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Preface

In the early years of the past decade, the exponential growth of the sequential

computing performance that has characterized the previous fifty years suffered

a setback. Although the quantity of transistors on a chip continues to follow

Moore’s law, it has become increasingly difficult to continue to improve the

performance of sequential processors by simply raising the clock frequency,

mainly due to power and cooling motivations. To remedy this situation, the

industry released the so-called “multicore”, or “chip multiprocessors” systems,

which provide for the presence of multiple processing units on a single chip

and connected through a shared memory. In subsequent years the number of

processors on a chip will increase at the Moore’s law rate, as well as the peak

number of instructions executed per seconds, allowing this architecture to be

the potential solution to the problem of stalled performance growth.

On the other hand, a parallel program is far more difficult to design than

an equivalent sequential program, and rarely offers a significant performance

increase which may be attributable to the nature of the program and the

impossibility to structure it in a set of parallel independent tasks. The most

real-world computational problems cannot be effectively parallelized without

incurring the cost of inter-processor communication and coordination because,

while parts of the program mandatory need to be performed in a serial manner,

the parallel parts may also need to access shared data, which in turn require

particular synchronization techniques. Parallelization and synchronization

can have therefore a dominant effect on performance resulting in this way
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in an extremely non-linear speed-up curve tending to stall or worse. Thus,

parallel programming makes more complex the programmer work with respect

to the sequential one; a simple task requires much more attention in order

to guarantee fundamental properties such as “safety” and “liveness”, and an

approach that seems to be very good in solving a problem could give rise to

bad outcomes in solving another one.

While parallelism has been a difficult problem for general-purpose pro-

gramming, database systems have successfully exploited parallel hardware for

decades by executing many queries concurrently on multiple processors. The

author of the query does not care anymore about parallelism and has only to

focus on the correctness of the query itself, leaving the hard task of ensuring

atomicity, consistency, isolation and durability (A.C.I.D.) to the transactional

engine that is part of the database management system (DBMS). The trans-

action is indeed the heart of the programming model for databases and can

be expressed as a group of read and write operations performed on shared

objects which must appear to be executed atomically at a single point in time,

before and after the effect of other transactions running or not concurrently, in

a serial one-at-a-time order. Transactions offer therefore a proven abstraction

mechanism in database systems for constructing reusable parallel computations,

and the advent of multicore processors has renewed interest in an old idea,

that of incorporating transactions into the programming model used to write

parallel programs.

This is the approach followed in Transactional Memory (TM), a paradigm

that enables programmers of concurrent applications to rely on atomicity and

isolation guarantees provided by some TM layer. In this thesis I will present a

fully innovative mechanism enabling in-memory transactions to be executed

as preemptable tasks, with preemption actuated according to very fine grain

intervals. This in turn enables a single thread to exploit one CPU-core in the

most effective manner with respect to different priority levels of the transactions
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to be processed, an issue that as not yet been tackled by any literature study.
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Chapter 1

Introduction

Transactional Memory (TM) is the raising paradigm for the management

of shared data accesses on multicore machines. It allows programmers to

mark code blocks as transactions, which are then handled, in terms of actual

memory operations, by some underlying TM layer. The latter is in charge

of guaranteeing isolation and atomicity while executing those code blocks,

say all or nothing execution semantic. This allows achieving similar or better

level of performance than fine-grain hand-made locking. Anyhow, TM jointly

guarantees much higher transparency to the programmer since he is fully

relieved from the burden of hand-coding synchronization operations. Nowadays

various TM implementations exist, but the most diffused ones are still based

on software support and known as Software-TM (STM). Despite the offered

advantages, STM environments are still doomed to improvements, particularly

for what concerns the managements of differentiated transaction priority levels.

Indeed, in the state of the art Software Transactional Memory systems, great

attention has been paid to the possibility to either reduce the incidence of

transaction aborts [4], [2], [20], or determine the well suited level of parallelism

of the TM-based application [16], [17], [18], [3], [5], while the only work we are

aware of which discriminates between transaction priorities in TM systems is

the one in [12], where the authors introduce an approach to favour transactions
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experiencing abort retries due to conflicts while getting closer to deadlines, by

promoting them to execute more conservatively through the use of different

transaction execution modes that make it possible to reduce the level of

optimism and to increase its predictability, which in turn implicitly enable a

dynamic increase of the priority.

Handling different priorities is not an easy task, and it does not find an

immediate solution in naive implementations as could be using more TM-

threads than the number of available cores, mostly because they show a

CPU-bound execution profile such that the resulting competition to grab CPU-

usage would degrade performance and has been shown to be likely adverse to

TM applications [7]. Furthermore, the dynamic spawning of every new thread

as a reaction of some high priority request to run an in-memory transaction

might be unviable due to an excessive overhead (given the much finer-grain

nature of in-memory transactions compared to their counterpart in database

systems). On the other hand, resorting on a static pool of threads for processing

higher priority requests, each one bound to a given CPU-core, might give rise to

CPU under-utilization along execution phases which do not show the presence

of such higher priority requests. Consequently, the very basic implementation

of such TM systems relies on the delayed processing of an incoming high

priority request up to the point in time where some thread ends its last started

transaction, and become able again to take care of the execution of a new

transaction, the highest priority one available at that time. We also want

to underline that, even if a signaling mechanism were used to notify the

materialization of a standing request, the time needed to deliver the signal

would be still bound to the conventional operating system timer-interrupt

interval (typically ranging from 1 to 4 milliseconds on most operating systems’

configurations), thus being not fully adequate to fastly react to the arrival of a

higher priority transaction.

The solution we found to this problem resides in the design and implementa-
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tion of a preemptive STM environment to be run on top of Linux/x86 systems.

The core component is an ad-hoc timer management Linux module, which

allows for (periodical) control flow variations along any running thread with

no intervention by the chain of kernel-level mechanisms used for supporting

Posix signals, hence leading to minimal run-time overhead. Clearly, we also

manage differentiated execution contexts within the STM layer such that the

transaction which leaves the CPU is not aborted, rather it can be resumed

later along the original thread or another one running the STM application.

Indeed, the module mechanism allows any registered thread running whatever

transaction to be interrupted, and provides context saving for transactions

that are going to be switched off the CPU to favour a higher priority one.

The context associated to the latter is then loaded in CPU and the relative

execution flow nested along the same thread, with no need to rely on additional

threads and preventing in this way the aforementioned problems. Moreover this

proposal does not create any bias in terms of CPU assignment across threads

running on top of the Linux system given that the fine-grain timer-interrupt

mechanism we adopt does not alter the original operating system planning

in terms of overall CPU time to be assigned to the different threads, but it

only allows an original tick destination to those threads to be partitioned into

subintervals, at whose end control flow variation may occur.
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Chapter 2

Software Transactional Memory

Transactional Memory aims to simplify concurrent programming by allowing

a set of read and write operations on shared objects to appear as they have

been atomically executed at a certain instant in time, before and after other

transactions executed or not concurrently in a one-at-a-time order, as if each

transaction had started from a consistent state and its effects had produced

another consistent state. This high level of abstraction is a welcome solu-

tion for programmers who do not want to have to deal with low level thread

synchronization mechanisms which could lead to make mistakes. Further,

even if mistakes do not occur the whole execution could risk a significant

performance degradation due to a not well handled synchronization procedure

among the involved parts. Differently, transactional memory provides opti-

mistic concurrency control by allowing threads to run in parallel with minimal

interference. In this optimistic concurrency control scenario, a transaction is

executed speculatively, that is it makes tentative changes to objects and if it

completes without encountering a synchronization conflict, then it commits

(the tentative changes become permanent), otherwise it aborts (all changes are

discarded). Hence, the execution of a set of transactions on a set of shared

objects can be modelled by a history, a total order of operations, commit and

abort event. By this we may give the first very intuitive safety property to
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guarantee a correct behaviour, that is the “serializability” property [13], for

which a history of committed transactions is serializable if there exists a serial

history that contains the same transactions belonging to the original history, if

it is sequential (all transactions are not concurrent), and if every read returns

the last value written. It’s immediately clear that this property is needed to

ensure the already mentioned one-at-a-time order of atomically executed and

committed transactions, which in turn make it possible to understand the

evolution of consistent states when the execution follows a correct behaviour.

However, while this property is fully adequate to guarantee safety in a database

environment, this is not sufficient in a STM environment where observing

inconsistent values may either crash or hang an otherwise correct program, and

we therefore need of a more strict property than serializability. This property

is called “opacity” [9], and requires that every operation sees a consistent state,

even if the transaction ends up aborting. In the classic concurrency control

scheme, writes are buffered to private workspace and atomically applied at

commit time while reads are optimistic and transaction is validated at commit

time; hence this scheme does not guarantee opacity and should be fitted with

a per-operation validation mechanism in order to safety execute STM appli-

cations. Besides the safety property, it is of particular interest the liveness

property for those transactions that are subject to repeated aborts; however

it’s almost impossible to give strict progress guarantees in an asynchronous

system and a desirable condition is that a correct transaction, which may abort

and immediately restart a finite number of times, eventually commits. This

is true in modern STM environments, where the aborts are unavoidable due

to contention, but anyhow handled by mean of different contention-managers

(CM) that encapsulate policies to deal with different contention scenarios.

However, despite the modern STM systems implement all the mechanism

needed to support the correct optimistic execution of the transactions according

to the properties described before, they do not intrinsically provide any method
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to support the execution of transactions with different priority levels, that

is the ability of the system to understand each time what is the highest-

priority transactional request currently pending into the system itself, which

by definition should take precedence over all the other ones so as to condition

the time elapsed between its arrival and the final commit in positive way. In an

hypothetical scenario, an application interfaced with a front-end system may

need to perform critical activities before others, from which results depend

the executions of subsequent tasks, hence it issues transactions labelled with

different priority levels. Differently, a back-end system receiving an high-load of

transactional request may dispatch predefined transactional profiles according

to different priority levels, as it could be for the shortest-job-first (SJF) approach

which is a classical way of managing priorities in computer systems in order

to allow the optimization of server side run-time dynamics. Then, even if we

cannot avoid transactions to abort upon conflict in an asynchronous system,

this does not leave that the threads in charge of executing transactions may

schedule the higher-priority ones before the others, affecting in this way the

time they spend within the system.

Lot of attention has been paid in literature to the ability to adaptively

adjust the concurrency degree of threads executing transactions, say the one

that avoids thrashing due to excessive transaction aborts caused by oversized

level of parallelism, by adopting the so-called thread scheduling policies. These

techniques rely on either analytical or machine learning approaches, or the

mixture of them as described in [3], [5], [16], [17], [18], which allow the

threads to dynamically pause or resume depending on the workload profile that

determines whether transactions are more prone to access the same data, which

in turn yields to higher conflict (hence abort) rate. Other works focused on the

possibility to reduce as much as possible the incidence of aborts. Along this

path, several approaches have been based on the so-called transaction scheduling

policies [2], [4], [20], which control whether some standing transaction can be
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admitted to the processing stage, or need to be delayed for a while, because of

a high likelihood of conflicts with already running transactions.

However, none of these works deals with transaction priorities, and with

the possibility to timely pass control to higher priority transactions along

an already running thread, which is instead under our investigation scope.

Therefore, they are in such a way orthogonal to our work and they could be

ideally combined with our one. The state of the art Software Transactional

Memory is devoid of such topic, and the only work we are aware of is the one

in [12]. Here, the authors give to the application the possibility to stipulate a

QoS contract between the programmer and the STM library by associating an

atomic block with a deadline, that is the point in time before which they want

the related transaction completes. Such a value is a time relative to the first

attempt of the transaction to commit, and it is computed as a multiple of an

average among the collected times of runs which end up committing. Indeed,

a reservoir of sampled times is continuously fed so as to maintain an history of

the last successful runs (not aborted, only committed). This window of time is

also composed by a certain number of subintervals, representing each one the

range within which a transaction that repeatedly aborts must be re-started in

a predefined execution mode. A transaction associated with a deadline starts

executing in the optimistic mode by performing invisible reads, and in case it

undergoes repeated aborts it restarts again in this mode until the end of the

first interval, after which a more conservative mode is employed, the read-visible

one, implying by definition the possibility to mark an object as read so as to

allow other transactions running concurrently to detect the conflict at the same

time at which it takes place. If the transaction experiencing conflict is running

optimistically, then it aborts in favour of the read-visible one; conversely, one

of the contention managers that the authors propose is engaged. Again, if the

transaction in read-visible mode ends up aborting after this second interval of

time, then it should be re-started in irrevocable mode. This last mode is the
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most conservative one, and it provides that the transaction running in this way

does not undergo abort by marking conflicting transactions as killed and by

stealing their locks on already accessed shared objects. It’s quite obvious that

one and only one transaction at a time may be in irrevocable mode, which

implies that multiple transactions experiencing abort in this interval must be

enqueued and their execution delayed. Hence, this mechanism intrinsically

implies a sort of prioritized execution of transactions which start executing

more conservatively while approaching their deadlines.

On our side, the solution we provide does not alter the execution mode

of running transactions, as well as it does not change the behaviour of the

CMs employed by the TM-layer. Rather, it aims to support the execution

of incoming transactional requests coupled with an in-birth priority label by

reacting as fast as possible upon the arrival of a higher-priority transactional

request. We also care of the time that elapses between the aforementioned

arrival and the time at which the transaction starts running, which is typical

in back-end systems where incoming requests are continuously accepted and

enqueued by threads that are listening on a pool of sockets. In this scenario,

a great number of different priority transactional requests, greater than the

number of available CPU-cores, may be waiting in a ready-to-run state before

their first execution, and it’s clear they should not be handled in the same way,

rather the environment must be designed in such a way that higher-priority

transactions take precedence over the lower-priority ones, even if they are

currently running in CPU. On the other hand, we do not want the already

started transactions lose their progress whenever they are forced to undergo

preemption in favour of a higher-priority transaction. It’s therefore in our

interest the responsiveness to the transaction’s arrival events, without harming

too much the already started transactions. Their contexts should be preserved

so as to resume them later, at the time at which a no more busy thread will

select one of these to continue its execution; no matter if conflicts have occurred
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during the time the transaction is paused, because we leave this task to the

TM-layer in charge of handling conflicts in the more appropriate way. In these

conditions, more contexts than available CPU-cores can be active, and the

classical architecture for STM-based applications is no more helpful in this

sense. We will explain in detail how the architecture is structured and its

setup phase in Chapter 4, immediately after discussing its core components in

Chapter 3.
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Chapter 3

Components

The implementation of our system, as we briefly discussed in the introduction

chapter, relies on different technologies. It is integrated with the open source

TinySTM package [8], which is indeed the STM system that we have chosen to

support the execution of the transactions. The core part is the aforementioned

Extra-Tick module, in charge of the control flow variations when needed.

Further, the benchmark we adopt to test our architecture is the classical TPC-

C [19], which simulates a complete computing environment where a population

of users executes transactions against a database.

3.1 TinySTM

TinySTM is a very simple and performing word-based STM implementation

that uses a single version of the LSA (Lazy Snapshot Algorithm) discussed in

[15], which rests on a time-based design. Word-based means that it is possible

to directly map transactional accesses to the underlying memory subsystem

at the granularity of machine words or larger chunks of memory (a memory

region), while time-based refers to the use of a global time to reason about the

consistency of data accessed by transactions, and about the order in which

transactions commit. The LSA algorithm has been introduced to resolve the
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very expensive operation of validation needed to ensure the opacity property,

that in its naive implementation requires to check all data previously read

with a cost that grows quadratically with the number of accessed data. LSA,

instead, allows to construct an always consistent snapshot for transactions

derived from the intersection of the validity ranges of all those read/write

operations performed by the transaction itself. If the intersection is a non-

empty interval, then the versions of all accessed data overlap and we are still

working in a consistent state, otherwise opacity is no more ensured and one

of the transactions might need to wait or be aborted. In case one or more

transactions incur a conflict, several contention management strategies are

available, among which the CM_SUICIDE is the one we used to configure the

TinySTM’s CM in our implementation, which provides the immediate abort

for those transactions that detect the conflict. Furthermore, TinySTM has the

possibility to be configured with either WRITE_BACK_ETL (encounter-time-

locking) or WRITE_BACK_CTL (commit-time-locking) to access data. Since

we have introduced within TinySTM a fully innovative preemption facility, we

decided to experiment with the commit-time-locking configuration. Encounter-

time-locking, instead, would require an extra scheme to manage locks held by

transactions that are going to be suspended, and which is actually out of our

investigation scope.

3.2 Extra-Tick Module

Before explaining the structure of the module and its operation, we give some

basic concepts about what hardware component is responsible for delivering

interrupts and how the Linux operating system manages them. Architecture

x86 processors are equipped with a timer facility exploited to drive the passage

of time, named LAPIC-timer supported by APIC (Advanced Programmable

Interrupt Controller), which is a timer-component local to the CPU-core. The
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LAPIC-timer can be configured to operate in different modes, among which

the one used by the Linux kernel is the periodic-interrupt mode. At boot-time

the so-called calibration procedure sets the LAPIC-timer to a well defined scale

value, so as to generate interrupts with a predefined period of time (typically

ranging from 1 to 4 milliseconds).

Figure 3.1. x86 interrupt system.

Linux handles timer-interrupt in the same way it does with other kind

of interrupts, following the top/bottom-half paradigm. Indeed, for certain

interrupts, there’s the pressing need to timely handle the most urgent section

of the events, and it is just the top-half part of the interrupt handler to fulfil

this task which commonly includes very simple operations without risking

to delay possible critical activities, plus the registration of the associated

bottom-half part into an ad-hoc data structure that will be queried at certain

reconciliation points, when will be sure there are no sensitive structures we are

operating on. While the top-half part of the timer-interrupt handler simply

increases the jiffies counter and marks the task-queue tq_timer as ready to

be queried, the bottom-half checks whether the need_resched variable in the

current PCB structure has been flagged, and in case invokes the schedule()

function for performing actual context switches, actuated right prior to leave

kernel mode, when no kernel-level critical task is being executed by the thread.

That said, it’s clear that the module should be aware of which threads
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need to be managed according to the lightweight extra-tick scheme, and which

do not. Threads which are not involved in TM operations should not deliver

extra-tick, but they have to be only subject to the basic scheduler’s strategy

that, as already mentioned, is absolutely not modified by the module activation.

To this end, the module adopts a dynamic patching approach that rewrites

parts of the executable image of the kernel upon being loaded and avoids in this

way a kernel recompilation. The portions of the whole kernel architecture that

need to know whether some thread is registered for delivering extra-tick are

the kernel scheduler and the top-half part of the timer-interrupt handler. The

schedule() function is patched by injecting an execution flow variation such

that control goes to a schedule_hook() routine offered by the module right

before schedule() would execute its finalization part, when the decision about

what thread needs to take control of the CPU-core is already finalized. As a

consequence, the module is able to check whether the thread is a registered

one, and in case it changes the LAPIC-timer period according to a scale value.

Further, it records in a per CPU-core entry a value to remember that the

CPU-core is actually working in extra-tick mode, thus simplifying the reverse

process when a non-registered thread shall take control on that CPU-core.

The top-half hook, instead, is in charge of executing the same identical basic

actions as those executed by the original top-half procedure with the difference

that it is able to discriminate whether the interrupted thread is a registered

one, and in positive case:

1. It decreases the extra-tick counter associated to the thread.

2. If the counter reaches zero, then the original period has expired and

kernel-level timing information must be updated, as it was the original

handler to carry out this task.

3. It exploits the CPU-context saved by the top-half part of the timer-

interrupt handler to retrieve and update the user-level stack-pointer (SP)



14 3. Components

address, as well as the original instruction-pointer (IP) address, in order

to reflect the insertion of a new element, which is just an IP address

different from that in which the thread was interrupted, so that when the

timer-interrupt handler returns the user-level thread may asynchronously

start executing a code block by not referring to any function call, but at

the end of which a simple ret instruction will bring it to run up where

it left off.

4. Finally, if the extra-tick counter reached the value zero, the thread is

again filled with the number of extra-ticks it is allowed to receive in the

next period.

The Figure 3.2 below gives an idea on how the top-half part of the extra-tick

timer-interrupt handler recovers all it needs from the CPU state’s snapshot

presents in the kernel-stack area immediately after the CPU-core firmware

accepts the interrupt. Once the user-level stack has been altered according to

the extra-tick logic, such a snapshot is altered too in order to start running

the code block mentioned above.

Figure 3.2. Stack and CPU context management by the LAPIC-timer
top-half hook.

Last but not least, a thread can register itself to deliver extra-ticks by

issuing a ioctl call towards a special device file called dev_extra_tick offered
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by the module, which in turn exposes several facilities such as the possibility

to register a callback function as entry-point for the code block we want to be

performed at the completion of the interrupt handler. The behaviour of the

top-half hook for the LAPIC-timer interrupt is schematized below.

Figure 3.3. Behaviour of the top-half hook for LAPIC-timer interrupt.

By the way, this approach to modify the execution flow of a registered

thread by altering the user space stack just above the current stack-pointer ad-

dress, requires that the application is compiled by passing the -mno-red-zone

directive to GCC, to indicate that we do not allow the conventional red zone

displacement in the stack for leaf functions provided by some compilation

tool-chains.

3.3 TPC-C Benchmark

Transaction Processing Performance Council (TPC) is a non-profit organiza-

tion to define transaction processing and database benchmarks. The TPC-C

benchmark measures the performance of online transaction processing systems

(OLTP) and it is based on a complex database and a number of different

transaction types that are executed on it. TPC-C simulates an environment
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where the central elements are typical transactions of a wholesale company

concerning order entries and includes 5 different transaction profiles (new order,

payment, order status, delivery, and stock level) to supply items from a set of

warehouses to customers within sales districts.
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Chapter 4

The Preemptive STM

Architecture

Our preemptive STM architecture is based on a few standard facilities offered

by Linux, plus additional kernel and user space facilities we discussed in the

previous chapter. In Figure 4.1 it’s shown a high level schematization of

the whole architecture in order to give to the reader a first idea of how it

is structured and try to understand how it works. Our preemptive STM

architecture is targeted at back-end STM environments that, differently from

the front-ends which are mainly the presentation layers to interface with users,

have the responsibility to correctly process incoming requests issued by users

through more than one front-end system. In fact, our goal is primarily intended

for the optimization of the performance of back-end systems in terms of overall

reduction of turnaround time of high-priority transactions so as to spend less

time as possible within the system, without damaging too much the lower

priority ones.

From the moment a transaction arrives into the system until it is com-

pleted, it will be associated with one and only one data structure we name

transaction_context, representative of the status of the transaction itself,

including the CPU-context (all CPU registers) and the user-level stack area,
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Figure 4.1. Basic architectural organization.

which is different for each transaction_context instance. Moreover, in order

to avoid too many frequent calls to malloc/free functions offered by the GNU C

standard library, we rely on an ad-hoc memory management system which draws

from a pool of NUM_CONTEXTS data structures of type transaction_context.

Once a transaction completes, the associated structure is released into the pool

of contexts and again made available for reuse by the incoming transactions.

Since our architecture aims to manage more contexts than worker threads

processing transactional requests, we let NUM_CONTEXTS be a configurable pa-

rameter that should be set to a value significantly greater than the number

of worker threads selected for running the STM application, enough for the

purpose we have set ourselves.

A classical socket pool is handled in order to receive requests for executing

data manipulations transactionally, which come in from some front-end system

as hinted before. The job of receiving requests from sockets is done via

dedicated server threads, whose execution profile is clearly I/O bound, thus

not interfering in significant manner with the worker threads even in scenarios

where the total amount of threads exceeds the number of available CPU-cores.

Once a server thread receives a new request it queries the memory management

system described before in order to get back a free transaction_context
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structure, which will be initially filled with all values needed to successfully

complete an execution such as the fields related to the specified transactional

profile and the in-birth priority, then it proceeds to insert such a context into

a priority queue structure, at the corresponding priority level. Overall, request

insertion into the priority queue takes place off the critical path of the worker

threads running the STM based application logic, which are therefore enabled

to find the most up-to-date state of the priority queue every time a fine-grain

periodical control flow variation occurs, so as to verify the need to pass control

to some pending higher-priority request.

Such periodical control flow variation is based on the fine-grain timer-

interrupts managed by the Linux extra-tick module discussed in section 3.2.

These interrupts are issued exclusively towards worker threads, and lead to the

activation of a user space module we refer to as preemption_check() registered

by the worker thread itself as callback function during the setup phase. As

soon as this function starts executing, the first thing it does is to check whether

we are currently running in preemptable mode, verifiable by reading a thread-

local-storage (TLS) variable we simply name PREEMPTABLE, in order to avoid

the execution of the code block that implements the preemption management

policies at the core of our STM environment when not needed. Conversely,

if the PREEMPTABLE variable is set, then the code block implementing those

policies must be executed. Let’s recall that this callback function violates any

calling convention dictated by the System V AMD64 ABI for architecture

x86 and followed by the Linux systems, and the execution is actually at a

point in which the same function has not been called by anyone, so that

any operation performed before the ret instruction will dirty the registers’

content, invalidating in this way the CPU-state to which the worker thread

has undergone preemption. This is the reason why the preemption_check()

function is completely coded in assembly programming language, so as to

get full control on the registers we are going to use. The content of any
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used register plus the flags’ one is temporary saved in the stack and restored

only at the end, immediately before the ret instruction is executed. The

preemption_check() source code is reported in Appendix C for completeness.

If a different transaction needs to take control of the CPU-core, the context of

the currently processed transaction must be saved in its transaction_context

data structure and enqueued again within the right priority queue, so that

any worker thread will be able to restore it according to a many-to-many

user-level-thread model. In the meanwhile, the context of the higher-priority

transactional request (new or already suspended) is installed so that the worker

thread can start processing it.

Figure 4.2. Fine-grain interrupts timeline.

We shall now discuss how it is possible to explicitly switch among two

different transactional contexts. The main problem we had to face is related

again to the already mentioned calling conventions, according to which the

compilers are in charge of dividing general purpose registers between caller-

save and callee-save registers. Unfortunately we cannot rely on the compiler

at this point of the execution, which it reflects on the impossibility to use

traditional implementations of setjmp/longjmp Posix API functions. In

particular setjmp is regarded by the compiler as a function call, therefore any

required caller-save register is pushed before issuing that call, allowing the
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setjmp to store only callee-save registers. So, we have to relay on a different

implementation of these two functions in order to still permit a correct control

flow variation by saving all registers in the exec_context_t data structure

which is part of the transaction_context data structure, and preserving in

this way the transactional state that is about to undergo preemption. These

functions, named _set_jmp and _long_jmp to recall the original ones, are

introduced in [14] and we report the source code in the Appendix A.

In Figure 4.2 is shown a possible example of the fine-grain time-shared

execution of in-memory transactions with only two worker threads. Here the

two threads start executing the highest-priority transactional request found in

the priority queue at that time, which will be either completed or suspended

to give way to a possible pending higher-priority transactional request upon

interrupt arrival. The example also shows how the transaction T1 is in effect

suspended while running along the thread-0 workflow and restored along

the thread-1 workflow with a minimal delay. This lucky behaviour avoids the

vulnerability window (the time elapsed between the begin and the abort/commit

phases, during which the transaction would incur in possible conflicts) of the

transaction T1 to grow a paltry amount, and the abort probability (which

is function of the number of data accesses, the read/write percentage, both

the read/write and write/write affinities among concurrent transactions, and

obviously the vulnerability window length) remains almost the same.

The remainder of this chapter is structured as follows. In Section 4.1 we

discuss the setup of the contexts. The memory management is presented in

Section 4.2. In Section 4.3 we show the priority queue in more detail.
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4.1 ULT

We refer to the execution context as the program state at a certain point of

the lifetime of the application. This state comprises both the CPU image

represented by all the CPU registers, and the program variables currently

residing in the data section, in the heap, and in the stack. It’s therefore clear

that the execution context is the abstraction of the transaction_context

data structure included in our implementation that we introduced before.

At each instant of time, the whole set of these values determines the state

of the execution, from which it’s deterministically known what is the next

instruction to be executed, as well as the values on which the instruction

performs. If we want to be able to restore a suspended transactional state,

then all this information must be stored in special data structures that do

not suffer side-effect due to control flow variation and consequent execution

of a further transactional request. Rather, it must be possible to restore the

whole context in a later time and resume execution as if it had never been

suspended. In the Listing 4.1 is shown the data structure used to keep saved the

state containing the aforementioned exec_context_t and stack fields plus an

stm_tx_t address value which points to the structure dynamically allocated by

the TinySTM to keep track of the TM-operations associated to the transaction.

Since we want to handle a number of transactional contexts that is a value

much greater than the number of CPU-cores available, but at the same time

we cannot instantiate as many worker threads as there are contexts due to the

issues discussed in Chapter 1, we cannot rely on the Pthread POSIX library

to create new transactional contexts as well as kernel-level thread instances

about which the Linux kernel is aware and therefore subject to the kernel

schedule mechanisms that is not under our control. Rather we want to rely on a

user-level thread (ULT) implementation on which our priority-based user-level

scheduling policies have full control, so as to allow the user-level application

to decide which is the next context to be scheduled. The model to which we
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refers is the many-to-many one enabling any worker thread to take in charge

of any transactional context, which may migrate from one workflow to another

(example shown in Figure 4.2).

The initialization of the ULTs occurs during the setup phase of the entire

application and relies on a revised procedure introduced in [6], which has its

hub in the context_create() function reported in Appendix B. The goal of

this function is to create an image of the initial state living in a different stack,

which will be awakened only later, when the setup phase will be over and

the system will be ready to serve transactional requests. This image finds its

start at a predefined address within the .text section of the executable, an

entry-point (function pointer) for the transactional routine.

1 typedef struct s t a t e {

2 exec_context_t context ;

3 void∗ stack ;

4 stm_tx_t∗ stmtx ;

5 } state_t ;

Listing 4.1. State Data Structure

To do this, we rely on the POSIX-compliant sigaltstack() API, which asks

the underlying operating system to run a signal handler named context_create-

_trampoline() within a separate stack. Then, a call to the POSIX raise()

API, with the parameter SIGUSR1, will give control to the signal handler

mentioned before, whose first task is that of saving the current context, the

new one living in a different stack, after which it gives back control again to

the previous context from which we threw the signal. Saving the context is

possible thanks to the revised set_jmp() function we already introduced. At

this point, context_create() relies again on sigaltstack() to restore the

previous setting, to indicate that the signal SIGUSR1 is no more handled by the

trampoline function. A subsequent call to the context_switch() macro (a
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set_jmp() followed by a conditioned long_jmp()) makes sure that the control

is given to the context saved before within the context_create_trampoline()

procedure, resuming in this way the execution from the point at which it

was suspended, that is a call to the ((noreturn)) labelled function named

context_create_boot(). This function can thus create the starting condi-

tions for the transactional routine, when this context will be resumed again

later. Given that we are initializing an ULT, the job of allocating and reserving

user-level memory space such as the stack is on us, and it is performed by the

get_ult_stack() function through a malloc() invocation.

Furthermore, we have to emphasize the fact that contexts’ creation is

performed only during the setup phase so as to avoid the heavy process of

constructing a new context on-demand, whenever a transactional request

arrives into the system, which would clearly slow down the whole execution

and impacting in this way on the performances. Rather, a transactional context

that serves a transactional request during all its life-cycle, from the time at

which it’s accepted by one server thread to the time it will commit, it can

be used again to serve another transactional request. In order to make this

possible, the while-loop routine living within the function called for the first

time by the context_create_boot() function must be structured to operate

on renewed data structures at each loop (code block containing the body of the

transactional profile that wants to access data such as the arguments needed by

the profile itself). This is accomplished by relying on TLS variables, such as the

running_task variable used to point to the task_t data structure (discussed

in Section 4.2) associated to the ready-to-run transactional request, and which

are updated each time by the worker thread right before to switch the context,

from the platform context (the original context of the worker thread) to the

one associated to the transactional request that is going to be served.
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4.2 Memory Management

We already hinted how the architecture we developed is equipped with a

memory management system to speed up the process of acquiring the resources

when needed as well as releasing them when they are no longer so. A pool of

task_t (shown in Listing 4.2) data structures is built by calling the function

TaskPoolInit() during setup phase.

1 typedef struct task {

2 struct task ∗ next ;

3 int conn ;

4 int tx id ;

5 int pr i o ;

6 char args [ 2 5 6 ] ;

7 state_t s t a t e ;

8 int num_susp ;

9 int susp_prio ;

10 struct task ∗ next_free ;

11 struct task ∗ next_gc ;

12 int f ree_gc ;

13 int abort s ;

14 int commits ;

15 } task_t ;

Listing 4.2. Transaction Data Structure

This function takes only one argument as input, an integer value representing

the pool size, and by mean of a malloc() invocation it allocates an array of

task_t structures, whose fields are all initially set to the default value, such

as the next_free pointer initialized to point to the next task_t structure in

the array in order to make them all connected in a free linked-list which is

protected by mean of a pthread_spinlock_t lock to guarantee that the insert
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and free operations have a cost of O(1). These two operations are performed by

mean of the GetTask() and FreeTask() functions and are relatively invoked

by the server threads upon the arrival of a transactional request and once

a worker thread has finished its task. To avoid synchronization tasks at the

worker threads side, we allow a further list of task_t structures for each server

thread, a sort of garbage collection connected with the next_gc pointers, each

one initialized only once the server thread has removed the structure from

the free list. The zero-ed free_gc integer field indicates to the server thread

that this structure is still utilized by some worker thread and should not be

considered for the re-insertion into the free list. Differently, when the worker

thread will have finished its work, it will set the free_gc field to 1 so as to

indicate that it is ready to be inserted into the free list.

1 struct task_pool {

2 int s i z e ;

3 task_t∗ array ;

4 task_t∗ head ;

5 task_t∗ t a i l ;

6 pthread_spinlock_t lock ;

7 } ;

Listing 4.3. Task-pool Data Structure

Since the server threads are in charge of accepting and inserting the transac-

tional requests into the priority queue which we will discuss in more detail

in Section 4.3, they perform these tasks much more fastly than what worker

threads can do. Thus, continuously exploring the garbage collection at each

step could result useless in terms of resource utilization, and this task may

also be performed after a predefined number of steps. We allow this feature

be configurable at compilation-time by updating a define value with the

number of desired steps. Even if the server threads are mainly characterized
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by I/O-bound computation, this feature may result good enough when the

preemptive STM environment is running on top of machines with limited

resources, and the server/worker threads share the CPU-cores available.

The state field is a structure of type state_t, and it is initialized by

the same function used to initialize the pool of task_t structures, which

is therefore in charge of the setup of the transactional contexts by calling

the context_create() function discussed in Section 4.1. For each task_t

structure in the pool the functions get_ult_stack(), context_create() and

stm_init_thread() are invoked in sequence to initialize the fields belonging

to the state_t structure, such that when the setup phase is over and the

system starts working as it should, nothing needs to be dynamically allocated

and configured. In the Listing 4.3 is shown the data structure who keeps all

the metadata needed to manage the pool and the free list.

4.3 The Priority Queue

We can finally explain in detail the Priority Queue we introduced in the previous

sections. The priority queue comprises two task_list_t structures’ array of

size NUM_PRIORITIES, so that we have a couple of task_list_t structure for

each priority level. A task_list_t structure by itself represents a linked list

of task_t data structures, each one managed as a FIFO queue, on which it’s

possible to perform the insertion in the tail and the removal from the head by

using the fields tail and head belonging to the task_list_t structure. The

reason why the priority queue uses two array is because it has to provide a

couple of lists <active, standing> for each of the managed priority levels. While

the standing lists maintain the contexts of the transactional requests accepted

and inserted just before by the server threads but not yet started, the active

lists keep track of the contexts associated to those transactions already started

but switched off the CPU in favour of an higher-priority transactional request.
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The latter ones are also defined as hot contexts due to the fact that they could

have already accessed shared data with high probability and therefore subject

to possible conflicts with other transactions currently running in the system, in

contrast to the former ones defined cold contexts, which are not yet started and

consequently they cannot have accessed any shared data. This is the reason

why we give priority to hot contexts into the active list with respect to the cold

ones into the standing list when they are at the same priority level. By the way,

every other higher-priority context still takes precedence over lower-priority

ones, both hot and cold. In Listing 4.4 is reported a code snippet of the data

structures used to implement the priority queue. As it can be easily seen in

that snippet, two bitmaps teamed together with the lists, where every bit is

used to indicate whether at least one context is appended into the related list

or not.

1 typedef struct t a s k_ l i s t {

2 task_t∗ head ;

3 task_t∗ t a i l ;

4 pthread_spinlock_t lock ;

5 int count ;

6 } ta sk_l i s t_t ;

7

8 struct prio_task_array {

9 int num_prio ;

10 int num_bytes ;

11 byte_t∗ stdn_bitmap ;

12 byte_t∗ actv_bitmap ;

13 ta sk_l i s t_t ∗ standing ;

14 ta sk_l i s t_t ∗ a c t i v e ;

15 } ;

Listing 4.4. Priority Queue Data Structures
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To perform as fast as possible the check on each bit of the bitmap, we rely on

a bitwise operation that, once the byte has been loaded in a register, involves

only a shift followed by an and machine instruction. Being the insertion

and remove operations on a list two critical sections, these operations are

protected with a pthread_spinlock_t lock associated to each list, while any

needed update to the bitmap is performed through a CAS (compare-and-swap)

operation on the byte. Once the lock has been acquired, it is possible to append

a task_t structure in tail paying O(1), as well as it is possible to remove the

task_t structure from the head of the list paying again O(1), which in turn

make it possible to release the lock as soon as possible and available for further

concurrent insertion/removal operations. Let’s say that the bitmap has to

undergo renovation in two cases, when insertion occurs into an empty list,

and when the removal is performed on a list with only one element. With the

growth in the number of concurrent operations on the tail, the likelihood that

the CAS operation will fail increases as well. On the other hand, the increasing

concurrency may depend by the growing arrival rate, which in turn it reflects

in a filling of the lists and, as we said before, insertion/removal operations on

lists containing more than one element does not require performing CAS, and

therefore the need to update the bitmap proportionally shrinks.

Upon commit of a transaction, the worker thread that was in charge of the

related context firstly marks the free_gc field so as to indicate this context

is used no more and can be freed by the server thread, then it starts to

search in the priority queue structure for another transactional context to

be executed, the highest-priority one it finds and that it is able to remove.

This task is accomplished by the GetHighestPriorityContext() function

which reads the bitmap starting from the most-significant-bit representing

the highest priority level and descending towards the least-significant-bit, but

always giving precedence to the bit associated to the active list. Once a bit

has been found set to 1 a subroutine called try_remove_active_context()/
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try_remove_standing_context(), depending on the list type associated to

that bit, is invoked so as to try to remove a context from that list. The

meaning of the prefix try is that, even if we found the bit set to 1 it’s not

ensured we’ll remove the element for sure because of the concurrency with

other worker threads, and in negative case the routine returns and we continue

to check the subsequent less significant bits. This immediately reflects on the

way of acquiring the lock we chose, the pthread_spin_trylock() one, in such

a way to either acquire the lock or check whether the list counter is expired,

and in case leave the lock-loop and return without engaging the lock so as

to let it free for possible concurrent insertions. However we can be sure that

we’ll eventually remove a different priority context by spinning on the priority

queue as described so far. A possible and not lucky evolution could occur

in case the worker thread does not find any context at the highest-priority

levels and removes a lower-priority one, while a server thread is inserting a

new higher-priority transactional request in the meantime. However, thanks to

the fine-grain timer-interrupt provided by the extra-tick module we can revise

the selection with an expected delay of half of the timer-interrupt period, so

that we are still advantaged once by the use of extra-tick module in terms of

reactivity to the event.



31

Chapter 5

Policies for Priority

Management

We already discussed how the <active, standing> contexts are basically handled

when no further policies are enabled. Higher-priority contexts take always

precedence on the lower-priority ones, and the already started hot contexts

have priority on the yet not started cold contexts at the same priority level.

While this implicit policy tends to help already started transactions in order

to avoid an excessive enlargement of the related vulnerability windows which

directly reflects in a growing abort probability, it cannot help the stretch of

the vulnerability windows caused by repeated context switches caused by the

presence of higher priority requests within the priority queue. Whenever a low

priority transaction undergoes extra-tick timer interrupt, it will mandatory

leave the CPU in favour of a higher priority transaction even if one or more

than one of these are present in the priority queue. This behaviour does

not only give rise to an increasing vulnerability window, but also yields to

a longer real execution time (time in CPU to complete) due to the growing

abort probability, which is obviously the factor that mainly characterizes the

number of aborts and rollbacks that a transaction undergoes before it can really

commit. It’s clear that there are a lot of inter-dependencies between all these
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aspects which may drastically affect performances, especially for the lower

priority levels, whereas they are not well handled by mean of good scheduling

policies.

To cope with such a problem we have devised a feedback mechanism such

that the actual priority level of an already started transaction is dynamically

modified at run-time. This is possible by maintaining a counter CT for each

transactional context representing the number of times the transaction T has

been context switched off the CPU. As soon as the value of CT reaches a

threshold that we denote as Cmax, then the transaction is migrated to the

highest-priority level, so that no further delays caused by preemptions will be

introduced on it. Clearly the benefits brought by this policy are different for

different values of the threshold Cmax, as well as each of these values affects

different priority levels in a different way. An high value of Cmax obviously

increases the aforementioned delays for the very low priority transactions more

subject to context switches and therefore they are the ones who take mostly

advantage from this policy, while the other priority transactions are able to

complete before reaching the threshold. On the other hand, a low value of

Cmax tends to help all that transactions at a certain priority level that undergo

context switch for few times, not only the lowest priority ones. The results

obtained with experimental studies show us how to different values of Cmax

correspond different speed-up values for the various priorities. Furthermore, we

also devised and implemented a variant by augmenting the same policy with

a lazy promotion, an increase by 1 of the current priority level PT whenever

a transaction is context switched off the CPU, until the threshold has been

reached

PT =


min(PT + 1, Pmax), if CT ≤ Cmax

Pmax, otherwise
(5.1)

where we denote with Pmax the maximum admitted priority level within the
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priority management scheme. All these policies have been integrated within

the scheduler source code and shown in Appendix D.

One important final aspect to consider relates to how the extra-ticks

delivered to threads needs to be handled in case they are received while

the target thread is currently executing some function offered by the STM

environment or the standard library, rather than native application code. We

already mentioned in Chapter 4 how a TLS variable named PREEMPTABLE is

kept by each worker thread in order to be able to know if we are currently

executing application code or not. By reading this variable the extra-tick

timer-interrupt handler may decide if it is the case of either operating a control

flow variation and leave perform the user-level preemption_check() function,

or setting a second per-thread TLS variable named STANDING_TICK, so as

to delay the execution of the preemption_check() function at the time to

which the non-preemptable code is ended. All this work to protect those

Figure 5.1. Standing ticks and time shift of preemptions.

functions that execute critical actions, such as the TM_read and TM_write

services or functions provided by the standard library, and which should not

be interrupted while executing their critical actions.

Lastly, the careful reader might express concern about the fact that a

lower-priority transaction could never be served for the first time, and missing

in this way the possibility to benefit of the policy mechanism. However, this

behaviour may occur only in case the higher-priority arrival rate is so high to
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avoid the lower-priority requests be eventually served, which finds the cause in

an under-sizing of system capacity. In fact, in the process of performing our

experimental study, once the hardware resources have been fixed, we have also

chosen the right arrival rate in order to avoid such thrashing phenomena, by

maintaining the system utilization at a value not so much high, but enough

to simulate an high load of transactional requests. The per-scenario capacity

planning task is however not under our investigation scope and we leave this

job to the interested parties who want to get benefit from the preemptive STM

architecture that we presented so far.
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Chapter 6

Experimental Study

We run our preemptive STM environment on top of a 64-bit NUMA HP

ProLiant server, equipped with four 2GHz AMD Opteron 6128 processors and

64 GB of RAM. Each processor has 8 cores, for a total of 32 CPU-cores, which

share a 12 MB L3 cache (6 MB for each 4-cores set), and each CPU-core has a

512 KB private L2 cache. The operating system is OpenSuse 13.2 (Harlequin)

(x86_64), with Linux kernel 3.16.7.

As hinted, our STM environment has been implemented by using a TinySTM

[8], [15] as the baseline TM layer, and the whole package we developed is avail-

able for free download.1 In our experiments, we used 16 worker threads in

charge of processing transactions, and 5 server threads in charge of managing

I/O operations on the socket pool and inserting incoming transactional requests

into the priority queue. In this conditions we reserve no more than the 65%

of the overall CPU-core capacity, in such a way to leave enough resources to

the operating system to perform classical housekeeping operations without

interfering with performance measurement of our STM environment. The client

threads issuing transactional requests run on a different multi-core machine

with the same technical specifications of the one hosting the STM environment,

and connected via a switched 100Mb ethernet. The extra-tick interval in our

1https://github.com/HPDCS/PRESTO
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preemptive STM system has been configured to 100 microseconds, a value defi-

nitely lower than the timer-interrupt period originally used in the configuration

of the Linux kernel adopted, which was set to 1 millisecond. This value results

to be the right trade-off between the non-excessive overhead cost associated to

the extra-tick management logic, and responsiveness in detecting the arrival of

higher-priority transactional contexts into the priority queue. Finally, the size

of the context pool has been set to 1024, a value that enables keeping active

a number of transactions highly larger than the number of worker threads

processing them.

Table 6.1. Transaction profiles and associated priority levels.

transaction profile CPU demand priority level (the higher the better)

delivery ≈ 5 msec 1

stock level ≈ 650 µsec 2

new order ≈ 350 µsec 3

order status ≈ 10 µsec 4

payment < 10 µsec 5

Furthermore, it must be noted that transactions belonging to different profiles

exhibit very different CPU demands, especially the ones provided by the

TPC-C benchmark which range from ten of microseconds to milliseconds.

This peculiarity has been exploited in our experiments in order to determine

a transaction priority scheme where shorter running transactions are given

higher priority as shown in Table 6.1.

We setup the workload generator to inject 25.000 transactional requests

per second, issuing a total number of 6 millions of transactional requests along

the experiment lifetime. Actually, this peak-load phase, evidenced by having

the pool of contexts highly busy (above the 90%), is suitable for assessing the

potential of an optimized preemptive CPU-dispatching scheme. The reported

performance results have been computed as the average over three repetitions
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of the experiment.

The actual performance results we want to show are represented by the

whole time that a transactional request spends into the system, the turnaround

time that goes from the time when the request is received and enqueued into

the priority queue to the time at which it is really committed, and resulting

therefore analogous to the sum of the execution time and in-queue time (both

active and standing). Even if a transaction is aborted and then retried, any

aborted run contributes to the turnaround time for the transaction.

In Figure 6.1 is shown the turnaround time for different configurations.

The baseline plot refers to the execution without the extra-tick module active

which implies no preemption for the transactional contexts that are able to

give control to a standing higher-priority transaction only at the end of their

executions, after the commit operation successfully completes and the worker

thread may take in charge either a hot or a cold transactional context. For

completeness of the analysis we also plot a second configuration that provides

the extra-tick module enabled, but no-preemption is ever actuated, so as to

underline the effective overhead cost compared to the baseline case. Finally,

all the subsequent plots refer to the preemptive STM architecture assessed

by considering different setting of the value Cmax, and by either including

or excluding the lazy priority promoting scheme for the management of the

dynamic priority of the transactions. By the results we see how, compared to

the baseline case, the preemptive approach reduces the average turnaround time

of transactions born at higher priority levels (say levels 4 and 5) by around 60%-

65%, while at the middle priority (say level 3), transactions exhibits an average

turnaround latency essentially not penalized by preemption. Transactions

born at lower priority levels (say levels 1 and 2) show a penalization of their

average turnaround which is mostly limited to less than 5%, and no more

than 15% in the worst case. As we discussed before, for higher values of Cmax

the majority of the transactions who benefit from the policy are those ones
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born at the lowest-priority levels which are subject to a greater number of

context switches, thus interfering less with the higher-priority transactions

compared to the case with lower values of Cmax. In order to better outline
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Figure 6.1. Average turnaround time for transactions born at different
priority levels (log-scale on the y-axis).

the effects by the preemptive approach, we report in Figure 6.2 the ratio

between the average turnaround latency provided by the baseline and the

one provided by the preemptive approach. For this plot we selected the most

promising configurations of the preemptive solution, based on the results shown

in Figure 6.1. According to what we was discussing before we found the best

solution in the configuration assessed with larger values of Cmax (namely 4 or 8)

for both approaches with no-lazy promoting and lazy promoting policies. In

particular, the configuration with lazy promoting and Cmax set to the value 4 is

even able to provide higher speed-up (vs. the baseline) for the highest-priority

level 5, with respect to the one not employing lazy promoting, that is possible

due to the fact that, transactions born at priority level 1 dynamically acquire

higher priority right after the first preemption and obtaining in this way a

greater chance to complete before reaching the threshold Cmax. Finally, in
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Figure 6.2. Speedup - Ratio between the turnaround time of the baseline
configuration and the turnaround time of the preemptive configura-
tion.

Figure 6.3 we report data indicating how the probability of abort varies in the

different configurations. As hinted, this variation can be caused by the effects

of preemptions on the length of the vulnerability window of the transactions.
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Figure 6.3. Variation of the transaction abort probability.

By the result we see that transactions born at priority level 2 show an increase

of the abort probability for lower values of Cmax and/or when lazy promoting

is employed, and this is caused by the higher interference occurring when
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transactions born at priority level 1 dynamically acquire higher priority, so

as to lead to an increased concurrency between shorter transactions born at

priority level 2 and the definitely longer ones born at priority level 1.
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Chapter 7

Conclusions

The Software Transactional Memory (STM) environment we presented is the

first attempt to provide preemptive capabilities while processing in-memory

transactions, since state of the art STM implementations do not react as fast

as possible to incoming higher-priority transactional requests as well as they do

not provide transactional contexts management, rather they become aware of

transactional requests delivered during the last transaction execution only after

this one commits. Moreover we also introduced some policies to dynamically

change the priority of transactions in order to give them more chances to

take progress and eventually commit in case they undergo preemption too

frequently. The results we obtained executing several long runs based on the

TPC-C benchmark confirm the advantages, in terms of time spent by higher-

priority transactions within the system, we expected from our preemptive

STM environment with respect to the baseline implementation. Since in the

execution of the baseline implementation we noted very high waiting time in

relation to the expected execution time of the shortest transaction profiles,

in our experiment we assigned priorities on the basis of CPU demand by

the different transaction profiles, with lower demanding ones having higher

priorities, a classical approach aiming at favouring shortest jobs.
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Appendices
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A. Context Save and Restore

Source Code: jmp.S

1 . f i l e " jmp.S "
2 . t e x t
3
4 .a l ign 4
5 . g l o b l _set_jmp
6 .type _set_jmp , @function
7 _set_jmp :
8 pushfq
9 pushq %rax
10 pushq %r11
11 movq %rdi , %rax
12 movq 8(%rsp ) , %r11
13 movq %r11 , (%rax )
14 movq %rdx , 8(%rax )
15 movq %rcx , 16(%rax )
16 movq %rbx , 24(%rax )
17 movq %rsp , 32(%rax )
18 addq $16 , 32(%rax )
19 movq %rbp , 40(%rax )
20 movq %r s i , 48(%rax )
21 movq 32(%rsp ) , %r11
22 movq %r11 , 56(%rax )
23 movq %r8 , 64(%rax )
24 movq %r9 , 72(%rax )
25 movq %r10 , 80(%rax )
26 movq (%rsp ) , %r11
27 movq %r11 , 88(%rax )
28 movq %r12 , 96(%rax )
29 movq %r13 , 104(%rax )
30 movq %r14 , 112(%rax )
31 movq %r15 , 120(%rax )
32 movq 16(%rsp ) , %rdx
33 movq %rdx , 136(%rax )
34 movq 24(%rsp ) , %r11
35 movq %r11 , 128(%rax )
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36 fx save 144(%rax )
37 addq $24 , %rsp
38 xorq %rax , %rax
39 ret
40 . s i z e _set_jmp , .−_set_jmp
41
42 .a l ign 4
43 . g l o b l _long_jmp
44 .type _long_jmp , @function
45 _long_jmp :
46 movq %rdi , %rax
47 movq 128(%rax ) , %r10
48 movq 32(%rax ) , %r11
49 movq %r10 , 8(%r11 )
50 movq %r s i , (%r11 )
51 movq 8(%rax ) , %rdx
52 movq 16(%rax ) , %rcx
53 movq 24(%rax ) , %rbx
54 movq 32(%rax ) , %rsp
55 movq 40(%rax ) , %rbp
56 movq 48(%rax ) , %r s i
57 movq 56(%rax ) , %rd i
58 movq 64(%rax ) , %r8
59 movq 72(%rax ) , %r9
60 movq 80(%rax ) , %r10
61 movq 88(%rax ) , %r11
62 movq 96(%rax ) , %r12
63 movq 104(%rax ) , %r13
64 movq 112(%rax ) , %r14
65 movq 120(%rax ) , %r15
66 pushq 136(%rax )
67 popfq
68 f x r s t o r 144(%rax )
69 movq 32(%rax ) , %rsp
70 popq %rax
71 ret
72 . s i z e _long_jmp , .−_long_jmp
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Source Code: jmp.h

1 long long _set_jmp( exec_context_t∗ env ) ;
2 __attribute__ ( (__noreturn__) ) void
3 _long_jmp( exec_context_t∗ env , long long va l ) ;
4
5 #define set_jmp ( env ) ({\
6 int _set_ret ; \
7 __asm__ __volatile__ ( " pushq␣%rd i " ) ; \
8 _set_ret = _set_jmp( env ) ; \
9 __asm__ __volatile__ ( " add␣$8 , ␣%rsp " ) ; \
10 _set_ret ; \
11 })
12
13 #define long_jmp ( env , va l ) _long_jmp( env , va l )
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B. Context Creation

Source Code: ult.c

1 stat ic void context_create_boot (void ) __attribute__
2 ( ( noreturn ) ) ;
3
4 stat ic void context_create_boot (void ) {
5 void (∗ context_start_func ) (void ∗) ;
6 void∗ context_start_arg ;
7
8 context_start_func = context_creat_func ;
9 context_start_arg = context_creat_arg ;
10
11 context_switch ( context_creat , &cont ex t_ca l l e r ) ;
12
13 context_start_func ( context_start_arg ) ;
14
15 a s s e r t (0 ) ;
16 }
17
18 stat ic void context_create_trampol ine ( int s i g ) {
19 (void ) s i g ;
20
21 i f ( context_save ( context_creat ) == 0)
22 return ;
23
24 context_create_boot ( ) ;
25 }
26
27 void context_create ( exec_context_t∗ context , void (∗

entry_point ) (void ∗) , void∗ args , void∗ stack , s i z e_t
s tack_s i z e ) {

28 struct s i g a c t i o n sa ;
29 struct s i g a l t s t a c k s s ;
30 struct s i g a l t s t a c k os s ;
31
32 memset ( ( void ∗) &sa , 0 , s izeof ( struct s i g a c t i o n ) ) ;
33 sa . sa_handler = context_create_trampol ine ;
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34 sa . sa_f l ag s = SA_ONSTACK;
35 s i g f i l l s e t (&sa . sa_mask ) ;
36 s i g d e l s e t (&sa . sa_mask , SIGUSR1) ;
37 s i g a c t i o n (SIGUSR1 , &sa , NULL) ;
38
39 s s . ss_sp = stack ;
40 s s . s s_s i z e = stack_s i z e ;
41 s s . s s_ f l a g s = 0 ;
42 s i g a l t s t a c k (&ss , &oss ) ;
43
44 context_creat = context ;
45 context_creat_func = entry_point ;
46 context_creat_arg = args ;
47 context_ca l l ed = f a l s e ;
48
49 r a i s e (SIGUSR1) ;
50 s i g a l t s t a c k (&oss , NULL) ;
51
52 context_switch(&context_ca l l e r , context ) ;
53 }

Source Code: ult.h

1 #define context_save ( context ) set_jmp ( context )
2
3 #define context_res to re ( context ) long_jmp ( context , 1)
4
5 #define context_switch ( context_old , context_new ) \
6 i f ( set_jmp ( context_old ) == 0) \
7 long_jmp ( context_new , ( context_new )−>rax )
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C. Preemption Check

Source Code: preemption_check.S

1 . f i l e " preemption_check.S "
2 . t e x t
3
4 . g l o b l preemption_check
5 .type preemption_check , @function
6 preemption_check :
7 pushq %rax
8
9 lahf
10 seto %al
11 pushq %rax
12
13 lock i n c l t ick_count(%r i p )
14
15 movq preemptable@gottpof f(%r i p ) , %rax
16 movzwl %f s :(% rax ) , %eax
17 cmpl $1 , %eax
18 jne .L2
19 jmp .L1
20
21 .L2 :
22 movq preemptable@gottpof f(%r i p ) , %rax
23 movw $1 , %f s :(% rax )
24
25 movq mode@gottpoff(%r i p ) , %rax
26 movw $1 , %f s :(% rax )
27
28 pushq %rd i
29
30 movq running_task@gottpof f(%r i p ) , %rd i
31 movq %f s :(% rd i ) , %rd i
32 l eaq 272(% rd i ) , %rd i
33
34 ca l l _set_jmp
35
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36 t e s t l %eax , %eax
37 je .L3
38 jmp .L4
39
40 .L3 :
41 ca l l schedu le
42
43 movq running_task@gottpof f(%r i p ) , %rd i
44 movq %f s :(% rd i ) , %rd i
45 l eaq 272(% rd i ) , %rd i
46
47 movq $1 , %r s i
48
49 ca l l _long_jmp
50
51 .L4 :
52 popq %rd i
53
54 movq mode@gottpoff(%r i p ) , %rax
55 movw $0 , %f s :(% rax )
56
57 movq preemptable@gottpof f(%r i p ) , %rax
58 movw $0 , %f s :(% rax )
59
60 .L1 :
61 popq %rax
62 addb $0x7f , %al
63 sahf
64
65 popq %rax
66
67 re tq
68 . s i z e preempt_callback , .−preempt_callback
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D. Scheduler

Source Code: scheduler.c

1 void schedu le ( ) {
2 int pr i o ;
3 task_t∗ task ;
4 i f ( running_task == NULL) {
5 /∗ We are not c u r r e n t l y managing a t r a n s a c t i o n a l

con t ex t . We w i l l a t tempt to p i ck the h i ghe s t
−p r i o r i t y one a c t u a l l y p r e s en t s in p r i o r i t y
queue . ∗/

6 i f ( ( running_task =
7 GetHighestPr ior i tyContext ( pta ) ) == NULL)
8 return ;
9 thread_tx = running_task−>s ta t e . stmtx ;
10 } else {
11 /∗ We was managing a t r a n s a c t i o n a l con t ex t wh i l e

i n t e r r u p t e d by the extra −t i c k . We w i l l
a t tempt to p i ck a t r a n s a c t i o n a l con t ex t a t a
p r i o r i t y h i ghe r than the curren t one . ∗/

12 task = running_task ;
13 pr i o = ( task−>susp_prio > −1) ?
14 task−>susp_prio : task−>pr io ;
15 i f ( ( running_task = GetHigherPr ior i tyContext ( pta ,
16 pr i o ) ) == NULL) {
17 /∗ Come back execu t ing the o ld t r a n s a c t i o n a l

con t ex t . ∗/
18 running_task = task ;
19 return ;
20 }
21 thread_tx = running_task−>s ta t e . stmtx ;
22 #ifde f POLICY
23 /∗ Pre−proces sor d i r e c t i v e to inc l ude s chedu l e r

p o l i c i e s . ∗/
24 i f ( task−>num_susp+1 < MAX_SUSPENSIONS &&
25 pr i o < pta−>num_prio−1) {
26 /∗ We have reached the t h r e s h o l d Cmax. ∗/
27 #ifde f LAZY_PROMOTING
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28 /∗ Pre−proces sor d i r e c t i v e to inc l ude l a z y
promoting . ∗/

29 Inse r tStand ingContextAtPr io r i ty ( pta , task ,
30 pr i o +1, ( ( f i r s t_tx_opera t i on == FIRST_DONE)
31 ? 1 : 0) ) ;
32 #else
33 /∗ No l a z y promoting . ∗/
34 Inser tStand ingStand ingContextAtPr ior i ty ( pta ,
35 task , pr io , ( ( f i r s t_tx_opera t i on ==
36 FIRST_DONE) ? 1 : 0) ) ;
37 #endif
38 } else {
39 /∗ We have not ye t reached the t h r e s h o l d . ∗/
40 Inse r tStand ingContextAtPr io r i ty ( pta , task ,
41 pta−>num_prio−1, ( ( f i r s t_tx_opera t i on ==
42 FIRST_DONE) ? 1 : 0) ) ;
43 }
44 #else
45 /∗ No p o l i c i e s employed . ∗/
46 InsertStandingContext ( pta , task ,
47 ( ( f i r s t_tx_opera t i on == FIRST_DONE) ? 1 : 0) ) ;
48 #endif
49 }
50 }
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