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Abstract

Provided that loadable kernel modules (LKMs) run at ring 0, is it really

possible to prevent kernel-level attacks once the evil code has started its

execution? Without a hypervisor, or some kind of virtualization technol-

ogy (e.g. VT-x), results in general have not been proved very successful, as

Microsoft’s Patchguard technology has shown in the past years[1].

My thesis, which provides a patch for the Linux kernel version 3.2.51, aims

at providing a security mechanism against synchronous malicious LKMs,

or, in other words, LKMs that execute their attack in their initialization

phase, without deferring any work. Although the patch code is for an IA-32

compatible Linux system only, there are no major obstacles in porting the

code to other operating systems that support LKMs and run at least on the

80386 architecture. The rationale behind this work is that I personally had

the “feeling” I could puzzle simple evil LKMs and let them believe they had

successfully executed their attack, without using any kind of virtualization

technology. The work, named the “YASI patch”, is to be intended as a small

“proof-of-concept” running on top of an already secured system.
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Foreword

In mid-2010 the whole world was left in awe by the discovery of the first

real cyber weapon, the Stuxnet worm. The worm itself, and the Flame, Duqu

and Gauss variants appeared in the following years, have probably marked

the beginning of an ongoing militarization of the Internet and of a state-

sponsored cyber warfare and cyber spying. Yet, I would have known the

news only almost one year later, in the sleepy days preceding my Bachelor’s

degree graduation ceremony. Thatwas the proverbial feeble spark that slowly

lit a small fire of curiosity first, and a real thirst for knowledge in the field

then.

As a personal thought, I think it is due to say that the last two years have

been really intense, with a lot of new information, emotions and experiences

flowing in at full pace. While sometimes I wished I could have postponed

some deadlines to concentrate more on the stuff I enjoyed studying and

working on, that has not always been possible. However, I do sincerely hope

that you will enjoy reading my work as I enjoyed working on it, wishing that

I will be able to convey my enthusiasm to you about this always intriguing

subject.
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Chapter 1

A few operating systems

security aspects and issues

Security, in general, is a very elusive goal. As it is usually stated in the field,

with an enlightening analogy, security is “a chain as strong as its weakest

link”. Unlike other fields in Computer Science which can easily count on

the rigorousness of abstract mathematics to define what is formally safe and

what is not, such boundaries are slightly more blurred when talking about

operating system security and development. While, generally speaking, we

are still very far from solving all the possible security issues at application-

level development, at least it has themuch sought privilege of being confined

in a very precise environment by a lower layer, which is “the operating

system”. Instead kernel programming is completely free of such a restrictive

environment, giving developers the highest level of freedom they can strive

for. Unfortunately, as also seen in the news, such freedom can be easily

misused or abused, leading to serious and advanced threats like kernel-level
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malware. However, this does not imply that secure operating systems do not

exist in general, but rather that they are part of a niche market, given their

industrial, military or purpose-driven nature. While not being an evaluation

of the overall security of the final product, but rather a certification of the

amount and level of testing they received, such niche operating systems

usually receive a very high grade on the Evaluation Assurance Level (EAL)

scale[21]. Takingwith a grain of salt such grades, commercial and universally

known operating systems, for instance Microsoft Windows or Linux, do not

go higher on that scale than a EAL4+ certification[21].

Leaving aside the EAL certification, the very first thing that comes to mind

is that embedded operating systems do not usually allow, or probably even

support, the execution of third-party code on demand, having some fixed

tasks that routinely ask for execution. However, such a feature is probably

mandatory on any self-respectable, general-purpose commercial product.

Allowing the execution of such binaries, potentially coming from untrusted

locations, is obviously a clear security issue. The problem however is not

only confined to this external code, but rather the issue is about which

modifications to the system an application is allowed to perform. Even

without considering intentional malicious behavior, is it possible for a simple

but gone astray program to corrupt kernel memory, other programs’memory

or execute privileged instruction? Where is exactly the difference between

kernel-level code and user-space (less privileged) code? Putting aside the

first questions for a while, it is clear that the processor needs to be able to

discriminate between different levels of code privilege and, unless there

is some kind of hardware-assisted mechanism, this is clearly not possible.

It is now necessary to start talking about what is commonly referred to as

“rings”, and this is where the aforementioned boundaries of responsibility
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start blurring soon.

“Rings” are essentially a synonym for privilege levels. The first Intel processor

to have such capability, and thus being able to run in Protected Mode, was

the 80286 CPU[5], supporting 4 privilege levels:

• Ring 0 is the highest privilege level, reserved for what will be become

known as kernel code.

• Ring 1 is usually unused on traditional operating systems.

• Ring 2 is usually unused as well.

• Ring 3 is the lowest privilege level, reserved for what will be become

known as user space.

Would it be right to quickly blame any operating system as being “insecure” if

tailored for the 80186 architecture? Wouldn’t be fairer to be a little concerned

about the choice of running everything at ring 0, even on the 80286 and

later architectures, as MS-DOS did? While the examples might seem very

outdated or a bit extreme for a modern reader, they serve the purpose to

stress the fact that any operating system’s evaluation cannot be really parted

from the underlying architecture. For an interested reader, a more modern

example of an OS-level security issue, caused by some hardware design,

might be the controversial and recently introduced Intel RDRAND assembly

instruction that has sparked quite a heating debate[20][7].

Going back to our pending questions, the 80286 architecture, along with

the Protected Mode, introduced also a mechanism of memory protection

called segmentation, which, very basically, provided a way to divide the

main memory in so called “segments”[5]. Process isolation was guaranteed
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by assigning one or more contiguous memory segments to each program,

effectively separating their address space as a result. In addition to that,

each segment expressed its actual level of privilege in a field called DPL.

While being almost forgotten as a memory protection mechanism, in favor

of paging on modern systems, it made heavy use of the cs, ds, es, fs, gs

and ss segment registers and of the gdtr and ldtr registers, which stored

respectively the Global Descriptor Table (GDT) and the Local Descriptor

Table (LDT) addresses. Manipulation of such structures and registers ob-

viously required executing some privileged instructions, only available at

code running at ring zero[15].
012315

Descriptor Table Index TI RPL

Figure 1.1: 16-bit Segment Selector

Recalling that the 80286 was a 16-bit processor, segmentation worked by

setting each segment register with a 16-bit segment selector. The TI field

in the segment selector was used to choose between the two descriptor

tables, the GDT or, alternatively, the LDT. The RPL field instead indicated

the requester’s level of privilege, used by the hardware when performing

a privilege level checking. As seen in Figure 1.1, the segment selector has

an index that points to an entry in the GDT or the LDT, entry known as a

segment descriptor. Figure 1.2 shows a segment descriptor specifying the

base address of the segment, its length, its type and the descriptor privilege

level (DPL) along with some other fields.
07811121314151619202122232431

Base 31:24 G X O
A
V
L

Limit
19:16

P DPL 1 Type Base 23:16

Base 15:0 Limit 15:0

Figure 1.2: Data and Code Segment Descriptors
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In 1985, three years after the debut of the 80286, the first 32-bit processor was

introduced to the market, the 80386 processor, which was also the first one

to support the paging mechanism[5]. Paging divides the main memory in so

called “pages” of variable length, but usually of 4KB each. The translation

mechanism of paging associates to each 4KB page a 4KB “frame” of physical

memory. While different levels of pagination are possible, paging uses only

two components, a Page Directory and multiple Page Tables, whose entries

are respectively called PDE (Page Directory Entry) and PTE (Page Table

Entry). While hiding some complexity away and simplifying a little bit, we

can say that the cr3 control register contains the starting address of the

Page Directory. Entries in the Page Directory (PDE) point to a Page Table,

while entries in a Page Table (PTE) point to the actual physical “frames”.

A virtual address contains the necessary indexes to address first a PDE

and then a PTE, so that a virtual to physical mapping is always possible.

While any operating system textbook will provide all the insights required

to coherently discuss about paging, like its actual mechanisms, the possible

levels of paging and why translation look-aside buffers are needed, it is

worth to stress out again that paging provides a more fine-grained control

over memory than segmentation, with the additional benefit of a reduced

fragmentation[13][24].
012345678910111231
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Figure 1.3: Page-Directory Entry (4KB Page Table)
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Figure 1.4: Page-Table Entry (4KB Page)

That ended our very brief introduction to the memory protection problem,
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answering all the previous pending questions. Nevertheless, that wasn’t at

all an extensive list of the security problems that operating systems face.

Apart from classic, but not trivial problems like authentication and access or

resource control, if we would like to scratch just the surface of the myriad

of other potential issues, we should dig in really more advanced topics

like heap and stack canaries, shellcode generation, address space layout

randomization, “return to libc” attacks and so on and so forth.

As already stated before, the main part of my thesis is a security-focused

patch for the Linux kernel. It is interesting to know better the operating

system this thesis is targeted at. Linux is an open-source, modular and

monolithic kernel that runs on a wide range of architectures but started in

1991 as 80386-only and was then greatly inspired by the Minix operating

system[22]. During the years, portability was probably the key factor for the

success and popularity of the Linux kernel, but that did not come without a

price in terms of trade-offs. For instance, one of them is that Linux does not

use segmentation, because some architectures, on which Linux is able to run,

do not support it at all. Even when running on the x86 architecture, Linux

employs a “flat-memory model”, which basically “turns off” segmentation,

leaving the virtual memory implementation to the paging mechanism only.

When defining Linux as a monolithic kernel, it means that the whole operat-

ing system is running at the highest level of privilege, ring 0, confining the

user-space applications to the lowest level and not using the eventual levels

of privilege in between, even when provided by the underlying architecture.

This is an additional example of these trade-offs, as Linux runs, for instance,

on both the x86 architecture that provides 4 levels of privilege and on the

PowerPC architecture that has only two[14].
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Modularity allows to extend kernel functionalities, without having to recom-

pile the kernel, using loadable kernel modules (LKMs) which are basically

relocatable ELF objects containing kernel-level code and data. However, the

ability to extend the kernel not only at maintenance time, but in reality “on-

demand”, poses not entirely negligible security risks. It is not hard to realize

that, once loaded, the external code will be part of the operating system to all

intents and purposes and, as stated before, will run at the same, highest level

of privilege as the rest of the kernel. Interesting questions, unfortunately

still unresolved, arise when thinking if it is possible to protect the kernel

from itself, if we need further support in hardware than what we currently

have, if the world should switch to a “microkernel” layout in the future or

if we should start working only with virtualized kernels. While my thesis

humbly provides, on very stringent hypothesis, a randomization-based se-

curity mechanism against malicious LKMs, it might be interesting to point

out that this problem is not entirely unknown in literature. Basically, only

two different approaches are available:

• A white-list approach, based on signatures, which forces users and

administrators to load only trusted, digitally signed LKMs. Support

for this feature has been finally mainlined with Linux kernel version

3.7, requiring only to set the appropriate configuration flags, CONFIG_-

MODULE_SIG and optionally CONFIG_MODULE_SIG_FORCE, which does

not allow mounting a module lacking a digital signature[4]. How-

ever, expecting that a large majority of Linux users are using a distro-

packaged kernel, this approach, depending on how it is implemented,

may hurt the ability and freedom to start developing or running out-

of-tree modules[12].
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• The other approach, introduced since 2005, is basically the one used

by Microsoft in their Patchguard Kernel Patch Protection technology

for x86-64 architectures. It provides a mechanism that routinely checks

if some kernel structures have been modified by some device drivers,

which are to be intended here as the Windows-equivalents of Linux

loadable modules. Similarly to the YASI patch, its goals are to detect

modifications to the Interrupt Descriptor Table (IDT) and to the System

Call Table (SCT). However, Microsoft Patchguard technology is an

order of magnitudemore complex and complete, guarding also against

modifications of the Global Descriptor Table (GDT) and other vital

kernel structures[23]. The major difference between this approach and

the one implemented by the YASI “proof-of-concept”, is that the main

objective of the latter is also to let an attacker believe he has successfully

patched the kernel and not just to crash abruptly.
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Chapter 2

Attacking with a synchronous

LKM

A necessary preliminary step, before discussing in greater detail how ma-

licious kernel-level rootkits accomplish their work, is to recall how sys-

tem calls get executed with the traditional software-interrupt scheme on

the x86 architecture, or, in other words, what happens when software calls

the int 0x80 assembly instruction. From a simplified point of view of a

user-space program or library, a system call is executed by storing the sys-

tem call number in the eax general purpose register and storing up to six

parameters in ebx, ecx, edx, ebp, esi, and edi registers before executing the

int 0x80 instruction. System call numbers, for the x86 architecture and at

least up until Linux kernel version 3.2.x, are available for consultation at

<arch/x86/kernel/syscall_table_32.S>[9].

Verbatim from the INT assembly instruction page of the Instruction Set

Reference of the Intel IA-32 Architecture Software Developer’s Manual, Vol-
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ume 2[5]:

The INT n instruction generates a call to the interrupt or exception

handler specified with the destination operand. . . . The destina-

tion operand specifies an interrupt vector number from 0 to 255,

encoded as an 8-bit unsigned intermediate value.

. . .

The interrupt vector number specifies an interrupt descriptor

in the interrupt descriptor table (IDT); that is, it provides index

into the IDT. The selected interrupt descriptor in turn contains a

pointer to an interrupt or exception handler procedure. In pro-

tectedmode, the IDT contains an array of 8-byte descriptors, each

of which is an interrupt gate, trap gate, or task gate.

At this point, the current thread enters kernel mode and, after passing some

needed checks in such interrupt handler procedure, executes the requested

system call, depending on the value of the eax register. Indeed, the eax regis-

ter is used in a call assembly instruction as an index to the SystemCall Table

(SCT), which is a table that contains pointers to the actual system calls. Upon

leaving kernel mode, the return value of the requested system call will be

available to the user-space program or library in the eax register. If needed,

Figure 2.1 provides a visual explanation of what mentioned so far.

Kernel-level rootkits offer almost infinite possibilities: malicious software can

leverage kernel functionalities to hide files and network connections, gain

root privileges and much more. However, how is it possible for a malicious

LKM to take control of what gets executed at ring 0? One of the simplest

ways is to “steal” a system call. It basically amounts to changing one or more

addresses in the SCT, redirecting the execution flow to an external function
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Figure 2.1: Execution flow of a system call invocation (x86 architecture)

specified by the evilmodule itself. Until aroundLinux kernel version 2.4.18[6]

the SCT symbol sys_call_table used to be exported, and thus visible to

any kernel module. As still seen in many historical online resources, stealing

a system call was as easy as doing:

extern void ** sys_call_table;

. . .

orig_sys_kill = sys_call_table[__NR_kill];

sys_call_table[__NR_kill] = evil_sys_kill; /* steal! */

In addition to that, since around kernel version 2.6.12[10], the SCT is in a

read-only protected memory. And trying to steal the sys_kill system call

with the same method, just to make an example, would result in a saddening

kernel OOPS:

[ 72.035098] BUG: unable to handle kernel paging request at c12cbf24

[ 72.036219] IP: [<f86f50ea>] init_module+0xb6/0xd0 [evil]

[ 72.037422] *pdpt = 0000000001485001 *pde = 00000000360f5063 *pte =

80000000012cb161

[ 72.038119] Oops: 0003 [#1] SMP

11



The hexadecimal error value in the last line, 0x0003, according to the page

fault error code bits in <arch/x86/mm/fault.c>, signals that there was a

write access protection fault in kernel mode. Things used to be easier indeed.

However, by running at ring 0, in principle, an evil module could easily

overcome this protection, by flagging again such memory pages as writable

or by, interestingly, setting to zero the Write Protect (WP) bit in the control

register CR0.
0123456151617181928293031

P
G

C
D

N
W

A
M

W
P

N
E

E
T

T
S

E
M

M
P
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Figure 2.2: Control Register CR0

Again, verbatim from section 2.5 of the Intel manual, Volume 3[5]:

WP Write Protect (bit 16 of CR0)—When set, inhibits supervisor-

level procedures from writing into read-only pages; when clear,

allows supervisor-level procedures to write into read-only pages

(regardless of the U/S bit setting; see Section 4.1.3 and Section

4.6). This flag facilitates implementation of the copy-on-write

method of creating a new process (forking) used by operating

systems such as UNIX.

In the end, the real question was (and still is): How can LKMs get the SCT

address? At first sight, only few rough solutions seems available:

• Recompile the kernel to export again the sys_call_table symbol and

to remove the read-only protection. Unfortunately, this makes sense

only if you want to hack your own machine.

• Search the SCT address inside the /boot/System.map file, looking for
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the sys_call_table symbol. It is possible to search for such address

directly from kernel mode or using an user space “loader” program,

which, after completing the search, will request a LKM insertion and

pass the SCT address to the evil module as a loading parameter. The

major drawback of this approach is that it relies on a file that could

have been easily removed by system administrators.

• Search for the SCT address in memory with brute force, knowing

that is for sure between two exported symbols. The address is re-

trieved by checking if each guessed address, after applying a specific

displacement, returns the address of a known and externally visible

system call. However, since such symbols are hard-coded in the mali-

cious executable, this technique might be in general ineffective when

dealing with a different kernel version than the one the executable

was targeted for. For instance, in Linux kernel versions 2.6.x, the SCT

used to lie between the exported boot_cpu_data and loops_per_-

jiffy symbols[18], but that it is not the case anymore.

However an alternative, elegant and and always applicable solution does

exist. The earliest reference I have found to such technique is an article[11] in

the Phrack magazine, issue 58 of December 2001, which is quite astonishing

when considering the fact that it was published almost exactly 12 years ago as

of writing! The proposed solution, which is the building block of my thesis,

uses the sidt assembly instruction, introduced with the 80286 processor[5]

in the x86 instruction set. The sidt instruction is used in order to read the

IDTR register, which stores the linear address of the Interrupt Descriptor

Table (IDT) and its length in bytes. The IDTR register is 48 bits long and its

related C struct is defined in the <arch/x86/include/asm/desc_defs.h>
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file:

94 struct desc_ptr {

95 unsigned short size;

96 unsigned long address;

97 } __attribute__((packed)) ;

0151647

IDT linear address IDT size

Figure 2.3: IDTR register

Furthermore, the IDTR register can be easily read orwritten in Cwith the help

of some inline extended assembly using, respectively, the already known

sidt instruction and the lidt instruction:

struct desc_ptr idtr;

. . .

__asm__ __volatile__ ("sidt %0" : "=m" (idtr)); /* read */

. . .

__asm__ __volatile__ ("lidt %0" : : "m" (idtr)); /* write */

where the “__volatile__” keyword is used to tell GCC not to do any kind of

optimization on this statement[3]. Intel Developer’s manual[5] states that

while the sidt instruction can still be used by user-space programs without

generating an exception, both the instructions are really meant to be executed

at ring 0.

Finally, it is possible to get the SCT address following these simple steps:

• Read the IDTR register with the sidt instruction, in order to find the

linear address of the IDT.

• Go to the 0x80-th entry of the IDT (recall the original int 0x80 instruc-
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tion), finding a Trap Gate Descriptor there.

• As shown in Figure 2.4, the offset is split in two parts. After building it

again, you will find the entry point of the System Call Handler (HDL),

defined in <arch/x86/kernel/entry_32.S>.

499 ENTRY(system_call)

500 RING0_INT_FRAME # can’t unwind into user space anyway

501 pushl_cfi %eax # save orig_eax

502 SAVE_ALL

503 GET_THREAD_INFO(%ebp)

504 # system call tracing in operation /

emulation

505 testl $_TIF_WORK_SYSCALL_ENTRY,TI_flags(%ebp)

506 jnz syscall_trace_entry

507 cmpl $(nr_syscalls), %eax

508 jae syscall_badsys

509 syscall_call:

510 call *sys_call_table(,%eax,4)

511 movl %eax,PT_EAX(%esp) # store the return value

512 syscall_exit:

513 . . .

• From this address, search for the FF 14 85 xx xx xx xx byte pattern.

The unknown 4 bytes, xx xx xx xx, form the address of the SCT.
04578121314151631

Offset 31:16 P DPL 0 1 1 1 1 0 0 0

Segment Selector Offset 15:0

Figure 2.4: Trap Gate Descriptor

Fortunately, a good explanation of the inner details that justifies the search

of such pattern can be found in the Intel manuals. In the Opcode Map

15



in Appendix A, Volume 2[5], it is shown that the FF one-byte opcode is a

Group 5 instruction, which means that bits 5, 4 and 3 of the ModR/M byte

are used as an opcode extension.

Prefix Opcode ModR/M byte SIB byte Displacement Immediate
01234567

Mod Reg R/M
}
Mod R/M byte

Scale Index Base
}
SIB byte

Figure 2.5: IA-32 Instruction Format, ModR/M and SIB bytes

The ModR/M byte, 0x14, has a binary representation of 0b00010100, so,

according to the Opcode Extensions Table, FF Grp 5 is a near CALL Ev.

However, the 32-bit addressing format says that with our Mod bits, 0b00,

and R/M bits, 0b100, a SIB byte follows the ModR/M byte. Its value, 0x85,

corresponds to the very familiar [eax * 4], leading to an effective address

of [scaled index] + disp32. In other words, the address of the call in-

struction is [eax * 4] + sys_call_table. Recalling what happens when

software traps with the int 0x80 instruction and by looking at the Linux

kernel code above, this is our expected call to the SCT.

A very simple Linux kernel module that implements the aforementioned

technique is:

1 #include <linux/kernel.h>

2 #include <linux/module.h>

3 #include <linux/slab.h>

4 #define SEARCH_LEN 128

5

6 static unsigned long * find_sct(const unsigned long addr,

7 const unsigned int size)

8 {
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9 unsigned int i;

10 unsigned char *ptr;

11

12 ptr = (unsigned char *) addr;

13

14 for (i = 0; i < size; i++) {

15 ptr++;

16 if (*ptr == 0xff && *(ptr + 1) == 0x14

17 && *(ptr + 2) == 0x85) {

18 return (unsigned long *)(ptr + 3);

19 }

20 }

21 /* didn’t find */

22 return NULL;

23 }

24

25 int init_module(void)

26 {

27 struct desc_ptr idtr;

28 unsigned long handler, sct;

29 unsigned long *pattern_addr;

30

31 __asm__ __volatile__ ("sidt %0" : "=m" (idtr));

32 printk(KERN_INFO "[%s] IDT is @ 0x%lx\n",

33 __this_module.name, idtr.address);

34 handler = gate_offset(*((gate_desc *) idtr.address + 0x80));

35 printk(KERN_INFO "[%s] HDL is @ 0x%lx\n",

36 __this_module.name, handler);

37 pattern_addr = find_sct(handler, SEARCH_LEN);

38 if (pattern_addr == NULL)
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39 printk(KERN_INFO "[%s] SCT not found\n", __this_module

.name);

40 else {

41 sct = *pattern_addr;

42 printk(KERN_INFO "[%s] SCT is @ 0x%lx\n",

43 __this_module.name, sct);

44 }

45 return 0;

46 }

47

48 void cleanup_module(void) { }

49

50 MODULE_LICENSE("GPL");

Which provides the following output in the dmesg log on a stock Debian 7,

confirmed also by a grep on the System.map file:

[ 176.828627] [info] IDT is @ 0xc13de000

[ 176.828691] [info] HDL is @ 0xc12c3c68

[ 176.828770] [info] SCT is @ 0xc12cbe90

. . .

c12cbe90 R sys_call_table

And yet, what has been achieved so far is really much more than simply

getting the address of the SCT. A malicious LKM now knows the address

of the IDT, its size in bytes, the entry point of the HDL, the address of the

operand of the aforementioned call instruction and its value, which is the

address of the SCT. The system is now completely in the hands of the attacker,

since it is not possible to prevent anymore a “classic” system call theft, a

code injection in the system calls, a more subtle hot-patching of the HDL to
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have it point to a malicious copy of the SCT or even a deeper attack to the

IDT or IDTR register.

The next chapter will dive into the coding part of my thesis, the kernel patch,

discussing the architectural choices.
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Chapter 3

Summary of the YASI

protection mechanism

It will be probably much easier to start explaining my thesis from the very

end, or, in other words, from what I actually achieved. I will try to be very

concise, explaining here just the fundamental blocks of the work, leaving all

the inner details, for an interested reader, to the patch code in Appendix A.

The next code listing shows the output of the dmesg command after loading

the same, unmodified kernel module shown at the end of the previous

chapter, but this time in a YASI-patched kernel:

[ 62.932432] [info] IDT is @ 0xf5ccc800

[ 62.932508] [info] HDL is @ 0xf8016000

[ 62.932590] [info] SCT is @ 0xf5e4e000

[ 62.932650] [YASI] No malicious behavior detected in module info.

Ignoring for now the last line, we can safely say that the module has been

tricked into seeing fake addresses, fending off a potential attack. It is impor-
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tant to remark now that any kind of malicious behavior will fail since the evil

code will try to hot-patch the wrong memory addresses. The only notable

exception, due to a design choice, is a code-injection in the system calls, but

further considerations on this case will be given in the next chapter. Those

addresses are just pointers to fake copies of the IDT, HDL and SCT, since it

is obviously impossible to change the real addresses of these structures on

demand. Just to make an example, even without considering concurrency

issues when attempting that, the SCT address is the same between reboots

since it is determined at kernel compile time.

Considering that the evil code is directly using assembly codewithout relying

on any kernel API, different parts of the Linux kernel core had to bemodified

in order to trick the attacking module. The whole idea of my work can be

broken down in the following simple steps:

• When a module is about to execute its __init function, create a copy

of the SCT, HDL and of the IDT. Modify the latter, in particular its

0x80-th entry, in order to point to the fake HDL, which is then further

modified to obviously point to the fake SCT in its call instruction.

• Save this information in an appropriate data structure, along with a

pointer to the task_struct of the task that has requested the module

load, or, in other words, the task that has entered kernel mode in order

to execute the init_module system call. Usually, such system call is

invoked only by the modprobe or insmod programs.

• Change the IDTR register on theCPU themodule is loading on, pointing

to the fake IDT. From now on, when the module will enter its __init

function, it will see the whole chain of fake addresses (IDT - HDL -
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SCT).

• However, by having a way to keep track of which tasks have asked

for a module load, the scheduler can potentially take some action

depending on the tasks involved in a context switch. In theory, the

task executing the init_module function can be preempted, since it

is running in “process context”. If that is the case, or, in other words,

such task is being preempted, the scheduler can restore the original,

safe IDTR register with a simple lidt assembly instruction. Obviously,

when such task will be about to resume its execution in another context

switch, the scheduler will change again the IDTR register with the fake

one, in order to present a coherent environment.

• When the module has finished its initialization phase, check for po-

tential malicious behavior and restore the original IDTR register. The

comparison is done, on a byte-by-byte basis, between the copy of the

SCT and the original one and between the MD5 hashes of the IDT and

of the HDL. The need for these two hashes, while computationally

expensive, is unavoidable. The fake IDT must point to the fake HDL,

which has a different memory address from the true HDL and which

in turn points to a different SCT address. Obviously, a byte-by-byte

comparison between the two IDTs or the two HDLs will fail. Further-

more, if a malicious module modifies some bytes of the fake IDT or of

the fake HDL, granted that the “original state” of these fake structures

is not being stored, a decision about the behavior of the evil code is

completely impossible. The solution is to store, during the creation of

the fake IDT and HDL, the MD5 hashes of their current state. Now,

checking for a potential malicious behavior basically amounts to re-
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computing again and then comparing the hashes on the same memory

segments with the saved ones.

If needed, at the end of this chapter, Figure 3.1 presents a simple visual

explanation of the execution flow of a system call invocation under a YASI-

patched kernel.

The aforementioned main data structure, yasi_task_info, is declared in

the <include/linux/yasi.h> file, along with some extern variables and

functions declarations:

12 struct yasi_chain_info {

13 unsigned char idt_hash[16];

14 unsigned char hdl_hash[16];

15 unsigned long sct;

16 unsigned long hdl;

17 struct desc_ptr idtr;

18 };

19

20 /* Our main data-structure */

21 struct yasi_task_info {

22 struct task_struct *task;

23 struct yasi_chain_info info;

24 struct list_head list;

25 };

In the yasi_chain_info data structure, the two unsigned char arrays are

used to store the MD5 digests of the fake IDT and of the fake HDL. The

unsigned long sct and unsigned long hdl variables are used, respec-

tively, to store the address of the fake SCT and of the fake HDL. The address

of the fake IDT is stored, as seen in the previous chapter, in a struct desc_-
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ptr idtr variable.

In the yasi_task_info data structure instead, the struct task_struct

*task pointer is used to save a reference to the task that has entered kernel

mode to execute the init_module system call, as said before. By looking

at the declarations above, it should be clear that the fake addresses are

not unique or global, but they are created for each task that has asked for

a module load. This means that there must be somewhere a list of yasi_-

task_info structures, protected by some sort of locking. In the next lines

of the <include/linux/yasi.h> file we see such things, a struct list_-

head yasi_list and a read-write lock rwlock_t yasi_lock. A read-write

lock is used here, instead of a simpler spinlock, because code accessing the

yasi_list list is perfectly separated in readers and writers.

28 extern struct desc_ptr yasi_idtr;

29 extern struct list_head yasi_list;

30 extern rwlock_t yasi_lock;

The yasi_idtr variable, which contains the real IDTR of the system, is

initialized at early boot in the <init/main.c> file:

647 __asm__ __volatile__ ("sidt %0" : "=m" (yasi_idtr));

648 printk(KERN_INFO "YASI KPP is up.\n");

As stated before, a yasi_task_info structure, ptr_ypt in the code listing

below, has to be initialized when a module loads. In the init_module sys-

tem call, in file <kernel/module.c>, such action takes place:

3004 ptr_ypt = kmalloc(sizeof *ptr_ypt, GFP_KERNEL);

3005 if (((void *) ptr_ypt) == NULL) {

3006 ret = -1;

3007 goto yasi_handle_error; /* jump to common exit */
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3008 }

The function yasi_create_chain, at line 3024, is responsible for creating a

fake IDT, a fake HDL and a fake SCT:

3012 ptr_ypt->task = current;

3013 INIT_LIST_HEAD(&(ptr_ypt->list));

3024 ret = yasi_create_chain(&(ptr_ypt->info));

3025 if (unlikely(ret != 0)) {

3030 if (ret == -ENOMEM)

3031 printk(KERN_WARNING "[YASI] Unable to allocate enough"

3032 "memory! Denying execution of module %s\n", mod->name)

;

3033 else

3034 printk(KERN_WARNING "[YASI] Unable to create fake "

3035 "chain! Denying execution of module %s\n", mod->name);

3036 goto yasi_handle_error;

3037 }

After that, the ptr_ypt structure is added atomically to the yasi_list list:

3043 write_lock_irqsave(&yasi_lock, yasi_irq_flags);

3044 list_add_tail(&(ptr_ypt->list), &yasi_list);

3045 write_unlock_irqrestore(&yasi_lock, yasi_irq_flags);

Now that the yasi_list is not empty, the scheduler will change, if needed,

the IDTR register, depending on the tasks involved in the context switch. In

fact, during a context switch, the Linux kernel scheduler keeps track of the

next and prev task pointers:
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• If the next task is in the yasi_list, get the associated yasi_task_info

structure and change the IDTR register accordingly.

• Otherwise, if the prev task is in the yasi_list, restore the good IDTR

register saved in early boot.

Now that the scheduler knows always what to do in case of a context switch,

change the IDTR register with the fake one and launch the __init function

of the module:

3055 __asm__ __volatile__ ("lidt %0" : : "m" (ptr_ypt->info.idtr));

3059 if (mod->init != NULL)

3060 ret = do_one_initcall(mod->init);

After the module has finished its initialization, a check on its behavior is

performed with the yasi_system_safe function and the yasi_task_info

structure is removed from the list atomically:

3069 yasi_system_safe(&(ptr_ypt->info), mod->name);

3072 write_lock_irqsave(&yasi_lock, yasi_irq_flags);

3078 list_del(&(ptr_ypt->list));

3079 deferred_vfree = (void *) ptr_ypt->info.hdl;

3080 yasi_delete_chain(&(ptr_ypt->info));

3081 kfree(ptr_ypt);

The yasi_delete_chain function, at line 3080, frees every kmalloc allocated

memory, without freeing any memory allocated with the vmalloc function.

The main reason behind the need for a deferred vfree is that executing

it while still holding a spinlock might create HARDIRQ unsafe scenarios,

as stated by the “lockdep” validator[16]. In addition to that, the real IDTR
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register must be restored before exiting the atomic section, because the fake

one is now invalid and will lead to kernel faults when serving interrupts.

3087 __asm__ __volatile__ ("lidt %0" : : "m" (yasi_idtr));

3088 write_unlock_irqrestore(&yasi_lock, yasi_irq_flags);

3091 vfree(deferred_vfree);

What is still to be discussed, is what the scheduler does when context

switches are taking place. Basically, the scheduler, in the context_switch

function, file <kernel/sched.c>, checks if yasi_list is empty or not:

3336 read_lock(&yasi_lock);

3337 if (unlikely(!list_empty(&yasi_list)))

3338 yasi_switch(prev, next);

3339 read_unlock(&yasi_lock);

If that is the case, the yasi_switch function is invoked, which traverses the

yasi_list list and checks if any of the tasks involved in the context switch are

present in it, modifying the IDTR register as needed. The “unlikely” macros,

in the functions below and above, were added not to incur in an almost

always avoidable performance penalty. As a design choice, it was supposed

that the wrong branch prediction penalties, due to module insertions at

boot time, would greatly offset the penalties incurred without the “unlikely’

macros in a prolonged use scenario.

3294 static void __always_inline yasi_switch(const struct task_struct *

const prev,

3295 const struct task_struct *const next)

3296 {

3297 struct yasi_task_info *ptr_ypt;

27



3300 list_for_each_entry(ptr_ypt, &yasi_list, list) {

3301 if (unlikely(ptr_ypt->task == next)) {

3302 /* Set the fake IDTR */

3303 __asm__ __volatile__ ("lidt %0" : : "m"

3304 (ptr_ypt->info.idtr));

3311 if (unlikely(ptr_ypt->task == prev))

3312 /* Set real IDTR */

3313 __asm__ __volatile__ ("lidt %0" : : "m" (yasi_idtr));

That was the last fundamental building block of my thesis work. In order

not to make this chapter any heavier, the very hackish and engaging details

of the yasi_create_chain and yasi_system_safe functions are available

in Appendix A, as stated at the beginning of this chapter. As a last thing, I

would like to point out the effects of loading a malicious module that makes

a copy of the SCT and attempts to change the operand of the call instruction

in the HDL to such copied and potentially evil SCT:

[19004.776065] [evil] IDT is @ 0xf5810800

[19004.776148] [evil] HDL is @ 0xf8014000

[19004.776238] [evil] SCT is @ 0xf5e6a800

[19004.776345] [evil] New SCT is @ 0xf5c37200

[19004.776818] [YASI] module evil has tried to modify at least the

system call handler.

[19004.776830] The system is SAFE but it is suggested to reboot to

revert to a clean state.

[19004.776836] Do not rmmod the module, a kernel OOPS may appear.

The evil kernel module source code that attempts such attack, a little too

long to be listed here, is available in Appendix B. However, in addition to

this HDL patching attack scenario, the YASI patch is also able to discover
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and prevent attacks on the IDTR register, on the IDT and on the SCT.

The next chapter will discuss the weaknesses of the protection mechanisms

and the possible future improvements.

Figure 3.1: Execution flow of a system call invocation under a YASI-patched
kernel (x86 architecture)
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Chapter 4

Possible enhancements

One of the first objections to this work might be that the int 0x80 inter-

rupt mechanism is obsolete and almost completely phased out in favor of

the newer, faster and vendor specific SYSENTER (Intel) and SYSCALL (AMD)

mechanisms[19]. Usually, modern software relies on the glibc library in

order to execute system calls, which in turn calls the Virtual Dynamic Shared

Object (VDSO). The VDSO then selects an appropriate mechanism to exe-

cute system calls, falling back to the old int 0x80 scheme if nothing newer

is supported by the processor. Figure 4.1 shows a semantically equivalent

assembly code for sending a SIGFPE signal (8) to the init process (pid 1).

movl $37, %eax
movl $1, %ebx
movl $8, %ecx
int $0x80

movl $37, %eax
movl $1, %ebx
movl $8, %ecx
call *%gs:0x10

Figure 4.1: Invoking a system call in x86 assembly

Although a deep explanation about the inner workings of the linux-gate

shared object file should be provided here, the discussion will be greatly
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simplified, for the sake of brevity, by saying that the *gs:0x10 address is

always pointing to the AT_SYSINFO ELF auxiliary vector[2], which provides

the entry point for the __kernel_vsyscall function. The setting of such

value can be seen in the <arch/x86/vdso/vdso32/vdso32.lds.S> file. The

__kernel_vsyscall function will contain the assembly instruction of the

selected interrupt mechanism, which might be the sysenter instruction

on Intel hardware, syscall on AMD (but Intel-supported too[5]) or, as

we saw before, the old int 0x80 instruction. Without loss of generality,

let’s concentrate on the Intel specific SYSENTER mechanism, which, as stated

by the Instruction Reference on the Intel manual[5], “executes a fast call

to a level 0 system procedure or routine”. Such mechanism uses different

machine specific registers (MSRs), but the only register an attacker might be

interested in is the IA32_SYSENTER_EIP[5] MSR, which provides the entry

point to the SYSENTER handler code. Such handler, called ia32_sysenter_-

target, is defined in the <arch/x86/kernel/entry_32.S> file, and is very

similar to the already seen system_call handler:

376 ENTRY(ia32_sysenter_target)

377 CFI_STARTPROC simple

378 CFI_SIGNAL_FRAME

379 CFI_DEF_CFA esp, 0

380 CFI_REGISTER esp, ebp

381 movl TSS_sysenter_sp0(%esp),%esp

382 . . .

425 sysenter_do_call:

426 cmpl $(nr_syscalls), %eax

427 jae syscall_badsys

428 call *sys_call_table(,%eax,4)

429 movl %eax,PT_EAX(%esp)
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430 LOCKDEP_SYS_EXIT

431 DISABLE_INTERRUPTS(CLBR_ANY)

432 TRACE_IRQS_OFF

433 movl TI_flags(%ebp), %ecx

434 testl $_TIF_ALLWORK_MASK, %ecx

435 jne sysexit_audit

436 sysenter_exit:

437 . . .

Since MSRs can also be read or written in C with extended assembly using

the rdmsr and wrmsr assembly instructions[8], there are striking similarities

between this IA32_SYSENTER_EIP register and the already seen IDTR register:

#define IA32_SYSENTER_EIP 0x176

u64 value = 0;

. . .

/* read */

__asm__ __volatile__ ("rdmsr" : "=A" (value) : "c" (

IA32_SYSENTER_EIP));

. . .

/* write */

__asm__ __volatile__ ("wrmsr" : : "c" (IA32_SYSENTER_EIP), "a" ((u32

) value), "d" ((u32) (value >> 32)) : "memory");

While the YASI patch does not provide any kind of protection against at-

tacks on the SYSENTERmechanism, securing the IA32_SYSENTER_EIP register

should not require any more work than securing the IDTR register, which is

an already achieved goal.

As stated in the previous chapter, the other major objection to this work

is that it does not prevent code-injection in the system calls, since, in the
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yasi_create_chain function, the fake SCT is created by simply copying the

contents of the true SCT:

249 memcpy((void *) info->sct, sys_call_table, NR_syscalls * 4);

While a code-injection attack is in theory possible, it is not relatively com-

mon, requiring a deeper knowledge of the target in comparison to a simple

system call theft. Typically, a certain number of bytes from the beginning of

the attacked function are saved, depending on the length of a call or jump

instruction on the target’s architecture. These bytes are then overwritten with

a call or jump instruction pointing to the malicious code that, on return,

takes appropriate actions to preserve the original semantics of the function.

A very quick and dirty workaround to this problem would be saving a cer-

tain amount of bytes (or a hash) from the beginning of each system call

and checking if the suspected kernel module, after its initialization or on

any context switch, has modified such bytes. However, this is a larger topic

and problem for which it is due to refer to the StMichael/StJude intrusion

detection systems[17].

The third and last objection, apart from the clear weakness of not protecting

against asynchronous attacks, is that the YASI patch cannot defend against

memory scanning attacks[18], recalling that they are used to get the SCT

address. However, memory scanning techniques require at least a partial

knowledge on where to start and where to finish the attempt, a knowledge

based on the fact that the SCT is between two known exported symbols. If

the SCT is “moved” before compiling the kernel, making the premise false,

the attack suddenly becomes ineffective, requiring the unmodified version

of the kernel. The last resort for an attacker is a complete scan of the memory,

which looks somewhat implausible, lengthy and probably vulnerable to a
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hardware or software timer if executed synchronously.
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Appendix A

YASI patch code

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/

init/main.c linux/init/main.c

--- linux-vanilla/init/main.c 2013-09-10 02:57:42.000000000 +0200

+++ linux/init/main.c 2013-12-11 16:47:21.352839765 +0100

@@ -69,6 +69,10 @@

#include <linux/slab.h>

#include <linux/perf_event.h>

+#ifdef CONFIG_YASI

+#include <linux/yasi.h>

+#endif

+

#include <asm/io.h>

#include <asm/bugs.h>

#include <asm/setup.h>

@@ -636,6 +640,15 @@ asmlinkage void __init start_kernel(void

ftrace_init();
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+ #ifdef CONFIG_YASI

+ /*

+ * This is a good position to read and store the real IDTR of

+ * the system. Later on, rest_init() will call into cpu_idle().

+ */

+ __asm__ __volatile__ ("sidt %0" : "=m" (yasi_idtr));

+ printk(KERN_INFO "YASI KPP is up.\n");

+ #endif /* CONFIG_YASI */

+

/* Do the rest non-__init’ed, we’re now alive */

rest_init();

}

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/

kernel/Makefile linux/kernel/Makefile

--- linux-vanilla/kernel/Makefile 2013-09-10 02:57:42.000000000

+0200

+++ linux/kernel/Makefile 2013-11-28 22:33:11.455230277 +0100

@@ -46,6 +46,9 @@ obj-$(CONFIG_SMP) += smp.o

ifneq ($(CONFIG_SMP),y)

obj-y += up.o

endif

+ifeq ($(CONFIG_YASI),y)

+obj-y += yasi.o

+endif

obj-$(CONFIG_SMP) += spinlock.o

obj-$(CONFIG_DEBUG_SPINLOCK) += spinlock.o

obj-$(CONFIG_PROVE_LOCKING) += spinlock.o

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/

kernel/module.c linux/kernel/module.c
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--- linux-vanilla/kernel/module.c 2013-09-10 02:57:42.000000000

+0200

+++ linux/kernel/module.c 2013-12-11 16:47:01.824854170 +0100

@@ -59,6 +59,11 @@

#include <linux/pfn.h>

#include <linux/bsearch.h>

+#ifdef CONFIG_YASI

+#include <linux/yasi.h>

+#include <asm/current.h> /* current macro */

+#endif

+

#define CREATE_TRACE_POINTS

#include <trace/events/module.h>

@@ -2958,6 +2963,12 @@ SYSCALL_DEFINE3(init_module, void __user

struct module *mod;

int ret = 0;

+ #ifdef CONFIG_YASI

+ struct yasi_task_info *ptr_ypt;

+ unsigned long yasi_irq_flags;

+ void *deferred_vfree;

+ #endif /* CONFIG_YASI */

+

/* Must have permission */

if (!capable(CAP_SYS_MODULE) || modules_disabled)

return -EPERM;

@@ -2983,12 +2994,112 @@ SYSCALL_DEFINE3(init_module, void __user

mod->init_size);
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do_mod_ctors(mod);

+

+ #ifdef CONFIG_YASI

+ /*

+ * We need to keep track of which process (task struct)

+ * has entered this section (init_module). We do this

+ * with a list of yasi_task_info structs (see <linux/yasi.h>).

+ */

+ ptr_ypt = kmalloc(sizeof *ptr_ypt, GFP_KERNEL);

+ if (((void *) ptr_ypt) == NULL) {

+ ret = -1;

+ goto yasi_handle_error; /* jump to common exit */

+ }

+

+ /* Set the fields of the yasi_task_info struct */

+ ptr_ypt->task = current;

+ INIT_LIST_HEAD(&(ptr_ypt->list));

+

+ /*

+ * What we want to do is to make each task see a different chain:

+ * IDTR -> IDT -> SYSCALL_HANDLER -> SYSCALL_TABLE

+ * Let’s generate a copy (per-task) of all of these structures

+ * somewhere in the memory, with yasi_create_chain function.

+ *

+ * We don’t really need ret now, it will be overwritten later by

+ * the real return value of the module init().

+ * If yasi_create_chain fails, deny module load.

+ */

+ ret = yasi_create_chain(&(ptr_ypt->info));
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+ if (unlikely(ret != 0)) {

+ /*

+ * Actually, we have only -ENOMEM and -EPERM.

+ * -EPERM means that we couldn’t hot-patch memory as needed.

+ */

+ if (ret == -ENOMEM)

+ printk(KERN_WARNING "[YASI] Unable to allocate enough"

+ "memory! Denying execution of module %s\n", mod->name);

+ else

+ printk(KERN_WARNING "[YASI] Unable to create fake "

+ "chain! Denying execution of module %s\n", mod->name);

+ goto yasi_handle_error;

+ }

+

+ /*

+ * Everything we need is in place, modify the list atomically,

+ * and then hijack the IDTR.

+ */

+ write_lock_irqsave(&yasi_lock, yasi_irq_flags);

+ list_add_tail(&(ptr_ypt->list), &yasi_list);

+ write_unlock_irqrestore(&yasi_lock, yasi_irq_flags);

+

+ /* The list now is not empty, the scheduler will check this

+ * condition when doing context switches.

+ *

+ * At this point we’re done, if code is preempted, scheduler

+ * will set back a safe

+ * value for the IDTR. Otherwise, carry on with a fake environment.

+ *

+ */
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+ __asm__ __volatile__ ("lidt %0" : : "m" (ptr_ypt->info.idtr));

+ #endif /* CONFIG_YASI */

+

/* Start the module */

if (mod->init != NULL)

ret = do_one_initcall(mod->init);

+

+ #ifdef CONFIG_YASI

+

+ /*

+ * Was the module malicious? We don’t want to compute this check in

+ * atomic context, so we do this here, before we acquire a lock.

+ * No problem if someone preempts, scheduler will take care.

+ */

+ yasi_system_safe(&(ptr_ypt->info), mod->name);

+

+ /* Now go in atomic context... */

+ write_lock_irqsave(&yasi_lock, yasi_irq_flags);

+

+ /*

+ * ... and remove the current task from the list (and don’t forget

+ * to save a pointer to the vmalloc’ed memory).

+ */

+ list_del(&(ptr_ypt->list));

+ deferred_vfree = (void *) ptr_ypt->info.hdl;

+ yasi_delete_chain(&(ptr_ypt->info));

+ kfree(ptr_ypt);

+

+ /* The fake IDTR is now invalid. We have to restore the safe IDTR

+ * being atomic, otherwise we will get a nice page fault OOPS when
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+ * serving interrupts.

+ */

+ __asm__ __volatile__ ("lidt %0" : : "m" (yasi_idtr));

+ write_unlock_irqrestore(&yasi_lock, yasi_irq_flags);

+

+ /* Deferred vfree */

+ vfree(deferred_vfree);

+ #endif /* CONFIG_YASI */

+

if (ret < 0) {

/* Init routine failed: abort. Try to protect us from

buggy refcounters. */

+

+ #ifdef CONFIG_YASI

+ /* Common exit code in case of error */

+ yasi_handle_error:

+ #endif /* CONFIG_YASI */

+

mod->state = MODULE_STATE_GOING;

synchronize_sched();

module_put(mod);

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/

kernel/sched.c linux/kernel/sched.c

--- linux-vanilla/kernel/sched.c 2013-09-18 15:25:47.000000000 +0200

+++ linux/kernel/sched.c 2013-12-11 16:54:55.036855610 +0100

@@ -80,6 +80,10 @@

#include <asm/paravirt.h>

#endif

+#ifdef CONFIG_YASI
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+#include <linux/yasi.h>

+#endif

+

#include "sched_cpupri.h"

#include "workqueue_sched.h"

#include "sched_autogroup.h"

@@ -3278,6 +3282,39 @@ asmlinkage void schedule_tail(struct tas

put_user(task_pid_vnr(current), current->set_child_tid

);

}

+#ifdef CONFIG_YASI

+/*

+ * We have prev and next as parameters (task_struct *):

+ * If prev is in our list, we restore the safe IDTR.

+ * If next is in our list, we set the fake IDTR.

+ *

+ * Do not make a call to yasi_switch. It is in an external function

for

+ * styling reasons (__always_inline).

+ */

+static void __always_inline yasi_switch(const struct task_struct *

const prev,

+ const struct task_struct *const next)

+{

+ struct yasi_task_info *ptr_ypt;

+

+ /* We are under a read_lock here... */

+ list_for_each_entry(ptr_ypt, &yasi_list, list) {

+ if (unlikely(ptr_ypt->task == next)) {
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+ /* Set the fake IDTR */

+ __asm__ __volatile__ ("lidt %0" : : "m"

+ (ptr_ypt->info.idtr));

+ /*

+ * Now break the list_for_each_entry loop!

+ * Anything else won’t matter now.

+ */

+ break;

+ }

+ if (unlikely(ptr_ypt->task == prev))

+ /* Set real IDTR */

+ __asm__ __volatile__ ("lidt %0" : : "m" (yasi_idtr));

+ }

+}

+#endif /* CONFIG_YASI */

+

/*

* context_switch - switch to the new MM and the new

* thread’s register state.

@@ -3288,6 +3325,20 @@ context_switch(struct rq *rq, struct tas

{

struct mm_struct *mm, *oldmm;

+ #ifdef CONFIG_YASI

+

+ /*

+ * Switch the IDTR (if needed) as early as possibile.

+ *

+ * The speedup of the unlikely macro should offset the

+ * pipeline penalty incurred when the branching is wrong.
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+ */

+ read_lock(&yasi_lock); /* irqs should be already disabled here */

+ if (unlikely(!list_empty(&yasi_list)))

+ yasi_switch(prev, next);

+ read_unlock(&yasi_lock);

+ #endif /* CONFIG_YASI */

+

prepare_task_switch(rq, prev, next);

mm = next->mm;

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/

kernel/yasi.c linux/kernel/yasi.c

--- linux-vanilla/kernel/yasi.c 1970-01-01 01:00:00.000000000 +0100

+++ linux/kernel/yasi.c 2013-12-11 22:58:20.510205735 +0100

@@ -0,0 +1,384 @@

+#include <linux/yasi.h>

+#include <linux/slab.h> /* kmalloc stuff */

+#include <linux/vmalloc.h> /* vmalloc stuff */

+#include <linux/unistd.h> /* NR_syscalls */

+#include <asm/syscall.h> /* sys_call_table */

+#include <asm/desc.h> /* for pack_gate in yasi_overwrite_gate */

+#include <asm/pgtable_types.h> /* __pgprot and __PAGE_KERNEL_EXEC

*/

+#include <crypto/hash.h> /* we want to compute MD5 hashes */

+

+/* This is our safe IDTR. It is properly set in init/main.c (early

boot) */

+struct desc_ptr yasi_idtr = {0, 0};

+

+/* Here are defined a read-write lock and an empty list */
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+DEFINE_RWLOCK(yasi_lock);

+LIST_HEAD(yasi_list);

+

+/* Search length - see yasi_patch_handler function */

+#define S_LEN 128

+/* Copy length - see yasi_create_chain function */

+#define C_LEN 512

+/* Lenght of a MD5 digest - see yasi_system_safe and nested

functions */

+#define MD5_LEN 16

+

+/* Static function definitions */

+/**************************************************************/

+

+/*

+ * yasi_patch_handler: search for the 0xff 0x14 0x85 pattern and

replace it.

+ *

+ * Parameter size is S_LEN, which is 128 bytes. As stated below in

+ * yasi_create_chain, syscall_call is 69 bytes away, 128 should

suffice.

+ */

+static int yasi_patch_handler(const unsigned long addr, const

unsigned int size,

+ const unsigned long sct_addr)

+{

+ unsigned int i;

+ unsigned char is_found = 0;

+ unsigned char *ptr = (unsigned char *) addr;

+
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+ for (i = 0; i < size; i++) {

+ ptr++;

+ if (*(ptr) == 0xff && *(ptr + 1) == 0x14

+ && *(ptr + 2) == 0x85) {

+ /* We have found the pattern, patch! */

+ *(unsigned long *)(ptr + 3) = sct_addr;

+ is_found = 1;

+ break;

+ }

+ }

+

+ /* Return value accordingly */

+ if (is_found == 1)

+ return 0;

+ else return -EPERM; /* return -1 */

+}

+

+/*

+ * yasi_overwrite_gate is heavily inspired from the real kernel

code in

+ * <arch/x86/include/asm/desc.h>.

+ * The idea is to copy what the set_system_trap_gate function does.

+ */

+static inline void yasi_overwrite_gate(gate_desc *const idt,

+ const unsigned long addr)

+{

+ gate_desc s;

+

+ pack_gate(&s, GATE_TRAP, addr, 0x3, 0, __KERNEL_CS);

+ memcpy(&(idt[0x80]), &s, sizeof s);
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+}

+

+/*

+ * Do the real MD5 hashing, using crypto_shash API.

+ * This function is used solely by yasi_hash_md5 (see below).

+ */

+static int yasi_do_md5(struct crypto_shash *const shash_tfm,

+ const unsigned char *const input, const unsigned int len,

+ unsigned char *const output)

+{

+ struct {

+ struct shash_desc shash;

+ char ctx[crypto_shash_descsize(shash_tfm)];

+ } desc;

+

+ desc.shash.tfm = shash_tfm;

+ desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;

+

+ return crypto_shash_digest(&desc.shash, input, len, output);

+}

+

+/*

+ * yasi_hash_md5 computes a MD5 hash of the input and stores it in

the

+ * specified output.

+ *

+ * Code is greatly inspired from <security/integrity/ima/ima_crypto.

c>

+ */

+static int yasi_hash_md5(const unsigned char *const input,
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+ const unsigned int len, unsigned char *const output)

+{

+ struct crypto_shash *shash_tfm;

+ int ret;

+

+ shash_tfm = crypto_alloc_shash("md5", 0, 0);

+ if (IS_ERR(shash_tfm))

+ return -EPERM;

+

+ ret = yasi_do_md5(shash_tfm, input, len, output);

+ crypto_free_shash(shash_tfm);

+ return ret;

+}

+

+/*

+ * Compare byte a byte between the original (addr_o) and copy (

addr_c)

+ * Code is a slight variation of memcmp in <lib/string.c>.

+ */

+static int yasi_chk_mem(const unsigned char *const addr_o,

+ const unsigned char *const addr_c, unsigned int size)

+{

+ const unsigned char *ptr_o, *ptr_c;

+

+ for (ptr_o = addr_o, ptr_c = addr_c; size > 0; ptr_o++, ptr_c++,

+ --size) {

+ if (*(ptr_c) != *(ptr_o))

+ return 0;

+ }

+ return 1;
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+}

+

+/*

+ * Check if the IDT has been modified after module load.

+ */

+static int yasi_IDT_safe(const unsigned long idt_addr,

+ const unsigned char *const true_hash)

+{

+ unsigned char tmp_hash[MD5_LEN];

+

+ if (yasi_hash_md5((unsigned char *) idt_addr, yasi_idtr.size,

+ tmp_hash) != 0) {

+ /*

+ * We cannot perform checking! Warn the user, but return

+ * conservatively 1, we cannot return 0 here, we are unsure.

+ */

+ printk(KERN_WARNING "[YASI] Error! Unable to check memory!\n");

+ return 1;

+ }

+

+ /* We have the MD5 hash here in tmp_hash, compare it byte a byte

*/

+ return yasi_chk_mem(true_hash, tmp_hash, MD5_LEN);

+}

+

+/*

+ * Check if the HDL has been modified after module load.

+ */

+static int yasi_HDL_safe(const unsigned long hdl_addr,

+ const unsigned char *const true_hash)
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+{

+ unsigned char tmp_hash[MD5_LEN];

+

+ if (yasi_hash_md5((unsigned char *) hdl_addr, C_LEN,

+ tmp_hash) != 0) {

+ /*

+ * We cannot perform checking! Warn the user, but return

+ * conservatively 1, we cannot return 0 here, we are unsure.

+ */

+ printk(KERN_WARNING "[YASI] Error! Unable to check memory!\n");

+ return 1;

+ }

+

+ /* We have the MD5 hash here in tmp_hash, compare it byte a byte

*/

+ return yasi_chk_mem(true_hash, tmp_hash, MD5_LEN);

+}

+

+/*

+ * Check if the SCT has been modified after module load.

+ */

+static inline int yasi_SCT_safe(const unsigned long sct_addr)

+{

+ /*

+ * Computing hashes is quite expensive. We could not do otherwise

+ * with the HDL and the IDT, but here we can avoid this cost since

+ * we have a good and safe copy in memory.

+ */

+ return yasi_chk_mem((unsigned char *) sys_call_table,

+ (unsigned char *) sct_addr, NR_syscalls * 4);
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+}

+

+/* Extern function definitions */

+/**************************************************************/

+

+/*

+ * yasi_delete_chain: simply free every kmalloc’ed memory.

+ * We cannot free vmalloc’ed memory, because we are under spinlocks,

+ * lockdep will start whining about HARDIRQ unsafe scenarios.

+ *

+ * Just remember to save a pointer to the vmalloc’ed memory,

+ * call this function and, when it’s safe to do so, vfree that

pointer.

+ */

+void yasi_delete_chain(struct yasi_chain_info *const info)

+{

+ kfree((void *) info->sct);

+ kfree((void *) info->idtr.address);

+}

+

+/*

+ * yasi_create_chain does the following stuff:

+ *

+ * Create a copy of the SCT

+ * Create a copy of the syscall_handler

+ * Patch the syscall_handler copy

+ * Create a copy of the IDT and a new IDTR

+ * Patch the copy of the IDT

+ * Create some MD5 hashes...
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+ *

+ * ... and put all the needed stuff in *info.

+ */

+

+int yasi_create_chain(struct yasi_chain_info *const info)

+{

+ /* Default return code */

+ int ret = 0;

+

+ /*

+ * From my own System.map-3.2.51-zuarte:

+ * xxxx06c4 t work_pending

+ * xxxx060d t syscall_call

+ * xxxx05c8 T system_call

+ *

+ * The difference between work_pending and system_call

+ * is 0xfc = 252 (decimal). C_LEN = 512 looks very safe.

+ *

+ * However, the pattern the attacker is interested in is

+ * at syscall_call and tt’s just 0x45 = 69 bytes off.

+ *

+ * Ideally, we could do some ASM magic, declaring a label as

+ * a function in <arch/x86/kernel/entry_32.S>, in order to get

+ * quickly its address. It is not much cleaner either though.

+ *

+ * I’m _VERY_ sorry for the _UGLY_ code here.

+ */

+

+ /*

+ * Create a copy of the System Call Table.
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+ * Don’t forget that each entry is 4 bytes long.

+ */

+ info->sct = (unsigned long) kmalloc(NR_syscalls * 4, GFP_KERNEL);

+ if (((void *) info->sct) == NULL) {

+ ret = -ENOMEM; /* -12 */

+ goto yasi_exit;

+ }

+ memcpy((void *) info->sct, sys_call_table, NR_syscalls * 4);

+

+ /*

+ * Create a copy of the syscall_handler.

+ * In order to do that grab the address of the system_call

+ * entry point from the real IDTR.

+ *

+ * Use __vmalloc to get executable pages.

+ */

+ info->hdl = (unsigned long) __vmalloc(C_LEN, GFP_KERNEL,

+ __pgprot(__PAGE_KERNEL_EXEC));

+ if (((void *) info->hdl) == NULL) {

+ /* Free the sct memory */

+ kfree((void *) info->sct);

+ ret = -ENOMEM; /* -12 */

+ goto yasi_exit;

+ }

+

+ /* See gate_offset in <arch/x86/include/asm/desc_defs.h> */

+ memcpy((void *) info->hdl,

+ (void *) gate_offset(*((gate_desc *) yasi_idtr.address + 0x80)),

+ C_LEN);

+
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+ /*

+ * Now patch the handler. What we need to do is to find a

+ * 0xff 0x14 0x85 pattern, the next 4 bytes are the

+ * system call table address.

+ */

+ if ((ret = yasi_patch_handler(info->hdl, S_LEN, info->sct) != 0))

{

+ /* Free the sct and handler memory */

+ vfree((void *) info->hdl);

+ kfree((void *) info->sct);

+ goto yasi_exit; /* return -1 (-EPERM) */

+ }

+

+ /* Create a copy of the IDT and a new IDTR */

+ info->idtr.size = yasi_idtr.size;

+ info->idtr.address = (unsigned long) kmalloc(yasi_idtr.size,

GFP_KERNEL);

+ if (((void *) info->idtr.address) == NULL) {

+ /* Free the sct and handler memory */

+ vfree((void *) info->hdl);

+ kfree((void *) info->sct);

+ ret = -ENOMEM; /* -12 */

+ goto yasi_exit;

+ }

+ memcpy((void *) info->idtr.address, (void *) yasi_idtr.address,

+ yasi_idtr.size);

+

+ /*

+ * Patch the IDT! Go to the 0x80th entry of the copied IDT

+ * and you’ll find there a gate descriptor, patch the address
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+ * to our entry point.

+ */

+ yasi_overwrite_gate((gate_desc *) info->idtr.address, info->hdl);

+

+ /*

+ * Now we have:

+ * A fake IDTR -> a fake IDT -> 0x80 (fake trap gate) ->

+ * fake syscall_handler -> (fake call) [ff 14 85 xx xx xx xx] :)

+ *

+ * Now create the hashes of the fake IDT and HDL. We want to know

if

+ * the module will modify these structures. We don’t need to

+ * store the hash of the SCT because we already have a good copy

+ * in memory (sys_call_table symbol).

+ */

+ ret = yasi_hash_md5((unsigned char *) info->idtr.address,

+ yasi_idtr.size, info->idt_hash);

+ if (ret != 0) {

+ /* Free all the requested memory so far */

+ kfree((void *) info->idtr.address);

+ vfree((void *) info->hdl);

+ kfree((void *) info->sct);

+ goto yasi_exit; /* return -1 (-EPERM) */

+ }

+

+ ret = yasi_hash_md5((unsigned char *) info->hdl, C_LEN,

+ info->hdl_hash);

+ if (ret != 0) {

+ /* Free all the requested memory so far */

+ kfree((void *) info->idtr.address);
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+ vfree((void *) info->hdl);

+ kfree((void *) info->sct);

+ goto yasi_exit; /* return -1 (-EPERM) */

+ }

+

+ /* Perfect, now remember that, on success, we return 0. */

+yasi_exit:

+ return ret;

+}

+

+/*

+ * yasi_system_safe: check behaviour of the module after loading it.

+ * return value is 1 if the system is safe, 0 otherwise.

+ */

+void yasi_system_safe(const struct yasi_chain_info *const info,

+ const char *const m_name)

+{

+

+ struct desc_ptr current_idtr;

+

+ __asm__ __volatile__ ("sidt %0" : "=m" (current_idtr));

+

+ if (unlikely(current_idtr.address != info->idtr.address)) {

+ printk(KERN_ALERT "[YASI] module %s has tried to modify "

+ "at least the IDTR.\n The system is SAFE but it is suggested "

+ "to reboot to revert to a clean state.\n"

+ "Do not rmmod the module, a kernel OOPS may appear.\n", m_name);

+ }

+
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+ else if (unlikely(yasi_IDT_safe(info->idtr.address, info->idt_hash

) == 0)) {

+ printk(KERN_ALERT "[YASI] module %s has tried to modify "

+ "at least the IDT.\nThe system is SAFE but it is suggested "

+ "to reboot to revert to a clean state.\n"

+ "Do not rmmod the module, a kernel OOPS may appear.\n", m_name);

+

+ }

+

+ else if (unlikely(yasi_HDL_safe(info->hdl, info->hdl_hash) == 0))

{

+ printk(KERN_ALERT "[YASI] module %s has tried to modify "

+ "at least the system call handler.\nThe system is SAFE but "

+ "it is suggested to reboot to revert to a clean "

+ "state.\n"

+ "Do not rmmod the module, a kernel OOPS may appear.\n", m_name);

+

+ }

+

+ else if (unlikely(yasi_SCT_safe(info->sct) == 0)) {

+ printk(KERN_ALERT "[YASI] module %s has tried to modify "

+ "the system call table.\nThe system is SAFE but it is "

+ "suggested to reboot to revert to a clean state.\n"

+ "Do not rmmod the module, a kernel OOPS may appear.\n", m_name);

+ }

+

+ else printk(KERN_INFO "[YASI] No malicious behaviour detected in "

+ "module %s.\n", m_name);

+}

diff -uprN -X linux-vanilla/Documentation/dontdiff linux-vanilla/
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security/Kconfig linux/security/Kconfig

--- linux-vanilla/security/Kconfig 2013-09-10 02:57:42.000000000

+0200

+++ linux/security/Kconfig 2013-12-11 23:00:51.839192369 +0100

@@ -183,6 +183,19 @@ config LSM_MMAP_MIN_ADDR

this low address space will need the permission specific to

the

systems running LSM.

+config YASI

+ bool "YASI Kernel Patch Protection (DANGEROUS)"

+ depends on EXPERIMENTAL && MODULES && X86_32 && CRYPTO_MD5

+ default n

+ help

+ This activates the YASI KPP, which tries to protect the kernel

against

+ malicious synchronous LKM.

+

+ The code is currently under development and, as such, it is very

+ experimental.

+

+ If you are unsure how to answer this question, answer N.

+

source security/selinux/Kconfig

source security/smack/Kconfig

source security/tomoyo/Kconfig
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Appendix B

Evil kernel code - HDL

patching

1 #include <linux/kernel.h>

2 #include <linux/module.h>

3 #include <linux/slab.h>

4 #include <linux/delay.h>

5 #include <linux/unistd.h>

6

7 static unsigned long *pattern_addr;

8 static void ** sct;

9 static void ** new_sct;

10

11 static unsigned long * find_sct(const unsigned long addr,

12 const unsigned int size)

13 {

14 unsigned int i;

15 unsigned char *ptr;
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16

17 ptr = (unsigned char *) addr;

18

19 for (i = 0; i < size; i++) {

20 ptr++;

21 if (*ptr == 0xff && *(ptr + 1) == 0x14

22 && *(ptr + 2) == 0x85) {

23 return (unsigned long *)(ptr + 3);

24 }

25 }

26 /* didn’t find */

27 return NULL;

28 }

29

30 int init_module(void)

31 {

32 struct desc_ptr idtr;

33 unsigned long handler;

34

35 __asm__ __volatile__ ("sidt %0" : "=m" (idtr));

36 printk(KERN_INFO "[%s] IDT is @ 0x%lx\n",

37 __this_module.name, idtr.address);

38

39 handler = gate_offset(*((gate_desc *) idtr.address + 0x80));

40 printk(KERN_INFO "[%s] HDL is @ 0x%lx\n",

41 __this_module.name, handler);

42

43 pattern_addr = find_sct(handler, 128);

44

45 if (pattern_addr == NULL) {
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46 printk(KERN_INFO "[%s] SCT not found\n", __this_module

.name);

47 return -1;

48 } else {

49 sct = (void *) *pattern_addr;

50 printk(KERN_INFO "[%s] SCT is @ 0x%lx\n",

51 __this_module.name, (unsigned long) sct);

52 }

53

54 new_sct = (void **) kmalloc(NR_syscalls, GFP_KERNEL);

55 if ((void *) new_sct == NULL)

56 return -1;

57 memcpy((void *) new_sct, (void *) sct, NR_syscalls);

58 printk(KERN_INFO "[%s] New SCT is @ 0x%lx\n", __this_module.

name,

59 (unsigned long) new_sct);

60 get_cpu();

61 write_cr0(read_cr0() & (~0x10000));

62 /* Patch handler! */

63 *pattern_addr = (unsigned long) new_sct;

64 write_cr0(read_cr0() | (0x10000));

65 put_cpu();

66 return 0;

67 }

68

69 void cleanup_module(void)

70 {

71 get_cpu();

72 write_cr0(read_cr0() & (~0x10000));

73 /* clean */
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74 *pattern_addr = (unsigned long) sct;

75 write_cr0(read_cr0() | (0x10000));

76 put_cpu();

77 kfree((void *) new_sct);

78 }

79

80 MODULE_LICENSE("GPL");
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