
Sapienza University of Rome

Ph.D. program in Computer Engineering

XXVI Cycle

Autonomic Concurrency Regulation in Software

Transactional Memories

Diego Rughetti

2014/3





Sapienza University of Rome

Ph.D. program in Computer Engineering

XXVI Cycle

Diego Rughetti

Autonomic Concurrency Regulation in Software

Transactional Memories

Thesis Committee

Prof. Bruno Ciciani (Advisor)

Prof. Giorgio Grisetti

Reviewers

Prof. Vincent Gramoli

Prof. Jean-François Méhaut

2014/3



Author’s address:

Diego Rughetti

Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Sapienza Università di Roma
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Abstract

Software Transactional Memory (STM) has emerged as a powerful programming

paradigm for concurrent applications. It allows encapsulating the access to data

shared across concurrent threads within transactions, thus avoiding the need for

synchronization mechanisms to be explicitly coded by the programmer. On the

other hand, synchronization transparency must not come the expense of perfor-

mance. Hence, STM-based systems must be enriched with mechanisms providing

optimized run-time efficiency. Among the issues to be tackled, a core one is re-

lated to determining the optimal level of concurrency (number of threads) to be

employed for running the application on top of the STM layer. For too low

levels of concurrency, parallelism can be hampered. On the other hand, over-

dimensioning the concurrency level may give rise to thrashing phenomena caused

by excessive data contention and consequent transaction aborts.

In this thesis we propose a set of techniques in order to build “application

specific” performance models allowing to dynamically tune the level of concur-

rency to the best suited value depending of the specific execution phase of the

application. We will present three different approaches: a) one based on a pure

Machine Learning (ML) model that doesn’t require a detailed knowledge of the

1
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application internals to predict the optimal concurrency level, b) one based on a

parametric analytical performance model customized for a specific application/-

platform through regression analysis that, respect to the previous one, requires a

lighter training phase and c) one based on a combination of analytical and Ma-

chine Learning techniques, that allows to combine the strengths of the previous

two approaches, that is it has the advantage of reducing the training time of pure

machine learning methods avoiding the approximation errors typically affecting

pure analytical approaches. Hence it allows very fast construction of highly re-

liable performance models, which can be promptly and effectively exploited for

optimizing actual application runs.

We also present real implementations of concurrency regulation architec-

tures, based on our performance predictions approaches, which have been in-

tegrated within the open source TinySTM package, together with experimental

data related to runs of application profiles taken from the STAMP benchmark

suite demonstrating the effectiveness of our proposals. The experimental data

confirm how our self-adjusting concurrency schemes constantly provides optimal

performance, thus avoiding performance loss phases caused by non-suited selec-

tion of the amount of concurrent threads and associated with the above depicted

phenomena.

Moreover we present a mechanism that allows to dynamically shrinks or

enlarges the set of input features to be exploited by the performance predictors.

This allows for tuning the concurrency level while also minimizing the overhead

for input-features sampling, given that the cardinality of the input-feature set is

always tuned to the minimum value that still guarantees reliability of workload

characterization. We also present a fully fledged implementation of this solution

again within the TinySTM open source framework, and we provide the results
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of an experimental study relying on the STAMP benchmark suite, which show

significant reduction of the application execution time with respect to proposals

based on static feature selection.
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Chapter 1

Introduction

Software Transactional Memory (STM) [1] is an attractive programming paradigm

for parallel/concurrent applications. Particularly, by relying on the notion of

atomic transaction, STM stands as a friendly alternative to traditional lock-

based synchronization. More in detail, code blocks accessing shared-data can

be marked as transactions, thus demanding coherency of data access/manipula-

tion to the STM layer, rather than to any handcrafted synchronization scheme

provided by the programmer. The relevance of the STM paradigm has signifi-

cantly grown given that multi-core systems have become mainstream platforms,

so that even entry-level desktop and laptop machines are nowadays equipped

with multiple processors and/or CPU-cores. Also, transaction is the representa-

tive technology for several in-memory Cloud-suited data-platforms (such as Red

Hat’s Infinispan, VMware vFabric GemFire [2], Oracle Coherence [3] and Apache

Cassandra [4]), where the encapsulation of application code within transactions

allows concurrent manipulation of in-memory kept application data according

to specific isolation levels, which is done transparently to the programmer.

Even though the STM potential for simplifying the software development

process is extremely high, another aspect that is central for the success, and the

7



8 1. Introduction

further diffusion of the STM paradigm relates to the actual level of performance

it can deliver. As for this aspect, one core issue to cope with in STM is related

to exploiting parallelism while also avoiding thrashing phenomena due to exces-

sive transaction rollbacks, caused by excessive contention on logical resources,

namely concurrently accessed data portions. We note that this aspect has re-

flections also on the side of resource provisioning in the Cloud, and associated

costs, since thrashing leads to suboptimal usage of resources (including energy)

by, e.g., PaaS providers offering STM based platforms to customers. One such

platform has been recently presented by the Cloud-TM project [5], and is aimed

at simplifying and optimizing the process of deploying data centric applications

in the Cloud.

In order to deal with the run-time efficiency issue in STM, literature ap-

proaches can be framed within different sets of orthogonal solutions. On one

side can we find optimized schemes for transaction conflict detection and man-

agement [6, 7, 8, 9, 10, 11]. These include proposals aimed at dynamically deter-

mining which threads need to execute specific transactions, so to allow transac-

tions to be expected to access the same data to run along a same thread in order

to sequentialize and spare them from incurring the risk of being aborted with

high probability. Other proposals rely instead on pro-active transaction schedul-

ing [12, 13] where the reduction of performance degradation due to transaction

aborts is achieved by avoiding to schedule (hence delaying) the execution of

transactions whose associated conflict probability is estimated to be high. All

the above schemes are not meant to optimize the concurrency level (that is the

number of threads) to be used for running the application, thus they generally

operate on top of configurations where the number of threads is predetermined

at application startup.
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On the other side we find solutions aimed at supporting performance op-

timization via the determination of the best suited level of concurrency to

be exploited for running the application on top of the STM layer (see, e.g.,

[14, 15, 16]). These solutions are clearly orthogonal to the aforementioned ones,

being potentially usable in combination with them. We can further distinguish

these approaches depending on whether they can cope with dynamic or static

application execution profiles, and on the type of methodology that is used to

determine (predict) the well suited level of concurrency for a specific (phase

of the execution of the) application. Approaches coping with static workload

profiles are not able to predict the optimal level of concurrency for applications

where classical parameters expressing proper dynamics of the applications (such

as the average number of data-objects touched by a transactional code bock) can

vary over time. For those scenarios approaches coping with dynamic workload

profiles usually allows to obtain better prediction performance.

The prediction approaches that have been proposed in literature either rely

on analytical methods, or on black-box Machine Learning (ML) methodologies.

The first ones have the advantage of generally requiring a lightweight applica-

tion profiling for gathering data to be filled to the prediction model, but provide

(slightly) less accurate predictions and in some cases require stringent assump-

tions to be met by the real STM system in order for its dynamics to be reliably

captured by the analytical formulas (see, e.g., [17]). On the contrary, ML meth-

ods usually require much expensive profiling in order to build the knowledge

base that would suffice to instantiate the performance prediction model, which

may make the actuation of the optimized concurrency configuration untimely.

On the other hand, they typically allow high precise estimation of the real per-

formance trends of the STM system as a function of differentiated parameters
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(see, e.g., [18]).

In this thesis we cope with the issue of determining the optimal level of con-

currency by presenting a suite of techniques for dynamic concurrency regulation

based on Machine learning, on analytical modelling and on an hybrid technique

that mixes the previous two approaches allowing to chase the best of the two

methodologies by tackling the shortcomings intrinsic in each of them. The ap-

proaches we provide are able to cope with cases where the actual execution

profile of the application, namely the workload features, can change over time,

such as when the (average) size of the data-set accessed by the transactional code

in read or write mode changes over time (e.g. according to a phase-behavior).

This is not always allowed by pure analytical approaches [14, 16]. Furthermore,

as we will show later in this thesis, our hybrid approach represents a method-

ology for very fast construction of a highly reliable performance model allowing

the determination of the optimal level of concurrency for the specific STM-based

application. This is relevant in generic contexts also including the Cloud, where

the need for deploying new applications (or applications with reshuffling in their

execution profile), while also promptly determining the system configurations

allowing optimized resource usage, is very common.

During the development of our concurrency regulation techniques we verified

that one drawback of the ones that use Machine Learning is related to the need

for constantly monitoring the set of selected input features to be exploited by the

machine learner. This may give rise to non-minimal overhead, especially when

considering that STM applications may exhibit fine-grain transactions, natively

requiring a (very) reduced amount of CPU cycles for finalizing their task. To

cope with this issue, we developed a solution where the set of input features ex-

ploited by the machine learning based performance model is dynamically shrunk.
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In other terms, the complexity of both the workload characterization model and

the associated performance model is (dynamically) reduced to the minimum

that still guarantees reliable performance prediction. This leads to reducing the

amount of feature samples to be taken for performance prediction along any

wall-clock-time window, hence reducing the actual overhead for performance

prediction.

Together with the aforementioned approaches, we also present three real

implementations of concurrency regulation architectures, integrated with the

TinySTM open source package [19], which exploit the developed models to dy-

namically tune the number of threads to be used for running the application.

Further, we report experimental results, achieved by running the applications

belonging to the STAMP benchmark suite [20] on top of a 16-core HP ProLiant

machine, which show the effectiveness of the proposed approaches.

The reminder of the thesis is organized as follows. In Chapter 2 a description

of software transactional memories and of the concurrency regulation problem

in STM based applications is provided. The state of art about performance

optimization in STM is discussed in Chapter 3. In Chapter 4 the models for the

target STM applications and for the transactional workload are presented. In

Chapters 5, 6, 7 three innovative approaches for autonomic concurrency regula-

tion based respectively on machine learning, analytical modelling and a mix of

the previous two are presented and discussed. We conclude the thesis presenting

in Chapter 8 a detailed comparison between the performance reachable using

different standard and adaptive STM implementations.

To help the reader to better understand the insights of the approach pre-

sented in Chapter 5 we provide in Appendix A a recall of the used machine

learning technique. Moreover a brief overview of the STAMP benchmark suite,
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the most commonly used testbed for STM platforms, is provided in Appendix

B.



Chapter 2

Software Transactional

Memories

2.1 Software Transactional Memories brief overview

Software transactional memories (STMs) [1] are a high attractive programming

paradigm for parallel applications. The first proposals about Transactional

Memories (TMs) [8] were dated back to 90s but research on this topic gained

momentum since 2004, when the multi-core processors became available for com-

mercial market. Proliferation of multi-core architectures allowed parallel pro-

gramming to exit from the niche of high-performance and scientific computing

and turned it into a mainstream concern for software industry. One of the main

challenge of parallel programming is the synchronization of concurrent accesses

to shared memory by multiple, concurrent threads. A traditional technique is

the one based on locks, but it has well-known pitfalls: sophisticated fine-grained

locking can bring to the risk of deadlocks and data races while more simple

coarse-grained locking can bring to scalability limitations. Moreover scalable li-

13
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braries that use fine-grained lock cannot be easily mixed in a way that preserve

scalability and avoid data races and deadlock [21]. STMs inherit the transaction

based approach typical of Database systems (DBS), bringing it into the world of

parallel programming. They free the programmers from the responsibility of de-

sign and verify complex fine-grained lock synchronization schemes. By avoiding

deadlocks and automatically allowing fine-grained concurrency, transactional

language constructs enable the programmer to compose scalable applications

safely out of thread-safe libraries. As in SQL programming, with STM the pro-

grammers just have to mark code blocks which have to be executed as atomic

transactions. Then the underling STM layer takes care of all the synchroniza-

tion issues providing the illusion that transactions are executed serially. So the

programmers can reason serially about the correctness of their applications. The

STM layer, of course, doesn’t execute the transactions serially. Actually, hiding

all synchronization issues to the application, it allows multiple transactions to

execute concurrently by relying on a Concurrency Control Protocol (CCP).

We stated that Transactional Memories are inspired to transactional DBS,

but between them exists some basic differences [22]. The execution of in mem-

ory transaction ensures atomicity, isolation and consistency. Durability instead

is not ensured because all the read and write operations are executed only in

volatile memory. This brings to another significant difference: the execution

time is usually smaller compared to database transactions because the access

to persistent storage during data update is not necessary. Moreover in memory

transactions don’t pay the cost of the overheads for SQL parsing and plan opti-

mization that characterize database environments. This differences allow STMs

to ensure transactions execution times usually two or three orders of magnitude

smaller than in conventional database environments [23, 24]. Another difference
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between STM and DBS is related to the isolation level required for memory

transactions. For DBS serializability is considered largely sufficient, but this

level of isolation allows transactions that will be subsequently aborted to read

inconsistent data. In [25] the authors show that the effects of observing incon-

sistent states can have much more negative side effects in STMs that in DBS.

In fact in STMs transactions can be used to manipulate program variables that

directly affect the execution flow of user applications so, due to the observation

of arbitrarily inconsistent memory states could bring the application to stall

in infinite loops or in exceptions that may never occur in any sequential exe-

cution. Instead for DBS transactions are executed via interfaces with defined

and more restricted semantic (e.g. SQL interfaces) and are executed in a “bul-

letproof” component, the database management system (DBMS), designed to

avoid crashes or hangs in the case the transactions observe inconsistent data.

For these reasons in memory transactions [26] require an isolation level called

opacity, higher than serializability, that in addition prevents all transactions

(also transactions that will be subsequently aborted) from seeing inconsistent

values of data items. Today research on STMs topics is very active. Com-

mercial releases of STMs do not exist yet but many research prototype (e.g

[6, 19, 27, 28]) and prototype for commercial systems (e.g. [29]) are available.

Moreover Intel recently released a processor with Transactional Synchronization

Extensions [30] that represents the first (low cost) commercial implementation

of hardware transactional memory.

2.2 The problem of concurrency in STM

One of the main challenge that a programmer have to face when designing paral-

lel and distributed application is scalability, that is the ability of an application
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to proportionally increase its performance when the amount of available com-

puting resources is increased. Focusing our attention on centralized multi-core

systems, an ideal parallel application should scale linearly with the number of

available core. Usually this level of scalability is not reachable due to two main

factors:

• contention on physical resource,

• contention on logical resource.

Whit physical resource contention we denote the contention experienced by

processes/threads that compose the parallel application when they try to ac-

cess shared hardware resource (e.g. memory buses). It is strictly related to the

specific platform used to run the application and keeping under control its side

effect on performance require a detailed knowledge of the hardware. With logical

resource contention we denote the contention experienced by the threads that

compose the parallel application when they try to concurrently access shared

logical resources (e.g. data in main memory). It is strictly related to the ap-

plication logic and usually its side effects on application performance are higher

than the ones due to physical contention: it brings to an higher performance

degradation and it limits the scalability more than physical contention that can

become negligible. To limit the impact of logical contention on scalability and

performance the programmer must have a detailed knowledge of the application

logic and of the application data access pattern. In this way the programmer

can:

• divide properly the work between threads: the programmer should try

to divide the work in a way that the needed synchronization between

process/thread is minimum;
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• when synchronization between thread/process is not avoidable: the pro-

grammer should use synchronization mechanism that minimizes wasted

time.

But as we explained in paragraph 2.1, in the context of centralized trans-

actional applications, these tasks are not trivial and STM helps to simplify

developer’s work taking care of synchronization of access to shared data. This

implies that the logical contention experimented by the transactional applica-

tion is closely related to the conflict detection mechanism implemented inside

the STM. More in detail the performance of STM based application depends

essentially on three factors:

• the specific transactional application workload,

• the conflict detection and contention management mechanisms implemented

inside the STM,

• the level of parallelism used to execute the application.

About transactional application workload, two of the main parameters that

can characterize a transactional workload are:

• the ratio between read and write on shared data,

• the distributions of read and write operation on shared data.

Workload with an high shared read/shared write ratio can be defined read

intensive. Given an enough big fixed dataset, this type of workload, if the read

and write operations are not concentrated on few shared data, usually brings

to a low logical contention having, in this case, a little impact on application

performance. Workload with low shared read/shared write ratio can be defined
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write intensive. In this case, especially if the read and write operations are con-

centrated on few shared data, the logical contention is high and has a significant

impact on application performance. Between these two extremes, the logical

contention can vary proportionally as a function of the ratio between shared

read/shared write ratio and the shared data access distribution.

The conflict detection mechanism determines the point at which an incon-

sistency in the shared object is detected. Different design choices can have a

substantial impact on the performance of an STM platform and on the degree

to which it is suited to different kinds of workload. So it is necessary to find

the right trade-off between the design choices that avoid wasted work (due to

transaction abort) and the ones that avoid concurrency loss (where a transac-

tion is stalled or aborted, even though it would eventually commit). Three main

conflict detection mechanism families can be defined:

• eager : also called pessimistic, with this type of policy a conflict is detected

as soon as it arises, aborting transaction immediately without waiting for

the commit stage;

• lazy : also called optimistic, with this type of policy a conflict is detected

at commit time, so the transaction is executed until it reaches the commit

and then eventually aborted;

• mixed : this policy is a mix of the previous ones, it detects write-write

conflicts early (since at most one of the conflicting transactions can ever

commit) and it detects read-write conflicts late (since both may commit

if the reader does so first).

In [31] a performance comparison using experimental evaluation of bench-

marks between eager and lazy conflict detections have been presented. The
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results shows that in those applications where threads share a small number

of data, the lazy policies are faster than the eager ones, while the latter are

better in applications where threads share several data among themselves. This

result brings to the conclusion that no single policy is superior across all kinds

of workloads.

A Contention Manager(CM) that implements one or more contention res-

olution policies can be used to mitigate the side effect on performance due to

conflicts between transactions. When a conflict is detected the actions taken by

the CM to resolve it depend on the specific implemented resolution policy that

can select whether:

• to abort the transaction t1 that detects the conflict or

• to abort the opponent transaction t2 that it encounters or

• to delay or not either transactions.

A lot of different contention management policies have been developed [32,

33]:

• Passive: t1 aborts and re-executes

• Aggressive: each opponent transaction t2 is immediately aborted

• Polite: for a fixed number N of exponentially growing interval of time,

t1 waits that the opposite transaction t2 commits. At the end of each

interval t1 checks if the conflicting transaction has finished with the data.

If the check fails for all the N intervals than the opposite transaction t2 is

aborted.

• Karma: this is a priority based policy in which an acquiring transaction

immediately aborts other conflicting transactions with lower priority. If
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the acquiring transaction t1 has lower priority it wait trying to acquire

the access to the data for N times, where N is the difference between the

priority of the conflicting transactions. If the opponent transaction t2 has

not completed after all the N iterations, it is aborted. The priority of each

transaction is established on the basis of the number of data accessed by

the transaction.

• Eruption: this policy is similar to Karma but it adds the blocked transac-

tion’s priority to the active transaction’s priority.

• Greedy : Each transaction obtains a timestamp when it starts the first

time. If a conflict occurs t1 aborts t2 only if the timestamp associated to

t2 is higher to the ones associated to t1 or if t2 is waiting. Otherwise t1

starts waiting for t2 indefinitely.

• Kindergarten: in this policy a transaction t1 is aborted each time that it

conflicts for the first time with another transaction t2. If t1 conflict again,

one or more time, with t2, then t2 is aborted.

• Polka: this policy is a combination of Karma and Polite. In few words

Karma is modified introducing the polite’s exponential backoff for the N

waiting intervals.

• Timestamp: each transaction opponent t2 is aborted if it started is execu-

tion after t1.

• Published Timestamp: is similar to timestamp. It aborts older transaction

that appear inactive, too.

• Priority : this policy aborts immediately the younger of the conflicting

transactions.
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In [32] a performance comparison using experimental evaluation of bench-

marks between most of the previously illustrated policies have been presented.

The authors state that Priority and Greedy policies provide the best perfor-

mance overall, depending on the specific benchmark. Polka is still competitive

but it can’t reach the same performance of Priority and Greedy. The authors

shows that all delay-based CMs (which pause a transaction for finite duration

upon conflict) are unsuitable for the evaluated benchmarks even with moderate

amounts of contention. However the results bring again to the conclusion that

no single contention management policy is superior across all kinds of workloads.

The last factor that can affect transactional application performance is the

level of parallelism used to run the application. When this level is too high a

loss of performance may occur due to excessive data contention and consequent

transaction aborts. Conversely, if concurrency is too low, the performance may

be penalized due to limitation of both parallelism and exploitation of available

resources. More in detail, given a specific transactional workload (that is a

specific application) and a STM implementation with its specific concurrency

control algorithm, maintaining constant the application load, the concurrency

level affects the application performance in this way:

• starting from the sequential execution, increasing the level of parallelism

the performance improves. The logical contention and the hardware con-

tention increases, too. The increase of the contention brings to the increas-

ing of the number of transaction abort due to conflicts on shared data. The

transaction aborts brings to wasted time. But the number of transaction

aborts is not high enough to override the gain due to the increasing level

of parallelism. This performance gain occurs until a maximum is reached.

• starting from the level of parallelism that ensures the best performance,
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the logical contention increases so much that brings the application to be

subject to a so high number of transaction aborts that bring to waste so

much time that the gain due to increased parallelism is not enough to

compensate the wasted time. So the performance start to get worse.

To verify this behaviour we make some experiments executing STAMP, a

very well known benchmark suite for STM that contains 8 different applications,

on top of a STM implementation called Tiny-STM [19]. For our experiments

we used an HP proliant server equipped with two AMD OpteronTM6128 Series

Processor, each one having eight hardware cores (for a total of 16 cores), and

32 GB RAM, running a Linux Debian distribution with kernel version 2.7.32-5-

amd64 (This hardware and software platform is the reference for all the thesis,

so in the next chapters, if not explicitly pointed out differently, we will always

make reference to this platform). The results are showed by the graphs in Figure

2.1. The first graph shows the total execution time for the intruder benchmark

varying the level of parallelism. As we can see the performance increase until 5

parallel threads. Beyond this level, the number of transaction abort increase so

much that the total application execution time starts to grow. A very similar

behaviour can be seen in all the other graphs except the last one. All the graphs

shows performance that initially increases until it reaches an optimum and then,

increasing the level of parallelism behind the optimum, the performance starts

to decrease. The main difference between them is the optimal concurrency level

that is strictly related to the application workload. The last graph shows the

performance for ssca2 benchmark. We can see that it is different from the other

ones. This is due to the specific workload of ssca2 that presents a very low

logical contention: in the available hardware there aren’t enough cores to reach

a level of parallelism that produces an amount of logical contention sufficient
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Figure 2.1: Total application execution time varying the concurrency level
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to penalize the application performance. Similar results were shown in [34] for

some application of the STAMP benchmark suite not only for TinySTM but for

other STM implementations, namely SwissTM [35] and TL2 [6], and in [36] for

different versions of SwissTM.

To limit the side effect of logical contention and improve/optimize the per-

formance, three different methods can be used:

• implement better concurrency control mechanisms: one way to limit the

side effect of logical contention is develop efficient concurrency control

mechanisms that are able to properly synchronize the shared data access

in a way that allows to minimize the wasted time due to transaction aborts.

As we will see in the chapter 3, a lot of concurrency control mechanisms

have been developed in literature. Unfortunately no one of them is better

than the others: usually each concurrency control mechanism is optimized

for a specific subset of workloads, for which it provide optimal perfor-

mance. With workloads different from those for which they are optimized,

they are not able to provide the same optimal performance;

• implement transactions scheduling mechanisms that are able to detect

high conflict execution interval and to take scheduling decision, like for

example serialization of high conflicting transactions, to limit the side

effects of logical contention;

• implement mechanisms that are able do detect the optimal level of paral-

lelism (that is the one that ensure the better trade off between the loss due

to transactions rollback and the gain due to increased parallelism). Dif-

ferent type of mechanisms have been developed. As best of our knowledge

the implemented solutions are based on:
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– analytical model

– heuristics

– machine learning algorithms

We developed a suite of solutions, one based on an analytical model, one

based on machine learning and a hybrid solution that combines analytical mod-

elling and machine learning. All the approaches are general, they can be used

with all transactional application types and with all the STM implementations,

independently of the concurrency control algorithm used inside the STM frame-

work. These approaches are orthogonal to scheduling and concurrency control

mechanisms and can be used in combination with them. The hybrid approach

is particularly interesting because it combines machine learning with analytical

modelling techniques taking the best from the two approaches.





Chapter 3

Performance Optimization in

STM, State of Art

An effective way to face performance tuning and dynamic resource allocation

problems is to develop a mechanism that allows to dynamically choose the bet-

ter system configuration on the basis of the current system input. This mecha-

nism, to make the right choices, should exploit some kind of model that allows

to predict the performance varying the system input and configuration. The

methodologies to develop a model like this can be grouped within two main

classes:

• White box approach: in this class fall all techniques that require a de-

tailed knowledge of internal system dynamics. That is, it is necessary a

detailed study of the system to identify all its fundamental characteristics

and the relations among them. As the name suggests, this methodology

looks inside the system to deeply understand the factors that determine

its behavior. This type of approach allows to obtain a model with good ex-

trapolation power, that allows forecasting system behavior in unexplored

27
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regions of its parameters space. It also requires minimal learning time

because it is sufficient to instantiate some basic model parameters. The

main disadvantage of this approach is that the analytical model is com-

plex and expensive to design and validate, the complexity of the model

implementation grows with the complexity of the system. Moreover, the

mathematical model is an approximation of the real system behavior, so

it should be subject to approximation errors.

• Black box approach: this approach is the exact opposite of the previous

one. Black box techniques observe only inputs, context and outputs of the

system and use statistical methods to identify internal system’s patterns

and rules. This type of approach allows to obtain good accuracy in already

explored regions of the parameters space but usually it doesn’t ensure good

extrapolation power. Black box techniques require learning time that can

grows in a not acceptable rate with the number of system features, but

in most cases they eventually outperforms analytical models. Examples

of black box approaches are the Machine Learning techniques: the system

model is developed using a methodology that observe data representing the

system behaviour. That data can be incomplete, that is they can represent

system behavior only in some working area. Machine Learning algorithms

allow the model to learn via inductive inference based on observing data

that represents incomplete information about statistical phenomenon and

generalize it to rules and make prediction on missing attributes or future

data.

It is possible to combine techniques that belong to white box approach with

techniques that belong to black box one. In that way we can obtain hybrid

solution (Grey box approach), that allows to exploit the strengths of both the
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approaches (e.g. Machine Learning techniques can be combined with analytical

modeling [37]).

With the words Machine Learning we denote a set of learning methodologies

based on data and past experience that can be classified in three main classes:

• supervised approach: learning data are represented by pairs (in,out),

which represent the output of the system given a specific input. Some

examples of supervised approach are: Decision Trees[38, 39, 40], Neural

networks[38], Support Vector Machine[41], that can be classified as off-line

techniques, too;

• unsupervised approach: the learning data don’t denote the outputs ob-

tained by the available inputs. It brings to bear prior biases as to what

aspects of the structure of the input should be captured in the output. A

detailed description of unsupervised approaches can be found in [42];

• reinforcement learning approach: just like in unsupervised approach the

outputs are not available, but the algorithm can measure a delayed reward.

An example of reinforcement learning technique is the UCB algorithm[43]

(Multi-armed bandit problem [44, 45, 46, 47]) that is an on-line technique.

Machine Learning techniques are typical black box approaches. They can

reach good accuracy in already explored regions of the parameters space, that

is regions covered by learning data, but they can’t always ensure good extrap-

olation power. This problem is usually referred as over-fitting: the algorithm

identifies a model that approximates very well the learning data, but it has poor

generalization performance. As previously stated in general for black box ap-

proach, another disadvantage of Machine Learning techniques is that the learn-

ing time can grow up in a not acceptable way with the number of system’s
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input/output parameters and the size of learning dataset. But if we control the

over-fitting problem and if we can spent some time in training task, Machine

Learning techniques can outperform analytical models.

In contexts different from STM, some performance optimization approaches

based on concurrency regulation have been proposed.

In [48] the authors propose to adapt the concurrency level of parallelizable

portions of a scientific (not transactional) application. In this approach the

concurrency level is determined before the start of each parallel code portion

and it is not possible to change the concurrency level during the execution of

the code portion. To adapt the concurrency level they propose three different

strategies:

• speedup-driven incremental search strategy (SISS), that is a hill climbing

technique that uses thresholds to identify the optimal concurrency level;

• speedup-driven global search strategy (SGSS), that periodically executes

a comprehensive search evaluating the performance for all the possible

concurrency level (from 1 to the maximum number of available proces-

sors) and then it chooses the level with the highest speed-up under the

restriction that the efficiency has to be above a given threshold value;

• efficency-driven global search strategy (EGSS), that is a variation of the

previous one that chooses the setting with the highest efficiency under the

constraint that it must guarantee a speed-up of at least a certain threshold

value;

In [49] the authors study the tuning of the concurrency level (number of con-

currently running transactions) within a transactional processing system (e.g.

database server) running on a single machine with the aim to avoid thrashing
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phenomena due to system overload. They propose two algorithms:

• the first one is a hill climbing approach, that starts the execution with

and arbitrary number n of concurrent running transactions and then it

update n by one at each time step measuring the resulting performance.

If it decreases the algorithm turn the updating direction of n until again

the performance becomes worse, and so on. The updating process of n

works in a zig-zag fashion;

• the second one uses a second-degree polynomial function to model the

relation between the workload and the system performance. Than it uses

this polynomial model to take decision about the concurrency level to use

for application execution.

In [50] the problem of regulating the multiprogramming level of a database

server to improve its performance is faced using a feedback control loop that is

initialized with a close-to-optimal value thanks to the use of queueing theoretic

models. The usage of queueing models allows the approach to converge fast

under abrupt workload changes, too.

In [51] the authors propose a hybrid approach merging the previous two

solutions.

3.1 Approaches for performance optimization in STM

As already stated, one core issue to cope with in STM is related to exploiting

parallelism while also avoiding thrashing phenomena due to excessive transac-

tion rollbacks, caused by excessive contention on logical resources. In order

to deal with this issue, several literature proposals exist. These approaches

can be grouped within different sets of orthogonal solutions. On one hand we
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can find optimized schemes for transaction conflict detection and management

[6, 7, 8, 9, 10]. These include proposals aimed at dynamically determining

which threads need to execute specific transactions, so to allow transactions to

be expected to access the same data to be run along a same thread in order to

sequentialize and spare them from incurring the risk of being aborted with high

probability. Two interesting works are [11, 52] where Machine Learning tech-

niques are used to select the best performing conflict detection and management

algorithm depending on the specific application workload.

Other proposals rely instead on pro-active transaction scheduling [12, 13]

where the reduction of performance degradation due to transaction aborts is

achieved by avoiding to schedule (hence delaying the scheduling of) the execution

of transactions whose associated conflict probability is estimated to be high. All

the above schemes are not meant to optimize the number of threads to be used

for running the application, thus they generally operate on top of configurations

where the number of threads is predetermined at application startup.

In the approach proposed in [12], incoming transactions are enqueued and

sequentialized when an indicator, referred to as contention intensity CI, exceeds

a pre-established threshold. The contention intensity is calculated, by each con-

current thread, as a dynamic average depending on the number of aborted vs.

committed transactions. That approach proposes a technique, called adaptive

transaction scheduling (ATS), where an adaptive scheduler controls the num-

ber of concurrent transaction that can access to critical section on the basis

of contention feedback coming from the application. This is done through the

selectively scheduling of transactions subject to frequent aborts. The schedul-

ing scheme specifically deals with when to resume the aborted transaction: it

dynamically chooses the point where an aborted transaction must resumes its
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execution. When a thread starts to execute a transaction or resumes a trans-

action after an abort it evaluates its contention intensity CI: initially the con-

tention intensity is set to 0 and then, at each evaluation step, it is evaluated as

CIn = α × CIn−1 + (1 − α) × CC where CIn and CIn−1 are respectively the

contention intensity at evaluation n and at evaluation n − 1, α is the weight

variable, and CC is the current contention that has value 0 if the transaction

commits or 1 if the transaction aborts. After the evaluation of the contention

intensity each thread compares its CI with a designed threshold. When it is

below the threshold, the thread begins a transaction normally. Otherwise, the

thread will report to the scheduler and it will start waiting for a dispatch. The

scheduler will take decision about the time t to execute the transaction and then

signal back the thread to proceed when t arrives. The scheduler maintains a

single centralized queue of transactions used to dispatch one single transaction

at a time: a new transaction from the head of the queue is dispatched for the ex-

ecution only when the previously selected transaction from the queue executes a

commit or an abort. Note that this queuing behaviour effectively serializes high

contention transactions. In this approach the scheduler doesn’t take scheduling

decision for all the executed transactions but only for those that start under high

contention. This infrequent access allows the scheduler to be implemented as

a centralized module, thereby enabling an advanced and coherent system-wide

scheduling scheme. Such approach doesn’t affect negatively the performance

when the contention is low and it limits the performance degradation when the

contention grows.

In the proposal presented in [13], a transaction is sequentialized when a

potential conflict with other running transactions is predicted. The prediction

leverages on the estimation of the expected transaction read-set and write-set
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(on the basis of the past behaviour of other or the same transaction). Actually,

the sequentializing mechanism is activated only when the amount of aborted

vs. committed transactions exceeds a given threshold. More in detail, in this

work the authors introduce a scheduler, called Shrink, which predicts the future

accesses of a thread on the basis of the past accesses and dynamically serializes

transactions based on the predictions to prevent conflicts. The scheduler is

based on two main ideas: locality of reference and serialization affinity. The

locality is used in two forms:

• To make prediction about the transactional read sets, the notion of tem-

poral locality [53, 54] is used. In the context of transactional memory

temporal locality means that the address frequently accessed in the past

from last transactions executed by a thread are more likely to be accessed

in future transaction of that thread. The scheduler, for each thread that

execute transactions, maintains the read set of the past few committed

transactions. Then, using a confidence measure to predict if the address

could be read in future transactions, the scheduler checks the member-

ship of an address in these read sets. To predict transactional write sets

the scheduler uses the locality across repeated transactions. To prevent

conflicts than scheduler uses the information (about read and write oper-

ation) from the currently executing transactions in conjunction with the

predicted accesses sets. More in detail, given a transaction ti that is just

starting his execution, the scheduler compares any addresses in the pre-

dicted read set and write set of ti with the addresses written by any other

currently executing transaction tj . If at least a comparison is positive,

Shrink serializes the starting transaction, otherwise the transaction exe-

cutes normally.
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• to avoid performance degradation in low contention cases the serialization

is used only if the contention is high. To understand when a thread is

subject to high contention, the scheduler maintains a parameter for each

thread called success rate and activates the prediction and serialization

techniques for a thread only if its success rate goes under a certain thresh-

old. To establish the threshold, an heuristic called serialization affinity

is used: serializing a transaction is more helpful when a large number of

threads access similar addressed and compete for a small number of cores.

So, on the basis of this heuristic, the scheduler serialize a transaction with

probability proportional to the contention in the TM.

The authors state that the scheduler can be integrated with any STM that uses

visible writes (e.g. [35, 55, 56])

Another set of solutions is aimed at supporting performance optimization

via the determination of the best concurrency level (number of threads) to be

exploited for running the application on top of the STM layer. These solutions

are orthogonal to the aforementioned ones, being potentially usable in combina-

tion. We can further distinguish these approaches depending on whether they

can cope with dynamic or static application execution profiles, and on the type

of methodology used to predict the optimal level of concurrency for a specific

(phase of the execution of the) application.

Approaches coping with static workload profiles and using analytical mod-

elling techniques for performance prediction are [16, 17]. This approaches are

not able to predict the optimal level of concurrency for applications which gen-

erate dynamic workloads that evolve over time.

The work in [16] presents an analytical model taking as input a workload

characterization of the application expressed in terms of transaction profiles
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(length of transactions, transactions arrival frequency, number of checkpoints

and computing cost of transactions), contention probability and hardware re-

sources consumption. The model predicts the application execution time (esti-

mating the wasted time due to conflicts) as function of the number of concurrent

threads sustaining the application, however the prediction is a representation of

the average system behaviour over the whole lifetime of the application. The

model is based on queuing theory and each transaction is modelled as a client

that request services from the computing system. To describe the start and

the completion (commit or abort) of the transaction a continuous time Markov

chain is used. In this approach the input parameters need to be calculated

by running the application and profiling the workload, including measurements

of the transaction conflict probability, and by inspecting the application code.

Predictions are related to the execution scenario of the profiled application as

determined by the workload configuration used to run the application. Hence,

changing the workload configuration of the application, a new profiling may be

required. In addition, predictions are related to the entire execution of the ap-

plication. Because during the lifetime of an application some features, as the

workload profile and the transaction conflict probability, can change, then it is

not possible to perform dynamic predictions on basis of the current workload of

the application.

The proposal in [17] is targeted at evaluating scalability aspects of STM

systems. It relies on the usage of different types of functions (such as poly-

nomial, rational and logarithmic functions) to approximate the performance of

the application when considering different amounts of concurrent threads. The

approximation process is based on measuring the speed-up of the application

over a set of runs, each one executed with a different number of concurrent
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threads, and then on calculating the proper function parameters by interpo-

lating the measurements, so as to generate the final function used to predict

the speed-up of the application vs the number of threads. More in detail, ap-

proximation techniques [57] are used to predict the performance of a workload

using n threads, based on its performance with ki thread, with 1 ≤ i ≤ K.

An analytical performance prediction function f(n) based on m measurements

describes the characteristics of the application workload and of the underling

computing environment (hardware, operating system, STM framework). The

function takes as input parameter the number of thread n and gives as output

an estimation of the expected performance. The approach consists of three main

steps:

• a profiling step in which the workload performance is measured with sev-

eral thread counts, obtaining a set of measures.

• an interpolation step in which the the collected measures are used to build

a performance function f(n)

• a prediction step in which the function f(n) is used to predict the appli-

cation performance with number of threads different that the ones used

during the profiling step.

This approach doesn’t require any knowledge of the system and of the work-

load when constructing f (no access to the source code of the application is

required) but it has a limitation due to the fact that the workload profile of the

application is not taken into account. Hence the prediction may prove unreli-

able when the profile gets changed wrt the one used during measurement and

interpolation phases. If it changes, e.g. in terms of transaction profiles, over the

lifetime of the application, the performance achieved with a given number of



38 3. Performance Optimization in STM, State of Art

concurrent threads can change. As a consequence, the calculated performance

function may become unreliable, unless calculating it again by taking new mea-

surements.

Other concurrency level optimization approaches that have been proposed

in literature relying on analytical methods for performance prediction are [14,

58, 59, 60].

In [14] an analytical modeling approach that captures dynamics related

to the execution of both transactional read/write memory access and non-

transactional operation has been proposed. The model is used to evaluate the

performance of STM applications as a function of the number of concurrent

threads and other workload configuration parameters (E.g. execution cost of

transactional and not-transactional operations, cost of begin, commit and abort

operations). This kind of approach is targeted at building mathematical tools

allowing the analysis of the effects of the contention management scheme on

performance and it is based on a two-layered analytical modelling methodology:

• independently of the specific scheme used for regulating memory access by

concurrent transactions, a thread-level model is used to predict the system

performance as a function of:

– the number of worker threads that execute transactional memory

operation,

– the probability that they are executing non-transactional or transac-

tional code blocks;

• a transaction level model, that can be specialized for a given concurrency

control scheme, is used to determine commit/abort probabilities on the

basis of the specific choices determining the actual synchronization scheme
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among threads executing conflicting transactional code blocks.

To develop that models a detailed knowledge of the specific conflict detection

and management scheme used by the target STM is required.

In [58] the authors propose a formal model of transactional memory perfor-

mance called Syncchar. Their approach starts running a lock-based or transac-

tional parallel application and than it samples the addresses written and read

during critical sections. Then a model of the program’s execution is built and

it is used to predict the performance of the application if it uses transactions.

This model uses two metrics: data independence and conflict density of the crit-

ical sections. The first metric measures the likelihood that threads will access

disjoint data. The second metric measures how many threads are likely to be

involved in a data conflict that should occur.

In [59, 60] a set of models for different type of STM has been proposed. The

authors consider the behaviour of a representative transaction, called tagged

transactions, whose execution is influenced by the side-effects of other concurrent

transactions. They formulate the influence that these transactions exercise on

the tagged one by defining some aggregate parameters representing the mean

numbers of transactional data held in shared or exclusive state and the conflict

probability. They models the STM dynamics at each read/write and at the

commit point of the tagged transaction using an absorbing discrete-time Markov

chain (DTMC). Then with this model they derive expressions for the conflict

probability, the average number of data held in exclusive/shared state and the

average number of requests issued in exclusive/shared data until completion of

the tagged transaction.

Other concurrency optimization approaches relying on black-box Machine

Learning (ML) methodologies are [61, 15, 62].
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In [61, 15] an exploration-based approach that periodically performs on-line

monitoring of the number of transaction commits and aborts and then decides

to increase or decrease the level of parallelism has been developed (hill climb-

ing technique maximizing transaction commit rate). For Distributed Transac-

tional Memories (DTM) two approaches have been developed: transactional

auto scaler (TAS) and self correcting transactional auto scaler (SC-TAS). TAS

[62, 15] relies on a mixed Machine Learning/analytical modelling(AM) approach

in which the AM is used to capture the data contention dynamics and the ML is

used to predict the inter-node communication latencies in a DTM platform. The

advantage of using ML lies in its black-box nature, which makes it a very well-

fitting choice for coping with performance forecasting of components in cloud

infrastructures, where typically there is little knowledge of the hardware system

architecture, particularly as concerns the network. SC-TAS [15] extends TAS

exploiting the idea of learning, by means of on-line ML techniques, a correction

function to the output of TAS, hence allowing to minimize the prediction errors

of TAS AM-based forecaster.

Another approach for concurrency level optimization that doesn’t use neither

Machine Learning nor analytical modeling is [63]. In this approach a control

algorithm dynamically changes the number of threads which can concurrently

execute transactions on basis of the observed transaction conflict rate. It is

decreased when rate exceeds an threshold while it is incremented when the rate

is lower than another threshold.

The last two works that we report are [64, 65]. They can not be included

in the previously discussed classes of solutions, but they are however aimed

to optimize the performance of STM based applications. In these proposals

Machine Learning is used to select the most suitable thread mapping, i.e. the
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placement of application threads on different CPU-cores, in order to get the best

performance.

Analysing the various reported approaches we can see that between all the

proposed optimized schemes for transaction conflicts detection and management

none of them results to be better than the others: experimental results already

presented in literature showed that each approach can overcame the others only

for a specific subset of all the possible transactional workload profiles. Moreover,

as we can see from the same experimental results, the performance of all these

approaches depends on the concurrency level used to execute the application.

As a consequence, running the application with a non optimal concurrency level

can bring to performance loss, independently of the used transaction conflict

detection and management mechanism. Similar considerations can be done for

the transactions scheduling and cpu-thread mapping approaches. None of them

optimize the concurrency level and for this reason they are prone to perfor-

mance degradation when a not optimal number of threads is used to execute

the application.

So, dynamic concurrency regulation turns out to be an essential building

block to be exploited with the aim of obtaining the maximum performance from

the previously discussed approaches. Being totally orthogonal to them, the

techniques aimed at support performance optimization via the determination of

the best suited number of threads used to execute the application can be used

in conjunction with the other solutions to obtain best performance form STM

based applications.

All the already proposed approaches for concurrency level optimization present

some significant drawbacks. Starting from the ones based on analytical mod-

elling we can see that the approaches in [16, 17] cope with static workload pro-
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files, so they are not able to predict the optimal concurrency level for applications

characterized by dynamic workloads that evolve over time. The approaches in

[14, 58, 59, 60] are better than the previous ones but they propose very com-

plex models that require a detailed knowledge of the internal mechanism of the

software transactional memory to be instantiated. The proposals in [61, 15, 62]

use machine learning and are essentially based on hill climbing techniques. Such

approaches can be very slow to converge (they can require a not negligible time

to find the optimal concurrency level) and they can be non-reactive with appli-

cations that present a transactional workload profile that varies rapidly.

In this thesis we propose a suite of solutions for dynamic concurrency regula-

tion that allows to overcome the just mentioned drawbacks. We developed three

different approaches: one based on machine learning, one based on analytical

modelling and a hybrid solution that combines the previous two (allowing to

chase the best of both the methodologies by tackling the shortcomings intrinsic

in each of them). All the proposed approaches are general, they can be used with

all transactional application types and with all the STM implementations, re-

gardless of the concurrency control algorithm used inside the STM framework.

Moreover, they are orthogonal to scheduling and concurrency control mecha-

nisms and they can be used in combination with them. They are very simple to

instantiate, that is they don’t require a detailed knowledge of the internal STM

operating mechanism, and they are able to cope with cases where the actual ap-

plication execution profile can change (also rapidly) over time. Furthermore, as

we will show later in this thesis, the hybrid approach represents a methodology

that allows to build very quickly a highly reliable performance model allowing

the determination of the optimal level of concurrency for a specific STM based

application. Moreover, to reduce the applications monitoring overhead (that
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can penalize the performance) without affecting the accuracy of the predictors

used in our approaches we developed a fully innovative mechanism that allows

to dynamically select the composition of the input features set exploited by the

performance prediction. Summarizing, we provide a lightweight and complete

framework for concurrency regulation in STM based applications that allows to

obtain always optimal performance independently from the specific STM imple-

mentation and hardware used to execute the application.





Chapter 4

Application Model and

Workload Features

In this section we depict the model of the STM application. After, we discuss

the application performance model we exploit in our approaches, also describing

motivations associated to the choice of parameters we use to characterize the

application workload and their expected impact on the system performance.

4.1 Model of the STM application

We consider an application executing with a number of concurrent threads that

can be activated and deactivated in order to optimize the concurrency level.

We denote with m the number of active threads running at a given point of

the execution of the application. The execution flow of each thread is char-

acterized by the interleaving of transactions and non-transactional code (ntc)

blocks (i.e. code blocks outside of transactions). Any transaction starts with a

begin operation and ends with a commit operation. During the execution of the

transaction, a thread can both (A) perform read and write operations on shared

45
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data objects, and (B) execute code blocks where it does not accesses shared

data objects (e.g. it accesses variables within its own stack). Each shared data

object read (written) by a thread while executing a transaction is included in

the transaction read-set (write-set). If a conflict between two concurrent trans-

actions occurs then one them is aborted and re-started. Right after the thread

commits a transaction, a ntc block starts, and it ends right before the execution

of the begin operation of the subsequent transaction along the same thread.

4.2 STM application performance model

With respect to the case of applications with no data contention, a major chal-

lange when predicting/evaluating the performance of transactional applications

is to estimate the transaction execution time (i.e. the elapsed time between the

first execution of the begin operation of a transaction and the time when the

transaction commits), which is also affected by the wasted time associated to

the aborted executions of a transaction. The expected wasted time is hard to

estimate, because it depends on a lot of factors, including both workload pro-

file (as the length of transactions in terms of executed instructions and shared

data object accessed by transactions), and run-time system parameters (as the

number of concurrent threads and code processing speed). Additionally, the

workload profile and some run-time system parameters could also change dur-

ing the execution of the application, so that the wasted time could considerably

change over time. The performance prediction technique we use in our approach

relies on run-time observation of some parameters characterizing the execution

of the application and exploits a performance model allowing to predict the av-

erage wasted time of transactions as a function of the observed parameters. The

function we exploit as the fulcrum of performance prediction is the following:
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wtime = f(rss, wss, rwa, wwa, tt, ntct, k) (4.1)

where wtime is the average wasted time of transactions, rss is the average

read-set size of transactions, wss is the average write-set size of transactions, rwa

is an index providing an estimation that an object read by a transaction could

also be written by another concurrent transaction, wwa is an index providing

an estimation that an object written by a transaction could also be written by

another concurrent transaction, tt is the average execution time of the committed

transaction runs (i.e. the average execution time of the transaction runs which

do not get aborted 1 ), ntct is the average execution time of ntc blocks and k is

the number of concurrently running threads. The choice of the parameters was

made on the basis of the experience acquired in the last years by my research

group [14]. In the next paragraph we will discuss with more detail each one

of the parameters chosen to characterize the application workload, the existing

relations between them and how they affect application performance.

4.3 Input parameters analysis

The choice of parameters is of primary importance because only choosing the

right set it is possible to obtain good performance predictions. We started from a

small set that include the ones that can have greater impact on abort probability

(and accordingly on wasted time) and than we enriched the set with additional

parameters when the ones already identified were not sufficient to obtain good

predictions. As already stated in section 4.2, the full set of parameters that can

be used to characterize the transactional workload is composed by six elements:

1note that, according to the application model, a transaction, possibly after experienced a
number of aborted runs, eventually experiences a committed run.
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• Mean committed transaction execution time (tt): It is the mean time that

a committed transaction spent to execute all the operations from the begin

to the commit, without taking into account additional time due to aborts.

Inside a software transactional memory the execution time Extime of a

transaction is strictly related to the transaction abort probability Pabort:

Extime is proportional to Pabort. Given a transaction t1, if the mean execu-

tion time of t1 grows, then the probability that another concurrent trans-

action t2 access one or more item accessed by t1 increase, too. tt affects

the abort probability and than it can affect the overall mean wasted time

wtime due to transaction aborts. Moreover, when aborted, longer transac-

tions entail longer wasted time with respect to shorter transactions, hence

the average wasted time increases when the average execution time of the

committed transaction runs increases.

• Mean non-transactional execution time (ntct): It is the mean time that

each thread spent to execute the non-transactional code from the commit

of a transaction and the begin of the subsequent transaction. Differently

from tt, the non-transactional execution time is related to the abort prob-

ability in an inversely proportional way. Consider a thread th, if it is

executing a non-transactional code block, than it for sure doesn’t access

shared data and than it can’t be the cause of a transaction abort. This

involve that more time th spends executing non-transactional segments,

lower it will be the probability that th brings to the abort of other transac-

tions executed by other parallel threads. Then, longest is the time that th

spend to execute non-transactional code blocks, lower it will be the con-

tribution to the global abort probability (of the whole system). So ntct,

affecting the global abort probability, can affects the wasted time wtime,
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too. More simply longer execution time of ntct blocks determines a lower

probability that two or more transactions are executed concurrently. As

a consequence, we expect that the abort probability (thus also the wasted

time) decreases when the execution time of ntc blocks increases.

• Mean transactional read set size (rss): It is the mean size of the read set of

a transaction. It affects in a proportional way the transaction abort proba-

bility. Intuitively, greater is the number of shared items that a transaction

t1 reads, grater is the probability that another concurrent transaction t2

updates (at least) one of these items, bringing to the abort of t1 transac-

tion. Affecting the abort probability, the mean read set size can affect the

amount of wasted time wtime due to transaction aborts.

• Mean transactional write set size (wss): It is the mean size of the write set

of a transaction. As for rss the mean write set size affects in a proportional

way the transactions abort probability. In this case too, higher is the

number of shared items that are modified by a transaction t1, higher is the

probability that another concurrent transaction t2 will update (at least)

one of the items modified by t1, bringing to the abort of one of the two

transaction. In this case too, affecting the abort probability, the mean

transaction write set size can affect the amount of wasted time wtime due

to transaction aborts.

• Write-write conflict affinity index (wwa): This index, that can assume

values between 0 and 1, is obtained as the dot product between the vector

of the distribution of the write accesses and himself. This index gives

an estimation of the conflict rate between write operations of concurrent

transactions. The higher the index value, the higher the conflict rate
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between writes is and so we expect an enhancement of the abort probability

and of the wasted time.

• Read-write conflict affinity index (rwa): This index, that can assume val-

ues between 0 and 1, is obtained as the dot product between the vector of

the distribution of the write accesses and the vector of the distribution of

the read accesses. This index gives an estimation of the conflict rate be-

tween read and write operations of concurrent transactions. The relation

between the wasted time and the values of this index is the same of the

wwa index.

The last parameter that affect the value of the function wtime is the concur-

rency level k. It represents the number of concurrent threads used to execute

the application. This parameters doesn’t characterize the transactional work-

load, but it directly affect the whole application performance: the number of

concurrent transactions depends on the number of concurrent threads, hence

the wasted time increases when k increases.

4.4 Input parameters - experimental data

In this paragraph we report some experimental data that confirm the correctness

of our analysis. These data have been collected executing three applications

belonging to the STAMP benchmark suite (kmeans, bayes and intruder) on top

of the hardware platform already described in Chapter 2 using different level of

parallelism. We show data related only to a subset of the applications available

in STAMP because, as we will deeply discuss in Chapter 5, not always the full

parameters set affect the total mean transactional execution time Extime. So we

chose the applications for which the relation between the sampled parameters
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and Extime is more evident.

The graphs from 4.1 to 4.6 are obtained from the collected data, ordering

the samples on the basis of the total mean execution time Extime (the mean

transaction execution time including wasted time due to transaction aborts,

obtained as the sum between rt and wtime). They shows the relation between

Extime and tt (graph 4.1), the relation between Extime and ntct (graph 4.2), the

relations between Extime and the parameters wss and rss (graphs 4.3 and 4.4)

and the relations between Extime and the parameters wwa and rwa (graphs 4.5

and 4.6). As we can see the real data respect the behaviour previously described.
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Figure 4.1: Total mean execution time vs. mean execution time
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Figure 4.2: Total mean execution time vs. mean non-transactional time



52 4. Application Model and Workload Features

 4096

 16384

 65536

 262144

 1.04858e+06

 4.1943e+06

 1.67772e+07

 6.71089e+07

 2.68435e+08

 1.07374e+09

 0  5000  10000 15000 20000 25000 30000 35000

M
e
a
n
 t
ra

n
s
a
c
ti
o
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

c
lo

c
k
 t
ic

k
s
)

Sorted samples

Extime

 0

 2

 4

 6

 8

 10

 12

 14

 0  5000  10000  15000  20000  25000  30000  35000
M

e
a
n
 n

u
m

b
e
r 

o
f 
w

ri
tt
e
n
 i
te

m
s

Sorted samples

wss

Figure 4.3: Total mean execution time vs. mean read write set size
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Figure 4.4: Total mean execution time vs. mean read set size
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Chapter 5

Machine Learning Based

Approach

In this chapter we present a machine learning based approach for the concur-

rency regulation in STM. To solve this problem we need a mechanism that allow

to predict the system performance varying the concurrency level used to run the

transactional application. More in detail we have to develop a predictor that

takes as input a statistical representation of the transactional workload and re-

turns an estimation of the wasted time due to transaction aborts for each level

of parallelism. Afterwards this estimation is used to predict the system through-

put. In other words we need a predictor that gives a good approximation of the

function 4.1 for each level of parallelism k, as already discussed in section 4.2.

To do this, we have to fix a maximum level of parallelism as upper bound for

the performance prediction process. This is a plausible hypothesis for two main

reasons:

• the study in [66] shows that to obtain optimal performance with software

transactional memory based applications the level of parallelism should be

55
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less or equal to the number of available cores;

• given a real parallel architecture, the number of cores that it can hold is

finite.

So choosing the maximum value for k is an easy task: it is sufficient to

know the number n of available cores of the reference hardware architecture

and put k = n. After that we have to select the methodology for the prediction

model development. We chose a black box approach, for the advantages already

discussed in Section 3. The first step in model construction is the building of a

set of samples, called training set, that allows to represent the function wtime.

It will be used to train the performance predictor. This training set consists of

a set of vectors, each one derived by observing the application during a given

interval of time and including the following quantities (the apex t is used to

indicate that the quantities are related to a training sample):

• the set of statistics that represent the transactional workload, i.e. rsts,

wsts,rw
t
a, ww

t
a, t

t
t, ntc

t
t

• the average wasted transaction execution time wttime

• the number kt of active threads (i.e the threads used to run the application

during sample collection)

Hence, a training sample (i,o) is such that o = (wttime) and i = (rsts, ws
t
s,

ttt, ntc
t
t, rw

t
a, ww

t
a, k

t). The features of the training samples together with other

characteristics of the training set give to us some indications about the specific

machine learning technique that can be used to learn the function f , more in

detail:
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• analyzing the structure of the training sample we can see that, given a

configuration of parameters i, the sample contains the respective value for

the output o. This structure of the training samples allows to restrict the

choice to the supervised machine learning approaches;

• analyzing the elements inside the vector we can note that each of them is

a positive real value;

• the software transactional memories based application has some instability,

i.e. high variance of performance when the concurrency degree is higher

than the optimal level (the variance usually grows with the distance from

the optimal concurrency level). This can bring to have a high level of noise

inside the training set;

• if all the input parameters are strictly necessary to obtain reliable perfor-

mance predictions, then the function f that we must approximate can be

very complex.

All this observations suggest to use Neural Networks (NN) [38] as the proper

technique to approximate the function f , as we will show in paragraph 5.3.

Once obtained a good predictor for the wtime function, it can be used inside a

self-adjusting concurrency STM to take runtime decision about the level of par-

allelism to use during the application execution lifetime. In the next paragraph

we will present an architecture that can be used to build a STM platform able to

adapt the level of parallelism exploiting the output of the developed predictor.

5.1 System Architecture

The self-adjusting concurrency approach we propose leverages on three archi-

tectural building blocks, namely:



58 5. Machine Learning Based Approach

Figure 5.1: System Architecture.

• A Statistics Collector (SC);

• A Neural Network (NN);

• A Control Algorithm (CA).

The system architecture is depicted in Figure 5.1. When a workload sampling

interval terminates (hence on a periodic basis) CA gets from SC a set of values

characterizing the application workload (that is an estimation of the statistical

parameters described in 4.2). In our design, the acquired characterization is

assumed to be representative of the workload profile of the application for the

near-future.

NN is able to predict the average wasted transaction execution time spent

by the application, i.e., the average time spent executing aborted transactions,

as a function of (A) a given set of values characterizing the workload and (B) a

given number of concurrent threads sustaining the application (NN provides an

approximation fN of the function 4.1 and, as we will see in paragraph 5.3, it is
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able to reach very good prediction performance allowing to accurately determine

the wasted time due to transaction aborts ). CA exploits NN to calculate, over a

range of values for the number of concurrent threads, the expected wasted time

that will characterize the application execution in the near future. Then, on the

basis of this outcome, CA determines the number of threads that is expected

to provide the best application throughput, and keeps active such a number

of threads during the subsequent workload sampling interval. A more detailed

description of the behaviour of the CA component is given in the next section.

5.1.1 Controlling the Concurrency Level

At the end of each sampling interval, CA gets the vector (rss, wss, rwa, wwa,

tt,ntct) from SC. Then, for each k such that 1 ≤ k ≤ maxthread (where maxthread

is the maximum amount of concurrent threads admitted for the application), it

generates the vector vk = {rss, wss, rwa, wwa, tt, ntct, k} and predicts wtime,k =

fN (vk) by relying on NN. After it uses the set of predictions {(wtime,k)} to esti-

mate the number opt of concurrent threads which is expected to maximize the

application throughput along the subsequent observation period. Specifically,

exploiting tt and ntct as predictions of the average execution time of the com-

mitted transactions and the ntc blocks, respectively, opt is equal to the value of

k, with 1 ≤ k ≤ maxthread, for which

thrk =
k

wtime,k + tt + ntct
(5.1)

is maximized. Note that wtime,k + tt+ntct corresponds to the predicted average

execution time between the commit operations of two consecutive transactions

along a given thread when there are k active threads. Finally, during the sub-

sequent sampling interval, CA keeps active opt threads, deactivating (if active)
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the remaining maxthread − opt threads.

As we have previously stated, wtime,k is expressed as a function of tt and

ntct. However, these two quantities may depend, in their turn, on the value of

k due to different thread contention dynamics on system level resources (e.g.

contention on system hardware) when changing the number of threads. As an

example, per-thread cache efficiency may change depending on the number of

STM threads operating on a given shared-cache level, thus impacting the CPU

time required for a specific code block, either transactional or non-transactional.

To cope with this issue, we provide correction functions allowing, once known

the value of tt (or ntctime) when running with k threads, which we denote as

tt,k and ntct,k respectively, to predict the corresponding values when supposing

a different number of threads. This will lead the final throughput prediction to

be actuated via the formula:

thrk =
k

wtime,k(tt,k, ntctk) + tt,k + ntct,k
(5.2)

Overall, the finally achieved performance model in Eq. 5.2 has the abil-

ity to determine the expected transaction wasted time when also consider-

ing contention on system level resources (not only logical resources, namely

shared data) while varying the number of threads in the system. In fact,

wtime,k(tt,k, ntctk) + tt,k + ntct,k corresponds to the predicted average execution

time between the commit operations of two consecutive transactions along a

same thread when there are k active threads in the system, as expressed by tak-

ing into account contention on both logical and system-level resources. So the

instantiation of the Neural Network based model for the prediction of wtime,k

needs to be complemented with a predictor of how tt and ntct are expected to

vary vs the degree of parallelism k. Also, the final equation establishing the
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system throughput, namely Eq. 5.2, which is used for evaluating the optimal

concurrency level, also relies on the ability to determine how tt and ntct change

when changing the level of parallelism (due to contention on hardware resources).

To cope with this issue, we have decided to complement the whole process with

the instantiation of correcting functions aimed at determining (predicting) the

values tt,k and ntct,k once know the values of these same parameters when run-

ning with parallelism level i 6= k. To achieve this goal, the samples used for the

training of the Neural Network are used to build, via curve fitting, the function

expressing the variation of the number of clock-cycles that the CPU-core spends

waiting for data or instructions to come-in from the RAM storage system. The

expectation is that the number of clock-cycles spent in waiting phases should

scale (almost) linearly vs the number of concurrent threads used for running

the application. To support our claim, we report in Figure 5.2 and in Figure

5.3 the variation of the clock-cycles spent while waiting data to come from the

RAM storage system for two different STM applications of the STAMP bench-

mark suite, namely intruder and vacation, while varying the number of threads

running the benchmarks between 1 and 16. (More in detail the graphs shows

the ration between the stalled cycles respect to the total cycles varying the con-

currency level used to run the application). These data have been gathered on

top of the hardware platform already described in section 2.2. The reported

statistics have been collected via the perf tool, which marks the stall cycles

while gathering data from RAM storage as Stalled-Cycles-Backend. By the

curves the close-to-liner scaling is fairly evident, hence, once determined the

scaling curve via regression, which we denote as sc,

tt,i = tt,k ×
sc(i)

sc(k)
ntct,i = ntct,k ×

sc(i)

sc(k)
(5.3)
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where:

• tt,i is the estimated expected CPU time (once known/estimated tt,k) for a

committed transaction in case the application runs with level of concur-

rency i;

• ntct,i is the estimated expected CPU time (once known/estimated ntct,k)

for a non transactional code block in case the application runs with level

of concurrency i;

• sc(i) (resp sc(k)) is the value of the correction function for level of con-

currency i (resp k).

5.2 Implementation

We have implemented a fully featured Self-Adjusting Concurrency STM (SAC-

STM) based on the architecture proposed in the previous sections. The STM

layer has been implemented by relying on the release of TinySTM version 1.0

for Unix systems. We used the facilities natively offered by TinySTM to deter-

mine wtime, tt and ntct. In addition, we instrumented TinySTM code to gather

samples to evaluate rss and wss. In order to compute the access distribution

of read/write operations, we added a read counter and a write counter for each

element of the lock vector. At the end of the commit phase of a successfully

committing transaction, the read (write) counter for each lock associated with

an item in the read (write) set of the transaction gets incremented. We make the

assumption that the different types of transaction are scheduled with uniform

probability between all the threads that execute transactions. This assumption,

that will be relaxed in Section 5.4, allows to keep low the overhead associated

with the sampling mechanisms. In fact the statistical data gathered by each
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thread are representative of the whole application workload profile, so we can

use only one thread (that we name master thread) to collect the statistics used

to predict system performance. This choice allows to avoid the usage of syn-

chronization mechanisms inside the added statistic-collection modules and, in

turn, it avoids negative side effect on system scalability. Actually, the master

thread is randomly selected among the active threads at the beginning of each

sampling interval. A sampling interval terminates after the master thread has

committed n subsequent transactions. At the end of each sampling interval,

the master thread calculates the aggregated statistics and then, by relying on a

NN implementation, it calculates the number k of concurrent threads which is

expected to maximize the throughput according the approach depicted in Sec-

tion 5.1.1. Finally, it keeps active k threads (out of the maximum number of

maxthread threads) during the next sampling interval.

We actually tested two thread activation/deactivation mechanisms. The first

one leverages on a shared array with maxthread elements. The master thread sets

to 1 (0) the elements associated with the threads which have to be deactivated

(activated). The slave threads (namely the remaining maxthread − 1 threads)

check their corresponding value before executing a new transaction, by trapping

into a busy waiting phase while the value is 1. The second mechanism leverages

on a shared array of maxthread POSIX semaphores initialized to 0. In this case

the master thread increments (decrements) the semaphores associated with the

threads which have to be deactivated (activated), and the slave threads, on

check, perform a wait-for-zero operation on the associated semaphore. Note

that in this case, when a thread is deactivated, it actually sleeps (thus not

consuming CPU cycles) until it is reactivated. On the other hand, the two

different approaches provide different reactiveness since the usage of semaphores
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imposes sleep-ready thread transitions at the operating system level. In order to

further study the effects of thread wake-up and rescheduling, for the case where

we rely on semaphores we have studied two different configurations. The first one

is such that the k threads to be maintained active (across the maxthread threads)

are selected according to a round-robin scheme, while the second configuration

is such that always the same set of threads are kept active, except for those that

have to be newly activated or deactivated, which might reduce the cost of thread

reschedule. We note anyway that the latter configuration is not suitable for all

kind of applications. Specifically, it can not be used for applications that make

a pre-partitioning of the work among threads, because, in this case, sleeping

threads may prevent the application to fairly make progress for a relatively long

time interval. Overall, the different configurations we consider allow us to study

differentiated trade-offs involving both performance and applicability aspects.

Finally, our implementation of NN consists of an acyclic feed-forward full

connected network [38] that has been coded by leveraging on FANN open source

libraries (version 2.2.0) [67]. NN has an input layer containing seven nodes and

an output layer containing a single node, according to the number of input and

output parameters of the function f to be estimated.

5.3 Experimental Evaluation

In this section we present the results of an experimental study we carried out to

evaluate the effectiveness of our proposal. We run applications from the STAMP

benchmark suite on top of the above described implementation of SAC-STM,

which has been hosted by the platform described in section 2.2. We present

the results for all the STAMP benchmarks. These applications span from low

to high percentage of time spent executing transactions (vs non-transactional
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Figure 5.4: Example training configurations and test configurations for the case
of three workload configuration parameters.

code blocks), and from low to high data contention levels. When running these

applications with different workload configuration parameters on top of the na-

tive version of TinySTM the statically configured optimal number of threads

can remarkably change or not, depending on the specific benchmark. Hence,

the different variability exhibited by these applications in terms of optimality

of the number of threads when considering the static case gives rise to a good

test-suite for the evaluation of our self-adaptive proposal.

5.3.1 Evaluation Methodology

For each test-bed application we performed an off-line training of NN using

samples gathered during the execution of a set of runs of the test-bed application.

In order to evaluate the robustness of our proposal, we purposely avoided the

generation of training samples that would cover uniformly the sampling space.
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Conversely, the training runs have been executed by randomly selecting both

the values of the workload configuration parameters of the application, each

one in between its corresponding two extreme values depending on the specific

parameter, and the number of concurrent threads. Finally, training samples

have been randomly selected across samples gathered during the execution of

the runs.

We tested SAC-STM using various workload configurations. Further, to

assess its robustness, we also used workload configurations associated with the

extreme values of the intervals in which the values of the workload configuration

parameters have been selected for the NN training phase. An example of the

type of workload configurations we used in our tests is depicted in Figure 5.4 for

the case of three configuration parameters. The vertices of the cube represent

the configurations defined through the extreme values of the intervals. Note

that these configurations represent border cases with respect to the configura-

tions used to train NN. Indeed, all the randomly selected configurations used

for the training phase are contained within the cube. Since the workload config-

uration parameters of the applications also affect the number of transactions to

be executed, in our tests we excluded those configurations for which the number

of transactions within the parallel run was so short not to allow the completion

of at least three sampling intervals.

5.3.2 Off-line Training

We trained NN using 800 samples randomly selected over the execution of 64

runs according to the methodology described in the previous section. The num-

ber of concurrent threads for each run was randomly selected between 1 and 32
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(1). Each sample contains the values calculated over a sampling interval whose

duration was determined by the execution of 4000 subsequent committed trans-

actions along the same thread. To limit the number of outliers, we discarded

(filtered out) samples stemming from sampling intervals in which more than

the 99% of the transaction runs have been aborted. Note that, when moving

towards such an abort probability, the transaction response time grows very

fast and exhibits high variability. We assume that in this situation the sys-

tem throughput is never optimal. Hence, for higher abort probability it suffices

that NN approximates the transaction response times by relying on the closest

samples which have not been filtered out.

To train NN we used a back-propagation algorithm [68, 69, 70]. We observed

that a number of hidden layers equal to one was a good thread-off between pre-

diction accuracy and learning time. In this case, the number of hidden nodes for

which NN provided the best approximations was between 4 and 16, depending

on the application. Further, during our experiments, we observed that values

between 0.0 and 0.2 were good for both the learning coefficient and the mo-

mentum, respectively. In the worst cases, the iterations of the back-propagation

algorithm have been no more than 2500, and the algorithm execution time was

less than 10 seconds on a desktop machine equipped with an Intel R©CoreTM2

Duo P8700 and 8 GB RAM. On the other hand, the on-line computation by NN

was on the order of a few microseconds.

To provide some graphical details about off-line training, in Figure 5.5 we

plotted the dispersion of the training set values of the (normalized) wasted trans-

1Although it is generally not convenient to use more threads than the available cores, for
completeness of the analysis (and for compliance with what done in other studies), we also
report some performance data related to the case where maxthread is varied up to 32, thus
doubling the 16 CPU-cores available on the used hardware platform. This is the reason why
we considered up to 32 threads in the off-line learning phase.
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action execution time, namely wttime, together with the function fN learnt by

NN as result of the off-line training. These data refer to the intruder bench-

mark. The plots refer to different values of the number of concurrent threads,

that has been varied between 8 and 16. Note that, fixed the number of con-

current threads, the values of fN depend on other six parameters which have

been projected on a two-dimensional space, where the fN function is plotted

according to an increasing ordering of its values. In order to assess the quality

of the prediction by NN, in Figure 5.6 we plotted the estimated function fN and

the wasted transaction execution time associated with a larger set of training

samples that have not been used for the aforementioned training phase. As we

can note, also in cases where very few training samples are used (see, e.g., Figure

5.5 in correspondence to 16 concurrent threads), NN is able to reliably predict

the wasted transaction execution times (see Figure 5.6 in correspondence to the

same number of concurrent threads) thanks to its interpolation/extrapolation

ability.

5.3.3 Results

For all the tests we present in this section, we plot the application execution

time (expressed in sec) achieved with SAC-STM and with the original TinySTM,

which we use as a baseline, while varying maxthread. We initially consider test

cases where maxthread is less than or equal to the value 16, which corresponds

to the amount of CPU-cores available on the used hardware platform. After

(as already hinted, for completeness of the analysis) we present the results for a

test where we consider values for maxthread up to 32. When considering values

of maxthread less than or equal to 16, the selected mechanism for managing

thread activation/deactivation within SAC-STM is busy-waiting, which for the
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specific configuration conditions does not give rise to delays in the progress of

individual threads (since each thread runs on an exclusively dedicated CPU-

core) and avoids sleep-ready thread transitions at the operating system level.

For each test-bed application, we present the results achieved with four different

workload configurations. These include configurations corresponding to some

vertices of the cube (see Section 5.3.1) where SAC-STM achieved the worst and

the best performance with respect to the best case observed when running on

top of TinySTM while manually varying the number of threads.
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Figure 5.7: Application execution time - intruder

In Figure 5.7 we present the results for the intruder benchmark. As we can

see, for all considered configurations, the application execution time achieved

with TinySTM decreases when increasing the number of used threads up to 4-6,

while for greater values it drastically increases. Conversely, for all the tests,

SAC-STM achieves very good results independently of the maximum amount of
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allowed concurrent threads. In fact, in scenarios where maxthread is less than

the amount of threads giving rise to the optimum case for TinySTM, the results

achieved with SAC-STM and TinySTM are comparable. With more threads,

SAC-STM is able to constantly ensure an application execution time very close

to the best one achieved with TinySTM. In particular, also for the two con-

figurations corresponding to the vertices of the cube, i.e., configuration 3 and

configuration 4, the performance results are good. In the most adverse case to

SAC-STM, which corresponds to configuration 4, SAC-STM constantly achieves

an execution time of no more than 12.5% worse compared to the best case pro-

vided by TinySTM, i.e. when it runs with a fixed number of 6 threads. However

we note that as soon as 8 or more threads are used by TinySTM, its performance

rapidly degrades up to a factor 2.8x, thus exhibiting a clear scalability problem

with this workload. This phenomenon is avoided at all by SAC-STM thanks to

its proper thread activation/deactivation functionalities, which provide a means

to control the negative effects associated with data contention.

The results of the genome benchmark tests are shown in Figure 5.8. For

configuration 1 and configuration 4 (the latter is a vertex configuration of the

cube), the execution times with SAC-STM and TinySTM are comparable up to

4 threads. With more threads, while the performance with TinySTM degrades,

SAC-STM ensures, again independently of the number of available threads, an

execution time comparable or lower than the best one provided by TinySTM

(i.e. with 4 threads). With configuration 3 (which is the other vertex config-

uration of the cube) the best execution time with TinySTM is achieved with

14 threads, after which the performance slightly decreases. With this configu-

ration, the results achieved with SAC-STM are, on average, comparable with

those by TinySTM. In the most adverse case to SAC-STM, which corresponds
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Figure 5.8: Application execution time - genome

to configuration 2, SAC-STM constantly achieves an execution time of no more

than 11% worse compared to the best case provided by TinySTM, i.e. when it

runs with a fixed number of 8 threads.

The results plotted in Figure 5.9 refer to the tests with the kmeans bench-

mark. Also in this case, SAC-STM provides performance benefits in all scenarios

when maxthread is set to a value larger than the value giving rise to the best

case for TinySTM. For configuration 4, namely a vertex configuration of the

cube, the execution times are comparable while varying the amount of available

threads. For the other vertex configuration, namely configuration 3, the best ex-

ecution time achieved by TinySTM (i.e., with 4 threads) is about 22% lower than

the execution time achieved with SAC-STM. But with more available threads,

SAC-STM constantly achieves a better execution time, hence outlining again

how TinySTM may suffer from selection of an oversized degree of concurrency,
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Figure 5.9: Application execution time - kmeans

which is instead not the case for SAC-STM.

In Figure 5.10 we can see the results related to the tests with labyrinth

benchmark. SAC-STM provides performance benefits in all the scenarios where

a number of thread greater than the one that allows to obtain optimal perfor-

mance with Tiny-STM is used. In configuration 1, configuration 3 and config-

uration 4 we can see how the performance rapidly decreases using more than

6 thread with TinySTM. With SAC-STM instead the performace remains near

the optimum for each level of parallelism greater than 6. For configuration 2,

we can see that the number of available cores doesn’t allow to reach the concur-

rency level that produce the amount of logical contention necessary to penalize

the performance. In this case we can see that SAC-STM allows to obtain the

same performance of TinySTM.

The Figure 5.11 shows test results for ssca2 benchmark. In all the tests we
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Figure 5.10: Application execution time - labyrinth
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Figure 5.11: Application execution time - ssca2
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made with this benchmark we verified that the number of available cores is not

sufficient to reach the concurrency level that produce performance degradation.

As we can see from the graphs with this benchmark SAC-STM allows always to

obtain the same performance of TinySTM.
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Figure 5.12: Application execution time - vacation

The test results of vacation benchmark are showed in Figure 5.12. From

configuration 1, configuration 4 we can see that this application reaches opti-

mal performance with different levels of parallelism, depending on the specific

workload. More precisely we can see that in configuration 1 the optimal level

of parallelism with TinySTM is around 4 and in configuration 4 it is around

8. From the graphs we can see how SAC-STM ensure the same performance

of TinySTM until it reach the optimum. Beyond this point the performance of

TinySTM degrades, conversely SAC-STM allows to obtain always performance

near to the optimum. In configuration 2 and configuration 3 the graphs show
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that the number of available cores doesn’t allow to reach the level of parallelism

that give the optimal performance, because in that scenarios the logical con-

tention on shared data is very low. In this cases too, SAC-STM allows to obtain

the same performance levels reached by TinySTM.
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Figure 5.13: Application execution - yada

In Figure 5.13 we can see the test results for yada benchmark. All the ex-

amined scenarios give similar results. As we can see from the four graph the

application reaches the optimum using a number of thread between 6 and 8. Be-

hind this threshold the performance obtained with TinySTM degrades. Instead

SAC-STM still allows to obtain performance near the optimum independently

from the maximum level of parallelism admitted.

The last examined benchmark, that is the last in the STAMP benchmark

suite, too, is bayes. The test results are showed in Figure 5.14. As we can

see from the graphs the optimal performance is reached by TinySTM with a
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Figure 5.14: Application execution - bayes

level of parallelism between 4 and 8 threads, depending on the benchmark input

parameters. The graphs show that, increasing the maximum available level

of parallelism, SAC-STM ensures the same performance of TinySTM until the

optimum is reached. Behind this point the TinySTM performance degrades

while SAC-STM continues to provide performance near the optimum.

In order to show the different effects on performance determined by the spe-

cific thread activation/deactivation mechanisms, in Figure 5.15 we plotted the

application execution time obtained with SAC-STM in a test with the intruder

benchmark, where we used busy-waiting or semaphores. For the latter case, we

also report data related to both round-robin and non-round robin policies for

the selection of the threads to be kept active during the subsequent observa-

tion period. Additionally, we plotted the application execution time obtained

with TinySTM. This time we considered values of maxthread up to 32. We note
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that the estimated optimal number of threads by the NN in this test was al-

ways around 5. We can see by the plots that differences between the execution

times are low when considering up to 6 threads. After, the execution time with

TinySTM quickly increases. With busy-waiting the execution time by SAC-

STM remains optimal up to 16 threads, then it quickly increases, as expected

by the fact that only 16 CPU-cores are available (thus leading busy-waiting

threads to interfere on the advancement of the threads actively supporting the

application). With semaphores, the execution time increases between 6 and 10

threads. Then it tends to remain quite constant, even after 16 threads. This

is due to the fact that, up to 5 threads, none or a few threads, for each sam-

pling phase, get context-switched due to the round-robin selection, giving way

to other threads which are resumed. With more than 5 threads, and up to 10

threads, the number of threads getting context-switched progressively increases,

causing an increase of the execution time. With more than 10 threads, 5 threads,

on average, get context-switched and 5 threads are resumed for each sampling

period, then the cost of these operations tend to remain constant when further

increasing the number of threads of the application. Finally, using semaphores

without round-robin selection, the execution time remains quite close to the

optimum case independently of the number of threads. In fact, avoiding round-

robin selection, running threads tend to remain the same, so reducing costs

associated with wait-ready transitions (namely sleeping-thread resuming) and

context-switching.

5.4 Sampling Overhead Optimization

Until now we did the assumption that the different types of transaction are

scheduled with uniform probability between threads. This assumption allows
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Figure 5.15: Application execution time with intruder up to 32 threads.

to consider the samples taken by any thread like representative of the whole

application workload. In this scenario it is possible to use only one thread for

sampling collection during the application execution without loss of accuracy.

Using only one thread for this task allows to reduce the sampling overhead that

can negatively affect the whole application performance. In fact, as showed

by the curves in the graphs from 5.7 to 5.14 that compare Tiny-STM with

SAC-STM, the sampling overhead can be considered negligible. However, if we

relax the assumption of uniform distribution of the workload, we can’t consider

the samples taken by any thread like representative of the whole application

workload. In this case each thread must collect its own statistics that must be

merged to obtain a sample representative of the whole application workload.

This last procedure produces more overhead than the one that use only one

thread as we will show on paragraph 5.5.2. So, to avoid a strong performance

degradation, the sampling collection activity must be redesigned with the aim of



5.4. Sampling Overhead Optimization 81

reduce as soon as possible the sampling overhead. To do so, three main aspects

must be taken into account:

• if we use only one worker thread (i.e. thread that execute transactions)

to collect input parameters data, the overall input parameters collection

overhead decrease increasing the level of parallelism.

• the sampling overhead is inversely proportional to the sampling period,

that corresponds to the number of committed transaction taken into ac-

count to build a sample;

• not all the parameters used for transactional workload characterization

have the same sampling costs. As we will show in paragraph 5.5.2 for the

parameters rss, wss, tt, ntct the costs can be very low but for rwa and wwa

the costs can be high.

We relaxed the assumption of the uniform distribution of the workload so

the possibility of use only one thread for sampling collection must be discarded.

About the sampling period, we can see that it not only affect the overhead,

but the samples accuracy, too. To obtain samples that properly describe the

workload, the sampling period must be carefully tuned: if we choose a excessively

short period the sample could be not statistically significant, otherwise if we

choose a excessively long period there is the risk that the samples are not able to

describe some fast workload variations. To preserve the prediction accuracy, we

decided to choose the size of the sampling period so that it can ensure the highest

precision in workload description, without taking into account the effects on

sampling overhead. The reason for this choice is that a wrong decision about the

optimal concurrency level has a greater negative impact on performance respect

to the once due to the sampling overhead. So we have only one way to reduce
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the sampling overhead: we have to use as few as possible input parameters for

performance prediction. To do so, we have to analyse the collected data to

understand if the monitored parameters are all strictly necessary to perform

accurate predictions. During the analysis process we have to take into account

that a general application can be characterized by:

• a statical workload: that is the behaviour of the parameters used to char-

acterize the application workload doesn’t vary during the application life-

time;

• a dynamic workload: that is the behaviour of the parameters used to char-

acterize the application workload can vary during the application lifetime.

In the first case the minimum set of parameters minSet necessary to obtain

an accurate performance prediction can be established just one time and than it

will be valid for all the application lifetime. In the second case minSet can vary

from 1 to the maximum number of collectable parameters, so in this case it is

necessary a dynamic mechanism to choose the content of minSet. The statical

workload case can be considered a special case of the dynamic workload one, so

in the next paragraphs we will propose a solution that dynamically change the

size of minSet with the aim of reduce the sampling overhead preserving at the

same time the accuracy of the performance predictor.

5.5 Dynamic feature selection

5.5.1 Rationale

Our rationale for the definition of an innovative approach where, depending

on the current execution profile of the application, the set of input features
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to be sampled can be dynamically shrunk, or enlarged towards the maximum

cardinality, is based on noting that:

A: some feature values may show small variance during a given time window,

and/or

B: some feature values may be statistically correlated (also including the case

of negative correlation) to the values of other features during a given time

window.

Particularly, we can expect that (significant) variations of wtime, if any, do

not depend on any feature exhibiting small variance over the current observation

window. On the other hand, in case of existence of correlation across a (sub)set

of different features, the impact of variations of the values of these features on

wtime can be expected to be reliably assessed by observing the variation of any

individual feature in that (sub)set. In case the above scenarios occur, we note

it can be possible to build an estimating function for wtime which, compared to

f , relies on a reduced number of input parameters. Consequently, NN has to

estimate a simpler fN function. On the other hand, the relevance of excluding

specific input features lies on the potential for largely reducing the run-time

overhead associated with application sampling, as we shall demonstrate later on

in the chapter.

For the reference set {rss, wss, rwa, wwa, tt, ntct}, it comes out natural to

think about the following expectations in relation to the correlation of subsets

of the input features:

• the size of the transaction read-set/write-set may be correlated to the

transaction execution time. In fact, the number of read (write) operations

executed by the transaction directly contributes to the actual transaction
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execution time. If this reveals true, tt and one feature, selected between

rss and wss, can be excluded;

• read-write and write-write conflict affinities may exhibit correlation. In

fact, these two indexes are both affected by the distribution of the write

operations executed by the transactions. If this reveals true, rwa or wwa

can be excluded.

Overall, we have some expectations for the actual occurrence of the condi-

tion expressed by point B for at least a subset of the input features. Further,

depending on the actual application logic, and the associated execution profile,

generic sets of features could result correlated over a given time window, even

in case they are not directly affected by each other, as instead it occurs for, e.g.,

the couple formed by rss and tt. Additionally, still depending on the applica-

tion logic, any of the features in the set {rss, wss, rwa, wwa, tt, ntct} may exhibit

small variance over a given time window, thus being candidate to be excluded

from the relevant set of input features.

To determine at what extent such an expectation materializes, and to observe

whether the scenarios in points A and B can anyhow materialize independently

of the initial expectation, we have performed an experimental study relying on

the complete suite of STM applications specified by the STAMP benchmark.

Particularly, we report in Table 5.1 data related to the observed correlation

among the different features. All data refer to serial executions of the STAMP

benchmark suite, which have been carried out on the hardware platform already

described in section 2.2.

We note that serial execution is adequate for the purpose of this specific

experimentation since it is only tailored to determine workload features that are

essentially independent of the degree of parallelism in the execution. Specifically,
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given that correlation and variance are computed over feature-samples, each one

representing an average value (over a set of individual samples taken along one

observation window entailing 4000 transactions in this experiment), for the only

parameters that can be potentially affected by hardware contention (e.g. bus-

contention) in case of real parallelization, namely tt and ntct, the corresponding

spikes (if any) would be made relatively irrelevant by the aggregation of the

individual samples within the window related average.

The data confirm that the rationale behind our proposal can find justification

in the actual behavior of STM applications, when considering the execution

patterns provided by the STAMP suite as a reliable representation of typical

STM applications’ dynamics. In fact, by Table 5.1, we can observe that the

correlation between rwa and wwa is higher than 0.8 for 4 applications (out of

the 8 belonging to the STAMP suite), the correlation between rss and tt is

higher than 0.8 for 3 (out of 8) applications, and the correlation between wss

and tt is higher than 0.8 for 2 (out of 8) applications. Further, as reported in

Table 5.2, we observed very reduced variance for rwa and/or wwa for many of

the applications, and reduced variance for rss and/or wss in a few cases.

5.5.2 Pragmatic Relevance: Run-time Sampling Costs

The pragmatic relevance of an approach where the sampled input features to

be provided to the NN gets shrunk to a minimal set, which is anyhow sufficient

to capture the workload characteristics, is clearly related to the possibility to

reduce the sampling overhead. This is a very relevant issue to cope with, given

that sampling needs to be carried out along the critical path of application

processing. Specifically, it needs to capture run-time dynamics related to the

same threads that are in charge of executing transaction (such as evaluating the
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ssca2

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,259 1 - - -
rss -0,166 0,190 1 - - -
wss -0,166 0,190 1 1 - -
rwa -0,024 -0,638 -0,136 -0,136 1 -
wwa -0,001 -0,629 -0,210 -0,210 0,992 1

intruder

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,781 1 - - - -
rss 0,914 0,940 1 - - -
wss 0,577 0,924 0,848 1 - -
rwa 0,516 -0,377 -0,540 -0,330 1 -
wwa 0,023 -0,350 -0,269 -0,559 0,322 1

genome

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,012 1 - - - -
rss 0,352 0,902 1 - - -
wss -0,742 0,492 0,158 1 - -
rwa -0,584 -0,202 -0,397 -0,422 1 -
wwa 0,040 -0,027 -0,009 -0,049 0,064 1

kmeans

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,141 1 - - - -
rss 0,434 0,194 1 - - -
wss -0,524 0,106 0,481 1 - -
rwa -0,245 -0,729 0,072 0,177 1 -
wwa -0,072 -0,723 0,090 0,008 0,968 1

yada

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,705 1 - - - -
rss 0,860 0,619 1 - - -
wss 0,828 0,617 0,946 1 - -
rwa -0,417 -0,183 -0,508 -0,552 1 -
wwa -0,400 -0,173 -0,491 -0,542 0,999 1

vacation

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,989 1 - - - -
rss 0,507 0,520 1 - - -
wss 0,345 0,315 -0,487 1 - -
rwa -0,167 -0,179 0,811 0,657 1 -
wwa -0,572 -0,535 0,262 -0,954 -0,483 1

labyrinth

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,993 1 - - - -
rss 0,992 0,991 1 - - -
wss 0,992 0,992 0,999 1 - -
rwa -0,521 -0,500 -0,495 -0,492 1 -
wwa -0,332 -0,277 -0,273 -0,267 0,714 1

bayes

tt ntct rss wss rwa wwa

tt 1 - - - - -
ntct 0,141 1 - - - -
rss 0,434 0,194 1 - - -
wss -0,524 0,106 0,481 1 - -
rwa -0,245 -0,729 0,072 0,177 1 -
wwa -0,072 -0,723 0,090 0,007 0,968 1

Table 5.1: Input features correlation for the applications with the STAMP
benchmark suite
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ssca2 intruder genome kmeans
tt 1, 14 · 105 1, 24 · 107 6, 05 · 107 5, 07 · 105

ntct 2, 27 · 104 1, 19 · 107 1, 09 · 106 1, 65 · 106

rss 1, 5 · 10−3 142 945 0,134
wss 1, 3 · 10−3 4,311 0,958 7,61
rwa 2, 87 · 10−10 1, 25 · 10−5 7, 46 · 10−10 3, 34 · 10−4

wwa 1, 03 · 10−10 1, 17 · 10−3 4, 95 · 10−4 4, 16 · 10−4

yada vacation labyrinth bayes
tt 7, 01 · 106 8, 82 · 106 3, 24 · 1012 5, 07 · 105

ntct 7, 38 · 104 2, 57 · 105 1, 04 · 107 1, 65 · 106

rss 33 770 70 0,134
wss 1,914 7,5 173 7,614
rwa 4, 60 · 10−6 4, 16 · 10−13 4, 02 · 10−7 3, 34 · 10−4

wwa 2, 44 · 10−5 1, 76 · 10−10 2, 04 · 10−7 4, 16 · 10−4

Table 5.2: Input features variance for the applications with the STAMP bench-
mark suite

transaction duration by taking a snapshot of the system real-time-clock right

upon starting up, or ending, the execution of the transaction along the thread).

An alternative approach to reducing such an overhead would be to make an

individual thread (over a set of m concurrent threads) to take samples and to

provide statistical data while the application is running. This would delay the

critical path execution of 1 out of m threads. However, this approach exhibits

two drawbacks that make it unsuited for generic settings:

• The production frequency for the samples gets reduced. Hence, catch-

ing any variation in the execution profile of the application may occur

untimely.

• STM applications may devote specific threads to run specific transactions

(e.g., for locality along the thread execution and cache efficiency improve-

ment [71]). Hence, taking samples along a single thread does not provide

a complete picture of the application workload, even in case the sampling
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thread is dynamically changed over time (e.g. in round-robin fashion).

Further, significant overhead reduction could be achieved via the above approach

only for values of m which are larger than the optimal degree of parallelism for

the specific application. This may lend the approach not to be viable for specific

system setting biased to the optimization of the concurrency level and reduction

of the transaction wasted time.

Overall, the typical scenario for reliable sampling and workload characteri-

zation (and timely determination of shifts in the workload behavior) consists of

taking samples for evaluating the input features to be provided to NN along the

execution of all the active concurrent threads.

For this reference scenario, we have experimentally evaluated the sampling

overhead for STAMP applications while varying (a) the number of concurrent

threads (between 1 and 16), and (b) the set of selected input features. The

overhead value has been computed as the percentage of additional time required

to complete the execution of the benchmark application in case sampling is

activated, compared to the time required for executing the application in case

sampling is not activated. The platform used for the experiments is described

in section 2.2. From Figure 5.16 to Figure 5.23 we report the overhead values

for all the application in the STAMP benchmark suite. For completeness, we

include graphs that shows the overhead amount in terms of both relative and

absolute values.

One important observation we can make when analyzing the results is that,

once fixed the set of input features for which sampling is active, the overhead

tends to scale down while the number of concurrent threads gets increased.

This behaviour is related to a kind of throttling effect manifesting within the

system in case any active thread is involved in the sampling process (since
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Figure 5.16: Relative and absolute instrumentation costs - intruder

threads issue transactions with reduced rate, just due to delays associated with

sampling activities along thread execution). Particularly, when the degree of

concurrency gets increased the throttling effects tends to reduce the number of

transaction aborts, which tends to reduce the overhead observed when running

with the sampling process active, with respect to the case where sampling is

not activated. This is a typical behavior for parallel computing applications

entailing optimistic processing and rollback actions [72] (just as it occurs for

transactions in STM systems). This phenomenon is not observed for reduced

values of the number of threads, which leads to reduced contention levels, and

hence to reduced abort probability, for which non-significative positive effects

can be achieved by to throttled execution.

Another observation we can make when analyzing the results is that, when

considering the case of the maximum set of sampled input features, the over-

head tends to scale down while the number of concurrent threads gets increased.

However, the most significant reduction of the overhead is observed exactly for

the cases where the set of input features for which sampling is active gets shrunk.

For example, as showed in the first graph of figure 5.16 for the intruder bench-

mark, when shrinking the monitored features from 6 to 4 or 2, we get up to 90%
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Figure 5.17: Relative and absolute instrumentation costs - bayes
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Figure 5.18: Relative and absolute instrumentation costs - ssca2
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Figure 5.19: Relative and absolute instrumentation costs - vacation
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Figure 5.20: Relative and absolute instrumentation costs - kmeans
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Figure 5.21: Relative and absolute instrumentation costs - labyrinth



92 5. Machine Learning Based Approach

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
s
tr

u
m

e
n

ta
ti
o

n
 C

o
s
ts

 %

Concurrent threads

Instrumentation costs varying
 input parameters number

tt.ntct.wss.rss.wwa.rwa
tt.ntct.wss.rss

tt.ntct

 0

 0.5

 1

 1.5

 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
s
tr

u
m

e
n

ta
ti
o

n
 C

o
s
t 

(s
e

c
.)

Concurrent threads

Absolute instrumentation costs varying
 input parameters number

tt.ntct.wss.rss.wwa.rwa
tt.ntct.wss.rss

tt.ntct

Figure 5.22: Relative and absolute instrumentation costs - yada

reduction of the overhead for smaller lower values of the number of concurrent

threads (namely up to 6). This is highly significative when considering that the

optimal degree of parallelism for intruder has been shown to be around 5-6 when

running on the same hardware platform used in this study (see section 5.3.3). In

other words, the optimal parallelism degree is achieved for a number of concur-

rent threads that does not allow affording the overhead due to sampling in case

no optimized scheme for shrinking the set of features to be sampled is provided.

5.5.3 Shrinking vs Enlarging the Feature Set

As pointed out in previous paragraphs, shrinking the set of features to be pro-

vided in input to the neural network based performance model can rely on run-

time analysis of variance and correlation. However, the application execution

profile may vary over time such in a way that excluded features become again

relevant. As an example, two generic features x and y, which exhibited corre-

lation in the past, may successively start to behave in an uncorrelated manner.

Hence, the excluded feature (x or y), if any, should be re-included within the

input set, since both of them are again relevant for reliably characterizing the

workload.
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Figure 5.23: Relative and absolute instrumentation costs - genome

Detecting this type of scenarios, in order to support the dynamic enlarging

of the feature-set cannot be based on run-time input features analysis (e.g.

analysis of the correlation), since the feature that was excluded from the input

set (for overhead reductio purposes) has been no more sampled. Hence, no

fresh information for that feature is available to detect whether variance and/or

correlation with other features have changed.

To overcome this problem, our proposal relies on evaluating whether the

current wasted-time prediction by NN is of good quality or not (compared to the

real one observed at run-time during the successive observation window). In case

the quality is detected to be low, the input feature set can be enlarged towards

the maximum in order to recover to a good workload characterization scenario.

In other words, low quality prediction by NN is imputable in our approach to

the reliance on an input feature-set currently expressing a wrong/not-complete

characterization of the workload.

The actual index we have selected for determining the quality of the pre-

diction is the weighted root mean square error (WRMS) of the NN wasted time

prediction vs the corresponding real value measured in the system. To provide

quantitative data showing that WRMS can be considered as a reliable metric,
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we have performed additional experiments where the effects of concurrency reg-

ulation performed by the original version of SAC-STM have been compared with

the observed values of WRMS. This experimentation has been carried out by

varying both the number of hidden nodes within the NN used by SAC-STM and

the number of iterations of the used NN training algorithm. Variations of these

parameters allowed us to generate differentiated configurations where the NN

may exhibit differentiated prediction qualities.

The results by this experimentation are reported in Figures 5.24 and 5.25,

respectively for the case of the vacation and intruder benchmark applications.

However the data obtained with the remaining stamp benchmarks show very

similar trends. From the results, we see how, when the execution time achieved

by regulating concurrency with SAC-STM is reduced, the corresponding values

of WRMS looks very reduced. This tendency is noted independently of the

amount of hidden nodes, as soon as at least a minimum amount of iterations

of the learning algorithm are carried out. Also, the value of WRMS tends to

decrease vs the number of iterations of the learning algorithm. The evident

exception is noted for the case of 32 hidden-nodes for the intruder benchmark,

where some spikes are observed for both the benchmark execution time and

WRMS, in correspondence to some non-minimal values for the number of iter-

ations. This may be attributed to over-fitting phenomena that may arise when

the number of hidden nodes in NN is oversized. On the other hand, with un-

dersized values for the number of hidden-nodes, such as with 4 hidden nodes,

the value of WRMS tends to decrease slowly, which lead concurrency regulation

to become less effective in reducing the actual execution time for the bench-

mark. However, the data show that for configurations with reasonable amounts

of hidden nodes, the reliability of WRMS as the means for expressing the re-
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Figure 5.24: Relation between the final achieved performance and WRMS for
vacation

lation between the quality of the waste of time prediction by NN and the final

performance achieved while regulating concurrency on the basis of that predic-

tion is actually assessed. This occurs even for reduced values of the number of

iterations.

5.5.4 The Actual Dynamic Feature Selection Architecture

To support dynamic selection of relevant features to be sampled and exploited

for concurrency regulation, we need to rely on a set of NN instances (not a unique

instance as instead it occurs in SAC-STM), each one able to manage a different

feature-set and properly trained on that set. These NN instances can be trained

in parallel during the early phase of application processing. Then a so called

Parameter-Scaling-Algorithm (PSA), implemented within an additional module
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Figure 5.25: Relation between the final achieved performance and WRMS for
intruder

integrated in SAC-STM, can be exploited for dynamically scaling-up/down the

set of features (also referred to as parameters in the final architecture) to be

taken into account for concurrency regulation along the sub-sequent execution

window. Thus PSA is aimed at determining the NN instance to be used in

relation to the selected parameters’ set. The schematization of the architecture

entailing dynamic feature selection capabilities is shown in Figure 5.26.

To select the best suited NN instance, and hence the sub-set of features that

can be considered as reliable representative of the workload actual behavior,

PSA performs the following tasks: (1) It periodically (e.g. at the end of the

observation window) evaluates the quality of the prediction by the currently in

use instance of NN (representative of the currently in use set of features) via

estimation of WRMS; (2) It periodically analyzes the statistics related to the
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currently monitored features, to determine variance and correlation.

If the calculation of WRMS in point 1 gives rise to a value exceeding a

specific threshold, then PSA enlarges the set of input features, to be exploited for

concurrency regulation in the subsequent observation window, to the maximum

set formed by the 6 features originally used in SAC-STM, namely maxSet =

{rss, wss, rwa, wwa, tt, ntct}. It then issues commands to SC, CA and NN in

order to trigger their internal reconfiguration, leading to work with maxSet.

This means that any query from CA while performing concurrency regulation

during the subsequent observation window needs to be answered by relying on

the NN instance trained over maxSet.

On the other hand, in case the WRMS value computed in point 1 does not

exceed the threshold value, the analysis in point 2 is exploited to determine

whether the currently in use set of features can be shrunk (and hence to deter-

mine whether a scale-down of the set of sampled parameters can be actuated).

Particularly, if the variance observed for a given feature is lower than a given

threshold, the feature is discarded from the relevant feature-set to be exploited

in the next observation window. Then for each couple of not yet discarded

features, PSA calculates their correlation and, if another threshold is exceeded,

one of them is discarded too. The non-discarded features form the optimized

(shrunk) set of parameters to be exploited for concurrency regulation in the

subsequent observation window, which we refer to as minSet. Then, similarly

to what done before, PSA issues configuration commands to SC, CA and NN in

order to trigger them for operating with minSet.

The values that have been used for configuring threshold parameters and

the length of the observation window for the actual experimentation of the

final architecture, whose outcomes are reported in the next section, have been
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Figure 5.26: Extended SAC-STM architecture

selected on the basis of empirical observations. Procedures for automatizing the

configuration are planned as future work along this same research path. Finally,

in the new architecture in Figure 5.26, all the tasks associated with concurrency

regulation, which are performed by the modified versions of SC, CA and NN,

and by the added PSA module, are carried out off the application critical path.

Specifically, they are executed along different, low priority threads, which spend

most of their time in the waiting state. Hence, intrusiveness of these threads is

extremely limited, as we will also show in Section 5.6 via experimental data.

5.6 Experimental Evaluation

In this section we present the results of an experimental study aimed at eval-

uating the effectiveness of our proposal. The provided data are related to ex-

periments carried out by still running applications from the STAMP benchmark
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variance thresholds
ssca2 intruder vacation mod. vacation

rss 4 50 600 340
wss 2 3 16 3
rwa 5 · 10−5 0,018 6 · 10−6 10−4

wwa 5 · 10−5 2, 5 · 10−5 1, 2 · 10−4 10−4

correlation thresholds
ssca2 intruder vacation mod. vacation

all param. 0,85 0,85 0,85 0,85
variance and correlation analysis window

ssca2 intruder vacation mod. vacation
#transactions 4 · 105 4 · 105 2 · 105 4 · 105

concurrency regulation interval
ssca2 intruder vacation mod. vacation

#transactions 4000 4000 4000 4000

Table 5.3: Parameters configuration for the performance tests

suite on top of the 16-cores HP ProLiant machine that has been exploited for the

previous reported experiments. As for STAMP, we selected three applications,

namely intruder, ssca2 and vacation, since they exhibit quite different execution

profiles. Further, we provide experimental data in relation to a modified version

of vacation, properly configured to stress (and thus further evaluate) the inno-

vative capabilities by the architecture deriving from our proposal. Note that

now each adaptive STM is configured so that each thread collects statistics used

to build the samples that characterize the transactional workload. In Table 5.3

we list the statically configured values for the platform parameters, which have

been used for the experiments.

In Figure 5.27 we show the results achieved with the intruder benchmark. In

particular, we report the benchmark execution time while varying the number

of CPU-cores allowed to be used for application execution. This is reflected

into a maximum value for the number of threads running the application. In

fact, in our study we adhere to the common practice of avoiding the usage
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Figure 5.27: Results for intruder

of more application threads than the available CPU-cores, which is done in

order to avoid suboptimal execution scenarios for STM systems characterized

by excessive context-switch overhead [66]. We note that the original version of

TinySTM always exploits all the allowed to be used CPU-cores, since it does not

entail any concurrency regulation scheme. On the other hand, both SAC-STM

(which is taken as a reference together with TinySTM) and the new architecture

we have provided, which we refer to as Dynamic-Feature-Selection STM (DFS-

STM) in the rest of this study, perform concurrency regulation. Hence, they

both lead the application to use a variable amount of threads over time, which

ranges from 1 to the maximum value admitted for the specific experimentation

point. By the data, the TinySTM curve shows that the benchmark reaches its

minimum execution time with static concurrency level set to 5. Beyond this

value, data contention brings the application to pay large penalties caused by

excessive transaction rollback. Thus, the performance delivered by TinySTM
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Figure 5.28: Results for ssca2

rapidly decreases when running the application using more than 5 CPU-cores.

Conversely, SAC-STM and DFS-STM provide the same performance achievable

with the optimal degree of concurrency for any value of the maximum number

of threads in the interval [5-16]. Hence, they correctly regulate concurrency

to the optimal level, even when more CPU-cores are available. However, by

dynamically shrinking the set of input features to be sampled, DFS-STM allows

up to 30% reduction of the benchmark execution time. Hence, it reveals effective

in significantly reducing the overhead associated with the static feature-selection

approach used by SAC-STM.

The performance data for ssca2, reported in Figure 5.28, look somehow dif-

ferent. Particularly, the TinySTM curve reveals that no thrashing occurs, even

when running the application by relying on all the 16 available CPU-cores. This

means that, for this benchmark, concurrency regulation cannot be expected to

improve performance significantly. However, the results show SAC-STM pays a
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Figure 5.29: Results for vacation

relevant sampling cost (with no particular revenue from the concurrency regula-

tion process, as hinted above), which leads it to deliver performance from 87%

to 60% worse than the one delivered by TinySTM, depending on the maximum

allowed number of concurrent threads. Such an overhead is fully removed by

DFS-STM, which allows delivering the same identical performance as TinySTM

(still with no advantage from concurrency regulation). We note that the over-

head reduction, beyond indicating the effectiveness of dynamically shrinking the

set of features to be sampled, also indicates null intrusiveness of the additional

tasks performed by DFS-STM, such as the execution of PSA.

Figure 5.29 shows the results for the standard version of vacation. Also in

this case we reach the optimum performance with 5 threads. Beyond this value,

TinySTM exhibits rapidly decreasing performance, just for the reasons explained

above. Again, SAC-STM and DFS-STM allow regulating the concurrency level

to the best suited value. However, SAC-STM shows significant overhead. Hence,
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DFS-STM reduces the execution time by about 30%.

All the benchmark configurations that have been considered so far are char-

acterized by phase-based execution profiles, with very few changes along the

execution. In order to evaluate DFS-STM with highly dynamic workloads, the

modified version of vacation has been exploited. Essentially, vacation emulates a

travel reservation system, where customers can reserve flights, rooms and cars.

The fraction of transactions accessing each one of the three types of items is

fixed over time. This is representative of scenarios where the popularity of the

different types of items does not change over time. We modified this feature

in order to emulate scenarios where the item popularity can show significant

changes according to a periodic basis. We note that this kind of scenarios are

prone to take place in relation to real-life events (e.g. associated with relevant

promotional sales or new product launches). In the modified version of vaca-

tion, the fractions of transactions accessing the three types of items periodically

changes. Specifically, the fraction of transactions accessing car-items changes

over time according to the curve depicted in Figure 5.30. The remaining frac-

tion is equally split into transactions accessing flight and room items.
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Figure 5.30: Parameters and throughput variation over time for the modified
vacation benchmark

For this workload, we show in Figure 5.30 how the number of input features,

selected as relevant by DFS-STM, changes over time. These results refer to an
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execution where we allow a maximum number of concurrent threads equal to

8. We note that, whenever the mix of transactions remains quite constant over

time (e.g. up to 17 seconds of the execution, or in the interval between 22 and

27 seconds of the execution), only two parameters (specifically tt and ntct) are

selected. Conversely, whenever the mix of transactions rapidly changes (e.g. in

the interval between 17 and 22 seconds of the execution, or between 27 and

32 seconds), which leads to increase the variance and/or un-correlation of some

workload features, the number of parameters grows to 4 (specifically including

tt, ntct, wss, rss).

The throughput achieved with both SAC-STM and DFS-STM is shown on

the right of Figure 5.30. Also in this case DFS-STM achieves a remarkable

performance improvement with respect to SAC-STM. For completeness, the

execution time while varying the maximum number of concurrent threads for

the case of the modified vacation benchmark is depicted in Figure 5.31, which
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ssca2 intruder
DFS-STM 25% 18%
TinySTM 25% 09%

genome kmeans
DFS-STM 54% 23%
TinySTM 32% 18%

yada vacation
DFS-STM 23% 40%
TinySTM 19% 7%

labyrinth bayes
DFS-STM 32% 51%
TinySTM 23% 33%

Table 5.4: Minimum achieved percentage of ideal speedup

again shows the relevant gain that can be achieved by DFS-STM over SCA-STM

thanks to the reduction of the overhead for supporting concurrency regulation.

Finally, in Table 5.4 we report the minimum percentage of the ideal speedup

(over serial execution of the same application on a single CPU-core) which is

achieved by DFS-STM and by TinySTM when considering variations of the

number of CPU-cores between 1 and 8. For all the applications of the STAMP

suite DFS-STM generally guarantees much higher percentage values of the ideal

speedup, which again indicates its ability to efficiently control the parallelism

degree by both avoiding thrashing phenomena and inducing very reduced feature

sampling overhead.





Chapter 6

The Analytical Model Based

Approach

In this chapter we tackle the issue of regulating the concurrency level in STM

via a model-based approach, which differentiates from classical ones in that

it avoids the need for the STM system to meet specific assumptions (e.g. in

terms of data access pattern). Our proposal relies on a parametric analytical

expression capturing the expected trend in the transaction abort probability

(versus the degree of concurrency) as a function of a set of features associated

with the actual workload profile. The parameters appearing within the model

exactly aim at capturing execution dynamics and effects that are hard to be

expressed through classical (non-parametric) analytical modelling approaches.

We derived the parametric expression of the transaction abort probability via

combined exploitation of literature results in the field of analytical modelling

and a simulation-based analysis. Further, the parametric model is thought to

be easily customizable for a specific STM system by calculating the values to

be assigned to the parameters (hence by instantiating the parameters) via re-

107
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gression analysis. The latter can be performed by exploiting a set of sampling

data gathered through run-time observations of the STM application. However,

differently from what happens for the training process in some machine learning

approaches, the actual sampling phase (needed to provide the knowledge base

for regression in our approach) is very light. Specifically, a very limited number

of profiling samples, related to a few different concurrency levels for the STM

system, likely suffices for successful instantiation of the model parameters via

regression. Finally, our approach inherits the extrapolation capabilities proper

of pure analytical models (although it does not require their typical stringent

assumptions to be met, as already pointed out), hence allowing reliable per-

formance forecast even for concurrency levels standing distant from the ones

for which sampling was actuated. A bunch of experimental results achieved by

running the STAMP benchmark suite on top of the TinySTM open source frame-

work are reported for validating the proposed modelling approach. Further, we

present the implementation of a concurrency self-regulating STM, exploiting the

proposed performance model, still relying on TinySTM as the core STM layer,

and we report experimental data for an assessment of this architecture.

6.1 The Parametric Performance Model

As already hinted, we decided to exploit a model relying on a parametric an-

alytical expression which captures the expected trend of the transaction abort

probability as a function of (1) a set of features characterizing the current work-

load profile, and (2) the number of concurrent threads sustaining the STM

application. The parameters in the analytical expression aim at capturing ef-

fects that are hard to express through a classical (non-parametric) analytical

modelling approach. Further, they are exploited to customize the model for
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a specific STM application through regression analysis, which is done by ex-

ploiting a set of sampling data gathered through run-time observations of the

application. In the remainder of this section we provide the basic assumptions

on the behaviour of the STM application, which are exploited while building

the parametric analytical model. Then the actual construction of the model is

presented, together with a model validation study.

6.1.1 Basic Assumptions

The STM application is assumed to be run with a number k of concurrent

threads. The execution flow of each thread is characterized by the interleaving

of transactions and non-transactional code (ntc) blocks. This is the typical

structure for common STM applications, which also reflects the one of widely

diffused STM benchmarks (see, e.g., [20]). The transaction read-set (write-set)

is the set of shared data-objects that are read (written) by the thread while

running a transaction. If a conflict between two concurrent transactions occurs,

then one of the conflicting transactions is aborted and re-started (which leads to

a new transaction run). After the thread commits a transaction, it executes a ntc

block, which ends before the execution of the begin operation of the subsequent

transaction along the same thread.

6.1.2 Model Construction

The set P of features exploited for the construction of the parametric analytical

model, which are used to capture the workload profile, are the ones already

described in section 4.3.

Our parametric analytical model expresses the transaction abort probability

pa as a function of the features belonging to the set P , and the number k of con-
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current treads supposed to run the STM application. Specifically, it instantiates

(in a parametric manner) the function

pa = f(rss, wss, rwa, wwa, tt, ntct, k) (6.1)

Leveraging literature models proposing approximated performance analysis for

transaction processing systems (see [73, 74]), we express the transaction abort

probability pa through the function

pa = 1− e−α (6.2)

However, while in literature the parameter α is expressed as the multiplication of

parameters directly representing, e.g., the data access pattern and the workload

intensity (such as the transaction arrival rate λ for the case of open systems),

in our approach we express α as the multiplication of different functions that

depend on the set of features appearing in equation (6.1). Overall, our expression

for pa is structured as follows

pa = 1− e−ρ·ω·φ (6.3)

where the function ρ is assumed to depend on the input parameters rss, wss,

rwa and wwa, the function ω is assumed to depend on the parameter k, and the

function φ is assumed to depend on the parameters tt and ntct.

We note that equation (6.2) has been derived in literature while modeling

the abort probability for the case optimistic concurrency control schemes, where

transactions are aborted (and restarted) right upon conflict detection. Conse-

quently, this expression for pa and the variation we propose in equation (6.3)

are expected to match the STM context, where pessimistic concurrency control
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schemes (where transactions can experience lengthy lock-wait phases upon con-

flicting) are not used since they would limit the exploitation of parallelism in

the underlying architecture. More specifically, in typical STM implementations

(see, e.g., [19]), transactions are immediately aborted right upon executing an

invalid read operation. Further, they are aborted on write-lock conflicts either

immediately or after a very short wait-time.

The model we propose in equation (6.3) is parametric thanks to expressing α

as the multiplication of parametric functions that depend on a simple and concise

representation of the workload profile (via the features in the set P ) and on the

level of parallelism. This provides it with the ability to capture variations of the

abort probability (e.g. vs the degree of parallelism) for differentiated application

profiles. Particularly, different applications may exhibit similar values for the

featuring parameters in the set P , but may anyhow exhibit different dynamics,

leading to a different curve for pa while varying the degree of parallelism. This is

catchable by our model via application-specific instantiation of the parameters

characterizing the functions ρ, ω and φ, which can be done through regression

analysis. In the next section we discuss how we have derived the actual ρ, ω

and φ functions, hence the actual function expressing α.

6.1.3 Instantiating ρ, ω and φ

The shape of the functions ρ, ω and φ determining α is derived in our approach

by exploiting the results of a simulation study. We decided to rely on simu-

lation, rather than using measurements from real systems, since our model is

aimed at capturing the effects associated with data contention on the abort

probability, while it is not targeted at capturing the effects of thread-contention

on hardware resources. Consequently, the instantiation of the functions appear-



112 6. The Analytical Model Based Approach

ing within the model has been based on an “ideal hardware” simulation model

showing no contention effects. Anyway, when exploiting our data contention

model for concurrency regulation in a real system, a hardware scalability model

(e.g. a queuing network-based model) can be used to estimate variations of

the processing time, due to contention effects on shared hardware resources, as

a function of the number of the concurrent threads. In the final part of this

chapter, we provide some results that have been achieved by exactly using our

data contention model and a hardware scalability model in a joint fashion. The

simulation framework we have exploited in this study is the same used in [14] for

validating an analytical performance model for STM. It relies on the discrete-

event paradigm, and the implemented model simulates a closed system with k

concurrent threads, each one alternating the execution of transactions and ntc

blocks. The simulated concurrency control algorithm is the default algorithm

of TinySTM (encounter time locking for write operations and timestamp-based

read validation). A transaction starts with a begin operation, then it interleaves

the execution of read/write operations (accessing a set of shared data objects)

and local computation phases, and, finally, executes a commit operation. The

durations of ntc blocks, transactional operations and local computation phases

are exponentially distributed.

In the simulation runs we performed to derive and validate the expression

of α, we varied rss and wss between 0 and 200, rwa and wwa between 25 ·

10−6 and 0.01, tt between 10 and 150 µsec, and ntct between 0 and 15 · 104

µsec. These intervals include values that are typical for the execution of STM

benchmarks such as [20], hence being representative of workload features that

can be expected in real execution contexts. Further, we varied k between 2 and

64 in the simulations. We omit to explicitly show all the achieved simulation
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results, but the showed ones are a significative, although concise, representation

of the whole set of achieved results.

The construction of the analytical expressions for ρ, ω and φ has been based

on an incremental approach. Particulary, we first derive the expression of ρ

analyzing simulation results while varying workload configuration parameters

affecting it, i.e. rss, wss, rwa, wwa, and keeping fixed other parameters. After,

we calculate the values of ρ from the ones achieved for pa via simulation, which is

done by using the inverse function ρ = f−1(pa), once set ω = 1 and φ = 1. After

having identified a parametric fitting function for ρ, we derive the expression

of ω via the analysis of the simulation results achieved while also varying k.

Hence, we calculate ω = f−1(pa), where we use for ρ the previously identified

expression, and where we set φ = 1. Therefore, we select a parametric fitting

function for ω. Finally, we use the same approach to derive the expression of

φ, which is done by exploiting the simulation results achieved while varying all

the workload profile parameters and the level of concurrency k, thus calculating

φ = f−1(pa), where we use for ρ and ω the previously chosen expressions.

In order to derive the expression of ρ, we initially analyzed via simulation

the relation between the values of pa and the values of the parameters wss

and wwa. In Figure 6.1 we provide some results showing the values of ρ as

calculated through the f−1(pa) inverse function (like depicted above) by relying

on simulation data as the input. The data refer to variations of wwa and to 3

different values of wss, while all the other parameters have been kept fixed. We

note that ρ appears to have a logarithmic shape. Additionally, in order to chose

a parametric function fitting the calculated values of ρ, we need to consider that

if wwa = 0 then pa = 0. In fact, no data contention ever arises in case of no

write operations within the transactional profile (which implies ρ = 0). Thus,
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we approximated the dependency of ρ on wwa through the following parametric

logarithmic function

c · ln(a · wwa + 1) (6.4)

where a and c are the fitting parameters. The presence of the +1 term in

expression (6.4) is due to the above-mentioned constraint according to which

wwa = 0 implies ρ = 0.

After, we also considered the effects of the parameter wss on ρ. To this

aim, in Figure 6.2 we report the values of ρ, derived from the simulation results,

while varying wss and for 3 different values of wwa. We remark the presence of

a flex point. Therefore, in this case, we approximated the dependency of ρ on

wss by using the function

e · (ln(b · wss + 1))d (6.5)

where b, d and e are fitting parameters, d being the one capturing the flex.

Assuming that the effects on the transaction abort probability are multiplicative

with respect to wwa and wss (which is aligned to what literature models state in

term of the proportionality of the abort probability wrt the multiplication of the

conflict probability and the number of operations, see, e.g., [73]), we achieved

the following parametric expression of ρ (vs wwa and wss), where d has been

used as the exponent also for expression (6.4) in order to capture the effects of

shifts of the flex point caused by variations of wwa (as shown by the plots in

Figure 6.2 relying on simulation)

[c · (ln(b · wss + 1)) · ln(a · wwa + 1)]d (6.6)

where we collapsed the original parameters c and e within one single parame-
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ters c. We validated the accuracy of the expression (6.6) via comparison with

values achieved through a set of simulations, where we used different workload

profiles. The parameters appearing in expression (6.6) have been calculated

through regression analysis. Specifically, for each test, we based the regression

analysis on 40 randomly selected workload profiles achieved while varying wwa

and wss. Then, we measured the average error between the transaction abort

probability evaluated via simulation and the one predicted using for ρ the func-

tion in expression (6.6) for a set of 80 randomly selected workload profiles. As

an example, in Figure 6.3, we depict results for the case with k = 8. Along the

x-axis, workload profiles are identified by integer numbers and are ordered by

the values of wss and wwa. The measured average error in all the tests was

5.3%.

Successively, we considered the effects on the transaction abort probability

caused by read operations. Thus, we analyzed the relation between pa and the
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parameters rss, rwa and wss. The parameter wss is included since contention

on transactional read operations is affected by the amount of write operations

by concurrent transactions. In Figure 6.4 we report simulation results showing

the values of ρ while varying rwa and for 3 different values of rss. In Figure

6.5, we report values of ρ achieved while varying rss and for 3 different values of

rwa. We note that the shape of the curves are similar to the above cases, where

we analyzed the relation between pa and the parameters wwa and wss. Thus,

using a similar approach, and considering that pa is also proportional to wss,

we approximate the dependency of ρ on rwa, wss and wwa using the following

function

[e · (ln(f · rwa + 1)) · ln(g · rss + 1) · wss]z (6.7)

where e, f , g and z are the fitting parameters. The final expression for ρ is

then derived summing expressions (6.6) and (6.7). The intuitive motivation is
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that adding read operations within a transaction, the likelihood of abort due

to conflicts on original write operations does not change. However, the added

operations lead to an increase of the overall abort probability, which we capture

summing the two expressions. Also in this case, we validated the final expression

for ρ via comparison with the values achieved through a set of simulations, where

we varied the workload profile. Similarly to what was done before, the regression

analysis has been based on 40 workload profiles, while the comparison has been

based on 80 workload profiles, all selected by randomly varying wwa, wss, rwa,

rss. The results for k = 8 are reported in Figure 6.6. Along the x-axis, workload

profiles are ordered by values of rss, rwa, wss and wwa. The average error we

measured in all the tests was 2.7%.

Successively, in order to build the expression for ω, we considered the effects

of the number of concurrent threads, namely the parameter k, on the abort

probability. On the basis of simulation results, some of which are reported in
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Figure 6.7, we decided also in this case to use a parametric logarithmic function

as the approximation curve of ω vs k. Clearly, the constraint needs to be

accounted for that if k = 1 then ω = 0 (since the absence of concurrency

cannot give rise to transaction aborts). Thus, we approximate ω as

h · (ln(l · (k − 1) + 1), (6.8)

where h and l are the fitting parameters. Again, we validated the out-coming

function for pa, depending on ω (and hence depending on modeled effects of the

variation of k), using the same amount of workload profiles as in the previous

studies, still selected by randomly varying wwa, wss, rwa, rss and k. Some

results are depicted in Figure 6.8 for variations of k between 1 and 64. The

average error we measured in all the tests was 2.1%.

Finally, we built the expression of φ, which depends on tt and tntc. To
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this aim, we note that if tt = 0 (which represent the unrealistic case where

transactions are executed instantaneously) then φ must be equal to 0 (given

that the likelihood of concurrent transactions is zero). Additionally, we note

that tt can be seen as the duration of a vulnerability window during which the

transaction is subject to be aborted. For longer fractions of time during which

transactions are vulnerable, higher probability of actual transaction aborts can

be expected. Thus we assume φ to be proportional to

θ =
tt

tt + ntct
(6.9)

We analyzed through simulation the relation between φ and θ. Some results

are shown in Figure 6.9, on the basis of which we decided to approximate φ

using the function:

m · ln(n · θ + 1) (6.10)

where m and n are the fitting parameters.

The expression of pa in equation (6.3) is now fully defined. To validate it, we

used the same approach that has been adopted for the validation of each of the

aforementioned incremental steps. Some results, where we randomly selected

workload profiles, are shown in Figure 6.10. In all our tests, we measured an

average relative error of 4.8%.

6.1.4 Model Validation with Respect to a Real System

As a further validation step we compared the output by the proposed model

with real measurements taken by running applications belonging to the STAMP

benchmark suite on top of the open source TinySTM framework. Additionally,
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we evaluated the model ability to provide accurate predictions while varying the

amount of samples used to perform the regression analysis, gathered through

observations of the behavior of the real system. Particularly, we evaluated the

extrapolation capability of the model, namely its ability to forecast the transac-

tion abort probability that would be achieved when running the STM applica-

tion with concurrency levels (number of threads) not included in the observed

domain where regression samples were taken.

The presented results refer to three different benchmark applications of the

STAMP suite, namely kmeans, yada and vacation. As shown in paragraph

B and with more detail in [20], these applications are characterized by quite

different workload profiles. This allowed us to evaluate the model accuracy with

respect to a relatively wide workload configuration domain. All the tests have

been performed on top of the platform described in section 2.2.

For each application, we performed regression analysis to calculate three dif-

ferent sets of values for the model parameters, hence instantiating three models

relying on the proposed parametric analysis. Any regression has been performed

using one of three different sets of measurements, each set including 80 samples.

The first set included samples gathered observing the application running with

2 and 4 concurrent threads. The second one included samples gathered observ-

ing the application running with 2, 4 and 8 concurrent threads. Finally, the

third one included samples gathered observing the application running with 2,

4, 8 and 16 concurrent threads. This allowed us to evaluate the extrapolation

ability of the model, with respect to the number of concurrent threads, while

observing the application for limited amounts of concurrency levels (say for 2,

3 or 4 different levels of concurrency). We performed, for each application, the

following tests. After setting up the model instances, we executed a set of runs
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of the application using different values for the application input parameters

(leading the same application to run with somehow different workload profiles)

and with a number of concurrent threads spanning from 2 to 16. During each

run, we measured the average values of the workload profile features included in

the set P along different observation intervals having a pre-established length,

and we used them as the input to the three instantiated models in order to

compute the expected abort probability for each observation interval. After,

for each instantiated model, we compared the predicted value with the real one

observed during the runs.

In Table 6.1, we report the average value of the prediction error (and its

variance) for all the target benchmark applications, and for the three model

instances, while considering variations of the actual level of concurrency between

2 and 16. By the results, we note that, for the cases of yada and vacation, it has

been sufficient to execute regression analysis with samples gathered observing

the application running with only 2 and 4 threads in order to achieve an average

prediction error bounded by 2.4% for any level of concurrency between 2 and

16. When enlarging the observation domain for the gathering of samples to

be used by regression, i.e. when observing the application running also with 8

concurrent threads, we achieved for yada a slight error reduction. With vacation,

the reduction is more accentuated. On the other hand, the prediction error

achieved for kmeans with observations of the application running with 2 and

4 concurrent threads was greater. However, such an error drastically drops

down when including samples gathered with 8 concurrent threads in the data

set for regression. As for regression based on samples gathered with 2, 4, 8 and

16 threads, we note that the error marginally increases in all the cases. We

believe that this is due to the high variance of the values of the transaction
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Observed concurrency levels for the regression analysis
application 2/4 threads 2/4/8 threads 2/4/8/16 threads

vacation 2.166% (0,00089) 1.323% (0,00028) 1.505% (0,00032)
kmeans 18.938% (0,09961) 2.086% (0,00100) 2.591% (0,00109)

yada 2.385% (0,00029) 2.086% (0,00016) 2.083% (0,00022)

Table 6.1: Abort probability prediction error (and its variance)

abort probability we measured for executions with 16 concurrent threads, which

gives rise to variability of the results of the regression analysis depending on

the set of used observations. Overall, by the results showed in table 6.1, we

achieved good accuracy and effectiveness by the model since it can provide low

prediction error, for a relatively wide range of hypothesized thread concurrency

levels (namely between 2 and 16) by just relying on observing the application

running with 2, 4 and (at worst also) 8 concurrent threads.

We conclude this paragraph comparing the extrapolation ability of our model

with respect to the neural network-based model proposed in chapter 5. To per-

form fair comparison, a same set of observations has been provided in input to

both the models. Particularly, the reported results refer to the yada benchmark

application, for which we provided a set of 80 observations (the same used for

validating the model, as shown above), related to executions with 2 and 4 con-

current threads, in input to both our parametric model and the neural network

based model presented in Chapter 5. As for the neural network approach, we

used a back-propagation algorithm [68], and we selected the best trained net-

work, in terms of prediction accuracy, among a set of networks having a number

of hidden nodes spanning from 2 to 16, using a number of algorithm iterations

spanning from 50 to 1600. In Figure 6.11, we show two dispersion charts, each

one representing the correlation between the measured values of the transac-

tional wasted time and the ones predicted using the model (left chart) and the
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Figure 6.11: Model and neural-network prediction accuracy

neural network (right chart) (the transactional wasted time prediction process

based on the model will be presented and discussed in Section 6.2). These refer

to concurrency levels spanning in the whole interval 2-16. We remark that a

lower prediction error corresponds to a higher concentration of points along the

diagonal straight line evidenced in the graphs. We can see that, in the case of

the neural network, there is a significantly wider dispersion of points compared

to the model we are proposing. In fact, the average prediction error for the

neural network is equal to 17.3%, while for the model it is equal to 2.385%.

This is a clear indication of higher ability to extrapolate the abort probabil-

ity by the model when targeting concurrency levels for which no real execution

sample is available (and/or that are far from the concurrency levels for which

sampling has been actuated). As a reflection, the parametric model we present

provides highly reliable estimations, even with a few profiling data available

for the instantiation of its parameters. Hence it is suited for the construction

of concurrency regulation systems inducing low overhead and providing timely

selection of the best suited parallelism configuration (just because the model

needs a few samples related to a limited set of configurations in order to deliver

its reliable prediction on the optimal concurrency level to be adopted).
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Figure 6.12: CSR-STM architecture

6.2 Concurrency Self-Regulating STM

In this section we present a concurrency self-regulating STM (CSR-STM) archi-

tecture exploiting the parametric performance model we proposed in the previ-

ous paragraphs. As for the SAC-STM platform, already presented in paragraph

5.2, SRC-STM is built using TinySTM as underlying STM layer. We also present

performance study of SRC-STM, where we use the original version of TinySTM

as baseline.

6.2.1 The Architecture

The architecture of the Concurrency Self-Regulating STM is depicted in Fig-

ure 6.12. A Statistic Collector (SC) provides a Control Algorithm (CA) with

the average values of workload profile parameters, i.e. rss, wss, rwa, wwa, tt

and ntct, measured by observing the application on a periodic basis. Then,
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the CA exploits these values to calculate, through the parametric model, the

transaction abort probability pa,k as predicted when using k concurrent threads,

for each k such that 1 ≤ k ≤ maxthread. The value maxthread represents the

maximum amount of concurrent threads admitted for executing the applica-

tion. We remark that a number of concurrent threads larger than the number

of available CPU-cores typically penalizes STM performance (e.g. due to costs

related to context-switches among the threads). Hence, it is generally conve-

nient to bound maxthread to the maximum number of available CPU-cores. The

set {(pa,k), 1 ≤ k ≤ maxthread} of predictions is used by CA to estimate the

number m of concurrent threads which is expected to maximize the application

throughput. Particularly, m is identified as the value of k for which

k

wtime,k + tt,k + ntct,k
(6.11)

is maximized. In the above expression: wtime,k is the average transaction wasted

time (i.e. the average execution time spent for all the aborted runs of a trans-

action); tt,k is the average execution time of committed transaction runs; ntct,k

is the average execution time of ntc blocks. All these parameters refer to the

scenario where the application is supposed to run with k concurrent threads.

We note that wtime,k + tt,k + ntct,k is the average execution time between

commit operations of two consecutive transactions executed by the same thread

when there are k active threads. Hence, expression (6.11) represents the system

throughput. Now we discuss how wtime,k, tt,k and ntct,k are estimated. We note

that wtime,k can be evaluated by multiplying the average number of aborted runs

of a transaction with the average duration trk of an aborted transaction run

when the application is executed with k concurrent threads. Thus, the average

number of aborted transaction runs with k concurrent threads can be estimated
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as pa,k/(1− pa,k), where pa,k is calculated through the presented model. So we

obtain the following formula for the wtime,k estimation:

wtime,k =
pa,k

1− pa,k
· trk (6.12)

To calculate the average duration of an aborted transaction run (trk), and to

estimate tt,k and ntct,k, while varying k, an hardware scalability model has to be

used. In the presented version of CSR-STM, we exploited the model proposed

in [75], where the function modeling hardware scalability is

C(k) = 1 + p · (k − 1) + q · k · (k − 1) (6.13)

where p and q are fitting parameters, and C(k) is the scaling factor when the

application runs with k concurrent threads. The values of p and q are again

calculated through regression analysis. Thus, assuming that, e.g., during the

last observation interval there were x concurrent threads and the measured

average transaction execution time was tt,x, CA can calculate tt,k for each value

of k through the formula

tt,k =
C(k)

C(x)
· tt,x (6.14)

The same approach is used to evaluate ntct,k for each value of k, but the fitting

parameters p and q are of course different than the ones used for the evaluation

of tt,k. Once estimated the number m of concurrent threads which is expected

to maximize the application throughput, exactly m threads are kept active by

CA during the subsequent workload sampling interval.
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6.2.2 Evaluation Study

In this section we present an experimental assessment of CSR-STM, where we

used vacation, kmeans and yada benchmarks, which have been run on top of

the same 16-core HP ProLiant server exploited for previous experiments (As

showed in Table B.1 in the Appendix B this subset of applications represent

a good test case in terms of transaction length, read set and write set size,

transaction execution time and contention). All the tests we present focus on

the comparison of the execution time achieved by running the applications on

top of CSR-STM and on top of the original version of TinySTM. Specifically,

in each test, we measured, for both CSR-STM and TinySTM, the delivered

application execution times while varying maxthread between 2 and 16. For

TinySTM, maxthread corresponds to the (fixed) number of concurrent threads

exploited by the application. While, in the case of CSR-STM, the application

starts its execution with a number of concurrent threads equal to maxthread.

However, CSR-STM may lead to changes of the number of concurrent threads

setting it to any value between 1 and maxthread.

For each application, we calculated the values of the model parameters

through regression analysis, using samples gathered observing the application

running with 2 and 4 concurrent threads for the cases of vacation and yada, and

including also observations with 8 concurrent threads for the case of kmeans.

As for the parameters appearing in the hardware scalability model expressed in

(6.13), regression analysis has been performed by using, for each application, the

measured average values of the committed runs of transactions, observed with 2,

4 and 8 concurrent threads. We performed a number of runs using, for each ap-

plication, different values for the input parameters. We report results achieved

with two different workload profiles for each application, which are shown in
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Figure 6.13: Execution time for vacation with CSR-STM and TinySTM

Figures 6.13, 6.14 and 6.15 for vacation, kmeans and yada, respectively. We

explicitly report, according to the input-string syntax established by STAMP,

the values of the input parameters used to run the applications. Observing the

results, the advantages of CSR-STM with respect to TinySTM can be easily ap-

preciated. For system configurations where CSR-STM is allowed to use a maxi-

mum number of threads (maxthread) greater than the optimal concurrency level

(as identified by the peak performance delivered by TinySTM), it always tunes

the concurrency level to suited values. Thus it avoids the performance loss expe-

rienced by TinySTM when making available a number of CPU-cores exceeding

the optimal parallelism level. Particularly, the performance by TinySTM tends

to constantly degrade while incrementing the parallelism level.

Conversely, CSR-STM prevents this performance loss, providing a perfor-

mance level which is, for the majority of the cases, near to the best value,

independently of the actual number of available CPU-cores for running the ap-

plication. Obviously, when maxthread is lower than the optimum concurrency

level, CSR-STM can not activate the well suited number of concurrent threads,

which equals the optimal level of parallelism. Thus, for these configurations,

the performance of CSR-STM is, in some cases, slightly reduced with respect
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Figure 6.14: Execution time for kmeans with CSR-STM and TinySTM
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Figure 6.15: Execution time for yada with CSR-STM and TinySTM
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to TinySTM due to the overhead associated with the components/tasks proper

of the concurrency self-regulation mechanism. As for the latter aspect, all the

components except SC (for which we measured a negligible overhead), require

a single (non-CPU-bound) thread. Thus, resource demand is reduced, wrt the

total application demand, of a factor bounded by 1/k (when k CPU-cores are

available). Accordingly, the cases where CSR-STM provides lower performance

than TinySTM (e.g. when maxthread is less than 4 for vacation and kmeans),

the advantage by TinySTM progressively decreases vs maxthread.





Chapter 7

The Hybrid Approach

In this chapter we will describe an hybrid analytical and machine learning

(AML) approach based on the combination of analytical modelling and neu-

ral networks based techniques. We combine this two approaches because in this

way it is possible to address the weaknesses of one approach using the strengths

of the other one and vice-versa: usually analytical models allows to obtain good

extrapolation performance, that is using them makes it possible to obtain good

prediction in configurations totally unknown (i.e. configuration for which it is

not possible to collect performance sample). Conversely, the neural network

usually doesn’t have good extrapolation performance in configurations far from

the ones covered by the training set, but they ensure better prediction accuracy

than analytical model in configurations for which some data are available (that

is data inside the training set). Combining them we obtain an hybrid approach

that ensures the same accuracy of NN in configurations already explored and

the same extrapolation power of analytical model in areas not already explored.

Moreover we allow the training phase required to define the “application

specific” performance model to be significantly reduced, compared to pure ML

techniques, while also allowing the final AML model to be significantly more

135
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precise than pure analytical approaches. In fact, it can ensure the same level

of accuracy as the one provided by pure ML techniques. Further, the AML

model we provide is able to cope with cases where the actual execution profile

of the application, namely the workload features, can change over time, such

as when the (average) size of the data-set accessed by the transactional code

in read or write mode changes over time (e.g. according to a phase-behavior).

This is not always allowed by pure analytical approaches [14, 16]. Overall, we

provide a methodology for fast construction of a highly reliable performance

model allowing the determination of the optimal level of concurrency for the

specific STM-based application. This is relevant in generic contexts also includ-

ing the Cloud, where the need for deploying new applications (or applications

with reshuffling in their execution profile), while also promptly determining the

system configurations allowing optimized resource usage, is very common.

To combine the two approaches we use the following technique: we exploit

the analytical model to generate an initial training set for the neural network,

that is we obtain a training set sampling the analytical model with a proper

granularity. Then we execute few random application runs to collect additional

real samples that will be used to update the initial training set. This update is

done choosing the sample to replace using a methodology based on Euclidean

distance with a constraint: if we collect a sample in which the value of the

parameter k is 2, we search the sample to replace only among the samples with

k = 2. Once defined this subset, the sample to replace is defined using the

Euclidean distance calculated using the remaining parameters. This updated

training set is then used to train a NN that will be used to calculate the mean

wasted time predictions.

As we will show later in section 7.3.2, the hybrid approach, using the initial
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knowledge given by the analytical model, allows to obtain the same optimal

performance prediction of neural network based approach in less time. This

brings the opportunity to deploy an ”optimal” system in less time. If we accept

an initial phase in which the system works in suboptimal configuration, the time

to deploy a working system can be furthermore reduced: it is possible to use the

neural network trained with analytical model to control the system in his first

interval of life. During this first phase additional real samples can be collected

and can be used to update the NN training set, so the NN can be update on-line

until it reaches the optimal performance.

7.1 Performance Model Aim

Typical STM oriented concurrency control algorithms [6] rely on approaches

where the execution flow of a transaction never traps into operating system

blocking services. Rather, they exploit spin-locks to support synchronization

activities across the threads. On the other hand, several STM oriented con-

currency control protocols employ on-the-fly validation schemes, actuated upon

performing read-access to transactional data, which allow the early abort of

the incorrectly serialized transaction (without the need for reaching its comple-

tion). In such scenarios, the primary index having an impact on the throughput

achievable by the STM system (and having a reflection also in how energy is

used for productive work) is the so called transaction wasted time, namely the

amount of CPU time spent by a thread for executing transaction instances that

are eventually (early) aborted.

As for the already presented approaches (chapters 5 and 6), the ability to

predict the transaction wasted time, for a given application profile while varying

the degree of parallelism in the execution is the fulcrum of our AML based
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optimization proposal. More in detail, our AML model is aimed at computing

pairs of values < wtime,k, k > where k indicates the level of concurrency and

wtime,k is the expected transaction wasted time when running with degree of

concurrency equal to the value k. This values will be then used to compute the

system throughput at different levels of parallelism using the Eq 5.1. Again, by

exploiting Eq. 5.1, the objective of the concurrency regulation architecture we

present is to identify the value of k, in the interval [1,max threads], such that

thrk is maximized.

We will proceed along the following path. We will initially exploit a combi-

nation of the already presented approach, either analytical or machine learning,

for the construction of an AML model evaluating wtime,k for the different values

of k. Essentially this will be based on introducing an algorithm for the com-

bined usage of the two approaches. As pointed out in the introduction, such a

combination will allow inheriting the best of the two worlds, namely the higher

precision proper of machine learning modeling, and the reduced training time

of analytical modeling, which is fundamental for fast achievement of reliable

predictions.

As we will show, wtime,k will be expressed as a function of tt and ntct. How-

ever, as already showed in section 5.1.1, these quantities may depend, in their

turn, on the value of k due to different thread contention dynamics on system

level resources when changing the number of threads. As an example, per-thread

cache efficiency may change depending on the number of STM threads operat-

ing on a given shared-cache level, thus impacting the CPU time required for

a specific code block, either transactional or non-transactional. To cope with

this issue, we will use the same analytical correction functions discussed in sec-

tion 5.1.1 allowing, once known the value of tt (or ntct) when running with k
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threads, which we denote as tt,k and ntct,k respectively, to predict the corre-

sponding values when supposing a different number of threads. This will lead

the final throughput prediction to be actuated via the Eq. 5.2. Overall, the

finally achieved performance model in Eq. 5.2 has the ability to determine the

expected transaction wasted time when also considering contention on system

level resources (not only logical resources, namely shared-data) while varying

the number of threads in the system. In fact, wtime,k(tt,k, ntct,k) + tt,k + ntct,k

corresponds to the predicted average execution time between the commit op-

erations of two consecutive transactions along a same thread when there are k

active threads in the system, as expressed by taking into account contention on

both logical and system-level resources.

7.2 The Actual AML Model

As already done with the approach described in chapter 5 and 6, we aim at

building a model for wtime,k having the ability to capture changes in the trans-

action wasted time not only in relation to variations of the number of threads

running the application, but also in relation to changes in the run-time behav-

ior of transactional code blocks (such as variations of the size of amount of

shared-data touched in read/write mode by the transaction). In fact, the latter

type of variation may require changing the number of threads to be used in a

given phase of the application execution (exhibiting a specific execution profile)

in order to re-optimize performance. In chapters 5 and 6 we pointed out how

capturing the combined effects of concurrency degree and execution profile on

the transaction wasted time can be achieved in case wtime,k is expressed as a

function f depending on a proper set of input parameters (see section 4.2).

The objective of the AML model is to provide an approximation fAML of
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the function f . To this purpose, we combine two different existing estimators,

providing two different approximations of f . The first estimator, which we refer

to as fA is based on an analytical approach, while the second one, which we

refer to as fML relies on a pure machine learning approach.

Both the two base models, namely fA and fML, require a training phase

to be actuated in order for them to be instantiated. Specifically, fA requires

the collection of some samples related to the application execution in order to

compute the fitting parameters appearing in Eq.s 6.6-6.10, and to estimate trk

(see Eq. 6.12). On the other hand, fML is constructed via the explicit reliance

on a collection of a set of (input,output) training samples related to the real

execution of the STM application. For both the approaches, each sample used to

instantiate the model will refer to aggregate statistics (on the values of the pa-

rameters {rss, wss, rwa, wwa, tt, ntct, k}) over multiple committed transactions,

typically on the order of several thousands. However, there is a fundamental

difference in the training phases to be operated for instantiating the two models.

As discussed and experimentally shown in chapter 6, the fA model (partic-

ularly the expression for pa) can be instantiated by relying on a (very) limited

amount of run-time samples taken during real executions of the application. This

implies that, upon deploying the application, a reduced number of configura-

tions, in terms of the concurrency level (expressed by the value of the parameter

k) require to be observed (and for a relatively reduce amount of time) in order to

build a model having the ability to provide performance predictions in relation

to very different levels of concurrency (potentially unexplored in the training

phase). In other words, the fA model offers excellent extrapolation capabilities.

This is not true for the case of fML, which typically requires to be trained

via good coverage of the whole input domain, also in terms of the degree of
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concurrency k. This leads to the need for observing the application for longer

time, and in differently parametrized operating modes, for reliable model instan-

tiation. On the other hand, fML is expected to be an highly reliable estimator

for f (even more reliable than fA) in case such a good coverage of the input

domain is guaranteed to be achieved during the training phase (see chapter 5).

We decided to combine the usage of the two modeling approaches by exploit-

ing fA in order to definitely shorten the length of the training phase required

to instantiate fML. Overall, in our mixed modeling methodology the analytical

component is used as a support to improve some aspect (namely the learning

latency) of the machine learning component. This is a different way of exploiting

the combination of analytical and machine learning techniques for STM opti-

mization, compared to recent solutions like [62]. In fact, the latter ones follow

the opposite path where machine learning is used to complement or to correct

the analytical component.

A core aspect in our combination of analytical and machine learning models

is the introduction of new type of training set for the machine learning compo-

nent, which we refer to as Virtual Training Set (denoted as VTS). Particularly,

VTS is a set of virtual (inputv,outputv) training samples where:

• inputv is the set {rsvs , rsvs , rwva, wwva, tvt , ntcvt , kv} formed by stochastically

selecting the value of each individual parameter belonging to the set;

• outputv is the output value computed as fA(inputv), namely the estima-

tion of wtime,kv actuated by fA on the basis of the stochastically selected

input values.

In other words, the VTS becomes a representation of how the STM system

behaves, in terms of the relation between the expected transaction wasted time
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and the value of configuration or behavioral parameters (such as the degree of

concurrency), which is built without the need for actually sampling the real

system behavior. Rather, the representation provided by VTS is built by sam-

pling Eq. 6.12, namely fA. We note that the latency of such sampling process

is independent of the actual speed of execution of the STM application, which

determines in its turn the speed according to which individual (input,output)

samples, referring to real executions of the application, would be taken. Par-

ticularly, the sampling process of fA is expected to be much faster, especially

because the stochastic computation (e.g. the random computation) of any of

its input parameters, which needs to be actuated at each sampling-step of fA,

is a trivial operation with negligible CPU requirements. On the other hand,

the possibility to build the VTS is conditioned to the previous instantiation of

the fA model. However, as said before, this can be achieved via a very short

profiling phase, requiring the collection of a few samples for the actual behavior

of the STM application. Overall, we list below the algorithmic steps required for

building the application specific VTS, to be used for finalizing the construction

of the fAML model:

Step-A. We randomly select Z different values of k in the domain [1,max threads],

and for each selected value of k we observe the application run-time behavior by

taking δ real-samples, each one including the set of parameters {rss, wss, rwa,

wwa, tt,, ntct, k, tr}.

Step-B. Via regression we instantiate all the fitting parameters requested by

Eq.s 6.6-6.10. Hence, at this stage we have an instantiation of Eq. 6.3, namely

the model instance for pa.

Step-C. We fill the instantiated model for pa in Eq. 6.12, together with the

average value of trk sampled in Step-A, and then we generate the VTS. This
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is done by generating δ′ virtual samples (inputv,outputv) where inputv =

{rsvs , wsvs , rwva, wwva, tvt , ntcvt , kv} and outputv = wtime,kv as computed by the

model in Eq. 6.12. Each inputv sample is instantiated by randomly selecting

the values of the parameters that compose it. For the parameter k the random

selection is in the interval [1,max threads], while for the other parameters the

randomization needs to take into account a plausible domain, as determined

by observing the actual application behavior in Step-A. Particularly, for each

of these parameters, its randomization domain is defined by setting the lower

extreme of the domain to the minimum value that was observed while sampling

that same parameter in Step-A. On the other hand, the upper extreme for the

randomization domain is calculated as the value guaranteeing the 90-percentile

coverage of the whole set of values sampled for that parameter in Step-A, which

is done in order to reduce the effects due to spike values.

After having generated the VTS in Step-C, we use it in order to train the

machine learning component fML of the modelling approach. However, training

fML by only relying on VTS would give rise to a final fML estimator identical

to fA given that the curve learned by fML would exactly correspond to the one

modelled by fA. Hence, in order to improve the quality of the machine learning

based estimator, our combination of analytical an machine learning methods

relies on additional algorithmic steps where we use VTS as the base for the

construction of an additional training set called Virtual-Real Mixed Training Set

(denoted as VRMTS). This set represents a variation of VTS where some virtual

samples are replaced with real samples taken by observing the real behavior of

the STM application, still for a relatively limited amount of time. More in

detail, the following two additional algorithmic steps are used for constructing
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the VRMTS:

Step-D. We select Z ′ different values for k (in the interval [1,max threads]),

and for each selected value we observe the application run-time behavior by

taking δ′′ real training samples (inputr,outputr).

Step-E. We initially set VRMTS equal to VTS. Then we generate the final

VRMTS image via an iterative procedure where we substitute at each iteration

one element in VRMTS with one individual (inputr,outputr) sample from the

sequence of samples taken in Step-D, until this sequence ends.

The rationale behind the construction of VRMTS is to improve the quality

of the final training set to be used to build the machine learning model by

complementing the virtual samples originally appearing in VTS with real data

related to the execution of the application. Two things need to be considered

in this process: (1) the actual length of Step-D could be further reduced by

reusing (all or part of the) real samples of the application execution taken in

Step-A, which were exploited in Step-B for computing the fitting parameters

for the fA model; (2) the substitution in Step-E could be actuated according

to differentiated policies.

As for the latter aspect, we have decided to use a policy based on Euclidean

distance, in order to avoid clustering phenomena leading the final VRMTS im-

age to containing training samples whose distribution within the whole domain

significantly differs from the original distribution determined by the random se-

lection process used in Step-C for the construction of VTS. More in detail, the

victim selection policy we have adopted to replace iteratively any sample while

generating the final VRMTS works as follows:

• given a collected real sample of the application execution sr = (rsrs, ws
r
s, rw

r
a,

wwra, t
r
t , ntc

r
t , k

r) the subset Skr = {(rss, wss, rwa, wwa, tt, ntct, k)|k = kr}
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of VRMTS is computed. Actually, Skr is the subset of samples for which

the level of parallelism k they refer to is the same as the level of parallelism

characterizing the real sample to be used for replacement in the current

iterative step;

• the actual sample in VRMTS to be replaced with sr is identified inside the

subset Skr using the Euclidean distance as computed on all the parameters

characterizing the sample except k (namely rss, wss, rwa, wwa, tt and

ntct). Particularly, the victim is the sample s∗ belonging to Skr which is

closest to sr.

We note that the above Euclidean distance based policy may lead in inter-

mediate steps to evict from VRMTS some previously inserted real sample. This

may happen in case the closest sample to the one currently being inserted in

VRMTS is a real sample (which was inserted in a previous iteration). This is

not a drawback of our victim selection policy, rather it is the reflection of the

fact that we prevent clustering effects of the elements included in the final image

of VRMTS, which may lead some portions of the domain not to be sufficiently

represented within the set.

Once achieved the final VRMTS image, we use it to train fML in order to

determine the final AML model. Overall, fAML is defined as the instance of

fML trained via VRMTS.

7.2.1 Correcting Factors

As pointed out, the instantiation of the fAML model for the prediction of wtime,k

needs to be complemented with a predictor of how tt and ntct are expected

to vary vs the degree of parallelism k. In fact, wtime,k, as expressed by the

instance of machine learning predictor trained via VRMTS depends on tt and
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Figure 7.1: System architecture

ntct. Moreover, the final equation establishing the system throughput, namely

Eq. 5.2, which is used for evaluating the optimal concurrency level, also relies

on the ability to determine how tt and ntct change when changing the level of

parallelism (due to contention on hardware resources). As already done with

the Neural Network based approach presented in chapter 5, to cope with this

issue we decided to complement the whole process with the instantiation of

correcting functions aimed at determining (predicting) the values tt,k and ntct,k

once know the values of these same parameters when running with parallelism

level i 6= k. To achieve this goal, the samples taken in Step-A of the above

presented process are used to build, via regression, the function expressing the

variation of the number of clock-cycles that the CPU-core spends waiting for

data or instructions to come-in from the RAM storage system. We recall that

the collection of training samples in Step-A should be made very short, hence

referring to a limited number of values of the concurrency level k. However, the
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expectation is that the number of clock-cycles spent in waiting phases should

scale (almost) linearly vs the number of concurrent threads used for running the

application. Hence, regression on a limited number of samples should suffice for

reliable instantiation of the correction functions. A detailed description of the

functions used for the correction of the parameters tt and ntct can be found in

section 5.1.1

7.3 Experimental Evaluation

7.3.1 The AML Based Concurrency Regulation Architecture

We have implemented a fully featured STM concurrency regulation architecture

based on AML, which we refer to as AML-STM, whose organization is presented

in Figure 7.1. The core STM layer exploited in our implementation is again the

open source middleware TinySTM. AML-STM is made up by three building

blocks, namely:

• a Statistics Collector (SC);

• a Model Instantiation Component (MIC); and

• a Concurrency Regulator (CR).

The MIC module initially interacts with CR in order to induce variations of the

number of running-threads i so that the SC module is allowed to perform the

sampling process requested to support Step-A of the instantiation of the AML

model. After the initial sampling phase, the MIC module instantiates fA (and

the correction function sc) and computes VTS. It then interacts again with CR

in order to induce variations of the concurrency level k that are requested to

support the sampling process (still actuated via SC) used for building VRMTS
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(see Step-D and Step-E). It then instantiates fAML by relying on a neural

network implementation of the fML predictor, which is trained via VRMTS.

Once the fAML model is built, MIC continues to gather statistical data from

SC, and depending on the values of wtime,k that are predicted by fAML (as a

function of the average values of the sampled parameters rss, wss, rwa, wwa,

tt,k, and ntct,k), it determines the value of k providing the optimal throughput

by relying on Eq. 5.2. This value is filled in input to CR (via queries by

CR to MIC), which in its turn switches off or activates threads depending on

whether the level of concurrency needs to be decreased or increased for the next

observation period.

We note that the length of the phases requested for eventually instantiating

fAML depends on the amount of samples that are planned to be taken in Step-

A and in Step-D of the model construction (see the parameters Z, δ, Z ′ and δ′′

in the detailed description of these steps). We will evaluate the effectiveness of

our AML modeling approach, and compare this approach with pure analytical

or machine learning based methods, while varying the length of these sampling

phases. We note that the shorter such a length, the more promptly the final

performance model to be used for concurrency regulation is available. Hence,

reduction of the length of these phase, while still guaranteing accuracy of the

finally built performance model, will allow more prompt optimization of the

run-time behavior of the STM based application. As hinted, this is relevant in

scenarios where applications are dynamically deployed, and need to be promptly

optimized in terms of their run-time behavior in order to improve the fruitful

usage of resources and to also improve the system energy efficiency (via reduction

of wasted CPU time), such as when applications are hosted by PaaS providers

on top of STM-based platforms.
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7.3.2 Experimental Data

The data we report in this section refer to the execution of four applications

belonging to the STAMP benchmark suite: intruder, kmeans, yada, vacation.

As showed in Table B.1 (see Appendix B) this subset of applications represent

a complete test case in terms of transaction length, read set and write set size,

transaction execution time and contention. So it should represent a good and

complete testbed to prove the effectiveness of our approach. These applications

have been run on top of the aforementioned 16-core HP ProLiant machine. This

section is divided in two parts. In the first one we provide an experimental sup-

port of the feasibility of our AML approach. Specifically, we provide data related

to how the prediction error of wtime,k changes over time (namely vs the length of

the sampling phase used to gather data to instantiate the performance model)

when comparatively considering our AML model and the two base models, pure

analytical and pure machine learning, exploited for building AML.

Successively, we provide experimental data related to how the concurrency

regulation architecture based on AML, namely AML-STM, allows more prompt

achievement of optimized run-time performance and optimized energy usage,

when compared to the concurrency regulation architectures we have presented

in chapters 5 and 6, where concurrency regulation takes place by exclusively

relying on an analytical performance model or on a pure machine learning ap-

proach. We will refer to these two architectures as CSR-STM and SAC-STM,

respectively. We note that both these architectures have been implemented by

relying on TinySTM as the core STM layer, hence our study provides a fair

comparison of the different performance modeling and optimization approaches,

when considering the same STM technology and implementation. Also, we

feel that comparing our AML approach with literature approaches addressing
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the very same problem (namely the dynamic selection of the optimal value of

the number of threads in scenarios where the application execution profile can

change over time) is the more reliable way of assessing the present proposal (1).

In fact, comparing AML with approaches based on different rationales (like the

ones based on transaction scheduling, see [71]) would lead to compare solutions

that can be integrated and make synergy, thus not representing alternatives

excluding each other. Overall, in this chapter our study is oriented to the eval-

uation of real mutual-excluding alternatives, specifically targeting the problem

of regulating the level of concurrency. However, to provide a complete overview

of the performance reachable using different approaches, in Chapter 8 we will

show the results of a study aimed at comparing the performance ensured by

our concurrency regulation approaches and by other orthogonal performance

optimization approaches.

Part A - Model Accuracy

Table 7.1 shows the average error rate and the error rate variance of wasted time

predictions, for analytical model and Neural Network based approaches. These

values are obtained training the analytical model and the neural network with

the same training set. This training set contains enough samples to allows the

neural network to obtain better prediction performance than analytical model.

The values showed by the table are a proof that if enough samples are available

the Neural Network is preferable to analytical model approach.

To evaluate the generalization capacity of the three approaches we train all

the predictor starting from the same training set S. It is a small training set

1The proposals in, e.g. [15, 14, 16], are suited for selecting and/or regulating concurrency
with static execution profiles, where, e.g., read and write set size does not change over time.
We exclude therefore these solutions in our comparative study.
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yada

mean error error variance

Analytical model 0,0419930428 0,0008199737

Neural Network 0,0115209801 0,0002040777

vacation

mean error error variance

Analytical model 0,0362778191 0,0032975101

Neural Network 0,030409852 0,0032735876

kmeans

mean error error variance

Analytical model 0,0477515107 0,0015677014

Neural Network 0,0273179969 0,000881993

intruder

mean error error variance

Analytical model 0,0869683006 0,0041785981

Neural Network 0,0362397331 0,0021788312

Table 7.1: Average error and variance comparison
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that contains only samples related to levels of parallelism equals to 2 and 4.

We use S to train the NN and the analytical model. For the training of the

predictor based on the mixed approach we build a new training set Sm merging

S with additional samples obtained sampling the trained analytical model. In

this way we obtain an initial hybrid training set that contains some real data

and some extrapolated data.

In figures 7.2 and 7.3 we can see the results that can be obtained with the

three different types of predictor. The graphs in 7.2 show normalized wasted

time predictions vs normalized real wasted time values for yada benchmark.

In the first graph, that shows neural network prediction vs real wasted time

values, the points are scattered. It implies that the predicted values are very

different respect to real wasted time values, this is due to the small size of

the training set that doesn’t allow the neural network to enrich good prediction

performance. The second graph shows the model predictions vs real time values.

As we can see the points are concentrated in a limited area around the bisector

line and this is a proof that the predictions of the analytical model are better

than the ones provided by the neural network, that is the model has better

generalization/extrapolation capacity and the error is limited. The third graph

shows the mixed approach predictions vs the real wasted time values. In this case

the points are concentrated in an smaller area around the bisector line. It means

that the mixed approach allows to obtain better predictions than analytical

model. This is due to the capability of the mixed approach of exploit both the

strengths of the first two approaches: generalization capacity of analytical model

and accuracy of neural network. The graphs in 7.3 show normalized wasted time

prediction vs normalized real wasted time values for kmeans benchmark. In the

first graph, that shows neural network predictions vs real wasted time values, we
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Figure 7.2: Predictions accuracy -
yada benchmark
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can see that the points are scattered and far from the bisector line. It implies

that the predicted values are very different respect to the real wasted time

values and most of the time the NN underestimate the mean wasted time. In

this case too, the small size of the training set doesn’t allow the neural network

to enrich good prediction performance. In the second graph we can see the

model prediction vs real time values. In this case the points are still scattered,

but less respect to NN graph. Moreover they are distributed around the bisector

line. It implies that the model ensures better prediction performance that pure

NN approach (with the available training samples). The third graph shows the

mixed approach predictions vs the real wasted time values. As we can see the

points are concentrated in an smaller area around the bisector line. It means that

the mixed approach allows to obtain better predictions than analytical model.

In this case too, it is due to the capacity of the mixed approach of exploit both

the strengths of neural networks and analytical modelling approaches.

To determine how the estimation accuracy of wtime,k provided by the AML

approach varies vs the length of the sampling phase used to gather profiling data

on top of which the performance model is built, and to compare such accuracy

with the one provided by pure analytical (fA) or pure machine learning (fML

trained on real samples) methods, we have performed the following experiments.

We have profiled STAMP applications by running them with different levels of

concurrency, which has been varied between 1 and the maximum amount of

available CPU-cores, namely 16. All the samples collected up to a point in

time have been used either to instantiate fA via regression, or to train fML in

the pure machine learning approach. On the other hand, for the case of fAML

they are used according to the following rule. The 10% of the initially taken

samples in the observation interval are used to instantiate fA (see Step-A and
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Figure 7.4: Prediction error comparison - vacation

Step-B in Section 7.2), which is then used to build VTS, while the remaining

90% are used to derive VRMTS (see Step-D and Step-E in Section 7.2). In

this scheme the cardinality of the VTS, from which VRMTS is build, has been

fixed at 1500 elements. Also, each real sample taken during the execution of

the application aggregates the statistics related to 4000 committed transactions,

and the samples are taken in all the scenarios along a single thread, thus leading

to similar rate of production of profiling data independently of the actual level

of concurrency while running the application. Hence, the knowledge base on

top of which the models are instantiated is populated with similar rates in all

the scenarios.

Then for different lengths of the initial sampling phase (namely for different

amounts of samples coming from the real execution of the application), we

instantiated the three different models and compared the errors they provide in

predicting wtime,k. These error values are reported in Figures 7.4-7.7, and refer
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to the average error in the prediction while comparing predicted values with real

execution values achieved while varying the number of threads running STAMP

applications in between 1 and the maximum value 16. Hence, they are average

values over the different possible configurations of the concurrency degree for

which predictions are carried out. Also, we have normalized the number of real

samples used in each approach in such a way that the x-axis expresses the actual

latency for model instantiation (not only for real samples collection), hence

including the latency (namely the overhead) for VTS and VRMTS generation

and actual training of fML over VRMTS in case of the AML approach. This

allowed us to compare the accuracy of the different models when considering the

same identical amount of time for instantiating them (since for models requiring

more processing activities in order for them to be instantiated, we recover that

time by reducing the actual observation interval, and hence the number of real

samples provided for model construction).
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By the data we can see how the AML modeling approach always provides

the minimal error independently of the length of the application profiling phase.

Also, with the exception of vacation and intruder, AML allows achieving min-

imal errors (on the order of 2-3%) in about half of the time requested by the

best of the other two models for achieving the same level of precision. On the

other hand, for intruder, AML significantly outperforms the other two prediction

models for different lengths of the application sampling period. As for vacation,

AML provides close-to asymptotically minimal prediction error even with a very

reduced amount of available profiling samples. These data support the claim of

high accuracy of the predictions by AML, guaranteed via very reduced time for

instantiating the application specific performance model.

Part B - Performance and Energy Efficiency

To demonstrate the effectiveness of AML in allowing prompt deliver of optimized

performance (and prompt improvement of energy usage), once instantiated the

performance models at some point in time according to the settings presented

in Section 7.3.2, we evaluated both: (A) the transaction throughput, given that

the concurrency level is dynamically regulated according to the predictions by

the instantiated model and (B) the average energy consumption (joule) per

committed transaction. For both the parameters, we also report the values

achieved by running the application sequentially on top of a single thread and

fixing the number of threads to the maximum value of 16 (we refer to this

configuration as TinySTM in the plots), which allows us to establish baseline

values for the assessment of both speedups and energy usage variations by the

runs where the degree of concurrency is dynamically changed on the basis of the

performance model predictions.
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By the throughput data in Figures 7.8-7.11, we see how dynamic concurrency

regulation based on AML allows the achievement of improved or even the peak

observable throughput values much earlier in time, when compared to what

happen with the pure analytical and the pure machine learning approaches.

Also, the pure analytical approach is typically not able to provide the peak

observed throughput, independently of the length of the sampling period during

which the knowledge base for instantiating the model is being constructed. Also,

for some benchmark, such as kmeans, the time requested by the pure machine

learning based approach in order to instantiate a model guaranteing the peak

observed performance is one order of magnitude longer than what required for

the instantiation of the AML model. For other benchmarks, such as yada,

the AML approach requires on the order of 40% less model-instantiation time

to achieve a model providing the peak performance. We also note that for

most of the benchmarks, the TinySTM configuration where all the available 16

CPU-cores are used to run a fixed number of 16 concurrent threads, typically

leads to a speed-down wrt the sequential run. This indicates how the execution

profiles for the STAMP applications are not prone to exploitation of uncontrolled

concurrency levels, which leads the actually observed speedup values, promptly

achievable via AML, to be representative of a significant performance boost.

As for data related to energy efficiency, reported in Figures 7.12-7.15, we see

how both the pure analytical and the AML approaches allow prompt achieve-

ment of reduction of the energy requested per transaction commit. This is not

guaranteed by the pure machine learning approach. Also, the AML approach al-

lows the achievement of optimized tradeoffs between execution speed and energy

consumption. In fact, even though the pure analytical approach allows reduc-

ing the energy consumption for the yada benchmark when considering longer
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time for model instantiation, this is achieved by clearly penalizing the achieved

throughput.

To provide more insights into the relation between speed and usage of energy,

we report in Figure 7.16 the curves showing the variation of the ratio between

the speedup provided by any specific configuration (again while varying the

performance model instantiation time) and the energy scaling per committed

transaction (namely the ratio between the energy used in a given configura-

tion and the one used in the sequential run of the application). As an example

we report these curves for the kmeans benchmark, however the corresponding

curves for the other benchmark applications could be derived by combining the

previously presented curves. Essentially, the curves in Figure 7.16 express the

speedup per unit of energy, when considering that the unit of energy for com-

mitting a transaction is the one employed by the sequential run. Hence they

express a kind of iso-energy speedup. Clearly, for sequential runs this curve



7.3. Experimental Evaluation 165

has constant value equal to 1. By the data we see how the AML approach

achieves the peak observed iso-energy speedup for a significant reduction of the

performance model instantiation time. On the other hand, the pure analyti-

cal approach does not achieve such a peak value even in case of significantly

stretched application sampling phases, used to build the model knowledge-base.

Also, the configuration with concurrency degree set to 16, namely TinySTM,

further shows how not relying on smart and promptly optimized concurrency

regulation, as the one provided by AML, degrades both performance and energy

efficiency.





Chapter 8

STMs Performance

Comparison

In this chapter we provide the results of a study that compares the performance

of the approaches presented in this thesis with those of other approaches aimed

to optimize the performance of STM based applications. We don’t include in the

study the AML approach presented in Chapter 7 because, in terms of obtainable

performance, it is equivalent to the pure NN based approach presented in Chap-

ter 5 and we don’t include the analytical model based approach presented in

Chapter 6 because in some cases it doesn’t reach the same prediction accuracy

ensured by the NN based approach. For the comparison we have selected a set

of standard and self-adaptive STM middlewares:

• TinySTM, used as baseline configuration for the evaluation;

• SwissTM [35] that, compared to TinySTM, provide a different concurrency

control mechanism.

• SAC-STM, ATS-STM [12] and Shrink [13] as self-adaptive STM middle-

wares. They are used to show how self-adapting computation can capture

167
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the actual degree of parallelism and/or logical contention on shared data

in a better way respect to not adaptive implementations, enhancing even

more the intrinsic benefits provided by software transactional memory;

We executed all the STAMP benchmark suite applications on top of each

STM implementation using the platform described in section 2.2. The obtained

results will be discussed in Section 8.2.

8.1 Reference Architectures and Configurations

We hereby provide a brief recall of the approaches used to carry out the eval-

uation study. For each approach, we give informations about the configuration

used for our experiments.

8.1.1 SwissTM

SwissTM is a lock based STM that uses an encounter-time (pessimistic) conflict

detection mechanism for conflicts between concurrent writes and a commit-time

(optimistic) conflict detection mechanism for conflicts between concurrent read

and write. It uses a two-phase contention manager with random linear back-

off that is able to ensure the progress of long transactions while inducing no

overhead on short ones. The API of SwissTM is word-based, that is it enables

transactional access to arbitrary memory words. It guarantees opacity [25], a

property similar to serializability in database systems [76] (the main difference

is that all transactions always observe consistent states of the system). This

implies that transactions cannot, e.g., use stale values, and that they do not re-

quire periodic validation or sand-boxing to prevent infinite loops or crashes due

to accesses to inconsistent memory states. SwissTM does not provide any guar-

antees for the code that accesses the same data from both inside and outside of
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transactions and it is not privatization safe [77]. This could make programming

with this STM slightly more difficult in certain cases.

8.1.2 TinySTM

The basic setup of TinySTM implements the Encounter-Time Locking (ETL)

algorithm. It is an algorithm based essentially on locks, which are acquired (on

a per-word basis) whenever a write operation is to be performed on a shared

variable. In particular, TinySTM relies on a shared array of locks, where each

lock is associated with a portion of the (shared) address space. Upon a write

operation, the transaction identifies which lock is covering the memory region

which will be affected by the write, and atomically reads its value. A lock

value is composed by an integer number, the least significant bit of which tells

whether the lock is currently owned by a running transaction. The remaining

bits specify the current version number associated with that particular memory

region. The writing transaction, therefore, reads the lock bit and determines

whether that memory region is already owned or not. In the positive case,

the transaction checks whether the lock its owned by the transaction itself. If

it is so, the new value is directly written, otherwise for a specified amount of

time the transaction gets into a waiting state. In the negative case, an atomic

compare-and-swap (CAS) operation is used to try to acquire the lock. A failure

in the CAS operation indicates that the lock has been (concurrently) acquired

by another transaction, so the execution of the write operation falls into the

first aforementioned case. The current version number stored in the lock is used

upon read operations, to check whether the memory region has been updated

by other transactions. In particular, before reading, the transaction checks

whether the lock is owned, then reads the counter value, then performs the read
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operation and reads the counter value again. If between the two counter reads

its value is not changed, then the read value can be regarded as consistent.

We have used TinySTM relying on the write-back scheme for the propagation

of memory updates. It buffers all the updates in a write log, which, upon

commit operation, is flushed to memory. This approach reduces the abort time

and simplifies guaranteeing consistency of read operations. ETL has two main

advantages [7]: On the one hand, by detecting conflicts early it can provide a

transaction throughput increase, reducing the amount of wasted work executed

by transactions. On the other hand, read-after-writes can be handled efficiently,

providing a non-negligible benefit whenever write sets are large enough.

8.1.3 TinySTM Adaptive Configurations

All the adaptive STM configurations included in the comparison are obtained

improving the standard version of TinySTM with some features aimed to opti-

mize the application performance. We provide below a short description of the

improvement introduced by each implementation.

SAC-STM

This STM implementation, described in detail in Section 5.2, exploits a machine-

learning based controller which regulates the amount of active concurrent threads

along the execution of the application. Specifically, a neural network is trained

in advanced to learn existing relations between the average wasted transaction

execution time (i.e. the average time spent by a thread executing aborted trans-

actions for each committed transaction) and: (i) a set of parameters representing

the current workload profile of the application, and (ii) the number of active con-

current threads. The neural network is exploited by the controller to estimate
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the optimal number of concurrent threads to be kept active. This is done by

evaluating the expected throughput as a function of the application’s current

workload and of the number of active threads k, with 1 ≤ k ≤ maxthread, where

maxthread is a system configuration parameter denoting the maximum number

of concurrent threads which can be activated. The controller also exploits a

model to predict the system’s hardware scalability of the time spent in trans-

actions and of the time spent in non-transactional code as a function of the

number of active concurrent threads. At the end of each workload sampling in-

terval, during which all workload profile parameters are evaluated on the basis of

statistics collected through runtime measurements, the controller performs new

throughput estimations and then activates only a certain number of threads so

that throughput is expected to be higher.

ATS-STM

This STM implementation has been described in detail in Section 3.1. It is based

on Adaptive Transaction Scheduling (ATS), a transaction-scheduling algorithm

relying on runtime measurement of the Contention Intensity (CI), an index that

gives an estimation of the contention that a transaction encounters during its

execution. Each thread maintains its own contention intensity. Before starting

a new transaction, if the current value of CI exceeds a given threshold, then the

thread stalls and the transaction is inserted within a queue shared by all threads.

Otherwise, the thread immediately execute the transaction. Transactions stored

inside the queue are serialized and executed according to the FIFO order.



172 8. STMs Performance Comparison

Shrink

This STM implementation has been described in detail in Section 3.1, too. It

uses a transaction-scheduling algorithm based on temporal locality, i.e. on the

fact that consecutive transactions in a thread access the same data objects. Sim-

ilarly to ATS-STM, in Shrink the scheduler is activated if the transaction success

rate is below a given threshold. Yet, rather than serializing all transactions, a

contention probability is evaluated on the read- and write-sets. Specifically,

before starting a new transaction, an estimation of the probability of write con-

tention among the entries in the predicted read-/write-sets is computed. This

is done by checking if there is an intersection between the predicted write-set

of (predicted) concurrent transactions and the union of the read-set and the

write-set of the transaction to be executed. In the positive case, the new trans-

action must be serialized. The predicted read-set of starting transactions is the

union of the read-sets of the last n executed transactions, where n is a configura-

tion parameter called locality window. The predicted write-set of a transaction

includes all the data objects written by the same transaction during previous

executions (if any, otherwise the write-set in assumed to be empty).

8.2 Experimental Data

In this sections we discuss the performance reachable with the just described

STM implementations. To cover a wide range of transactional workload profiles

we executed each application using different input parameters, chosen following

the methodology described in section 5.3.1. For each application we will show

four graphs, one for each tested configuration. In the graphs we report the

application execution time varying the number of maximum available threads.
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This means that the STM implementations with concurrency regulation capa-

bility will start their execution with a number of thread equal to the maximum

available one and than they will regulate that number on the basis of the ap-

plication workload, instead the other implementations run with the maximum

number of available threads for all the application lifetime. Comparing the re-

sults obtained with TinySTM and SAC-STM that we will show in the current

section with the ones already showed for the same STM frameworks in Section

5.3.3 we can see that the latter are always worst. This is due to the usage of a

different contention manager: in the experiments presented in Section 5.3.3 we

used the contention manager CM MODULAR (it allows to dynamically choose

contention manager between a predefined set and it may be a bit slower than

other CMs because of its flexibility), in the ones we will present in the current

chapter we used instead the contention manager CM SUICIDE (when a conflict

occurs, it kills the transaction that detects the conflict). The results obtained

in both the configurations show that our concurrency regulation approaches, re-

gardless of the used contention manager, are able to choose always the optimal

concurrency level further proving their generality and effectiveness.

In Figure 8.1 we present the results for the intruder benchmark. As we can

see, for all considered configurations, the application execution time achieved

with TinySTM decreases when increasing the number of used threads up to 4-

8, while for greater values it drastically increases. Similar results are obtained

with ShrinkSTM, but this implementation always reaches worst performance

than TinySTM (except between 14-16 threads for the first and the forth config-

urations). About ATS-STM we can see that it ensures the same performance of

the other implementations for concurrency level between 1 and 4. With higher

level it isn’t able to improve its performance but it is able to maintain fairly
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Figure 8.1: Application execution time - intruder benchmark

constant the application execution time. For all the tests, SAC-STM achieves

very good results independently of the maximum amount of allowed concurrent

threads. In fact, in scenarios where maxthread is less than the amount of threads

giving rise to the optimum case for TinySTM, the results achieved with SAC-

STM and the other STM are comparable. With more threads, SAC-STM is

able to constantly ensure an application execution time very near to the best

one achieved with TinySTM. About SwissTM we can see that it is able to ensure

the same optimal performance of SAC-STM for configuration 3 and configura-

tion 4. Only for configuration 2 SwissTM constantly reaches worst performance

than SAC-STM, but it ensures always better performance than ShrinkSTM and

ATS-STM and for a maximum level of parallelism greater than 12 it is able

to overcome TinySTM, too. By the graph we can clearly see that TinySTM,
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ShrinkSTM and ATS-STM exhibit a scalability problem with this workload.

This phenomenon is avoided by SAC-STM (thanks to its proper thread activa-

tion/deactivation functionalities, which provide a means to control the negative

effects associated with data contention) and by SwissTM.
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Figure 8.2: Application execution time - genome benchmark

The results of the tests with the genome benchmark are shown in Figure 8.2.

For configuration 1 and configuration 2 SwissTM allows to obtain always the

better performance, for all the concurrency level. For all the other approaches

we can see that their performance are comparable up to 8 threads. With more

threads, while the performance of TinySTM degrades, the other approaches,

namely SAC-STM, ShrinkSTM and ATS-STM, ensure, independently of the

number of available threads, an execution time comparable with the best one

provided by TinySTM (i.e. 8 threads). With configuration 3 the best execution
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time with TinySTM is achieved with 8 threads, after which the performance

slightly decreases. About the other STM implementations we can see that Swis-

sTM and SAC-STM ensure the same performance between 6 and 16 threads.

Before 6 thread swissTM is able to ensure better performance than SAC-STM

and comparable with the one obtainable with TinySTM. About ShrinkSTM

and ATS-STM we can see that they provide the same performance offered by

SwissTM except for the interval between 7 and 11 thread where they are not

able to obtain the same performance ensured by both SAC-STM and SwissTM.

For configuration 4 TinySTM reaches its optimum using 4 threads, after the

performance decreases. SwissTM ensures always the best performance. The

remaining approaches are not able to ensure performance as good as the one

reached by SwissTM, but they are very close.
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Figure 8.3: Application execution time - kmeans benchmark
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In figure 8.3 we show the results obtained with the kmeans benchmark. For

configuration 1 we can see that ATS-STM and ShrinkSTM ensure the same

execution time between 2 and 6 threads. For higher concurrency level the per-

formance of ATS-STM remains stable until 16 threads. Conversely the perfor-

mance of ShrinkSTM starts to get worse. About SwissTM, the graph shows

that it ensures always better performance than ATS-STM and ShrinkSTM. The

application execution time achieved with TinySTM decreases when increasing

the number of used threads up to 4-6, while for greater values it increases. The

performance offered by TinySTM are always better respect to the one offered

by ATS-STM and ShrinkSTM. It reaches better performance than SwissTM

until 12 thread. For greater values TinySTM and SwissTM offer very close per-

formance. SAC-STM offers the best performance between 6 and 16 threads,

but for concurrency levels lower than 4, it pays for the workload parameters

sampling overhead, so its performance can’t reach the ones offered by the other

approaches. For configuration 2, ATS-STM, ShrinkSTM and TinySTM have a

behaviour similar to the one already shown for configuration 1. About SAC-

STM and SwissTM they provide the best performance between 6 and 16 threads

(their performance are very similar). Between 1 and 5 threads SwissTM ensure

the best performance, conversely SAC-STM pays again for the workload profile

sampling overhead (less than in configuration 1). For configuration 3 the results

are again very similar to the ones obtained for configuration 1, with SAC-STM

that is able to always reach the better performance for concurrency level be-

tween 4 and 16. About configuration 4, we can see that this scenario is totally

different than the previous ones. For this configuration the number of available

cores is not sufficient to reach the concurrency level that produces performance

degradation. As we can see from the graph all the implementations allow to ob-
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tain similar performance. Only SwissTM for concurrency leves between 10 and

16 is not able to reach the same performance of the other STMs and SAC-STM

for concurrency level between 1 and 6 pays again the costs for workload profile

sampling.
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Figure 8.4: Application execution time - ssca2 benchmark

The Figure 8.4 shows test results for ssca2 benchmark. In all the tests we

made with this benchmark we verified that the number of available cores is not

sufficient to reach the concurrency level that produces performance degradation.

As we can see from the graphs with this benchmark all the STM implementa-

tions, except SwissTM, ensure the same performance. SwissTM for concurrency

level between 7 and 16 always provides performance between 5 % and 30 % worst

than the other approaches.

The results of the tests with the vacation benchmark are shown in Figure
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Figure 8.5: Application execution time - vacation benchmark

8.5. As we can see from the first and the fourth graphs, for configuration 1

and configuration 4 the application execution time achieved with TinySTM de-

creases when increasing the number of used threads respectively up to 6 and 4

while for greater values it drastically increases. All the other STM implementa-

tions have the same behaviour for all the level of parallelism ensuring the same

application execution time. Only SAC-STM in the configuration 1 doesn’t reach

the same performance of the other approaches between 7 and 16 threads, but

the difference is always less than 5%. For configuration 2 and configuration 3,

like for ssca2 benchmark, the number of available cores is not sufficient to reach

the concurrency level that produces performance degradation. For this scenarios

the graphs show that all the STM implementations allow to obtain the same

performance.
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Figure 8.6: Application execution time - labyrinth benchmark

In figure 8.6 we show the results obtained with our modified version of the

labyrinth benchmark. For the tests showed in figure 8.6 we iterate the applica-

tion 1000 times (1). For configuration 1 the application execution time achieved

with all the STMs decreases when increasing the number of used threads up

to 4. For greater values it starts to increase except for SAC-STM that is able

to ensure always the optimal performance independently from the number of

maximum available thread. About configuration 2 we can see from the second

graph that TinySTM, SAC-STM and ShrinkSTM have similar behaviour, the

performance increases when increasing the number of used threads up to 10,

than the performance remains stable. SwissTM has the same behaviour up to

1In our experimental evaluations we will use a modified version of the labyrinth benchmark.
The original version executes a number of transactions not large enough large to allow to
conclude some adaptivity steps. So we modified it including the benchmark inside a cycle that
executes the application x times, where x is a configurable number.
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12 thread, than its performance starts do decrease. About ATS-STM the graph

shows that it is able to ensure the same performance of the other STMs up to

4 theads, for greater values the application execution time drastically increases.

The configuration 3 and configuration 4 present results similar to configuration

1. The application execution time achieved with all the STMs decreases when

increasing the number of used threads up to 6. For greater values it drastically

increases except for SAC-STM that again is able to ensure always the optimal

performance.
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Figure 8.7: Application execution time - yada benchmark

Figure 8.7 shows the results obtained with the yada benchmark. For con-

figuration 1 and configuration 4 the application execution time achieved with

all the STMs, except ATS-STM, decreases when increasing the number of used

threads up to 4. For greater values it starts to increase except for SAC-STM and
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SwissTM. As we can see from the graph ATS-STM presents scalability problems,

its application execution time in this configuration always increases, increasing

the concurrency level. Between 4 and 8 thread only SAC-STM and SwissTM

are able to avoid performance degradation, and SwissTM ensures better per-

formance than SAC-STM. For values greater than 8 SwissTM is not still able

to avoid performance degradation and as we can see from the graph its appli-

cation execution time starts to increase. The only implementation that avoids

performance degradation for any concurrency level is SAC-STM. For configu-

ration 2 the application execution time achieved with all the STMs decreases

when increasing the number of used threads up to 4. For greater values it starts

to drastically increase except for SAC-STM and SwissTM. For this two STMs

the performance continues to increase up to 8 thread. For greater values the

application execution time for SwissTM starts to increase. As we can see from

the graph, the only implementation that allows to avoid degradation due to

logical contention, for all the concurrency level, is again SAC-STM. The results

for configuration 3 are very similar to the ones of configuration 1 and configu-

ration 4. The only differences are that ShrinkSTM is able to avoid performance

degradation for concurrency level between 4 and 8 and ATS-STM presents lower

scalability problems: its performance improves up to 4 threads but for greater

values the application execution time starts again to increase.

The results of the tests with the bayes benchmark are shown in Figure 8.8.

This application is not so stable (e.g. as already showed in [17]) but for complete-

ness we decided to include it in our comparison trying to mitigate its instability

executing an higher number of test and than reporting the mean values. For

configuration 1 the application execution with all the STM implementations

decreases up to 6 threads, for greater values the application execution remains
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Figure 8.8: Application execution time - bayes benchmark

stable for all the STM except SAC-STM. For this implementation the appli-

cation execution dime decreases until 8 and than it remains stable up to 16

threads on better values than the ones reachable with all the other implemen-

tations. For configuration 2 and configuration 4 bayes shows its instability. All

the implementations, except SAC-STM, shows a big variability in the applica-

tion execution time varying the concurrency level. SAC-STM, leveraging on its

concurrency regulation mechanism, is able to ensure stable optimal performance

independently of the maximum number of available threads. For configuration

3 the application execution time decreases up to 4 threads for all the STMs

but TinySTM and SAC-STM are able to ensure about 20% better performance

than the other implementations. For higher concurrency level, the application

execution time of TinySTM drastically increases. Instead SAC-STM is able
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to maintain optimal performance independently of the maximum number of

available threads. About the other STM implementations, they presents high

performance variability but their performance are always worst than SAC-STM.

By all the results, we can gather an important general result: all the solutions

that don’t dynamically adjust the concurrency level are prone to performance

degradation when a not optimal number of threads is used to run the applica-

tion. We have shown that solutions based on transaction scheduling mechanisms

(like ATS-STM and ShrinkSTM) are not sufficient for capturing the intrinsic de-

gree of parallelism and that adaptivity is an essential building block for creating

STM systems which can offer optimal performance independently of the ap-

plication workload. The results obtained with our adaptive solutions are very

promising, as they shown that, in most of the cases, the performance achieved

is, independently of the maximum number of concurrent threads used to execute

the application, close to the best case when using a fixed (optimal) number of

running threads. In particular, we observed that when an application is exe-

cuted with an overestimated number of concurrent threads, our self-adjusting

STMs prove to be able to reduce the concurrency level so to avoid the typi-

cal performance degradation experienced with traditional (non-self adjusting)

STM systems. Moreover, being orthogonal to the other approaches, they can be

used in combination with all the existing implementations allowing to further

optimize their performance.



Chapter 9

Conclusions

Software Transactional Memory is a programming paradigm for parallel/concur-

rent applications that represents an easy-to-use alternative to traditional lock-

based synchronization mechanisms. By leveraging on the concept of atomic

transactions, historically used in the field of database systems, STMs relieve

programmers from the burden of explicitly writing complex, error-prone thread

synchronization code. STMs provide a simple and intuitive programming model,

where programmers wrap critical-section code within transactions, thus remov-

ing the need for using fine-grained lock-based synchronization approaches. Pro-

grammers’ productivity is therefore improved, while not sacrificing the advan-

tages provided by high parallelism, thus avoiding any loss in performance typi-

cally associated with serial execution scenarios, or with cases where an easy to

program, coarse-grained locking approach is used.

Thanks to the diffusion of the multi-core systems (today even entry-level

desktop and laptop machines are equipped with multiple processors and/or

CPU-cores) the relevance of the STM paradigm has significantly grown. To-

gether with the simplification of the development process, an aspect that is

central for the success, and the further diffusion of the STM paradigm relates

185
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to the actual level of performance it can deliver. As for this aspect, one core

issue to cope with in STM is related to exploiting parallelism while also avoiding

thrashing phenomena due to excessive transaction rollbacks, caused by excessive

contention on logical resources, namely concurrently accessed data portions.

In this thesis we dealt with the problem of regulating the concurrency level

in STM based applications with the aim to optimize the performance, avoiding

penalties due to the wrong choice of the concurrency level selected for running

the applications.

We presented a suite of techniques for dynamic concurrency regulation based

on three different approaches:

• a Machine Learning based approach;

• an analytical modelling based approach;

• a grey box approach that mix the previous ones (allowing to chase the

best of the two methodologies by tackling the drawbacks intrinsic in each

of them).

The first approach uses Neural Network (NN) to approximate the function

of the mean transactional wasted time, that is the time spent by a thread to

execute transactional code that will be aborted. The predictions of the NN are

then used to evaluate the mean application throughput varying the concurrency

level. In this way it is possible to determine the number of threads that allows

to maximize the performance.

The second approach uses a parametric analytical model to approximate the

transaction abort probability function. This approximated function is then used

to evaluate again the mean transactional wasted time. The instantiation of the

parameters of the model can be actuated via a light regression process based
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on a few samples related to the run-time behavior of the application. Also, the

model does not rely on any strong assumption in relation to the application

profile, hence being usable in generic application contexts.

The third approach combines the previous ones taking the best from each

of them. The results of the combination is a methodology for fast construction

of a highly reliable performance model for the determination of the optimal

level of concurrency for STM-based applications. This is relevant in generic

contexts also including the Cloud, where the need for deploying new applications

(or applications with reshuffling in their execution profile), while also promptly

determining the system configurations allowing optimized resource usage, is very

common.

All the developed approaches are able to cope with cases where the actual

application workload profile can change over time, such as when the (average)

size of the data-set accessed by the transactional code in read or write mode

changes over time (e.g. according to a phase-behavior).

Moreover we presented an innovative approach for dynamically selecting

the input features to be exploited by the Machine Learning based performance

model. The approach relies on runtime analysis of variance and correlation of

workload characterization parameters, and on feedback control on the quality of

performance prediction achieved with shrunk sets of features. From the reported

experiments we showed that this approach is able to reduce the overhead for

features sampling, minimizing its impact on application performance.

Together with the performance prediction models we also implemented a

suite of prototypes of concurrency regulation architectures, integrated with the

TinySTM open source framework, which exploit the developed solutions to dy-

namically tune the number of threads used for running the application and to
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minimize the workload parameters sampling overhead.

Using these prototypes we did a detailed experimental evaluation executing

all the applications of the STAMP benchmark suite and comparing our solutions

with other adaptive (ATS-STM and ShrinkSTM) and standard STM implemen-

tations (TinySTM and SwissTM). The obtained results show the effectiveness

of all the proposed approaches, more in detail the performance achieved is, inde-

pendent of the maximum number of concurrent threads of the application, close

to the best case when using a fixed (optimal) number of running threads with

standard version of TinySTM. In particular, we observed that when an applica-

tion is executed with an underestimated number of concurrent threads our-self

adjusting STMs are able to ensure performance very close to that offered by

standard STMs (proving the low overhead paid by our concurrency regulation

mechanisms) and when an overestimated number of concurrent threads is used,

our solutions are able to properly regulate the concurrency level so to avoid the

performance degradation experienced with traditional STM systems.

Encouraged by the effectiveness of the developed solutions and exploiting

the diffusion of hardware transactional memory (HTM) architectures (e.g. Intel

processors with TSX extension) we started to evaluate the applicability of our

adaptive approaches to HTM based applications. During our first study we

verified that using HTM the primary transaction abort reason changes. The

contention on shared data is no longer the main abort cause: for HTM based

applications aborts are mainly due to the limited size of the transactional cache

and to other architectural reasons. Taking this aspects into account, we started

to evaluate the effectiveness of our approaches and we started to deploy new

solutions explicitly tailored for HTM based applications.

Finally we successfully applied our Machine Learning performance prediction
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methodology in the context of transactional Data Grid platforms deployed in

Cloud Computing environments. We developed a suite of self-regulating archi-

tectures that are able to automatically reconfigure the Data Grid Platform (in

terms of both the well suited amount of cache servers, and the well suited degree

of replication of the data-objects) with the aim of guarantee specific throughput

or latency values (such as those established by some SLA), under some specific

workload profile/intesity, while minimizing at the same time the cost for the

cloud infrastructure [78, 79].





Appendix A

Neural Networks

A Neural Network (NN) is a machine learning method [38] having the ability

to approximate various kinds of functions, including real-valued and discrete-

valued ones. Inspired to the neural structure of the human brain, a NN consist

of a set of interconnected processing elements, commonly referred to as neurons,

which cooperate to compute a specific function, so that, provided a given input,

the NN can be used to estimate the output the function. Each element of the

NN, in turns, calculates a (simpler) function, called transfer function. Different

types of processing elements have been designed, each one calculating a specific

transfer function. Commonly used elements are:

• perceptron: an element that takes as input a vector of real valued inputs,

calculates a linear combination of them and then outputs 1 if the result is

greater that a given threshold, -1 otherwise. The output of the perceptron

is:

o(~x) = sign(~w · ~x) (A.1)

where ~x is the perceptron input vector and ~w is the weight vector.
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• linear unit : an element that takes as input a vector of real values and

outputs the weighted sum of inputs plus a bias term. The output of the

linear input can be written as:

o(~x) = (~w · ~x) (A.2)

• sigmoid unit : it is similar to perceptron, but it has a smoothed, differen-

tiable threshold function. So the output of this element is a not linear,

differentiable function of its inputs. The sigmoid unit computes output

as:

o(~x) =
1

1 + e−(~w·~x)
(A.3)

Different type of neurons can be connected using weighted arches to build

an arbitrary complex NN. Neurons constituting the network are grouped into

layers. The minimum number of layers necessary to build a NN is three: (i) an

input layer, (ii) a hidden layer and (iii) an output layer. An example of a three

layer fully connected (1) NN is given in Figure A.1. More complex network can

be builded increasing the number of hidden layer. The type and the number of

neurons and the number of hidden layers are parameters that depends form the

specific application.

In order to approximate a function f , a so-called learning algorithm can be

used. Basically, a learning algorithm computes the weight associated to arches

that connect the network units. By relying on a learning algorithm, a NN can

be trained exploiting a set {(i,o)} (training set) of samples, where, for each

1A fully conected neural network is an artificial neural network where each node of each
layer is connected with each node of the adiacent layers
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Figure A.1: Example of a three layer fully connected neural network

sample (i,o), it is assumed that o = f(i) + δ, where δ is a random variable (also

said noise).

Essentially, each sample provides the training algorithm information about

the existent relation between the input and the output of the function f . Usually,

a learning algorithm works according to an iterative procedure, where in each

iteration step it performs the following computation:

• for each sample (i,o) of the training set, it calculates the output associated

to the input i using the NN;

• it compares the obtained output with the associated output of the sample,

i.e., o, determining the error;

• the algorithm modifies the weights of the NN arches with the aim to min-

imize the overall error for the whole training set.
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The iterative procedure can be stopped after a given number of steps have

been executed or when the error is below a given threshold.

Various learning algorithms have been proposed. The design of these algo-

rithms depends on the NN topology and on the specific type of computation

the NN is intended for. In order to approximate arbitrary complex real val-

ued functions, a multilayer not acyclic sigmoid-based neural network can be

used ([80, 81, 82]). To train this type of NN with a fixed set of elements and

interconnections, a commonly used learning algorithms is the the Backpropa-

gation algorithm [69]. Basically, this algorithm calculates the weights of the

NN exploiting gradient descent to attempt to minimize the mean squared error

between the NN output values and the output values of the training set.



Appendix B

The STAMP Benchmark Suite

In this chapter we briefly describe the applications included inside the STAMP

benchmark suite that we will use for the experimental evaluation of the solutions

proposed inside this thesis. A detailed description of all the applications can

be found in [20]. We chose to make our experimental evaluation using STAMP

because it is the standard benchmark suite used for STM testing and it pro-

vides a wide and complete coverage of various scenarios providing a very good

approximation of real application workloads:

• intruder: it is an application which implements a signature-based net-

work intrusion detection systems (NIDS) that scans network packets for

matches against a known set of intrusion signatures. In particular, it em-

ulates Design 5 of the NIDS described in [83]. Three analysis phases are

carried on in parallel: capture, reassembly, and detection. The capture and

reassembly phases are each enclosed by transactions, which are relatively

short and show a contention level which is either moderate or high, de-

pending on how often the reassembly phase rebalances its tree. Overall,

the total amount of time spent in the execution of transactions is relatively
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moderate. It is a good candidate application to measure the performance

when transactional memory middlewares must manage a high level of log-

ical contention.

• kmeans: it is a transactional implementation of a partition-based clus-

tering algorithm [84]. A cluster is represented by the mean value of all the

objects it contains, and during the execution of this benchmark the mean

points are updated by assigning each object to its nearest cluster center,

based on Euclid distance. This benchmark relies on threads working on

separate subsets of the data and uses transactions in order to assign por-

tions of the workload and to store final results concerning the new centroid

updates. Given the reduced amount of shared data structures being up-

dated by transactions, in this benchmark it is more likely to incur in logical

contention when a larger number of threads is used for the computation.

Therefore, this application benchmark is a good candidate to study how

changing workload dynamics can affect performance when scaling up a

transactional application.

• yada: it implements Ruppert’s algorithm for Delaunay mesh refinement

[85], which is a key step used for rendering graphics or to solve partial

differential equations using the finite-element method. This benchmark

discretizes a given domain of interest using triangles or thetraedra, by

iteratively refining a coarse initial mesh. In particular, elements not satis-

fying quality constraints are identified, and replaced with new ones, which

in turn might not satisfy the constraints as well, so that a new replace-

ment phase must be undertaken. This benchmark shows a high level of

parallelism, due to the fact that elements which are distant in the mesh do

not interfere with each other, and operations enclosed by transactions in-
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volve only updates of the shared mesh representation and cavity expansion.

The overall execution time of this benchmark is relatively long, showing a

high duration of transaction operations and a significantly higher number

of memory operations. Overall, this is a good candidate application to

measure the performance when transactional memory middlewares must

manage a medium level of logical contention.

• vacation: it is an application that simulates a travel reservation system

powered by a centralized database. The workload is generated by several

client threads that submit requests to the database via the system’s trans-

action manager. The database contains only four tables: one for cars,

one for rooms, one for flights and one for customers. The first three have

columns representing a unique ID number, the already reserved quantity,

the total available quantity, and the price. The forth table tracks the

reservations made by each customer and the total price of the reserva-

tions they made. The tables are implemented using Red-Black trees data

structures. This application presents a logical contention level that can

vary from low to medium depending on the input parameters provided at

application start-up.

• labyrinth: it is an application that finds the shortest-distance paths be-

tween pairs of starting and ending points inside a maze. It uses the routing

Lee’s algorithm [86]. The maze is represented as a grid where each grid

point can contain connections to adjacent grid points (not in diagonal).

The algorithm searches for a shortest path between the start and end

points of a connection by performing a breadth-first search and labelling

each grid point with its distance from the start. This searching phase

will eventually reach the end point if a free path inside the maze exists.
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Then a second trace-back phase forms the connection by following any

path with a decreasing distance. This algorithm guarantees to find the

shortest path between the start and the end point but, when multiple

paths are made, one path may block another. The implementation of a

transactional version of this algorithm was made using the techniques de-

scribed in [87]. Overall, this is a good candidate application to measure

the performance when transactional memory middlewares must manage a

high level of logical contention.

• ssca2: it is an application that implements one of the four kernel defined

in [88]. In this work a set of four kernels that operate on a large, directed,

weighted multi-graph are defined. This kernels are used in application

ranging from security to computational biology. More in detail, the ssca2

application provided in STAMP implements the Kernel 1 that constructs

an efficient graph data structure using adjacency and auxiliary arrays. In

the transactional version there are threads that concurrently add nodes

to the graph and transactions are used to protect access to the adjacency

arrays. This operation is relatively small so not much time is spent in

transactions. So this application is characterized by short transactions

and small sized transactional read set and write set. The large number of

graph nodes lead to infrequent concurrent updates of the same adjacency

list so the amount of contention is also relatively low.

• genome: it is an application that implements a gene sequencing program.

Genome assembly is a process that take a large number of DNA segments

and match them to reconstruct the original source genome. The algorithm

for gene sequences implemented in this application is divided in three

phases. Since there is a relatively large number of DNA segments, there
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are often many duplicates, so the first phase removes duplicate segments

by using hash-set creating a set of unique segments. In the second phase

each thread tries to remove a segment from a global pool of unmatched

segments and add it to its partition of currently matched segments. During

segments matching the Rabin-Karp string search algorithm [89] is used to

seed up the comparison (the cycles are prevented by tracking starts and

ends of matched chains). In the third phase the algorithm builds the

sequence. Transactions are used in the first two phases of the benchmark.

Transactions are of moderate length and have moderate read and write

set sizes. There is low contention.

• bayes: it is an application that implements an algorithm for the learning

of Bayesian networks, that are used to represent probability distribution

for a set of variables. A Bayesian network is a direct acyclic graph, where

each node is used to represent a variable and each edge is used to repre-

sent a conditional dependence. A Bayesian network is able to represent

all of the probability distribution recording the conditional independences

among variables (the lack of edges between nodes implies conditional inde-

pendence between the variable represented by the nodes). Typically, the

probability distributions and the conditional dependences among them

are known or solvable for a human, thus Bayesian networks are learned

from data. The algorithm implemented inside the application is based on a

hill-climbing strategy that uses both local and global search, similar to the

technique described in [90]. For efficient probability distribution estima-

tions, the adtree data structure described in [91] is used. This benchmark

presents low logical contention.
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Application Tx length RS/WS size Tx time Contention

bayes Long Large High High
labyrinth Long Large High High
intruder Short Medium Medium High
kmeans Short Small Low Low
yada Long Large High Medium
vacation Medium Medium High Low/Medium
ssca2 Short Small Low Low
genome Medium Medium High Low

Table B.1: Qualitative summary of STAMP application’s runtime transactional
characteristics

In table B.1 we report a qualitative summary of each application’s runtime

transactional characteristics (length of transactions, read set and write set size,

time spent executing transactional code, amount of logical contention). A most

detailed quantitative characterization can be found in [20]. As we can see from

the table, STAMP offers a lot of combinations that allow to cover a wide range of

transactional execution behaviors. In this way it allows to stress all the aspects

of the evaluated TM systems and so it represents a good test bed for evaluating

the performance of STM platforms.



Bibliography

[1] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of
the 14th annual ACM symposium on Principles of distributed computing, PODC
’95, pages 204–213, New York, NY, USA, 1995. ACM. (cited on pages 7, 13).

[2] WMware. vFabric GemFire XX. http://www.vmware.com/products/vfabric-
gemfire/overview.html. (cited on page 7).

[3] Oracle. Orache Coherence. http://www.oracle.com/technetwork/middleware/co-
herence/overview/index.html, 2011. (cited on page 7).

[4] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured
storage system. SIGOPS Operating System Review, 44(2):35–40, April 2010. (cited
on page 7).

[5] Paolo Romano, Luis Rodrigues, Nuno Carvalho, and Joäo Cachopo. Cloud-tm:
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[35] Aleksandar Dragojević, Rachid Guerraoui, and Michal Kapalka. Stretching trans-
actional memory. SIGPLAN Notices, 44:155–165, June 2009. (cited on pages 24,
35, 167).
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