,
for very large request, uses the map() system call to find addressable address
space. This system call directly interacts with Linux Kernel’s Buddy System,
which is likely to provide physical alignment (at requested size) and contigu-
ousness 1. Therefore, this guarantees to have the two regions completely dis-
joint, thanks to memory block’s size being the same as the last cache level,
as depicted in Figure 5.3. Additionally, the exploitation of posix memalign,
with an alignment equals to the cache stripe size, allows reducing the false
cache sharing phenomenon at higher level of caches, which conversely rely on
virtual addresses.

The last point to consider is related to an allocation request larger than
the maximum chunk size available (which depends on the last level cache size).
These allocations are managed via an apposite data structure, concatenating
the different requests in a chain, which are delivered according to the standard
malloc policy. Anyhow given that this behavior might degrade performance
since these buffers would conflict with almost all the cache stripes regardless of
whether they should be used for access-intensive or access-mild data, we have
decided to provide a compile-time flag which can be raised in order to reject
these requests, leading the software to return a null pointer that should be
explicitly handled by the programmer, as for the standard malloc facility.

1An alternative (not being the privilege of simulation environments) is to guarantee align-

ment at large sizes via huge pages, on architectures where the supported hugepages’s size is

greater than the last level cache size
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Figure 5.3: posix mem align behaviour

5.3 Experimental Results

5.3.1 Benchmark Parametrization

To asses the goodness of the proposed solution we have again exploited the
PCS benchmark application, which has been configured to run with 64 LPs,
each one modeling one macro-cell managing up to 5000 channels. We believe
this configuration, with reduced LPs per-core, is relevant since it would tend to
emulate the aforementioned long-term architectural scenario (already typical
of very large supercomputing platforms), where an increased amount of per-
LP cache storage is expected, thanks to the more tight coupling between the
amount of LPs and the CPU-cores in very large many-core machines. This is
expressed by the ratio of 2 : 1 in our case 2.

The application has been parameterized by selecting τA in order to give
rise to a normal operation mode, with utilization factor of the channels set
on the order of 20%, when considering that the average duration of a call
has been set to 2 min. Also, the expected residual residence-time within the
macro-cells has been set to 10 min.

To assess the behavior of the proposed architecture different runs have been
executed, which differ in the parametrization of the separation threshold that
determines the blocks devoted to host access-intensive buffers and access-
mild buffers. The test compares the performance, again evaluated as the
cumulated event rate, by the classical allocator and four configurations of
the cache-aware allocator, associated with four different ratios of the cache
portions destined to the access-mild vs access-intensive buffers. Again we

2The benchmark is structured for simulating a squared-region, thus requiring a squared

number of LPs, which is the reason why we used 64 macro-cells instead of 32, which would

equal the number of available cores.
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Figure 5.4: Simulation throughput for the PCS benchmark with the cache-

aware allocator

have reported samples that have been averaged over ten runs. For these runs
we have kept the autonomic log/restore subsystem presented in Chapter 4
active, since an optimized scheme determines the actual locality on relation to
the buffers used at kernel level for keeping state recovery related information,
which is a relevant parameter determining the final effectiveness of the cache
aware approach. Also, GVT has been computed each one second along the
run.

By the plots, shown in Figure 5.4 (where y-axis expresses the sum of events
committed along time by the whole set of 32 simulation kernel instances) we
see how some configurations of the cache aware architecture favor performance,
with a gain up to 11%. However, maybe surprisingly, the better performance is
achieved either when largely favoring cache hits for access-intensive data (such
as when partitioning the cache according to 2:5) or when favoring cache hits for
access-mild data (which however become hot data during specific phases such
as fossil collection), while anyhow guaranteing a non-minimal cache partition
dedicated to forward mode hot data. This is not achieved by cache-unaware
memory management, which therefore tends to squash too much the forward
mode hot data from cache during the execution of specific (periodic) house-
keeping tasks. Finally, we note that the average event granularity for this
benchmark configuration is on the order of 200 microseconds, which would
give rise to a lower bound on the achievable speedup (considering a serial run
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with no housekeeping costs) by the parallel runs on the order of 28 for the
case of the best configuration of the cache aware system.
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Chapter 6

Load-Sharing on Multi-Core

Machines

An additional contribution by this thesis consists in the introduction of an in-
novative load-sharing architecture, explicitly targeted at balanced and fruitful
resource usage when running optimistic PDES applications on top of multi-
core machines. We start by providing some technical details in relation to
peculiarities of traditional load-balancing schemes, inherently coupled with
traditional organizations of the PDES environment, emphasizing their limita-
tions and/or drawbacks we applied in the context of multi-core architectures.
Then we introduce the load-sharing innovative model, and present an archi-
tectural reshuffle in order to provide a PDES optimistic kernel organization
suited for supporting load-sharing at very reduced cost (e.g., in terms of over-
head for the management of the tasks associated with load-sharing policies).
Finally, an experimental assessment of the whole proposal is provided.

6.1 Base Discussion

The traditional approach to the design and actual implementation of opti-
mistic PDES platforms consists in having multiple LPs being run within a
same single-threaded simulation-kernel process (see, e.g., [Carothers and Fu-
jimoto(2000)]). As a consequence, the LPs hosted by this process are dis-
patched and run on top of an individual CPU-core, according to a classical
time-interleaved mode. By this organization, the typical literature approach
aimed at achieving effective simulation runs, by optimizing the exploitation of

75
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the available computing resources, is load balancing. This technique is based
on migrating the application load (i.e. LPs) amongst different simulation-
kernel processes while the run is in progress. No other means to dynamically
re-balance the load can be employed since each simulation-kernel process has
fixed computing power allocated to it, namely one CPU-core.

Clearly, this approach needs to rely on a distributed protocol in order to
determine whether a re-balance action is required. This typically maps onto
a master/slave protocol, with O(k) message complexity, where the master
simulation-kernel process gathers statistics on the current load profile from the
other k − 1 processes, and then notifies the new configuration to be adopted,
if any. Computing the current load profile typically requires to sort the LPs
according to some reward metric (e.g. the percentage of non-rolled back work)
so to be able to determine which LPs need to be migrated. This can be
achieved with O(n · log n) complexity, where n expresses the number of LPs.

However, beyond the above costs, actual re-balance additionally requires

reinstalling onto the destination process’ address space the image of any mi-

grated LP. This operation has per-LP latency ∆m whose lower bound is:

Ω(∆m) = δt ·

[
Sstate +

NP∑
i=1

Si
evt

]
(6.1)

where we denote with: δt the average per-byte transfer time between source
and destination simulation-kernel processes; Sstate the migrating LP’s state
size; NP the number of pending events for the migrating LP; Sievt the size of
the i-th pending event for the migrating LP.

With the above lower bound, we do not intend to capture aspects asso-
ciated with, e.g., event-queue implementation and related scan/update costs.
We do not even include the latency for transferring data needed to support
correct recovery in case of rollback1. Anyway, by Equation (6.1), there is a
clear dependency between the actual cost for supporting re-balance and the
complexity of the simulation model, in terms of both size of the state of indi-
vidual LPs to be migrated and event density along the simulation time axis.

In this thesis we change the perspective and propose an orthogonal ap-
proach targeted at optimistic PDES systems run on top of multi-core ma-
chines, which is based on computing power (expressed in terms of CPU-cores)
dynamic reallocation over time towards the different active simulation-kernel

1This data includes, e.g., already processed but uncommitted events (which might be

required to be reprocessed in case of rollback of the LP after the migration phase) and

state log information to correctly reconstruct past LP’s state snapshots onto the destination

kernel-process.
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Figure 6.1: Unbalanced single thread scenario

processes. This is achieved by scaling up/down the number of worker threads
operating within each kernel instance, depending on whether locally hosted
LPs increase/decrease their computing power demand. Overall, we put in
place a load sharing approach that ultimately redistributes the whole simula-
tion load across the whole set of available computing resources, without the
need for actual migration of the LPs across the different kernel instances. In
the essence, the difference between traditional load-balancing and our load-
sharing proposal can be outlined by considering the examples depicted in Fig-
ure 6.1 (case of load-balancing) and in Figure 6.2 (case of load-sharing). By
Figure 6.1 we see how, in case some LP becomes heavy weight (represented as
larger in size) and requests more computing power for advancing in simulation
time, an explicit migration is required (involving lighter LPs in the example)
in order to recreate balanced advancement across all the single threaded kernel
instances. On the other hand, in Figure 6.2 we show how, according to the
load-sharing approach (where the kernel instance is supposed to natively run
according to a symmetric multi-threaded scheme), no LP migration needs to
be actuated. Instead, the temporary overloaded kernel acquires an additional
CPU-core for usage by a worker thread that gets newly activated within the
kernel instance.

The redistribution rule of the cores to the kernels will be based in our
proposal on an innovative algorithm/model specifically targeted at capturing
productive usage of resources in the context of optimistically synchronized
simulators. Although this approach requires a distributed protocol similar in
complexity to the aforementioned master/slave one, plus some local sorting of
LPs’ related information, for determining whether and how to reconfigure the
system, it does not pay any LP transfer cost upon system’s reconfiguration. In
fact, the only additional paid costs relate to worker-thread suspension/reacti-
vation (and associated cache refill), which are anyhow not directly dependent
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Figure 6.2: Unbalanced multithread scenario

on the aforementioned complexity of the simulation model (e.g. in terms of
event density along the simulation time axis).

Obviously, the final effectiveness of such an approach depends on how
well the worker threads can concurrently operate within a same simulation-
kernel process during normal execution phases. To this end, we also provide
a reference architectural organization, based on a symmetric multi-threading
paradigm, which makes inter-thread synchronization costs affordable. Like all
the other contributions by this thesis, also this proposal has been actually
implemented within the ROOT-Sim reference platform, and the implementa-
tion has been exploited for demonstrating both the viability of the symmetric
multi-threading paradigm, when actuated according to our architectural indi-
cations, and the effectiveness of load-sharing, when supported via the proposed
methodology.

6.2 The Load-sharing Model

Let us denote with Ctot the amount of available CPU-cores, and let us assume
that we have a set of Ktot active simulation-kernel instances in the simulation
run, with Ktot < Ctot. Our first objective is to determine the amount of CPU-
cores Ci to be assigned to each kernel instance ki (with i ∈ [1,Ktot]) for a
given wall-clock-time window, so to improve resource exploitation for fruitful
processing.

In our proposal, the re-evaluation of Ci values is carried out periodically,
upon computing a new GVT value (or after a set of subsequent GVT com-
putations) since it exploits information on the event rate (committed events
per wall-clock-time unit) achieved by each kernel instance ki, which we de-
note as evri. This quantity is a measure for the fruitful (non-rolled back)
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amount of simulation work carried out by each kernel instance. In an ideal
scenario where the efficiency is maximized (i.e. where the undone computa-
tion is negligible), each kernel instance ki should use an amount of computing
power that suffices to execute exactly evri events per wall-clock-time unit. In
fact, an excess of computing power could lead to over-optimism and hence to
rolled back computation, thus moving run-time dynamics far from the above
depicted ideal case. So the idea behind the determination of Ci values is to
dynamically assign an amount of CPU-cores to kernel ki which is proportional
to the actual requirements of ki for the achievement of its relative event rate,
compared to the one by the other kernel instances. To also take into account
possible differences in the event granularity across the LPs hosted by different
kernel instances, which is the indicator of the real usage of computing power
for committing the events, the evri metric can be refined by weighting it via
the average CPU time required for processing the committed events on a spe-
cific kernel instance ki, which we denote as ∆i. Hence we express the weighted
event rate as wevri = evri ×∆i.

In other words, wevri values observed during the last wall-clock-time pe-
riod express the relative CPU requirements of each kernel instance in order to
carry out productive simulation work, in relation to the activities of the other
kernels and to actual synchronization dynamics. Hence, assigning a comput-
ing power proportional to the relative weighted event rate would tend to lead
to the situation where each kernel instance allows advancing its LPs in simu-
lation time in a “synchronization suited” manner according to what the other
kernels are able to do on their own. This part of the dynamic reallocation
scheme would therefore tend to avoid significant presence of overoptimistic
kernel instances during the various phases of the run.

It is anyway typical that performance can be further enhanced even in
cases where the efficiency is already maximized (or optimized), for example
by further reassigning the computing power depending on the real weight of the
workload associated with the hosted LPs. As an example, for loosely synchro-
nized models, we may have two or more groups of LPs that do not interact,
or stop interacting during the run (hence eventually not directly impacting
synchronization and efficiency), exhibiting different speed of advancement in
simulation time due to, e.g., different weights of the corresponding events in
terms of CPU requirements. In such a case, the completion of the simulation
would be delayed by the slowest group. Therefore, within the dynamic scheme
for resource assignment, an increase of computing power should also be en-
visaged for all those kernel instances exhibiting larger CPU requirements to
advance in simulation time. To this end we include in our scheme the parame-
ter wctai, which indicates the wall-clock-time required by kernel ki to advance
a single simulation time unit.

Finally, the amount of cores Ci to be assigned to kernel ki should anyway
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be bounded by the maximum degree of parallelism that can be accomplished
by ki, which is a function of the amount of locally hosted LPs. In fact, each
LP is an intrinsically sequential entity, which is not further parallelized, thus
not being allowed to simultaneously use multiple CPU-cores for its execution.

Overall, we devise the following rules for dynamically defining the amount
of CPU-cores to be reassigned to each kernel instance ki in order to optimize
the usage of the available computing power:

1. For each simulation-kernel instance ki we compute the parameter αi =
wevri∑

j∈[1,Ktot]
wevrj

.

2. A first estimation of Ci is then evaluated as Ĉi = max(bαi · Ctotc, 1).

3. For each kernel instance ki for which the condition Ĉi ≥ Ni is verified
(where Ni identifies the number of LPs hosted by ki), then Ci is defini-
tively set to Ni. In fact, additional CPU-cores could not be effectively
exploited for parallelization of the locally hosted LPs.

4. At this point, there could be some CPU-cores left to be assigned, which
we decide to assign on the basis of (A) the request for allocation re-
mainder of kernel ki, namely ri = max([(αi · Ctot)− Ĉi], 0) and (B) the
parameter wctai. In particular, we order the kernels for which the fi-
nalization of Ci values still needs to be performed (so the ones already
finalized in point 3 are excluded) according to decreasing values of the
product ri ·wctai, and we assign the remaining CPU-cores according to
a round-robin rule following the priority defined by such an ordering.

Each of the above steps is an implementation of the rationales discussed
above in terms of suited CPU-core assignment vs specific performance aspects.
However, once selected final Ci values, we need to determine how to optimize
the usage of the assigned CPU-cores within each single simulation-kernel in-
stance ki. This problem translates into defining which LPs locally hosted by
ki needs to be assigned to each of the Ci worker threads running in parallel
within kernel instance ki. We will refer to the assigned LPs as being affine to
the worker thread, and still scheduled for event execution along this thread
according to LTF.

For the j-th LP hosted by kernel ki, which we denote as LP jki , we com-
pute the total amount of CPU-time required for committing its events during
the last observation period. We refer to this metric as cpuj

ki
. The maximum

cpujki value across all the locally hosted LPs represents in our scheme a ref-

erence knapsack, and the corresponding LP jki is assigned to a given worker
thread. Then we exploit the greedy approximation approach proposed by
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George Dantzig in [Dantzig(1957)] which allows a maximum “overflow” of
about 30% over the reference knapsack, in order to build the other knapsacks
of LPs (hence knapsacks characterized by sums of cpu∗ki values) to be assigned
to the remaining worker threads. We can do this by applying a variant of
the original scheme, where the knapsacks are filled according to a round-robin
approach. The procedure is then iterated until no more LP needs to be further
bind to any worker thread within ki.

As a preliminary note to the complexity analysis presented in the subse-
quent section, the computation of wevri and cpujki values can be embedded
within the fossil collection algorithm. In particular, while scanning the input
queues of the LPs for releasing the buffers related to the already committed
portion of the simulation, per-event execution costs (typical logged while pro-
cessing the events within the same buffers as a form of audit) can be accessed
and accumulated to determine the actual values of the parameters wevri and
cpujki . Hence, these values can be made available to the algorithm supporting
the above described load sharing policy with no variation of the asymptotic
cost of fossil collection.

6.2.1 Asymptotic Costs Analysis

Solving the load sharing model can ultimately rely on a distributed mas-
ter/slave protocol where every kernel instance ki sends to the master kernel
a message containing the values of the parameters wevri and wctai, and the
master kernel sends to ki a message notifying the newly computed value of
Ci. This entails O(Ktot) message complexity, namely linear complexity vs the
number of kernel instances.

The local execution cost at the master kernel for the determination of
Ci values, associated with steps 1–4 described above, relates to performing
per-kernel analysis of the statistics collected during the master/slave commu-
nication phase, and to sorting the kernel instances on the basis of ri · wctai
values (see step 4). This leads to an asymptotic O(Ktot · log Ktot) complexity.

Once received the notification of the computed Ci value from the master,
every kernel instance ki must sort the locally hosted LPs on the basis of cpujki
values, which entails O(Ni ·log Ni) time, and must then solve a 0-1 Knapsack’s
problem, which can be done in pseudo-polynomial time in the number Ni of
locally hosted LPs. Hence we get an overall cost of O(Ni · log Ni) for local
operations to be executed on each simulation kernel instance ki.

Given that Ni ≥ 1, we get
∑

i∈[1,Ktot]
Ni ≥ Ktot, hence O(Ktot · log Ktot)

is bounded by O(Ntot · log Ntot), where Ntot represents the sum of individual
Ni values, namely the total amount of LPs within the run.

In the end, we get that the determination of the new configuration can be
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achieved with linear message complexity, vs the number of kernel instances,
and O(n ·log n) local processing complexity vs the number n of LPs within the
simulation model. This is the same complexity as for typical load balancing
schemes, whose asymptotic costs have been discussed in Section 6.1. However,
as already pointed out in the same section, our load sharing approach does
not entail actual LP transfer operations, but only activation/deactivation of
worker threads within the different kernel instances. We remark again that
the cost of this operation does not directly depend on the complexity of the
simulation model, in terms of state size of the LPs and event density in sim-
ulation time, as instead it occurs for LP transfer operations proper of load
balancing approaches.

6.3 Architectural Aspects

The core requirement for the effectiveness of the load sharing approach, is
related to how efficiently the different worker threads running within the same
simulation-kernel process (hence within the same address space) can synchro-
nize with each other. Specifically, while different worker threads inherently
execute according to data partitioning paradigms once entered application
mode (since, in accordance with what specified in [Jefferson(1985)], each LP
handles its own application-level data structures), care must be taken to avoid
excessive synchronization costs when running housekeeping tasks involving
shared data structures.

Most notably, the shared data structures requiring frequent updates, to be
performed coherently via proper synchronization mechanisms, are the input
queues of the LPs. Essentially, these data structures represent the core of
cross-LP dependencies, thus involving update operations caused not only by
the activities executed by the worker thread currently taking care of running
the “queue-owner LP”, but also by the activities carried out by worker threads
taking care of running other LPs. Synchronizing the access to these data
structures via a conventional locking mechanism would give rise to scalability
problems, exactly due to such a strict coupling. Further, it would give rise to
critical sections whose duration would depend on the actual time-complexity
of the queue-update operation. The access to the LPs’ state queues (either
for saving or restoring a state image) does not induce thread synchronization
issues since the need for state log/restore operations is only an indirect reflec-
tion of cross-LP coupling, caused by events scheduled across the LPs. In other
words, a single worker thread is allowed to safely operate on the state queues
of its affine LPs at any time, since it is the only worker thread that can take
care of dispatching those LPs for either forward or rollback execution. Similar
considerations can be made for the output queues, which are essentially used
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for auditing the messages sent out by the LPs in order to undo them via an-
timessages in case of rollback. On the other hand, the rollback operation and
the generation of antimessages, via consultation of audit information within
the output queue, are performed (if requested) by the unique worker thread for
which a specific LP is currently affine. Overall, as also schematized in Figure
6.3, isolation islands exist in relation to LP execution along different worker
threads, except for LPs’ input-queues management and for the reflection of
event scheduling on the side of cross-kernel message passing (since the message
passing layer might not be immediately targeted at managing multi-threading,
such as when relying on MPI).

The architectural organization we propose to cope with the reduction of
synchronization costs borrows from the design principles proper of multi-
processor/multi-core Operating Systems. Specifically, all the worker threads
that are active within the same kernel instance operate symmetrically, by hav-
ing access to any housekeeping functionality. On the other hand, any house-
keeping task potentially crossing the boundaries of individual LPs’ data struc-
tures is dispatched according to the same rules employed to structure modern
Operating System drivers, by organizing it according to top/bottom-half ac-
tivities. Hence, whenever the need for the execution of such a task arises,
it (logically) takes place as an interrupt to be eventually finalized within a
bottom-half module. More in details, upon the interrupt occurrence, we do
not immediately finalize the task, thus not immediately locking (or waiting
for the lock) on the target data structure. Instead we simply execute a light
top-half module which registers the bottom-half function (and its parameters)
associated with the interrupt finalization within a per-LP bottom-half queue,
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resembling the Linux task queue. The critical section accessing the bottom-
half queue takes constant-time since each new bottom-half associated with the
LP is recorded at the tail of the queue. Also, when the bottom-half tasks cur-
rently registered for a given LP are flushed, the corresponding chain of records
is initially unlinked from the corresponding bottom-half queue, which is again
done in constant time by unlinking the head element within the chain from its
base pointer 2. Given that the access to the LP bottom-half queue represents
in our architectural organization the only frequently occurring synchroniza-
tion point, constant-time for the corresponding critical sections directly leads
to minimizing synchronization costs.

The schematization of our proposal is presented in Figure 6.4. Ba-
sically, our approach can be supported by relying on a spin-lock array,
named LP LOCKS, having one entry for each LP hosted by the multi-threaded
simulation-kernel. LP LOCKS[j] is used to implement the critical section for
the access to the bottom-half queue associated with the j-th LP hosted by
any kernel ki, namely LP jki , either for inserting a new bottom-half task to be
eventually flushed, or for taking care of unlinking the current chain, in order
to flush the pending bottom-halves.

Let us now depict when (logical) interrupts to be handled via this type
of organization occur. Basically, an interrupt occurs as soon as any worker
thread currently active within kernel ki becomes aware of a new message/an-
timessage destined to some locally hosted LP jki . In such a case, the worker
thread needs to accesses the j-th bottom-half queue within a critical section

2Actual data structure updates can be safely performed out of the critical section, pro-

vided that a single worker-thread at any time is in charge of flushing the bottom-halves of

any LP that is affine to it.
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that performs the insertion of the corresponding message/antimessage deliv-
ery task. To provide additional details, awareness by a worker thread of a new
message/antimessage destined to a locally hosted LP arises in three different
circumstances:

(i) The worker thread is currently running LP jki in forward mode, and this

LP produces a new event to be scheduled for the locally hosted LP tki .
Thus the worker thread enters housekeeping for actuating the delivery
of the corresponding message to LP tki ’s input-queue. (Note that j might
be equal to t, in which case sender and receiver coincide.)

(ii) The worker thread is currently running the locally hosted LP jki in roll-
back mode (hence it is performing housekeeping operations associated
with revealed causality errors), which gives rise to the production of an
antimessage destined to LP tki , which again requires access to LP tki ’s in-
put queue for annihilating the original message. (Also in this case we
might have j = t.)

(iii) The message passing layer notifies the worker thread (e.g. via an ex-
plicit message receive operation executed by this thread according to a
traditional polling scheme) about a new message/antimessage incoming
from some remote kernel instance, which is destined to a locally hosted
LP.

As shown in Figure 6.4, we logically mark all the above three circumstances
as interrupts, which will be treated homogeneously, and whose associated mes-
sage/antimessage delivery operation will be finalized via the bottom-half mech-
anism.

We note that spin-locks may anyhow exhibit non-minimal costs since they
require the corresponding operations to be performed via sequences of atomic
instructions (e.g. via the LOCK prefix for the IA-32 instruction set). Addi-
tionally, since they are shared and accessed by different threads, cross-cache
invalidation effects can be induced as soon as one worker thread gains con-
trol on the spin-lock. To reduce these effects, we devise the presence of an
additional array of flags LP FLAGS (see again Figure 6.4), where LP FLAGS[j]

indicates whether the corresponding bottom-half queue, namely the one as-
sociated with the j-th locally hosted LP, is not empty. LP FLAGS[j] gets
updated within the critical section protected by LP LOCKS[j], either when a
new bottom-half is inserted within the corresponding queue (in this case the
flag is raised), or when the queue is flushed (in this case the flag is reset).
However, LP FLAGS[j] is also accessed before trying to lock the bottom-half
queue in order to avoid spin-lock operations in all the cases where the queue
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would reveal empty once accessed within the critical section leading to flush
operations. The exact scheme is:

TOP-HALF: BOTTOM-HALF:

lock(&LP_LOCKS[j]); if (LP_FLAGS[j])

<log bottom-half>; if (try_lock(&LP_LOCKS[j])){

LP_FLAGS[j] = TRUE; <unlink bottom-halves>;

unlock(&LP_LOCKS[j]); LP_FLAGS[j] = FALSE;

unlock(&LP_LOCKS[j]);

<perform bottom-halves>;}

Being LP FLAGS[j] checked non-atomically wrt lock acquisition when attempt-
ing to perform bottom-halves, we might experience false negatives in case the
top-half finalizes the insertion of the bottom-half task concurrently with the
check. However, this does not represent a safety problem since the flag will
be rechecked periodically in subsequent attempts to flush the corresponding
bottom-half queue, thus eventually falling in the case where the bottom-half
queue is correctly reflected into the state of the input queue of the destination
LP. Such a reflection might therefore experience only a delay, which resembles
delays introduced by traditional single-threaded kernels while reflecting the
content of cross-kernel messages into the system state, which is typically af-
fected by the polling period according to which the messaging layer is accessed
for acquiring not yet delivered messages. Further, as hinted, when allowing a
single worker thread at a time to manage flush operations for its affine LPs,
no false positives will ever be experienced.

6.3.1 Details on Actual ROOT-Sim Integration

Integration of load sharing within ROOT-Sim, according to the architectural
indications provided above, has been based on pthread technology, and on
the reorganization of housekeeping data structures in order to (i) provide per-
thread private data, and (ii) cache aligned memory buffers, so to avoid false
cache sharing across the worker threads within the same kernel instance. The
latter objective has been achieved by exploiting the posix memalign API, plus
the usage of proper padding schemes allowing cache alignment for sequences of
records, such as arrays of values. As for the accesses to the MPI layer, in our
architecture they can be symmetrically issued by any of the worker threads
operating within a given kernel instance. Given that the MPI does not natively
support multi-threading, we have included a wrapper that synchronizes these
accesses transparently to the worker threads via the embedding of critical
sections protected by spin-locks.
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As far as GVT computation and fossil collection are concerned, we imple-
mented a symmetric scheme in which the worker threads operating within a
same kernel instance run a race. The race winner computes the local reduction
and interacts with the master kernel in order to determine the globally reduced
value representing the new GVT. However, once defined the new GVT value,
all the worker threads operating within the same kernel instance are allowed
to perform fossil collection operations in parallel, each one fossil collecting
obsolete information for its affine LPs.

6.4 Overhead Oriented Experimental Assessment

In this section we aim at providing an experimental study oriented to as-
sess the internal dynamics of the symmetric multi-threaded reorganization of
the optimistic kernel, and their impact on run-time aspects such as local-
ity and contention of hardware resources. Overall, we focus on the overhead
by the reorganization, under workloads where no advantage is expected due
to a natively balanced distribution of the workload across different kernels.
Beyond the evaluation of the general mechanisms at the base of the load-
sharing approach, we will also focus on specific effects due to the integration
of load-sharing within ROOT-Sim since this imposes some constraints on run-
time dynamics properly related to specific ROOT-Sim subsystems, as hinted
before.

All the parameters that will be object of the experimental assessment will
be discussed in this section, by also motivating why they have been selected
in the analysis. As a final preliminary note, our reference architecture for the
assessment will be represented by the original multi-process (single-threaded)
version of ROOT-Sim.

6.4.1 Overview of the Assessment

Evaluating the Effects on Caching and Memory Accesses

It is clear that the internal organization of the load-sharing architecture can
impact locality, which may give rise to variations of the effectiveness of the
caching hierarchy. This may occur, e.g., due to the presence of kernel-level
data structures shared across multiple threads, which are instead avoided in
traditional multi-process platforms. In addition, we note that concurrent ac-
cesses can produce an impact on bus contention, due to locking operations
needed for synchronizing threads’ execution in critical sections. In order to
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provide quantitative data related to potential variations of the execution lo-
cality and its effects, we have decided to focus on three parameters:

• The latency for taking a checkpoint of the LP state.

• The latency for reloading a previously taken checkpoint in case of roll-
back.

• The event execution latency.

The first two parameters are associated with memory intensive operations,
since each log or restore operation entails spanning across the LP’s state or the
log buffer in read mode. They represent therefore good metrics for determining
how efficiently these read operations are supported thanks to the effects of
the caching hierarchy. On the other hand, the event execution latency is a
reflection of the locality expressed by the application, and of how well such a
locality is supported via the caching system.

In addition, we have decided to measure scheduling operations’ latency
in order to assess the effects of multi-threading on data structures which are
accessed sparsely. To this purpose, we have configured ROOT-Sim to rely on
the O(n) variant of the LTF scheduler, which determines the next event to be
processed by going over LPs’ input queues for identifying the pending event
associated with the minimum timestamp. We consider this to be a measure
representative of the dynamics proper of a large set of operations which are
essential in a simulation platform, such as queues scanning and log-chains
traversing.

Evaluating the Impact on MPI Operations

In case of interactions between LPs hosted by different kernel instances, instead
of relying on the top/bottom-half scheme, messages are directly provided in
input to the MPI layer. As said, given that MPI does not support multi-
threading, accesses have been serialized by exploiting again critical sections
supported via spin-locking. The same has been done for probing MPI and
issuing message receive operations by the worker threads, which are ultimately
reflected in the execution of a top-half module.

Clearly this approach may induce delays on the worker threads when com-
pared to the multi-process scheme. However, once fixed the total amount of
threads (and hence of CPU-cores) running the simulation platform, in either
multi-process or multi-threaded mode, there is a non-zero likelihood that two
LPs hosted by different kernel instances within the multi-process organiza-
tion are hosted by the same kernel instance when running in multi-threaded
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mode. Hence the mutual interactions between these LPs, if any, will not re-
quire passing via MPI. This likely leads to a reduced amount of interactions to
be handled via MPI, since some interactions will be locally treated at the level
of the top/bottom-half subsystem. Overall, to account for the above effects
we have decided to evaluate:

• The time spent while interacting with the MPI layer.

• The time spent while managing the data structures supporting inter-
actions via the top/bottom-half architecture, which, we recall, might
include the time spent while synchronizing concurrent worker threads
within the access to bottom-half queues.

A joint analysis of the two above parameters would allow understanding
dynamics related to the actual handling of the interactions across the LPs
involved within the simulation model.

We note that a possible approach to reduce the synchronization costs in
the load-sharing architecture while interacting with the MPI layer would be
represented by message aggregation. In fact, messages (namely events and
anti-events) destined to remote multi-threaded kernel instances could be ag-
gregate into local buffers and only periodically sent towards the destination.
This can reduce the frequency of interactions with the MPI layer, thus favoring
a reduction of the overhead when considering the case of synchronized accesses
to MPI by multiple worker threads. Given that we have not yet embedded
a similar optimization within ROOT-Sim, for what concerns the interaction
with MPI, the experimental assessment can be related to a kind of worst case
architectural configuration.

Evaluating the Impact on GVT and Global Snapshot Operations

In the symmetric multi-threaded version of ROOT-Sim, the GVT subsystem
has been modified in order to account, within the global reduction determining
the new GVT value, for the timestamps of events/anti-events that have not
yet been reflected into the event queues of the recipient LPs due to the fact
that they are still pending within bottom-half queues. These events/anti-
events represent a sort of in-transit information, exhibiting similarities (and
hence requiring similar management approaches) with traditional in-transit
messages travelling via the messaging subsystem (MPI in our case) across
different kernel instances.

Beyond the above issue, another relatively significant intervention while in-
tegrating the load-sharing approach within ROOT-Sim is related to the CCGS
subsystem. As hinted, this subsystem is in charge of reconstructing, upon
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GVT calculations, committed and consistent global states, formed by col-
lections of individual LPs’ states. These individual states are then passed
in input to an application level callback where the programmer is allowed
to inspect the committed computation results. In the original multi-process
version of ROOT-Sim, each active thread, individually representing an active
kernel instance, is allowed to process those callbacks since they are intrinsi-
cally sequentialized along the execution of that same thread. Instead, for the
symmetric multi-threaded organization, the active worker threads are not all
allowed to do this same job since this would lead to inconsistencies on the con-
tent of the (default) file used for tracing the output on each kernel instance.
As a consequence, we have decided to synchronize all the worker threads op-
erating within the same kernel instance in such a way to allow a single worker
thread to run CCGS facilities. This reduces the power of the load-sharing
architecture during the phases where the CCGS protocol is run. Hence we
have decided to report in the assessment the latency observed when running
GVT plus CCGS protocols upon committing a new portion of the simulation
in order to quantify this phenomenon.

Evaluating the Effects on the Overall Rollback Pattern

Since a rollback happens upon receiving an out-of-order event to be exe-
cuted, this can more likely arise for larger gaps between different LPs’ local
clocks possibly caused by a different workload being processed across different
simulation-kernels. Therefore, if the computing power is dynamically redis-
tributed among the various simulation-kernel instances in order to achieve
more balanced runs, as it occurs in the load-sharing architecture, local clocks
are expected to diverge less, and in case a rollback operation must be per-
formed, the rollback length (i.e., the amount of executed events which must
be undone in order to reach the correct Local-Virtual-Time to restart the exe-
cution from) is expected to be reduced. On the other hand, even for balanced
workloads, the employment of the top/bottom-half architecture generates a
different timing of actions, in terms of information reflection within the LPs’
input queues, which can secondarily impact the rollback pattern. In order
to evaluate these secondary effects, we have explicitly measured the following
parameters:

• Rollback probability, evaluated as the ratio between the amount rollback
operations and the amount of executed events.

• Rollback length, expressed as the average number of undone events per
rollback operation.
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• Efficiency, which is measured as the ratio between the amount of com-
mitted and executed events.

6.4.2 Benchmark Application Setting

The experimental assessment has been based on PCS, which has been config-
ured with 1024 wireless cells evenly distributed across the different simulation
kernel instances running on the underlying 32-core machine, each one manag-
ing up to 1000 wireless channels. The simulated workload has been configured
to produce a load relatively uniform across the various LPs.

The exponentially distributed call inter-arrival time has mean value τA,
and the average call duration is set to 2 minutes. Three different configura-
tions of the model have been executed, namely with τA set to 0.4, 0.8, and 1.2
respectively, to achieve channel utilization factors on the order of 35%, 15%,
and 10% respectively, while the residence time of an active device within a
cell has been set to a mean value of 5 min and still follows the exponential
distribution. The variations of τA determine model instances with different
profiles in terms of both event granularity and memory requirements. Specif-
ically, the lower the value of τA, the larger CPU/memory requirements. Also,
lower values for τA imply greater computation to communication ratios.

In this study, we rely on non-incremental state saving, with checkpointing
interval χ set to the fixed value of 20, in order to avoid run-time dynamics
fluctuations potentially caused by self-adjusting checkpointing policies. In or-
der to clearly show the actual overhead due to the load-sharing architecture,
we have run our experiments in a static fashion, i.e., by forcing the power reas-
signment procedure within the multi-threaded kernel not to modify the initial
even allocation of worker threads to kernel instances. This allows us to check
what is the overhead associated with monitoring, managing, and reassignment
operations without any benefit from the actual load-sharing approach. Finally,
the data reported have also this time been computed as average values over
ten runs of the reference configuration.

6.4.3 Results

Top/Bottom-Halves Processing

In order to ensure correctness, whenever a top/bottom-half operation must be
performed by some worker thread, a lock on the bottom-half queue associated
with the destination LP must be taken (although in the case of bottom-halves
processing, the lock is only needed for de-queueing the events’ chain currently
registered within the queue). If the number of concurrent worker threads
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Figure 6.5: Top/bottom-halves

grows, the contention on the queues is increased, since the worker threads
synchronizing on this resource must wait for the lock to be granted to them.
At the same time, since a higher number of available worker threads entails
a higher number of handled LPs per-kernel instance, this statistically reduces
contention on per-LP queues, so that this latency is expected to grow, but up to
a certain (not large) extent. Additionally, in our implementation we explicitly
relied on pre-allocation for reserving buffers used to keep track of bottom-
halves. This choice is guided by the fact that relying on the malloc library
to allocate nodes can result in a costly operation when executed in a multi-
threaded environment, since its internal synchronization relies on futexes. If
the size of the pre-allocated buffer is well-tuned, the contention on top-half
registration is reduced to the minimum.

In Figure 6.5 we show the per-event latency related to the management
of top/bottom-halves. By the plots we see that when the number of per-
kernel worker threads increases, the related cost increases just linearly and
moderately, given the above considerations.

Scheduling

In Figure 6.6, the per-event latency related to scheduling operations is pro-
vided. By the plots, we can see that the non-multi-threaded implementation
(which we refer to as “Single”) shows a latency which is on the order of 15%
smaller than the load-sharing one. This small overhead is related to the fact
that the load-sharing architecture implements a mapping between LPs han-
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dled by a certain worker thread and the actual thread. Therefore, in order to
perform CPU scheduling operations, a worker thread must first check which
are the LPs it is currently handling. This is an operation which is not exe-
cuted in the non-multi-threaded implementation. Nevertheless, this difference
is not enough to justify 15% latency increase. In fact, a significant addi-
tional difference between the two implementations relies on the fact that the
load-sharing architecture makes large use of locking primitives for ensuring
correctness. This entails a higher number of in-memory accesses for trying to
acquire spin-locks, which in turn increases memory bus contention 3 and can
affect procedures which access (large) data structures sparsely, as the schedul-
ing operation does.

Log/Restore

In Figure 6.8(top) we present the per-log cost. By the plots, we can see that,
independently of the workload, a higher number of worker threads (i.e., a
smaller number of concurrent kernel instances) presents a higher latency. In
particular, the cost starts growing when running with 4 kernel instances, each
one handling 8 worker threads, and the greatest difference is on the order of
30% (15 µs). This latency increase wrt the number of worker threads is also
influenced by the aforementioned internal synchronization at the level of the
malloc library.

In Figure 6.8(bottom) the per-restore latency is shown. Fluctuations be-
tween different workloads are on the order of 25%, which is due to the fact
that a higher number of threads entails a higher number of in-cache buffers
invalidations.

GVT and CCGS Computation

Figure 6.7 shows the plots related to the GVT and CCGS execution latency.
As hinted in Section 6.4.1, the load-sharing version of our simulation-kernel
allows a single worker thread to perform CCGS operations, due to critical
races on the output.

At the same time, during GVT operations, a procedure for computing the
actual workload which the various kernel instances are following through is
executed. This can be seen as a distributed agreement among the kernels to

3We note that this result is expected to be different on hardware architectures which rely

on cache locking, i.e., a cache-coherence protocol which ensures atomicity of in-cache opera-

tions by relegating accesses to the highest available levels, therefore avoiding bus contention

if data accessed by other threads is not related at all.
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determine which is the best number of worker threads per-kernel instance to
evenly share the current workload. Again, this procedure is based on MPI
message exchanges.

By the plots, we can see that, when running with a small number of worker
threads, the latency is comparable with the one achieved by the single-threaded
kernel. On the other hand, a larger number of worker threads entails a higher
latency. Additionally, inter-kernel (MPI-based) communication is exploited to
correctly follow through the distributed agreement on the best-suited number
of worker threads. We additionally note that when running with 32 worker
threads, the latency is reduced, since in this configuration there is no actual
need to rely on MPI for executing the agreement procedure, since data struc-
tures are already locally available.
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Inter-Kernel Communication

By the plots in Figure 6.9, the executions relying on 32 and 16 worker threads
exhibit inter-kernel communication latency which is almost two and one orders
of magnitude greater than other configurations, respectively, thus giving rise
to a smaller event throughput, as depicted in Figure 6.12. This is related to
the fact that these configurations process a larger number of uncommitted
events (as reported in Figure 6.17), since most of the processed events are
rolled back. In fact, in Figure 6.15 we can see that these configurations show,
among the others, the higher rollback probability, along with a non-minimal
rollback length. This gives rise to low efficiency (as reported in Figure 6.16).

The high inter-kernel communication latency exhibited by these configu-
rations is related to the higher contention on the MPI layer due to the large
amounts of message exchanges which is related to a larger number of events
and anti-events generated (for the 16-threads configuration), to a higher num-
ber of GVT phases as described in Section 6.4.3 (for both configurations), and
to the higher number of MPI probe operations (for both configurations). As
for the latter aspect, in the 32-threads configuration, we left the simulation-
kernel to perform probe operations towards the MPI even though no message
will ever income (given that the run relies on a single kernel instance). This
has been done just to observe the effects of the interactions with the MPI
layer when scaling up the number of worker threads to the maximum value
admitted in relation to the amount of CPU-cores available from the underlying
computing platform.
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Events’ Execution

In Figure 6.10 we show the per-event execution latency. Although different
values of the τA parameter produce different events granularity values (due
to the different simulation model’s load, which produces a higher amount of
data to be processed for SIR regulation), different configurations do not affect
significantly the event’s latency, with small differences that are in the order
of 3-5%. This emphasizes the fact that the load-sharing architecture does not
affects locality more significantly than the non-multi-threaded one, as far as
events’ execution is concerned.

Residual Cost

To complete the punctual assessment of our load-sharing architecture, in Fig-
ure 6.11 we present the plots for the residual cost. This includes all the
per-committed-event costs which do not appear in the above measurements.
Essentially, the residual cost shows which is the time spent for scanning/pro-
cessing input/output-queues, and for all the other housekeeping operations
needed to let the simulation correctly advance. These operations are per-
formed by worker threads on a per-LP basis, but entail accessing memory
sparsely, being subject to secondary effects related to memory contention, as
depicted in the previous analysis.

As for housekeeping operations, the input queue management and the ack-
handling subsystems have a great importance. The former entails calling the
malloc library for reserving memory buffers which are used to store messages
destined to locally handled LPs. Concurrently requesting memory buffers
to the malloc library involves synchronization mechanisms based on futexes,
which are likely to increase the overhead related to the registration of messages.
The latter is a subsystem in charge of facing the well-known transient message
issue for GVT computation, for which a window-based ack mechanism has
been adopted. The implementation relies on a lock for each time window (one
per kernel), which is acquired during an update operation.

As it can be seen by the plots, the highest residual cost is associated with
the two-worker-threads configuration. In fact, in this case there is a small
contention wrt the number of threads, but since there are 16 kernel instances
running, there is a higher inter-kernel message exchange volume which entails
trying to acquire the lock more frequently. The one-thread configuration does
not show this contention effect, while increasing the number of threads reduces
the need to update the window, thus reducing contention as well.

To show how the so-far described costs impact on the overall performance
of the load-sharing platform’s execution, in Figure 6.14 we present an aggrega-
tion showing the percentage of time spent in the various operations, normalized
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0.4

on committed event’s execution. By the plots we can see that the non-multi-
threaded execution, independently of the workload, spends almost 70% of the
time in events’ processing, similarly to what the load-sharing architecture con-
figured with one worker thread does.

In addition, we can see that as the number of worker threads increases, the
amount of time spent in the top/bottom-halves processing decreases, due to
the fact that a larger number of LPs is handled by a single kernel instance. At
the same time, inter-kernel communication decreases since a higher number
of events can be delivered to local LPs. The 32-worker-threads configuration
shows an amount of time spent in MPI operations which reduces to the mini-
mum the time spent for event processing, as it was already clearly illustrated
in Section 6.4.3.

The high residual time’s relevance in the load-sharing architecture running
with more than one thread is again related to the window-based ack mecha-
nism, as it was depicted in the previous section.

Global Assessment

To assess our proposed architecture globally, we have measured the cumulated
event rate (expressed as the amount of cumulated committed events per Wall-
Clock-Time unit), again used as the indicator of the speed of the optimistic
simulation run.

In particular, Figures 6.12 and 6.13 show the corresponding throughput
values for the benchmark configurations related to the τA parameter set to 0.4
and 0.8, respectively. By Figure 6.13 we can see how the so-far discussed over-
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heads produce a decreasing throughput when the number of worker threads is
increased (we remind that in this experimentation, the workload is constant
and evenly distributed, and the re-balancing procedure is forced not to re-
assign worker threads to kernel instances, in order to evaluate which are the
intrinsic costs of the presented architecture). As it was explained before, the
configurations associated with 16 and 32 threads do not scale well, particu-
larly because of the high costs related to MPI operations, and due to a large
amount of executed events which get rolled back.

Figure 6.12 shows the configuration with a different (higher) workload.
We note that some load-sharing configurations present a throughput slightly
higher than the non-multi-threaded version. This is related to benefits derived
from a better exploitation of the caching architecture. Additionally, this is
reflected in a higher efficiency, as depicted in Figure 6.16.

Overall, limited or null overhead is noted in general for configurations
entailing up to 4 or 8 worker threads per kernel instance, which leads to some
degree of flexibility in the possibility to reassign resources in an architectural
context not providing significant penalties while handling the supports for
making the reassignment operative.

6.5 Evaluating the Effectiveness of Load-Sharing

In the previous section we concentrated on overhead aspects by the load-
sharing architecture when considering balanced workload. In this section we
change the perspective by carrying out an experimentation based on the highly
variable Traffic application. This would lead to observe the effectiveness of
load-sharing in contexts where dynamic decisions aimed at improving balanced
and fruitful usage of resources are highly welcome.

Traffic has been exploited in the exact configuration described in Chap-
ter 3, and for this application we have compared the throughput (cumulated
committed events) by our load-sharing architecture with the one by a classical
single-threaded organization, with the one related to serial execution of the
same application-level software running on top of a calendar-queue scheduler,
and with results by a load-balancing architecture based on a migration ap-
proach, still implemented into the same ROOT-Sim platform, as presented in
[Peluso et al.(2011)Peluso, Didona, and Quaglia].

By the data shown in Figure 6.18, the parallel approaches provide a super-
scalar speedup. The multi-threaded versions of the simulation kernels all pro-
vide a speedup wrt the single-threaded one, which ranges in between 40% (for
the 4 kernels configuration) and 55% (for the 8 and 16 kernels configuration).
In particular, we note that the execution with 4 kernel instances shows a re-
duced speedup due to several reasons: (i) the re-balancing is more likely to



102 CHAPTER 6. LOAD-SHARING ON MULTI-CORE MACHINES

map a worker thread on a core which is not actually sharing any level of cache;
(ii) a worker thread can access remote memory with a higher probability (we
recall that the experiments have been run on a NUMA machine); (iii) worker
threads are more subject to false cache sharing effects.

As for the execution with 32 multi-threaded kernels, the speed down is in
the order of 15%. This is related to the fact that in this configuration no actual
re-balancing is possible (in fact, each simulation kernel must have at least
one worker thread in order to proceed in the simulation run). Therefore, in
this configuration we are again measuring the architecture’s overhead, which
is indeed comparable to the one shown when running the PCS (balanced)
benchmark.

The last comparison shown by the plot is the one wrt the load balancing
configuration, referred to as migrator. Although we note that this configura-
tion provides a speedup in the order of 40% wrt the single-threaded approach,
it’s throughput is comparable with the 4 kernels multi-threaded configuration,
while the 8 and 16 kernel configurations of the multi-threaded architecture are
still 30% faster than the migrator configuration. This is related to the fact
that the migrator approach does not assign resources to the simulation ker-
nels, instead it migrates LPs from one instance to the other, entailing complex
marshalling and communication operations. We emphasize that these two ap-
proaches are orthogonal and do not exclude each other, considering that when
relying on clusters, a migration approach merged with a load-sharing approach
can result in a significant benefit for the simulation’s throughput, as they face
different issues.
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Chapter 7

Conclusion

Optimistic Parallel Discrete Event Simulation (PDES) platforms are known
as a means for achieving speedup while executing complex models thanks to
the employment of speculative processing schemes. However, the optimistic
paradigm poses a set of issues in relation to the complexity of the supports
that are required in order to achieve fruitful exploitation of the underlying
computing resources, while jointly masking synchronization dynamics (e.g.
the squashing of part of the computation when causality errors are detected)
to the application programmers.

In this thesis we have tackled three core issues in relation to optimistic
PDES systems, namely state recovery, memory access optimization, and bal-
anced and productive usage of resources in the context of multi-core machines.
As for state recoverability, we have provided an innovative log/restore archi-
tecture inspired to the autonomic computing paradigm, which is expected to
represent a highly general solution, thanks to the joint employment of differen-
tiated log modes (in time interleaved mode) and stability oriented performance
optimization schemes for the tuning of the parameters determining log/restore
dynamics. As for memory access optimization, we have studied a cache-aware
approach, where the delivery of memory buffers is tailored for optimizing the
memory access latency to the data structures that from the core of this type of
platforms, depending on their access profile in typical runs. Finally, balanced
and productive resource usage, which is mandatory for keeping the system far
from thrashing phenomena that would lead the optimistic paradigm to reveal
un-successful (due to excessive waste of computation), has been addressed
by proposing a load-sharing approach specifically tailored for PDES systems
run on top of multi-core machines. Although inspired to typical load-sharing
schemes actuated by conventional operating system kernels, our proposal had

107
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to face complications related to the intrinsic strict coupling of the activities ex-
ecuted at the different concurrent simulation objects (compared to the level of
coupling of typical threads/processes running on top of the operating system).

We have tackled all the above issues both on the methodological and the
architectural sides. Particularly, most of the proposals rely on (or exploit)
innovative performance models. Also, all the proposals have been developed,
according to properly defined/reshuffled design approaches, and have been
integrated within a real operating environment, namely an open source opti-
mistic PDES platform available to the research community.
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