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Università degli Studi di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy
e-mail: romanop@dis.uniroma1.it
www: http://www.dis.uniroma1.it/∼romanop



Abstract

Modern Internet services exhibit the strong trend to be structured according
to a three-tier, and in general multi-tier, system organization, which allows
reflecting at both the software and hardware level the logical decomposition
of applications. Even though the partitioning of the application into multiple
tiers provides the potentialities to achieve high modularity and flexibility, the
multiplicity and diversity of the employed components, and their interdepen-
dencies, make reliability a complex issue to tackle. As an example, in classical
client-server environments, database systems represented the reliability back-
bone of mission critical services, ensuring consistent evolution of the state
trajectory of business applications through the notion of atomic transactions.
However, the fault-tolerance capabilities provided by transactional compo-
nents, and, in broader sense, by traditional approaches to reliability, address
issues restricted to specific subsystems involved in the end-to-end interaction.
Hence, they are unable to tackle the wide spectrum of failure scenarios that
can arise along the whole chain of components constituting a multi-tier system.

The design of reliability solutions for Internet services is made even more
challenging by the open, heterogeneous and inherently asynchronous nature of
the Internet itself, which dramatically reduces the possibility to monitor and
control the distributed components involved in a multi-tier application. Fur-
ther, coupled with global access enabled by the Internet and with widespread
diffusion of complex services, the urge for achieving high scalability and min-
imizing response times has accordingly grown. This has imposed stringent
performance requirements on the underlying reliability mechanisms.

This is precisely the focus of this thesis. Specifically, we introduce inno-
vative protocols ensuring the e-Transaction (exactly-once Transaction) guar-
antees, namely a recent formalization of desirable end-to-end reliability prop-
erties for multi-tier systems in presence of crash failures. These protocols
advance the state of the art in a twofold direction. From a practical perspec-
tive, they achieve unparalleled scalability levels, exhibit very limited overhead,
thus revealing particularly attractive in the context of emerging large scale ser-
vice delivery platforms. From a theoretical standpoint, our solutions can cope
with purely asynchronous systems, where no assumption on the accuracy of
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the failure detection mechanism can be guaranteed.
As we will show, some of the building blocks underlying the previous fault

tolerant protocols can also be used to construct distributed protocols allowing
the treatment of a more general class of failures, which we can refer to as “per-
formance failures”. These model situations of reduced system responsiveness
due to both crashes and overloads/congestions on some component.

The remainder of this document is structured as follows. In Chapter 1 and
Chapter 2 we discuss (end-to-end) reliability issues in multi-tier systems, and
provide an overview of the related state of the art approaches.

Original contributions of this document start from the following chap-
ter. Specifically, in Chapter 3 and Chapter 4 we present two innovative e-
Transaction protocols coping with the general case of multiple, autonomous
databases in the system back-end. Trade-offs between these two solutions are
discussed for what concerns overhead, integration with conventional technol-
ogy, and requirements on the synchrony level of the underlying system.

In Chapter 5, we show how the building blocks provided in the previous
chapters can be used to construct mechanisms specifically aimed at tackling
performance failures.

Finally, in Chapter 6, we boil down the previously presented solutions to
derive protocols specialized for the single back-end database scenario.

Most of the material presented in this document can also be found in the
following technical articles:

F. Quaglia and P. Romano,
“Ensuring e-Transaction with Asynchronous and Uncoordinated Application
Server Replicas”, IEEE Transactions on Parallel and Distributed Systems, to
appear.

P. Romano, F. Quaglia and B. Ciciani,
“A Lightweight and Scalable e-Transaction Protocol for Three-Tier Systems
with Centralized Back-End Database”, IEEE Transactions on Knowledge and
Data Engineering , vol.17, no.11, pp.1578-1583, 2005.

P. Romano and F. Quaglia,
“Providing e-Transaction Guarantees in Asynchronous Systems with Inaccu-
rate Failure Detection”, Proc. 5th IEEE International Symposium on Net-
work Computing and Applications (NCA), IEEE Computer Society Press, July
2006,
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Chapter 1

Introduction

In the last decade we have witnessed the extraordinary growth of the Inter-
net: in the early nineties, Internet users were mainly researchers from academy
and industry; since the birth of the World Wide Web, the Internet has become
a mass communication medium and an inexhaustible source of information.
Actually the deep evolution that affected the Web over the last years is not
only limited to the drastic increase of the traffic volume and of the number
of users: a variety of factors have induced a radical change in the Web, open-
ing a number of challenging research issues. The most important aspect of
such an evolution is probably the change in the nature of the available ser-
vices: indeed, the Web has moved from a simple communication and browsing
infrastructure for retrieving static information to an ubiquitous medium en-
abling a huge variety of complex and critical electronic services, among which
electronic payment systems, real-time stock/equity trading applications and
on-line auctions represent just a few remarkable examples. A characterizing
feature of such emerging Internet services is that, due to the critical nature
of the managed data and to the urge of enforcing its consistency despite the
concurrent interactions of a vast number of users, they have been growingly
relying on transactional technologies, at the point that nowadays database
management systems (DBMS) have de facto become an essential, omnipresent
component of whatever complex Web-based application.

The increasing trend of integrating Web-based and transactional technolo-
gies has also determined the widespread diffusion of three-tier, and in general
multi-tier, systems. By reflecting the logical decomposition of applications
(e.g. presentation, logic, and data in a three-tier system) at both the software
and hardware level, these systems represent the natural architectural support
for transactional Web-based applications. In this class of applications, in fact,
it is typical for middle-tier Web/application servers to endorse the respon-
sibility to interact with back-end databases on behalf of the client (e.g. an
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2 CHAPTER 1

applet running in a browser), since the latter, for a number of reasons ranging
from security to performance, is normally prevented from directly accessing
the DBMSs hosting the application data.

1.1 Reliability Issues in Multi-Tier Systems

A direct consequence of the increasing diffusion of highly critical Internet ser-
vices has also been the fostering of an intense research activity in the area
of reliability of Web-based applications. In fact, it is nowadays widely recog-
nized that reliability represents a critical issue for a large and growing part
of Web-based transactional systems, as in the case of commercial or financial
applications, in which system inconsistency due to the occurrence of failures,
may imply a loss of revenue or customer loyalty and may even have legal or
ethical implications.

Concerning this point, even though the partitioning of an application into
multiple tiers provides the potentialities to achieve high modularity and flexi-
bility, the multiplicity of the employed components, and their interdependen-
cies, make reliability a not trivial issue to tackle [45, 44] and raise the need
for novel, ad-hoc solutions. As an example, in database systems, which form
the backbone of mission critical business applications, recovery techniques are
traditionally based on the fundamental notion of atomic transactions [52, 17],
providing “all-or-nothing” guarantees on the execution of correlated data ma-
nipulation statements. However, all-or-nothing transactional guarantees pro-
vided by the back-end tier are insufficient when considering the wide spectrum
of failure scenarios that can arise in a multi-tier system. The major limitation
of those solutions is precisely the impossibility for the client-side software to
accurately distinguish the “all” from the “nothing” scenario. If a failure oc-
curs at the middle or back-end tiers during request processing, or a timeout
period expires at the client side, the end-user typically receives an exception
notification. This does not convey what had actually happened, or whether a
new state was actually stored in the database. In such scenarios the applica-
tion program or user cannot blindly re-initiate a transaction as the transaction
may have succeeded and re-execution is not usually idempotent. At this end,
a common approach (although hazardous for a wide set of applications) is
to warn users not to hit the checkout/buy/commit button twice when a long
delay occurs. However, users who do not heed this warning may, e.g., unin-
tentionally purchase two seats on the same flight or two copies of the same
book. On the other hand, an even worse situation arises if a failure occurs
without providing any notice. For an e-Commerce service, for example, fail-
ures occurring during shopping cart checkout can lead to user inconvenience
and lost sales.
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Concerning Internet services, one main feature having a deep impact on
reliability aspects is that, if on one hand the Internet has the amazing poten-
tiality to provide access to information and services spread on planetary scale,
on the other hand its architecture is still mainly oriented toward a best-effort
model. This currently precludes the possibility to provide any guarantee either
on the communication delays, or on the probability that a service residing at
some host becomes temporarily unreachable due, e.g., to temporary network
congestions/failures. This exposes the Internet’s ultimate clients, which possi-
bly also include the server-side components of a Web-based application, to the
threats raised by large, highly fluctuating and typically unpredictable com-
munication latencies and to the anomalies related to the inherent asynchrony
of the system, which, on their turn, may affect the frequency of, e.g., heisen-
bugs [50] manifestation due to race conditions. In addition, recent advances in
hardware and software technologies have created a plethora of mobile devices,
enabling a challenging scenario of ubiquitous mobile computing that keeps
people connected to Internet applications and services at all times, regardless
of their location or access device. Unfortunately, mobility introduces a number
of additional problems. For example, mobile client devices have typically lim-
ited communication, computing and storage capabilities, are subject to power
consumption constraints and are usually forced to operate in relatively less
reliable environments.

1.2 Key Design Choices Impacting Reliability Is-
sues

In the wide spectrum of possible design choice characterizing modern multi-
tier systems it is possible to identify a few, high level system features which,
independently of the specific technologies actually employed (e.g. J2EE or
.NET as the middle-tier middleware platform), have a deep impact on the
viable solutions for tackling relevant (end-to-end) reliability issues. We shortly
discuss these features in the next sections in order to provide a base ground
functional to the introduction of concepts that will help clarifying reasoning
and will allow to better frame the contributions of this thesis.

1.2.1 Statefulness vs Statelessness of Middle-Tier Servers

In the context of traditional client/server systems, the notion of “state” is
usually defined as any data that can be affected by a client request. Multi-
tiered applications deal with two types of state: hard and soft.

Hard state is what cannot be reconstructed easily or at all, hence the hard
state is typically entirely stored in the back-end databases to guarantee persis-
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tence and durability. Examples of hard state are: stock information about the
available books in an on-line book store, the email messages received by a user
of an email service, or the highest bid for each item available in an auction
service. Soft state is what can be easily reconstructed, either automatically or
with user help, and so does not need to be persistent. Web applications deal
with a variety of soft states, such as user profiles, navigation tracking infor-
mation, the contents of HTML forms, etcetera. An other relevant example of
soft state is the so called session state. A session contains information about a
series of sequential requests from a single user (e.g., the contents of a shopping
cart prior to the checkout interaction). The common approach is to assume
that a session is over if the user does not access the service for some time (e.g.,
30 minutes): in such a case the corresponding state is simply discarded [46].

Even though storing the soft state within the back-end databases remains
a feasible solution, given that soft state typically does not require full ACID
semantics, two additional strategies can be adopted for its maintenance. It
can either be stored at the client (encoded as cookies, or as parameters in
URLs, or as hidden fields of HTML forms) and piggybacked on the messages
exchanged between the client and the application server. Alternatively, the
soft state can be maintained by the middle-tier application server, typically
by means of in-memory session-objects. In the latter case, application servers
are said to be stateful. Conversely, if application servers do not maintain any
soft state across different client requests, they are said to be stateless. In
general, the two approaches are both widely employed in current multi-tier
applications and show often complementary advantages and drawbacks.

The main advantage provided by the assumption of stateful middle-tier
servers is in that it is, generally speaking, less restrictive. Also, it cannot be
avoided in certain scenarios. This happens, for example, if the middle-tier
components actually store part of the application hard state (e.g. like in the
case of some complex workflow services) or in case some constraints exist which
preclude the possibility of delegating the maintenance of the middle-tier (soft)
state to some other tier (e.g. due to restrictive security or privacy policies).
Another advantage of relying on middle-tier application servers for storing the
application soft state is that it allows offloading the back-end database, which
is one of the potential system bottlenecks. This may result in an improvement
of system throughput especially if soft state is large and needs to be frequently
updated.

On the other hand, stateless application servers, having no client affinity
(1), make the load balancing mechanism drastically more efficient and flexi-
ble. First, the computational load on the load balancing component (which,

1The client requests can be forwarded to any stateless application server, rather than to
the application server that holds the corresponding client state.
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as shown by a number of recent studies [5, 23, 68], can easily become the bot-
tleneck in high performance Web architectures) is strongly reduced. Further,
it allows to react more effectively and promptly to possible load unbalancing
situations [105], by simply derouting incoming traffic from overloaded servers
to less loaded ones. Also, a recent work [46] has demonstrated that main-
taining soft state at the back-end tier normally achieves better performability
than storing it in the middle-tier servers’ main memory. In particular, it has
been shown that most of the unavailabilities are typically due to faults in
the middle-tier, and that strategies maintaining soft state at the middle-tier
increase the impact of faults in these tiers to such an extent that, overall,
availability is degraded by a larger factor than performance is improved by
offloading the back-end databases.

Always concerning reliability, in case of stateless servers, the fail-over of
a crashed application server to a working replica can be more simply and
promptly performed, since no state transfer mechanisms must be adopted. Ad-
ditionally, stateless application servers must not wait for state recovery upon
restart (e.g. after a failure), which reduces the duration of downtimes and
increases perceived availability. Also, from a reliability standpoint, the crash
of the single (stateless) application server contacted by the client is equivalent,
to the crash of any of the (stateless) application servers in a chained invoca-
tion scheme [45, 44], hence permitting to model, without loss of generality, a
general multi-tier system as a three-tier system. This considerably simplifies
the reasoning on the fault-tolerance properties of the system.

A final important consideration is that recent advances in middleware tech-
nology have opened the possibility of automatically transforming middle-tier
stateful components into stateless entities, thus increasing the generality of
the latter approach. The widely adopted approach to delegate commonly re-
quired lower level functionalities, such as persistence of the application state,
to container environments (e.g., Sun Microsystems J2EE [114]) provide devel-
opers with the ability to control the strategy employed for maintaining the
soft state in a simple declarative way by means of extended deployment de-
scriptors. In other words, application designers can transparently configure
the hosting middleware platform so to avoid maintaining soft state in the
middle-tier servers’ memory and resort to the employment of one of the afore-
mentioned alternative strategies (e.g. encoding it within the response to the
client or storing it within a back-end database).

1.2.2 Deployment of System Components

Within the design space of a multi-tier transactional application, there are a
number viable alternatives for what concerns the deployment strategy of the
various application components, i.e. the allocation of the individual appli-
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cation sub-systems to a finite set of physical computing, communication and
storage resources. In this context, a fundamental parameter impacting reli-
ability issues is certainly the scale, ranging from local to geographical, of the
underlying system infrastructure over which the application components are
deployed.

Another relevant parameter deeply affecting to what extent a given appli-
cation can be controlled and configured is whether the adopted infrastructure
is directly owned (e.g. a private cluster of workstations), or is rented from a
third-party provider with whom certain service levels may have been agreed
(e.g. a Web hosting service), or is rather a public shared utility (e.g. an
Internet public communication link).

In a complex multi-tier application one can envision a quite large number
of alternative configurations, but the three most representative settings that
can be found in practice are probably the following ones:

• All the system components are deployed over the same local area in-
frastructure: applications adopting such a configuration are typically
referred to as Intranet applications. These are widely employed within
closed, private environments, e.g. internal enterprise information sys-
tems, where it is normally possible to accurately monitor and control
not only the server-side infrastructure but also the client population,
thus making it relatively easy to achieve desired reliability (and perfor-
mance) levels.

• Geographically distributed clients, middle and back-end tiers deployed
over the same local area infrastructure: this configuration is very com-
mon in case of Web sites relying on, e.g., a clustered architecture to
host the whole set of server-side components. In such a setting, recent
advances in cluster technologies have provided powerful means to pur-
sue high reliability (and performance) levels on the server-side of the
application. Compared to the previous configuration, in this scenario
the main problem is how to provide supports for reliability on the whole
end-to-end chain of components, given that the interactions between the
clients and the server side can take place over an open and intrinsically
unreliable medium such as the Internet.

• All the system components, including middle and back-end tier compo-
nents, interact over a geographical scale infrastructure: such a configu-
ration is found, generally speaking, in the case of middle-tier business
logics relying on some remote data sources. A particularly interesting in-
stance of such a configuration is represented by the emerging large scale
service delivery platforms, also referred to as Application Delivery Net-
works (ADNs). ADNs provide third party application providers with an
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increasingly large number of servers distributed at the edge of the net-
work (the largest service delivery platform, currently owned by Akamai,
is composed by more than 20.000 servers spread in 2.500 different world-
wide locations), offering replicated access points to their applications’
contents and business logics (2). ADNs are highly attractive infrastruc-
tures, given that they have the potentialities to achieve high scalability
levels and reductions in the perceived response times thanks to their
unparalleled redundancy and increased client proximity. However, ap-
plications hosted by ADNs (for a variety of reasons ranging from security
or pragmatical constraints, to well known scalability/performance issues
proper of transactional replication schemes over WAN [20, 51]) typi-
cally rely on remote interactions with third party back-end data sources
when processing requests that involve transactional manipulations (i.e.
updates) of the application hard state.

Hence, in comparison with the previously described components deploy-
ment strategy, we are here faced with the additional challenge of address-
ing reliability in the interactions between server side components (e.g.
middle-tier serves and back-end databases), when considering that these
interactions take place via an infrastructure possibly layered on public
networks over the Internet, and possibly belonging to (and controlled
by) providers offering different guarantees on service levels. This dra-
matically reduces the level of synchrony and control (e.g. fault monitor-
ing capabilities) across the whole system. In particular, the application
components (including application servers and back-end databases) get
much more loosely coupled than in the previously considered configura-
tions, which further complicates the design of reliability solutions and
protocols.

1.3 Multi-Tier Systems vs Distributed System Mod-
els

In order to simplify the reasoning about properties of multi-tier systems and
to abstract unnecessary details such as specific technological issues, it is con-
venient to encapsulate the characterizing aspects of this relevant class of dis-
tributed systems (e.g., those related to the different infrastructural alterna-
tives) within formal distributed system models which are both accurate and
tractable.

2ADNs represent the natural evolution of classical Content Delivery Networks [36, 121],
where edge servers have exclusively the functionality to host static contents (e.g. html pages,
images, videos).
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Even tough a large number of different distributed systems models have
been proposed over the last 20 years, certain aspects of models appear re-
peatedly in the literature [48]. For example, processes are usually modeled as
state machines (whose behavior being possibly described by means of pseudo-
code) that in turn are used to model the execution of the whole distributed
system. Other aspects comprise assumptions about the network topology, the
reliability of the communication channels or the available message exchange
primitives.

Overall, existing models of distributed systems differ in one particularly
important aspect, their inherent notion of synchrony. This is usually expressed
by means of a set assumptions about process execution speeds and message
delivery delays. In synchronous systems [78], the existence of bounds on mes-
sage transmission delays and process response times is assumed. If no such
assumptions are made, the system is called asynchronous [66, 41]. Going
back to the discussion of system components deployment, the notion of asyn-
chronous system could be used, for example, to reflect very realistically the
inherent aspects of large scale multi-tier systems with loosely coupled compo-
nents (like in the case of components owned and controlled by providers not
offering mutual guarantees on processing and communication speed).

It is well known that the asynchronous model is the weakest one, implying
that every distributed protocol that works in the asynchronous model also
works in all other models. On the other hand, algorithms for synchronous
systems are prone to incorrect behavior in case even a single timing constraint
is violated. This is why the asynchronous model is so attractive and has
attained so much interest in distributed systems theory. Also, highly variable
workloads on network nodes belonging to multiple autonomous systems make
reasoning based on time and timeouts a delicate and error-prone undertaking.
All these facts are sources of asynchrony and contribute to the practical appeal
of having few or, better, no synchrony assumptions.

However, the asynchronous model has severe drawbacks, especially for
fault-tolerance applications. For example, it can be shown [26] that in such
models it is impossible to (accurately) distinguish a correct process from a
faulty one. Intuitively, this is a result of allowing processes to be arbitrarily
slow [25].

The impossibility results afflicting asynchronous systems have fostered the
development of intermediate models based on the idea of adding some syn-
chrony assumptions to the model; these are often called partially synchronous.
The original work on partial synchrony [38] assumes that upper bounds on
message delivery delay or relative processor speeds exist, but they are either
unknown or only hold eventually. Other prominent models are the timed
asynchronous model [32] and the quasi-synchronous model [2]. The former
mainly assumes a bounded drift rate of local hardware clocks while the latter



1.4. THESIS FOCUS AND KEY CONTRIBUTIONS 9

postulates that only part of the network is truly synchronous.
An alternative approach is the one undertaken by Chandra and Toueg in

[25] which propose a modular way of extending the asynchronous model to
detect process crashes. In their theory of unreliable failure detectors, they
propose a program module that acts as an unreliable oracle on the functional
states of neighboring processes. The main property of failure detectors is their
accuracy : in its weakest form, a failure detector will never suspect at least
one correct process of having crashed. This property is called weak accuracy.
Because weak accuracy is often difficult to achieve, it is often required only that
the property eventually holds. Thus, an eventually weak failure detector may
suspect every process at one time or another, but there is a time after which
some correct process is no longer suspected. In effect, an eventually weak
failure detector may make infinitely many mistakes in predicting the functional
states of processes, but it is guaranteed to stop making mistakes when referring
to at least one process. Requiring weak accuracy alone, however, doesn’t
ensure that a crashed node is suspected at all: it merely prohibits the detection
mechanism from wrongly suspecting a correct node. So a second property
of failure detectors is necessary. Chandra and Toueg call it completeness.
Informally, completeness requires that every process that crashes is eventually
suspected by some correct process.

Obviously, models using unreliable failure detectors are no longer truly
asynchronous, given that, as we have already mentioned, it is not possible to
devise implementations of a failure detector providing accuracy guarantees in
an asynchronous system; they merely produce the illusion of an asynchronous
system by encapsulating all references to time. The relevance of this model
is, on one hand, that it can be shown that different forms of unreliable failure
detectors are sufficient to solve fundamental problems which were proved to be
unsolvable in asynchronous systems [25, 101, 102, 98], and, on the other, that
failure detectors simplify the task of designing algorithms for asynchronous
systems at large, because they encapsulate the notion of time neatly within a
program module.

1.4 Thesis Focus and Key Contributions

This thesis presents the results of a study addressing reliability issues in multi-
tier transactional systems. We focus on the scenario of stateless middle-tier
servers, which as already hinted in Section 1.2.1 is representative of a relevant
and widely adopted class of modern multi-tier systems.

As we will detailedly discuss in Chapter 2, where a literature overview on
reliability approaches is provided, the problem of how to support meaningful
end-to-end reliability guarantees in a multi-tier system with stateless middle-
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tier serves has been formalized by Frolund and Guerraoui [45, 43, 44] through
the e-Transaction (exactly-once Transaction) abstraction. This abstraction is
the main frame within which the result of this thesis can be collocated.

Actually, existing solutions to the e-Transaction problem fail to cover the
whole spectrum of alternatives proper of the design space of a multi-tier trans-
actional application. More specifically, we will show that, when considering the
emerging, attractive scenario of application components deployed over large
scale infrastructures, those solutions either provide poor (or suboptimal) per-
formance levels, or result not viable, e.g. due to their reliance on synchrony
assumptions which may not be supported in practice by the underlying system.
We overcome these limitations by providing solutions which are effective and
viable in large scale infrastructures (possibly) not exhibiting those synchrony
features. In more detail:

• The first e-Transaction protocol we present (see Chapter 3) works in
asynchronous systems with unreliable failure detection (i.e. an even-
tually weak failure detector) and, for the general case of multiple, au-
tonomous back-end databases, is the first e-Transaction solution in lit-
erature which avoids coordination based approaches at the middle-tier
servers, thus achieving unparalleled scalability level. Also, this protocol
directly complies with conventional distributed transaction management
technology.

• The second e-Transaction protocol we present (see Chapter 4) further
enhances the latter result since it tackles the very same case, namely
multiple, autonomous back-end databases, but does not rely on any
accuracy assumption on the underlying failure detection mechanism,
thus representing the first e-Transaction protocol suitable for a purely
asynchronous distributed system model. To achieve such a target, this
protocol exploits an innovative scheme for distributed transaction man-
agement, requiring ad-hoc demarcation and concurrency control mecha-
nisms, which we introduce in this thesis. However, possible integration
with conventional technology (e.g., database systems) is also discussed.

As a matter of fact, the avoidance of accuracy requirements concerning the
failure detection mechanism, which is an essential component and strength
point of the protocol presented in Chapter 4, can provide a new approach
for jointly addressing both reliability and performance issues, especially when
considering the case of large scale infrastructures. In particular, we discuss
how the ability of our e-Transaction protocol to achieve real concurrency while
processing multiple instances of the same client request (originated by, possi-
bly false, failure suspicions) can be used to derive a parallel invocation protocol
(to our knowledge never proposed in the context of transactional requests over
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multi-tier systems) allowing to effectively cope with performance failures by
exploiting both the inherent parallelism of large scale service delivery platforms
and the path diversity provided by current multi-hop network infrastructures.
We show that the benefits achievable by such parallel invocation schemes are
twofold. First, they attack the large fluctuations in the message delivery laten-
cies that affect Internet-based communications [62, 76, 75], with direct benefits
on the average user perceived response times. Furthermore, they provide for
seamless failure masking by avoiding the inherent latency of failure detection
mechanisms.

The results related to this part of the thesis are all reported in Chapter 5.
As hinted above, all the previous results deal with the general context of

applications characterized by business logics prescribing the manipulation of
data hosted by multiple, autonomous, distributed back-end databases, as in
the case of multiple parties involved within a same business process. Anyway,
in real life, we can also find a wide range of application domains requiring
transactional interactions with a single, centralized back-end database.

We discuss this specific scenario in Chapter 6, showing how the previ-
ous solutions could be boiled down and specialized for this simpler, yet very
common scenario.
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Chapter 2

Literature Overview

Over the years the reliability problem in multi-tier systems in presence of
crash failures (i.e. not byzantine [40, 37, 67]) has been addressed by both
the database and the distributed systems communities. As it often happens
when multiple research communities having diverse scientific backgrounds and
biases investigate the same problem, these two communities ended up tack-
ling the reliability problem from different perspectives and adding emphasis
on different, yet typically correlated, aspects. The distributed systems com-
munity has mainly focused on the problem of how to ensure consistent inte-
gration between the (middle-tier) replication strategies (commonly employed
to pursue high availability and fault-tolerance) and the classic transactional
technologies proper of back-end databases. On the other hand, authors from
the database systems community have rather oriented their investigations to
identify the minimal logging requirements to achieve desirable (end-to-end)
reliability guarantees, without however explicitly taking into account the pres-
ence of replicated components across the invocation chain (particularly at the
middle-tier) and the consequent need to ensure high availability of the logged
recovery information so to provide replicas with mutual fail-over capabilities.

The choice of whether to explicitly consider the presence of replication
schemes when addressing reliability issues has pros and cons. Not explicitly
considering replication strategies for the components typically allows keeping
both the developed reliability solutions and the reasoning on their correctness
relatively simpler. However, it also exposes such solutions to the presence
of single points of failure, making the liveness dependent on the availability
of the recovery information logged across the various components. For these
reasons, in practical settings, some additional form of replication/redundancy
of the logged recovery information is highly desirable especially on the server
side part of the application. In this sense, the choice of explicitly modeling
the presence of replicated components along the invocation chain allows to

13
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pursue a tighter integration between the logging strategy and the underlying
replication scheme, opening the possibility for further optimizations.

As already hinted in Chapter 1 (see Section 1.2.1), another fundamental
aspect that deeply affects the way in which reliability issues have to be ad-
dressed in a multi-tier system is whether middle-tier servers are stateful or
stateless entities. In the former case, one needs to ensure the mutual con-
sistency of the middle-tier servers and the back-end database servers states
in the presence of failures. In the latter one the attention is instead devoted
only to ensure the consistency of back-end databases, in terms of atomicity of
the distributed transaction and avoidance of transaction duplication in case
of failures.

This chapter surveys existing literature on reliability in multi-tier systems.
We first review solutions addressing end-to-end reliability issues for the sce-
narios of both stateless and stateful middle-tier servers. Then we proceed
with a brief overview of other reliability approaches, which can not be easily
framed within any of the two aforementioned categories (mostly because they
do not cope with end-to-end reliability arguments, but simply with reliability
issues for a subset of the components involved in the end-to-end interaction).
Finally, a discussion on literature solutions is provided.

2.1 End-to-end Reliability Approaches

2.1.1 The Case of Stateless Middle-Tier Servers

As hinted in Section 1.2.1, in the case of stateless middle-tier servers, chained
server invocation over the middle-tier does not present additional reliability
challenges [43, 44, 45]. Hence it is possible to abstract over chained invoca-
tion by considering a classic three-tier system rather than a general system
comprising an arbitrary number of tiers. For three-tier systems, a widely
adopted end-to-end reliability solution relies on queued transactions, invented
for OLTP (on-line transaction processing) [16, 52, 17, 13] and supported by
most TP monitors (e.g., IBM MQ Series, BEA Tuxedo, Microsoft MTS) and
by the associated Web application servers (e.g., IBM WebSphere, BEA We-
bLogic, Microsoft IIS). Messages between clients, the TP monitor acting as an
application server, and the database servers are held in transactional message
queues whose operations (message enqueuing or dequeuing) are embedded in
a distributed atomic transaction [15, 98] together with its all or nothing guar-
antee. The queue manager usually is a separate resource manager with its
own log and needs to support the two-phase commit protocol (2PC), see, e.g.,
[17], for distributed transactions that access both messages in queues and per-
manent databases. An application program can then read an input message
from a queue, process the message by querying and updating one or more



2.1. END-TO-END RELIABILITY APPROACHES 15

databases, and finally place a reply message into a queue - all in one atomic
transaction. Should the database transaction abort, the message that was
originally dequeued from the input queue is automatically placed back into
the queue (based on log entries allowing to correctly undo the transaction),
so that the input message will eventually be processed even after an arbitrary
number of failures. Further, the message will be processed exactly once (for
the commit of the transaction also commits the dequeuing of the input mes-
sage and the enqueuing of the output message). We note that this approach
involves three transactions per user request (to enqueue the request on the
queue; to dequeue it, process it in the database servers, and enqueue the re-
ply; and to dequeue the reply) which is the reason why this solution is adopted
especially in the case of applications admitting off-line request processing.

The work in [70] provides end-to-end transactional integrity across the
whole end-to-end interaction by encapsulating within the same atomic dis-
tributed transaction both processing and the storage of the outcome at the
client. This solution exploits Java technology to empower Web browsers so
that they can be viewed as a recoverable resource participating in a 2PC pro-
tocol coordinated by the middle-tier application server. At this end, the inter-
faces defined by the OMG’s Object Transaction System [90] are exploited to
implement a proxy object executing within the browser sandbox so to ensure
persistency of the application response message, encoded as a cookie residing
on the client disk, and its consistent manipulation according to the indications
of the 2PC coordinator. By involving the client within the 2PC protocol mu-
tual consistency of the state at the client and at the back-end databases can
be easily ensured since we have guarantees that the response is delivered to
the client only if the server-side transaction has successfully committed. On
the other hand, the requirement for persistence capabilities at the client side,
make this solution not viable in the case of browsers not having access to disk
for security issues or in the case of clients having constraints on the available
hardware resources (e.g. cellphones or PDAs).

For three-tier systems with stateless application servers, Frolund and Guer-
raoui have recently proposed the e-Transaction (exactly-once Transaction) ab-
straction as a desirable set of reliability properties [45]. This abstraction pro-
vides a clear-cut specification for the design of reliability protocols in this
kind of systems. The e-Transaction abstraction is formally defined by three
categories of properties: Termination, Agreement, and Validity. Termination
properties ensure the liveness of the client-initiated interaction from a twofold
prospective: not only it is guaranteed that a client does not remain indefinitely
blocked waiting for a response, but also that no database server maintains pre-
committed data locked for an arbitrarily long time interval, no matter what
happens to the client. The latter requirement is clearly very important be-
cause the availability of data (and consequently of the whole application) may
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be compromised if a database server that has endorsed the responsibility to
commit a transaction (i.e. the transaction is in the pre-commit state), would
not timely abort or commit it. Furthermore, it prevents undesirable scenar-
ios in which data availability gets compromised by frequently disconnecting
clients, either maliciously or because of the inherent unreliability of their net-
work connectivity (as in the case of mobile clients). Agreement embodies the
safety properties of the system, ensuring both atomicity and consistency of
the distributed transaction, and at-most once semantic for the processing of
client requests. Finally, Validity restricts the space of possible results to ex-
clude meaningless ones, e.g. where results are invented or transactions are
committed even though some database is unable to pre-commit them.

Along with the e-Transaction specification, Frolund and Guerraoui also
proposed a set of distributed protocols ensuring the e-Transaction properties.
One common feature to all these protocols is that the middle-tier comprises
a set of replicated application servers. Hence these solutions all rely on an
explicit notion of replication at the level of middle-tier components. The e-
Transaction protocol in [45], which also inspired a number of other works such
as [77], is essentially based on the combination of a distributed commit scheme,
namely 2PC, with a primary-backup replication approach [21, 96]. Basically,
the client retransmits the request to the application servers until it receives
back a result. Along the lines of classic primary-backup replication algorithms,
the primary application server, before returning the response to the client,
makes sure (via explicit acknowledgment) that the backups have received both
(1) the result deriving from the non-deterministic interaction with the back-
end databases and (2) the outcome of the vote phase of the distributed commit
protocol. The primary-backup approach ensures high availability of both the
transaction outcome (commit/abort) and the result to be delivered to the
client. This is crucial to allow backup replicas to correctly perform fail-over
in case of failure of the primary. As in classical primary-backup schemes, the
protocol tolerates crashes of all except one application server. The correctness
of this protocol is based on the assumption of perfect knowledge about failures
among the application servers (i.e. Perfect Failure Detection in the sense of
[25]), meaning that the following properties needs to be satisfied:

• Completeness. If any application server crashes at time t, then there is a
time t′ > t after which it is permanently suspected by every application
server.

• Accuracy. No correct application server is ever suspected by any appli-
cation server.

The protocol in [44] relies on an asynchronous application server replication
scheme. The protocol tolerates the crashes of a minority of the application
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server replicas, and does not preclude the possibility of false failure suspicions
(e.g. due to slow messages or network partitions). It rather assumes that
failure detection among application servers is Eventually Perfect in the sense
of [25], meaning that the following properties are satisfied:

• Completeness. If any application server crashes at time t, then there is a
time t′ > t after which it is permanently suspected by every application
server.

• Accuracy. There is a time after which no correct application server is
ever suspected by any application server.

To deal with the possibility of various replicas performing transactions on
behalf of the same client request (because of false failure suspicions) and
to shelter from the inherent non-determinism of the interaction with third-
party databases, this protocol employs a consensus-based [41, 98] coordina-
tion scheme among application servers. More in detail, this solution relies
on a consensus abstraction referred to as Write-Once Register, which is used
with the twofold purpose of (1) ensuring high availability of the transaction
processing state and of the response message to be delivered to the client, and
of (2) synchronizing the application servers possibly activated on behalf of the
same client request.

The same authors have also presented an e-Transaction protocol [43] specif-
ically tailored to the simpler scenario of applications interacting with a single,
centralized back-end database, as in the case of a business process involving a
single data source, instead of the more general case of multiple, autonomous
sources. This protocol is based on the so called “testable transaction” ab-
straction, whose key idea is to leave a persistent trace of transaction execution
in the database so to permit (1) testability of the transaction outcome and
(2) retrieval of the non-deterministic result produced by the execution of the
transactional business logic. This protocol handles failure suspicions through
a “termination” phase executed upon timeout expiration at the client side.
During this phase, the client sends, on a timeout basis, terminate messages to
the application servers in the attempt to discover whether the transaction as-
sociated with the last issued request was actually committed. An application
server that receives a terminate message from the client tries to rollback the
corresponding transaction, in case it were still uncommitted (possibly because
of the crash of the application server originally taking care of it). At this
point the application server determines whether the transaction was already
committed by exploiting the testable transaction abstraction. In the positive
case, the application server retrieves the transaction result to be sent to the
client. Otherwise, a rollback indication is returned to the client in order to
allow it to safely retransmit a new request message to whichever application
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server. The protocol’s correctness depends on two main assumptions: (i) that
a request message is always processed by the database before the correspond-
ing terminate messages, and (ii) that the client’s failure detector is Eventually
Perfect.

2.1.2 The Case of Stateful Middle-Tier Servers

Similarly to the case of stateless middle-tier servers, the literature on end-
to-end reliability for multi-tier systems with stateful servers can be broadly
framed depending on whether middle-tier server replication is explicitly con-
sidered or not.

The works in [13, 73, 11], which extend and generalize the client-server tai-
lored solution in [74], focuses on the design of optimized logging schemes for
ensuring correct recovery of components after failures, rather than addressing
the problem of how to exploit replication to achieve high availability of the
application state and of the recovery information. These solutions distinguish
three types of components: persistent components, or PCOMs, whose state
should persist across failures, transactional components, or TCOMs, usually
data servers, that provide all-or-nothing guarantees for atomic transactions,
and external components, or XCOMs, which are used to capture human users
who usually do not provide any recovery guarantees. These components are
assumed to be piece-wise deterministic (PWD). A PWD component is deter-
ministic between two successive messages from other components, so that it
can be replayed from an earlier state if it is fed the original messages. The
PWD assumption is not guaranteed without some effort, namely the logging
of every non-determinism source, such as message receive order, interleaved
access to shared data or interrupts that prompt component execution at arbi-
trary points. The component’s logs are scanned during restart after a failure to
ensure correct recovery. The recovery system intercepts all messages or other
non-deterministic events; information is reconstructed from the corresponding
log entry and fed to the component in place of the event. When log entries do
not contain message contents, communication with the sender is required to
obtain the contents. For this, an interaction contract with the sender ensures
that the message can indeed be provided again.

An interaction contract specifies the joint behavior of two interacting com-
ponents in the presence of failures of one or even both of them. An interaction
contract requires each of them to provide certain guarantees, depending on the
nature of the contract and components. Four distinct contracts are proposed:
Committed Interaction Contracts (CICs), Immediately Committed Interac-
tion Contracts (ICICs), External Interaction Contracts (XICs) and Transac-
tional Interaction Contracts (TICs). A CIC involves a pair of PCOMs. The
sender of a message ensures the persistence (via forced logging) of its state
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and of the sent message, which has to be marked with a unique identifier to
allow duplicate elimination. Furthermore the sender provides guarantees on
its ability to resend the original message, until receiver releases it from its
obligation. On the other hand, the receiver promises to eliminate duplicate
messages. ICICs strengthen the CICs by having the receiver immediately force
logging the received message. This clearly adds overhead and may have an
adverse impact on throughput, but is desirable to promptly release a sender
from its obligations and to enable the receiver to recover independently of
the sender. External components (XCOMs), e.g. human users, are in general
assumed not be able to persist their state, and hence cannot have commit-
ted interactions. Hence, the need to define External Interaction Contracts
(XICs), involving a PCOM and XCOM: the PCOM subscribes to the rules
for an ICIC, whereas the XCOM does not, hence not providing any guaran-
tee neither on the replayability of its outgoing messages, nor on its ability to
filter duplicate incoming messages (for example, when prompted to provide a
previous input, a user does not necessarily deliver identical input). Finally,
TICs involve a PCOM and a TCOM. A TCOM, analogously to the testable
transaction in [43], ensures persistent testability of the transaction outcome
(commit/abort). The main difference with the testable transaction implemen-
tation in [43] is that the result of the non-idempotent data manipulation is not
persisted by the TCOM (namely the database server), but is rather logged by
the PCOM, along with its internal state, prior to deliver the commit request
to the TCOM. In [13] the authors prove that combining the above described
bilateral interaction contracts into a system-wide agreement, provides the de-
sired end-to-end guarantee to preserve consistency despite all failures with
the exception of failures involving the interaction with XCOMs, due to their
non-persistent and non-deterministic nature.

The results in [11, 73] further optimize the solution in [13] showing how,
by imposing a number of (severe) restrictions on the admissible behaviors for
a PCOM, it is possible to alleviate or even eliminate its logging requirements.
This observation leads to the definition of “logless” components or LLCOMs
that are stateful, like PCOMs, but that do not require a log. Essentially,
admissible LLCOMs behaviors are restricted so to (1) ensure the determin-
ism of their state transitions and of their outgoing messages, (2) avoid non-
deterministic message receives (e.g. asynchronous message exchanges) and
(3) forbid interactions (reads and/or writes) with external non-deterministic
components outside of TCOMs, e.g. PCOMs. An LLCOM relies upon other
components for logging its interactions. Whenever an LLCOM crashes or is
deallocated to free up resources to enable scalability or other system manage-
ment goals, it can be re-created only via complete replay of its entire execution
history, starting from its initiation message. Obviously it is desirable to per-
form this replay quickly to increase availability and minimize system overhead.



20 CHAPTER 2

This argues for further restricting the feasibility of LLCOMs only to compo-
nents having a short lifetime. This is particularly important if one considers
that external components might rely on a LLCOM for recovery after a crash.

The works in [128, 127, 43, 44, 45, 95] fundamentally differ from the
above mentioned results precisely in that, beyond ensuring mutual consis-
tency among interacting stateful components, they explicitly address the issue
of how to ensure high availability of the middle tiers servers state by means
of some replication scheme. In [95], the authors formalize the problem of a
replicated server invoking another server. They call this a replicated invoca-
tion, and analyze the possible related anomalies which clearly depend on the
actual replication scheme employed by the invoking server.

As it is well known [88, 104, 103, 21], the choice of the underlying repli-
cation scheme is strongly dependent on whether the replicas are assumed to
adhere the PWD paradigm or not. With deterministic servers, active replica-
tion [104, 103] can be used. In such a case, any client sends, via total order
multicast [35], the request to all server replicas, which process the requests
in parallel. If this processing requires the invocation of another server, each
replica issues exactly the same invocation, giving rise to the duplicate requests
problem [81]. Because these invocations are identical, duplicate invocations
can be detected and filtered, in order not to process them multiple times. This
is done by having the replicas assign identifiers to their invocations. The re-
sult of the processing on the invoked component is valid for every replica and
is multicast to them. At this point, each replica sends the reply back to the
client which, generally, accepts the first one and discards the others.

Duplicate invocation filtering in the context of stateful, deterministic repli-
cated servers is considered in [81, 86]. The work in [81] addresses transparency
of the replication technique in the context of replicated invocation. The au-
thors advocate the use of proxies to achieve transparency, for both the invoca-
tion and the reply to the invocation. Hence, a proxy is located with each client
and server replica. To achieve transparency, these proxies also filter duplicate
invocations and results, assuming that the clients and the actively replicated
servers are deterministic.

The work in [95] also discusses the anomalies related to replicated invo-
cation under the assumption that the replicated middle-tier server is non-
deterministic. In this context, active replication is not viable, requiring alter-
native replication strategies, such as primary-backup schemes [21]. In such a
case, [95] shows that if the primary replica invokes a server S but fails before
updating the backups, then when a new primary is elected, due to replica non-
determinism, it might issue a different invocation to server S, or even choose
a different server S’, or not issue the invocation at all. This leaves orphan
requests on S having a pending effect on its state. The authors address the
orphan requests problem by having the primary middle-tier server broadcast
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to its backups (1) sufficient information allowing fail-over replicas to undo the
original invocation on S, and (2) updates of the replica state, as typical of
classical primary-backup schemes. The authors model the invoked server as
a transactional one and consider both the conventional ACID transactional
model and a more relaxed one in which compensating transactions [47, 49]
might be used to enforce data consistency via semantic undo. In the latter
case, they show that the invoked server can immediately commit the trans-
action and relinquish any locked resource. On the other hand, in case the
invoked server complies with the conventional ACID transactional model, this
solution requires the transactional resource to provide durable guarantees on
its ability to commit transactions, which implies maintaining persistent locks
on accessed data items just like during the pre-commit phase of 2PC.

The protocol in [128] is conceptually very close to the latter solutions. In ef-
fect it specializes the primary-backup approach in [95] in order to implement it
in a J2EE clustered environment, where stateful replicated application servers
interact with a single (ACID) database server. In this solution transaction
outcome testability is achieved by storing a persistent trace of the transaction
execution within the database, analogously to what is done in [43]. This allows
avoiding the database to pre-commit transactions, as instead required in [95].

In [127], the same authors extend the previous approach to tackle the
scenarios in which multiple requests from a client run within a single transac-
tion (N-requests/1-transaction) and/or a client request generates more than
one transactions (1-request/N-transactions). To address the N-requests/1-
transaction scenario the authors present two approaches, the N-1-best-effort
and the N-1-ordered protocols. With N-1-best-effort the client persists all
requests and corresponding responses for each transaction. If the primary
crashes while a transaction was active, the client algorithm replays the exe-
cution at the new primary in a transparent way for the final user. If it leads
to the same results as the original execution, fail-over is completely trans-
parent. Conversely, if it leads to different results due to non-deterministic
processing of one of the previously submitted requests, the replay is consid-
ered unsuccessful and the re-executed transaction is aborted. The end user,
having seen the old non-repeatable responses, is informed with a failure ex-
ception, and hence transparency is lost. The N-1-ordered protocol attempts
to improve transparency by tackling the database induced non-determinisms
at the price of higher overhead during normal processing. With this approach,
the re-execution of all database accesses is performed in the same order as
during the original execution. During normal processing, each database ac-
cess is assigned a unique increasing identifier. Before the response for the
request is returned, a message with the identifiers of all access triggered by
the request is multicast to the backups. At the time of resubmission after the
primary crashes, each replayed database access must be executed according
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to its original order and new requests may not start until all resubmissions
have completed. The solution proposed to tackle the 1-request/N-transactions
pattern simply extends the idea of relying on the database for filtering dupli-
cate transactions, by keeping track within application level database tables of
each committed transaction triggered by a client request. The main problem
here is that, upon fail-over, non-deterministic business logic may determine
the execution of a different transaction against the back-end database which
might compromise data integrity. At this purpose the authors advocate the
use of compensating transactions.

2.2 Other Reliability Approaches

As hinted, there are a number of reliability solutions which could be employed
in multi-tier systems, which however do not address end-to-end reliability
issues (i.e. the specific target of this thesis) with a holistic approach, hence
coping with a subset of failure scenarios that arise in multi-tier systems. We
briefly overview some of them in this section for completeness.

The works in [12, 42] leverage database server logging to mask DBMS
failures to client applications (e.g. by virtualizing ODBC sessions and mate-
rializing their state as persistent database tables). These solutions, despite
being originally designed for client-server applications, can be also exploited
in three-tier systems, e.g. to optimize server side failure handling by masking
back-end database crash and recovery to the middle-tier application server
executing the transactional logic.

Another approach to address reliability in three-tier systems is the use of
group communication [39, 79, 87]. However the target of this approach is to
provide reliable delivery of client requests at the middle-tier, not to provide
end-to-end reliability in case the middle-tier interacts with back-end databases.

Finally, concerning building blocks for PWD and replication, the work in
[86] proposes an approach for enforcing determinism of multithreaded applica-
tions. This is done in the context of Eternal [86], a replication infrastructure
for CORBA objects. Determinism is enforced by allowing only a single logical
thread of control within each replica. Although multiple threads may exist
within the replicas, all of them relate to the same logical thread of control.
Consistent dispatching of threads to the replicas is achieved using a determin-
istic operation scheduler. Another related approach is the one in [60], where
determinism of transactional multithreaded replicas is enforced in the context
of active replication, even though no replicated invocation is considered. More
specifically, they identify two levels of non-determinism: external and internal.
External non-determinism corresponds to non-determinism related to commu-
nication, while internal non-determinism relates to computation, in particular
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thread scheduling. External non-determinism is handled using totally ordered
multicast. Internal non-determinism is addressed with deterministic thread
scheduling and selective message reception from two-level queues.

2.3 Discussion

As mentioned in Chapter 1, the focus of this thesis is on end-to-end reliabil-
ity for applications characterized by stateless application serves. Concerning
previously discussed solutions dealing with such a context, there are a set of
relevant issues and limitations to be addressed. In particular, the employment
of these solutions in the context of large scale, geographical infrastructures
(e.g. ADN like infrastructures), namely challenging and very attractive en-
vironments, raise problems of both pragmatical and theoretical nature which
reduce their effectiveness, or even make them unfeasible. We discuss these
problems below:

• From a pragmatic perspective, a fundamental critic that can be made to
the existing solutions is the excessive cost they would impose in case of
adoption on a large scale infrastructure.

Concerning the e-Transaction solutions in [44, 45], the overhead is due
to the need for executing an explicit coordination scheme among serves
over the middle-tier. These coordination schemes in fact impose ad-
ditional (broadcast) communication rounds among the server replicas
even in absence of failure, thus hampering scalability and introducing
large overhead in case of large scale, geographical distribution of the
replicas. Such an overhead has also a direct impact on the end-user
perceived latency since transaction processing at the application server
cannot proceed until the coordination scheme does not get completed. In
practice, these solutions reveal mainly attractive for scenarios where the
number of application servers replicas is kept relatively low and where
these replicas are hosted by, e.g., a cluster environment, where the la-
tency of coordination can be kept low thanks to the reduced delivery
latency. This is certainly not the case of large scale service delivery plat-
forms, such as, e.g., Akamai’s ADN [36], comprising tens of thousands
of servers spread on global geographical scale.

Analogous considerations also apply to the solutions in [16, 70]. For
what concerns the queued transaction approach in [16], in a large scale
infrastructure the queuing system is typically centralized rather than
replicated at all the application servers, so to avoid of the excessive over-
head for maintaining their consistence. This means that any interaction
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between the application server and the queuing system implies an inter-
action between remote systems. Hence, the need to perform additional
interactions with the queuing system (for queuing requests and responses
before and after the access to the application data) translates into a con-
siderable penalization of the end-user perceived latency. On the other
hand, the approach in [70], involving the client within the transaction
boundaries, requires additional communication rounds (to support the
2PC protocol) between the application server and the client. Given that,
except for the case of application components deployed over a same local
area infrastructure, the clients interact over relatively slower and unre-
liable communication channels (e.g. a GPRS or a dial-up connection),
this has the twofold effect of delaying the response delivery at the client
and the completion of the 2PC. This latter aspect is important since an
increase in the duration of the pre-commit phase (during which back-end
database servers maintain locks on valuable resources, such as applica-
tion data) can lead to an increase in the likelihood of conflicts among
transactions, which typically leads to strong reductions of the databases
throughput [17]. We additionally note that, in a large scale, open envi-
ronment, the likelihood of malicious clients intentionally delaying their
replies while executing the 2PC might also be a relevant issue.

As a final additional consideration, the reliance of both the solutions in
[70, 16] on 2PC introduces unnecessary overhead in the common scenario
of applications interacting with a single back-end database, in which case
the inherent costs of 2PC could be indeed avoided.

• From a theoretical oriented perspective, the correctness of existing so-
lutions depends, at various extents, on assumptions regarding the syn-
chrony of the system, or, equivalently, the accuracy of the underlying
failure detection mechanism. This raises concerns on the feasibility of
such approaches in the context of large scale infrastructures providing
minimal guarantees, or even no guarantee at all, on the system synchrony
level. In particular, the proposals in [45, 44] are based on the assump-
tion of perfect and eventually perfect failure detection among application
server replicas. Assuming perfect failure detection is clearly unrealis-
tic in the scenario of replicas deployed over an inherently asynchronous
infrastructure, such as a large scale ADN platform, where servers are
distributed across multiple autonomous systems and communicate via
public Internet links. This restricts in practice the feasibility of this
approach to the case of application servers deployed over an infrastruc-
ture exhibiting processing/communication timing features proper of syn-
chronous systems [38, 31] (e.g. a LAN-based infrastructure).

The solution in [44] partially alleviates the strong synchrony require-
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ments of [45], hence enlarging the spectrum of system settings covered
by the protocol. Nevertheless, its reliance on an eventually perfect failure
detector, to ensure the liveness of the adopted coordination scheme, does
not allows the protocol to be straightforwardly adopted over whichever
infrastructure where, e.g., some specific timing constraints (although rel-
atively weak) cannot be guaranteed. Hence this protocol still does not
cover the cases where the infrastructure exhibits features proper of a
purely asynchronous system.

Similar considerations can be made for the e-Transaction protocol in [43]
where the authors address the more limited case of a single database in
the back-end tier. As we discussed, in fact, this solution relies on the as-
sumption that a request message sent is always processed by the database
before the corresponding terminate messages. Providing such a guaran-
tee is not trivial to ensure in an asynchronous system, given that the two
messages may be originated by different application replicas, upon the
receipt of the corresponding client messages. To meet this assumption,
the authors suggest to delay the processing of the terminate messages
at the application servers, which however requires some form of timing
constraints within the whole system (on both processing and communi-
cation) to achieve its goal. An alternative approach would be to rely on
some form of explicit coordination among the servers (e.g. to support
totally ordered multicast communication), which was not however part
of the original protocol design. Nevertheless, this would impose prag-
matical and theoretical drawbacks similar to the ones highlighted for the
protocols in [44, 45].



26 CHAPTER 2



Chapter 3

Ensuring e-Transaction with
Uncoordinated Application
Server Replicas

In this chapter we introduce an e-Transaction protocol addressing the general
case of transactions spanning multiple, autonomous back-end databases (as in
the case of multiple parties involved within a same business process) which
does not prescribe any form of coordination among application server replicas
(during both normal behavior and fail-over). The key idea of this proposal
is to store recovery information concerning the transaction processing state
(ITP for short - Information on Transaction Processing) across the back-end
databases participating in the transaction. The ITP includes both classical
information logged in standard two-phase commit (2PC) (such as the trans-
action state), plus additional information proper of our protocol (such as the
identity of the application server processing the transaction), and allows our
protocol to effectively deal with both transaction atomicity and idempotence,
while preserving liveness. As a matter of fact, our approach is orthogonal to all
the optimizations proposed in literature, aimed at reducing the messaging and
logging overhead of standard 2PC, e.g. Presumed Commit/Abort [85], Early
Prepare [111], Coordinator Log [110]. In particular, we exploit distributed log-
ging activities performed by 2PC participants not only to achieve transaction
atomicity, but also to ensure exactly-once execution semantic (i.e. idempo-
tence and termination) of end-to-end interactions in a three-tier system. The
ITP is manipulated through local transactions, which are independent of the
global distributed transaction associated with the client request. These local
transactions are autonomously executed by the database server in a transpar-
ent way for the application server, thus not requiring any additional interaction
between application and database servers. This is just what allows our pro-
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tocol to exhibit minimal overhead compared to a baseline approach that does
not provide end-to-end reliability guarantees.

Beyond presenting the protocol, we also provide the proof of its correctness
with respect to the e-Transaction properties, and the results of a quantita-
tive comparative analysis vs other solutions carried out through parameter-
ized performance models and an industry standard benchmark for On-Line-
Transaction-Processing (OLTP) systems

3.1 Model of the System

We consider a classical distributed, asynchronous system model, in which there
is no bound on message delay, clock drift or process relative speed [41]. Process
communication takes place exclusively through message exchange. Processes
can fail according to the crash-failure model [53]. Communication channels
are assumed to be reliable, therefore each message is eventually delivered un-
less either the sender or the receiver crashes during the transmission. In the
following paragraphs we describe the main features of every class of processes
in the system, i.e. clients, application servers and database servers.

3.1.1 Clients

Client processes do not directly communicate with database servers, they only
interact with application servers. This takes place by invoking the method
issue, which is used to activate the transactional logic on the application
server. This method takes the client request content as the parameter and
returns only upon receipt of a positive outcome (commit) for the corresponding
transaction. The method returns the result of the transaction execution.

3.1.2 Application Servers

We consider a set of n application server processes {AS1, . . . , ASn}. Applica-
tion servers collect request messages from the clients and drive updates over a
set of distributed database servers within the boundaries of a global transac-
tion [17, 98]. For presentation simplicity we assume that every transaction is
executed over the same set of database servers, and that this set includes all
the system back-end databases. However, in Section 3.4 we discuss approaches
for relaxing such an assumption in order to cope with applications performing
transactional access to a subset of the back-end databases.

Application servers have no affinity for clients, and do not know of each
other’s existence. Moreover, they are stateless, in the sense that they do not
maintain states across requests from clients, i.e. a request from a client can
only determine changes in the state of the databases.
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Application servers have a primitive compute, which embeds the non-
idempotent transactional logic for the interaction with the databases. This
primitive is used to model the application business logic while abstracting
the implementation details, such as SQL statements, needed to perform the
data manipulations requested by the client. compute executes the updates
on the databases inside a distributed transaction that is left uncommitted,
therefore the changes applied to data are not made permanent as long as the
databases do not decide positively on the outcome of the transaction. The
result value returned by the primitive compute represents the output of the
execution of the transactional logic at the databases, which must be communi-
cated to the client. compute is non-deterministic as its result depends on the
state of the databases, and (possibly) on other non-deterministic factors (such
as the current state of some device). In other words, multiple invocations of
this primitive may return different results. As in [44, 45], compute is assumed
to be non-blocking, which means it eventually returns unless the application
server crashes.

3.1.3 Database Servers

We assume a finite set of m autonomous database servers {DB1, . . . , DBm},
each one possibly keeping a different data set. A database server is viewed
as a stateful, autonomous resource that offers the XA interface [117] and re-
covers after a crash. We note that, assuming XA as the programming in-
terface for distributed transaction management means in practice that we
consider database severs directly complying with conventional transactional
technology. Actually, we do not consider the whole set of functions of the
XA API. Specifically, we are interested only in transaction commitment func-
tionalities which we model through the xa prepare and xa decide primitives.
xa prepare takes a transaction identifier as input and returns a value in the
domain V ote = {yes, no}. A yes vote implies that the database server is
able to commit the transaction (i.e. the transaction is pre-committed at that
database), whereas a no vote is returned when the database server is un-
able to commit the transaction (i.e. it is aborted at that database). The
xa decide primitive takes as input a transaction identifier and a decision in
the domain Decision = {commit, abort} and returns a value in the domain
Outcome = {commit, abort, unknown tid}. The unknown tid value is an er-
ror code reported when an unknown transaction identifier is passed as input,
i.e. the database server attempts to decide on an unknown transaction (1).
xa decide returns commit if the database server voted yes for a transaction

1We recall that according to the XA specification a database server, i.e. a resource
manager in the XA terminology, is allowed to forget about a transaction, namely about a
transaction identifier, once the transaction is either committed or aborted.
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and commit is passed as input. Otherwise the transaction is aborted and
xa decide returns the value abort.

Each database server stores some recovery information, namely the ITP
(Information on Transaction Processing), which is used to determine the pro-
cessing state of a given transaction. The ITP consists of (i) the identifier
of the transaction, (ii) the identifier of the application server that executes
the transaction, (iii) the transaction result (i.e. the output of the compute
primitive executed by the application server), and (iv) a value that allows the
identification of one of the following states for the transaction:

1. Prepared. This value indicates that the transaction is pre-committed
at that database.

2. Commit. This value indicates that the transaction has already been
committed at that database.

3. Abort. This value indicates that the transaction was aborted, or needs
to be aborted, at that database.

The ITP is accessed and manipulated within ACID transactions by means
of insert, overwrite and lookup primitives, implemented, e.g., through SQL
statements on a conventional database system (2). insert takes four input
parameters, namely the identifiers of the transaction and of the application
server executing it, a value in the domain {prepared, abort} and a result, and
records them (i.e. inserts the corresponding tuple) within a database table.
This primitive is used to mark the state of the transaction within the ITP as
prepared or abort. We assume the transaction identifier to be a primary key for
that database table. Therefore, any attempt to insert the previous tuple within
the database multiple times is rejected by the database itself, which is able to
notify the rejection event by raising the ITPDuplicatePrimaryKeyException.
overwrite takes two parameters, namely the transaction identifier and a value
in the domain {commit, abort}, and is used to set the state maintained by the
ITP associated with that transaction identifier. More precisely, the transac-
tion state is set to the value passed as second input parameter to the primitive.
Both insert and overwrite encompass real transactional data manipulation,
thus requiring eager disk access (the corresponding transactions are executed

2An ACID transaction manipulating the ITP can be also supported efficiently through an
ad-hoc lightweight implementation exploiting capabilities of file system API, thus possibly
providing performance advantages over a transaction executed on top of the database system.
Actually, we have decided to describe the protocol by relying on SQL for the manipulation
of the ITP exclusively for simplicity of presentation. However, as we shall discuss in Section
3.5, we have also developed an ad-hoc prototype implementation just based on file system
API.
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as independent top-level actions, i.e. not within the context of the transaction
on whose behalf they are executing). The lookup primitive is used to retrieve
from the ITP the state and the result associated with a certain transaction,
together with the identity of the application server that executed the transac-
tion. This primitive takes as input a single parameter, namely the transaction
identifier. It returns the special value nil in case that transaction identifier
has no corresponding ITP logged.

All the primitives available at the database server are assumed to be non-
blocking, i.e. they eventually return unless the database server crashes after
the invocation.

3.2 The protocol

3.2.1 Client Behavior

Figure 3.1 shows the pseudo-code defining the client behavior. Within the
method issue, the client generates an identifier associated with the request,
selects an application server and sends the request to this server, together with
the identifier. It then waits for the reply, namely for an Outcome message for
the transaction (3). If the outcome is commit, issue simply returns the result
of the transaction. If the outcome is abort, the client chooses a new identi-
fier and retransmits the request. Otherwise, in case the contacted applica-
tion server is suspected to have crashed (4), the client invokes the terminate
method. Within this method, the client keeps on retransmitting Terminate
messages to the application servers (application server crash suspicion is the
trigger for the retransmission), until an outcome is returned via an Outcome
message indicating that the transaction was either aborted or committed. If
the outcome is abort, the client chooses a new identifier and retransmits the
request.

3.2.2 Application Server Behavior

The application server behavior is shown in Figure 3.2. It makes use of the
DTManager class in Figure 3.3. Two execution paths are possible at the appli-
cation server depending on the type of the message received from the client.

If a Request message is received, then compute is invoked to execute the
distributed transaction. Next the application server starts the distributed

3We indicate with receive a blocking statement returning upon message delivery at the
application level. Also, the received statement immediately returns with boolean indication
on whether a given message is already available at the application level.

4We use the classical suspect statement to abstract over details of the underlying failure
detection mechanism.
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Class Client {
CircularList aslist={AS1,AS2,. . .,ASn};
ApplicationServer AS;

Result issue(RequestContent req) {
Outcome outcome=abort; Identifier id; Result res;
AS=aslist.next();
while (outcome==abort) {

set a new value for id;
send [Request,req,id] to AS;
wait receive [Outcome,res,outcome,id] or suspect(AS);
if suspect(AS) (res,outcome)=terminate(id);

}
return res;

} /* end issue */

(Result,Outcome) terminate(Identifier id) {
while (true) {

AS=aslist.next();
send [Terminate,id] to AS;
wait receive [Outcome,res,outcome,id] or suspect(AS);
if (received [Outcome,res,outcome,id]) return(res,outcome);

}
} /* end terminate */

}

Figure 3.1: Client Behavior.

commit protocol by invoking the prepare method of the DTManager class.
While executing this method, the application server periodically retransmits
the Prepare message on a timeout basis to all the database servers until a Vote
message is received from every database server. Then, the commit protocol
goes on through the decide method of that same class. If an unanimous posi-
tive vote was collected (i.e. every database server voted yes), Decide messages
with the commit decision are sent to all the database servers. If any no vote
was received, the whole transaction has to be aborted. In this case, Decide
messages with the abort decision are sent to the database servers. Decide mes-
sages are retransmitted, again on the basis of a timeout mechanism, until an
Outcome message is received from every database server. Once the interaction
with database servers is concluded, an Outcome message is sent back to the
client, carrying the outcome of the transaction (commit or abort), together
with the result.

A different behavior is triggered by the arrival of a Terminate message. In
this case, the application server invokes the resolve method of the DTManager
class to determine the final outcome of a given transaction possibly activated
by a different application server due to a Request message received from the
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Class Application Server {
List dblist={DB1, DB2, . . . , DBm};
DTManager dt;

void main() {
Result res; Outcome outcome;

while (true) {
cobegin
‖ wait receive [Request,req,id] from client;

res=compute(req,id);
if ( dt.prepare(id,res)==abort ) {res=nil; outcome=abort; dt.decide(id,abort);}
else {outcome=commit; dt.decide(id,commit);}
send [Outcome,res,outcome,id] to client;

‖ wait receive [Terminate,id] from client;
(res,outcome)=dt.resolve(id);
send [Outcome,res,outcome,id] to client;

}
} /* end main */

}

Figure 3.2: Application Server Behavior.

client. Within the resolve method, the application server collects the state
of the transaction logged by the ITP maintained by every database server.
Specifically, it sends Resolve messages to the database servers and waits for
Status messages from all of them. Also in this case we use a timeout based re-
transmission logic if the database servers do not respond within a pre-specified
time period. If at least one database server reports an abort status for that
transaction, the application server makes sure that the transaction is aborted
everywhere. This is done by invoking the decide method with adequate values
for the parameters. On the other hand, if every database server responds with
a Status message carrying either a prepared or a commit value retrieved by
the ITP associated with the transaction, the application server exploits again
the decide method of the DTManager class to commit the transaction at those
sites where it is prepared, but still uncommitted. Finally, the transaction
outcome and the result reported by the databases are sent to the client.

3.2.3 Database Server Behavior

Figure 3.4 shows the pseudo-code defining the database server behavior. We
avoid describing the database server behavior during the transaction execution
phase since, as stated in Section 3.1, this phase simply encompasses, e.g., a set
of conventional SQL statements which are abstracted through the application
server’s compute primitive. This server exploits the DTManager class in Figure
3.3 and also the ITPLogger class in Figure 3.5. The database server executes
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Class DTManager {
List dblist={DB1, DB2, . . . , DBm};

(Result,Outcome) resolve (Identifier id) {
repeat {

send [Resolve,id] to dblist;
set TIMEOUT;
wait until ( ( for every DBk ∈ dblist: receive [Status,id,status,result] ) or TIMEOUT );

} until ( received [Status,id,status,result] from every DBk ∈ dblist );
if (received [Status,id,abort,nil] from some DBk ∈ dblist)
{this.decide(id,abort); return (nil,abort); }

else {this.decide(id,commit); return (result,commit);}
} /* end resolve */

Status prepare(Identifier id, Result result) {
repeat {

send [Prepare, id, result] to dblist;
set TIMEOUT;
wait until ( (for every DBk ∈ dblist: receive [Vote,id,vote]) or TIMEOUT );

} until ( received [Vote,id,vote] from every DBk ∈ dblist );
if ( received [Vote,id,yes] from every DBk ∈ dblist ) return prepared;
else return abort;

} /* end prepare */

void decide(Identifier id, Outcome decision){
repeat {

send [Decide, id, decision] to dblist;
set TIMEOUT;
wait until ( (for every DBk ∈ dblist: receive [Outcome,id,outcome]) or TIMEOUT );

} until (received [Outcome,id,outcome]) from every DBk ∈ dblist );
} /* end decide */

}

Figure 3.3: DTManager (Distributed Transaction Manager) Class.

three tasks triggered by the receipt of different types of messages, and an
additional background task.

Task 1: This task is activated upon receipt of a Prepare message from an ap-
plication server. The database server invokes the xa prepare primitive
in the attempt to pre-commit the transaction. If this operation fails,
a negative Vote is sent back to the application server. Conversely, if
xa prepare returns a yes vote, the prepare method of the ITPLogger
class is invoked to insert the ITP associated with the transaction with
the prepared state value. If the insertion of the ITP fails, it means
that the database already stores the ITP associated with the transac-
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Class Database Server {
List dblist={DB1, DB2, . . . , DBn};
DTManager dt;
ITPLogger itp;
Result result;
Status status;
Outcome outcome;

void main(){
on recovery do {

for every pre-committed transaction j:
if ((itp.retrieve(j)==abort) or (itp.retrieve(j)==nil)) xa decide(id,abort);

}

while (true) {
cobegin
‖ wait receive [Prepare,id,result] from ASi; // Task 1

if (xa prepare(id)==yes) vote=itp.prepare(id,result,ASi);
else vote=no;
send [Vote,id,vote] to ASi;

‖ wait receive [Decide,id,decision] from ASi or DBi; // Task 2
outcome=xa decide(id,decision);
if (outcome==unknown tid)

{send [Outcome,id,decision] to ASi or DBi; itp.set(id,decision); }
else

{send [Outcome,id,outcome] to ASi or DBi; itp.set(id,outcome);}
‖ wait receive [Resolve,id] from ASi or DBi; // Task 3

(status,result)=itp.try abort(id);
send [Status,id,status,result] to ASi or DBi;

‖ background: // Task 4
for every pre-committed transaction j such that itp.retrieve(j)==prepared:

if ( suspect( itp.getAS(j) ) ) dt.resolve(j);
} /* end while */
} /* end main */

}

Figure 3.4: Database Server Behavior.

tion (5). In this case, the transaction state maintained by the ITP is
retrieved through the lookup primitive. If the state value is abort, a
negative vote is sent back to the application server via a Vote message.
Otherwise (i.e. the transaction is prepared and the ITP insertion with
prepared state value succeeds) a Vote message with yes is sent back to
the application server.

Task 2: This task is activated upon receipt of a Decide message. The database
server invokes the xa decide primitive to take a final decision for the

5We recall that we have assumed the transaction identifier to be a primary key - see
Section 3.1 - therefore at most one insertion of the ITP associated with a given transaction
can occur.
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Class ITPLogger {
Status status;
Result res;
ApplicationServer AS;

Vote prepare(Identifier id, Result result, ApplicationServer AS) {
try {

insert(id,prepared,result,AS);
return yes;

}
catch (ITPDuplicatePrimaryKeyException ex) {

if (lookup(id).status == abort) return no;
else return yes;

}
} /* end prepare */

(Status,Result) try abort(Identifier id){
try {

insert(id,abort,nil,nil);
xa decide(id,abort);
return (abort,nil);

}
catch (ITPDuplicatePrimaryKeyException ex) {

(status,res,AS)=lookup(id);
return (status,res);

}
} /* end try abort */

void set(Identifier id, Outcome outcome) { overwrite(id,outcome); }

Status retrieve(Identifier id) { return lookup(id).status; }

ApplicationServer getAS(Identifier id) { return lookup(id).AS;}
}

Figure 3.5: ITPLogger Class.

transaction. As it will be shown by Lemma 3.3.4 in Section 3.3.2, if
xa decide returns unknown tid, i.e. the database server is asked to de-
cide for an unknown transaction (6), this implies that the database server
must have already taken the same decision it is currently asked to take.
Therefore, the database server simply sends back an Outcome message
with an outcome equal to the requested decision, and accordingly up-
dates the corresponding ITP. On the other hand, if xa decide returns
either commit or abort, the database server sends back an Outcome
message carrying the outcome returned by xa decide and accordingly
updates the corresponding ITP.

6As pointed out in Section 3.1, by the XA specifications the database does not keep track
of identifiers of already committed/aborted transactions.
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Task 3: This task is activated upon receipt of a Resolve message. The resolve
phase is used in the attempt to abort a transaction possibly left pending
due to some failure (e.g. crash of the application server originally taking
care of it). In this case, the database server invokes the try abort
method of the ITPLogger class in the attempt to insert the ITP with
the abort value for the transaction state. If the latter operation succeeds,
xa decide is invoked during the execution of try abort, with the abort
value as input parameter, and a Status message is sent back indicating
the abort value for the transaction state. Conversely, if the ITP insertion
fails, the transaction state maintained by the ITP is retrieved through
the retrieve method of ITPLogger and is sent back to the application
server via a Status message.

Task 4: This is a background task used to avoid maintaining any pre-
committed transaction blocked by a crash of the application server taking
care of it. Actually, fail-over of a crashed application server might be
performed by other application server replicas, if the client contacts them
through Terminate messages. However, also the client might crash, e.g.
after the issue of its request, thus originating a situation in which applica-
tion server replicas are not notified that fail-over of the application server
originally taking care of the transaction needs to be performed. This
background task executed by the database server copes with this exact
type of situation. Within this task, the database server checks whether
there are transactions having an ITP with prepared state value, and for
which the application server originally taking care of them is suspected
to have crashed (recall the identity of such application server is retrieved
through the ITP). For all of those transactions, the resolve method of
the DTManager class is invoked to determine their final outcome.

Finally, the database server executes the following actions on recovery
after a crash. Every pre-committed transaction either having an ITP with
the abort value or having no ITP logged, is aborted through the xa decide
primitive. Actually, the presence of pre-committed transactions with the abort
value within the corresponding ITP may occur due to non-atomicity in the
execution of Task 3. Specifically, it could happen that, while executing the
try abort method within this task, after the successful insertion of the ITP
with an abort indication for the transaction state, the database server is unable
to execute the xa decide primitive, e.g. due to a crash failure. If this problem
were not tackled, we might have pre-committed transactions, which possibly
hold locks on data, with an ITP indicating an abort state (i.e. the transactions
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need to be aborted), whose abort procedure will not eventually be handled by
the database server. Similarly, the presence of pre-committed transactions
with no corresponding ITP logged may occur due to non-atomicity in the
execution of Task 1, i.e. the database server might crash after preparing the
transaction through xa prepare but before recording the ITP through the
prepare method of the ITPLogger class. These transactions can be aborted
by the database server since no yes vote has been sent out for them (recall
the yes vote is sent out by the database server only after successful insertion
of the ITP with prepared value).

3.2.4 Observations

Observation 3.2.1 By the protocol structure, a Decide message with the
commit indication is ever sent to a database server, only if (1) positive Vote
messages are collected by an application server from all the database servers
or (2) Status messages with prepared/commit are collected by an applica-
tion/database server from all the database servers. Note that this implies that
all the database servers have performed successful insertions of the ITP with
the prepared value for the transaction state.

Observation 3.2.2 By the protocol structure, a Decide message with the abort
indication is ever sent to a database server, only if (1) at least one nega-
tive Vote message is collected by an application server from some database
server or (2) at least one Status message with abort is collected by an appli-
cation/database server from some database server. Note that this implies that
either (i) the insertion of the ITP with an abort value is successful on at least
one database, or (ii) the insertion of the ITP with the prepared value for the
transaction state fails on at least one database, or is not attempted at all due
to the fact that xa prepare returns no at that database.

3.3 Protocol Correctness

In this section we provide a formal proof of the protocol correctness with re-
spect to the e-Transaction properties, as formally specified in [44, 45]. Since
the protocol proposed in this work represents a solution to the very same prob-
lem, we inherit its specification, which is recalled below. As hinted, there are
three categories of properties that define the e-Transaction problem: Termi-
nation, Agreement, and Validity. These properties are specified as follows:

Termination:
T.1 If the client issues a request, then, unless it crashes, the client
eventually delivers a result.
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T.2 If any database server votes for a result, then the database server
eventually commits or aborts the result.

Agreement:
A.1 No result is delivered by the client unless the result is committed
by all database servers.
A.2 No database server commits two different results.
A.3 No two database servers decide differently on the same result.

Validity:
V.1 If the client delivers a result, then the result must have been com-
puted by an application server with, as a parameter, a request issued by
the client.
V.2 No database server commits a result unless all database servers have
voted yes for that result.

The intuitive meaning of the previous properties has been already pointed
out in Chapter 2. As the only additional note, the above properties express
guarantees on data integrity (e.g. distributed transaction atomicity - see A.3)
and data availability (e.g. the ability of a database server not to maintain
pre-committed data blocked forever - see T.2) independently of what happens
to the client. This well fits the “pure” crash model for the client (i.e. the
client is not required to recover after a failure), which allows the e-Transaction
framework to deal with very thin clients not providing access to stable storage.
(We again recall that access to stable storage might be precluded not only
because of hardware constraints, but also due to security and privacy issues.)

We proceed by first introducing the assumptions required to prove the
correctness of our protocol. Next, we prove the seven e-Transaction properties
individually, by also relying on lemmas we introduce in order to simplify the
structure of the proof.

3.3.1 Correctness Assumptions

We assume that at least one application server in the set {AS1, . . . , ASn} is
correct, i.e. it does not crash. This assumption is required to ensure protocol
termination since, in compliance with the e-Transaction framework, applica-
tion servers adhere to a pure crash model. On the other hand, in practical
settings, our protocol can still guarantee the e-Transaction properties even
in the case of the simultaneous crash of all the application servers, as long
as at least one of them eventually recovers and remains up long enough to
complete the whole end-to-end interaction (application server recovery would
not require any particular handling since application servers are assumed to
be stateless processes).
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Like in [43, 45], we assume that all database servers are good, which means:

(1) They always recover after crashes, and eventually stop crashing (i.e.
eventually they become correct), and

(2) If the application servers keep re-trying transactions, these are eventually
committed.

Note that assuming the databases recover and eventually stop crashing
means in practice assuming that application data are eventually available long
enough to allow the end-user to successfully complete its interaction with the
system. In practical settings, this assumption can be typically supported via
a set of solutions, especially relying on replication and redundancy (see, e.g.,
[3, 29, 93, 94, 129, 122, 107]). On the other hand, admitting the possibility for a
database not to recover and remain up would lead to the extreme (and, on the
basis of those solutions, not very realistic) case in which the whole application
remains indefinitely unavailable. As a note, we remark that assuming database
goodness is one point which differentiates the problem we are addressing here
(i.e. e-Transaction) from the classical non-blocking atomic commit problem
[15, 98], where transactional processes are assumed not to recover (and remain
up) after a crash.

We assume that failure detection of clients and database servers against
application servers is supported by a ♦S (eventually strong) failure detector.
Actually, this is a very weak failure detector class, whose properties can be
expressed, according to its specification in [25] (and to the case of failure
detection against application servers), as follows:

• Strong Completeness. Eventually every application server that crashes
is permanently suspected by every correct process.

• Eventual Weak Accuracy. There is a time after which some correct
application server is never suspected by any correct process.

Before proceeding we note that weaker assumptions than those introduced
in this section can only lead to violations of Termination properties (i.e. live-
ness), but have no impact on Agreement and Validity properties (i.e. safety).
As an example, the ♦S failure detector is required in order to ensure that at
least one application server will be eventually given enough time to complete
transaction processing, thanks to the avoidance of premature activation of the
fail-over phase through Terminate messages. This would not be guaranteed by
a failure detector which does not ensure the Eventual Weak Accuracy property.
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3.3.2 Correctness Proof

Lemma 3.3.1 If a correct application server receives either a Request or a
Terminate message from a client, it eventually sends the corresponding Out-
come message to the client.

Proof Suppose a correct application server receives either a Request or a Ter-
minate message from a client. In this case, given that all the primitives avail-
able at the application server are non-blocking, the correct application server
keeps on retransmitting, on a timeout basis, Prepare/Decide messages (case of
Request from the client), or Resolve messages (case of Terminate from the client)
to the database servers until Vote/Outcome or Status replies are received from
all of them. Let t be the time after which all the database servers stop crashing
and remain up. After t, by channel reliability, all the database servers eventu-
ally receive the above messages, triggering the activation of the corresponding
database server tasks. Since these tasks execute only non-blocking primitives,
all the database servers eventually send Vote/Outcome or Status messages to
the correct application server. Given that channels are reliable, these messages
are eventually received by this server. (A Status message might trigger a new
round of interaction with the database servers through Decide messages which
also eventually lead to a reply from the databases through Outcome messages,
given that we are at time after t.) Hence the correct application server is able
to eventually send back to the client the Outcome message. Q.E.D.

Lemma 3.3.2 If the client issues a request, then unless it crashes, it eventu-
ally receives a corresponding Outcome message.

Proof Consider a client that sends a Request message and that does not
crash. There are two cases:

(1) The message is sent to a correct application server. By reliability of
communication channels, this message is eventually received by this
server that, by Lemma 3.3.1, eventually sends the Outcome message
back. Again by reliability of communication channels, this message is
eventually received by the client, since it does not crash. Hence the claim
follows.

(2) The message is sent to a non-correct application server. Suppose by
contradiction that the client does not get the Outcome message. In
this case, by the completeness property of the failure detector, the client
eventually suspects this server and sends a Terminate message to another
application server. At this point we have two cases:
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(2.1) The Terminate message is destined to a correct application server.
In this case (by reliability of communication channels and Lemma
3.3.1) the client gets the Outcome message, hence the assumption
is contradicted and the claim follows.

(2.2) The Terminate message is destined to a non-correct application
server. In this case, since we have assumed that the client does
not get the Outcome message, by the completeness property of the
failure detector, the client eventually suspects this server and sends
a Terminate message to another application server.

We note however that case 2.2 cannot occur indefinitely, since a Ter-
minate message is eventually sent to a correct application server (recall
we have assumed that there is at least one correct application server).
Hence we eventually fall in case 2.1 and the claim follows.

Q.E.D.

Lemma 3.3.3 If a database server suspects an application server, the database
server eventually decides for every transaction already pre-committed by that
application server.

Proof If a database server, say DBi, suspects an application server, say ASi,
this means that DBi has pre-committed a transaction T initiated by ASi, and
has succeeded in inserting the ITP with prepared value. In this case DBi

starts sending Resolve messages for the transaction to all the database servers
on a timeout basis (this occurs even if DBi crashes and then recovers). Let
t be the time after which all the database servers stop crashing and remain
up. After t, by channel reliability, all the database servers eventually receive
the above Resolve messages, triggering the activation of the corresponding
database server tasks. Since these tasks execute only non-blocking primitives,
all the database servers eventually send back to DBi Status messages, which
are eventually received. Next, DBi broadcasts to all the database servers (in-
cluding itself) a Decide message carrying either the abort or commit decision.
By the same previous arguments (i.e. reliability of channels and non-blocking
primitives) these messages are eventually received by all the database servers
and processed since we are at time after t, which leads DBi to eventually take
a decision for the transaction T . Hence the claim follows. Q.E.D.

Lemma 3.3.4 If a database is asked to decide abort or commit for an un-
known transaction (this is the case of the unknown tid in Task 2), the database
has already taken the same decision it is currently asked to take.
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Proof By Observation 3.2.1 and Observation 3.2.2 in Section 3.2.4, no two
application/database servers can take a different decision on the outcome of
any distributed transaction, since the conditions enabling the send of a Decide
message with the commit or abort indication are mutually exclusive. As a
direct consequence, if a database server is asked to decide commit or abort for
an unknown transaction, then it cannot have taken a different decision. Hence
the claim follows. Q.E.D.

Termination T.1 - If the client issues a request, then, unless it crashes, the
client eventually delivers a result (7).

Proof By Lemma 3.3.2, if the client issues a request and does not crash, it
eventually receives an Outcome message. There are two cases:

(1) If the Outcome message carries the commit indication then the client
delivers the result and the claim follows.

(2) If the Outcome message carries the abort indication, the client re-submits
a new request and continues to do so until an Outcome message carrying
the commit indication is received. However, case 2 cannot occur indef-
initely since there will be a time t after which all the database servers
stop crashing and remain up, and the retransmitted requests arrive to a
correct application server (recall we have assumed there is at least one
of such correct processes), which, by the accuracy property of failure
detection, is never suspected by the client or by database servers. Hence
neither does the client send Terminate messages nor do the databases
send Resolve messages to attempt the abort of the transaction. Given
that the database servers are good, the correct application server is able
to eventually commit the transaction. Therefore, the Outcome message
sent to the client eventually carries the commit indication. Hence, the
claim follows.

Q.E.D.

Termination T.2 - If any database server votes for a result, then the database
server eventually commits or aborts the result.

7In the rest of this section, we use “vote/decide for a result” as synonymous with
“vote/decide for a transaction”. Similarly, “commit/abort a result” is used as synonymous
with “commit/abort a transaction”. This is done in order to maintain the same terminology
used in [43, 44, 45] for the presentation of e-Transaction properties while ensuring, within
the discussions, compatibility with the presentation of our protocol. For this same reason,
delivery of the result at the client side expresses that the issue method returns a result
associated with a committed transaction.
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Proof Suppose a database votes for a result (i.e. pre-commits the transaction)
but fails to insert the corresponding ITP with prepared value. This is either
because the database server crashes before the ITP insertion (in this case
the transaction is aborted upon recovery) or because the try abort method
successfully inserts the ITP with abort (in this case the transaction is aborted
by this method or upon recovery). In either case the claim follows.
On the other hand, if the ITP with the prepared state value is successfully
inserted after the vote, we have two additional cases.

(1) The application server that pre-committed the transaction crashes. Then,
by the completeness property of failure detection, the database server
eventually suspects the application server and by Lemma 3.3.3 decides
on the transaction. Hence the claim follows.

(2) The application server that pre-committed the transaction is correct.
Then, by Lemma 3.3.1, this application server eventually sends an Out-
come message to the client. This implies that the application server has
ensured that all the database servers have decided for that transaction.
Hence the claim follows.

Q.E.D.

Agreement A.1 - No result is delivered by the client unless the result is com-
mitted by all database servers.

Proof The client delivers the result only when an Outcome message with the
commit indication is received from an application server. On the other hand,
the application server sends the Outcome message to the client only after an
Outcome message indicating commit is received by all database servers, which
means that the result has been committed by all database servers. Q.E.D.

Agreement A.2 - No database server commits two different results.

Proof For a database server to commit two different results, we need the
client to send at least two requests to the application servers. The client re-
submits a new request only after it has received the Outcome message from an
application server carrying the abort indication for the result associated with
the last issued request. On the other hand, the application server returns
to the client the Outcome message with the abort indication only after each
database server either has already recorded an ITP with the abort state or has
voted no for that result. As a consequence each time a new request is issued
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by the client, no previous request can eventually be committed since after the
abort state is logged within the ITP, the database server rejects voting yes
for that result. The same happens in case the database server already voted
no since the xa prepare primitive does not recognize the identifier associated
with the result. As a consequence, no two different results can eventually be
committed by a database server. Q.E.D.

Agreement A.3 - No two database servers decide differently on the same
result.

Proof A database can decide commit only if it receives a Decide message
with the commit indication, whereas it can decide abort if either (1) it re-
ceives a Decide message with the abort indication, or (2) it receives a Resolve
message that causes a successful insertion of the ITP with the abort value for
that result. By Observation 3.2.1 and Observation 3.2.2 in Section 3.2.4, no
two Decide messages with different indications (commit or abort) can ever be
sent, since the conditions enabling the send of Decide messages with different
indications are mutually exclusive. Hence no two database servers can ever
decide differently due to case 1. On the other hand, after the insertion of
the ITP with the prepared value in Task 1, the database server will reject
any successive insertion of the ITP, thus avoiding the abort of the transac-
tion due to the receipt of Resolve messages activating the execution of Task
3. Therefore, when a database server receives a Decide message to commit
a transaction (by Observation 3.2.1 this implies that all the database servers
have performed successful insertion of the ITP with the prepared value for the
transaction state) it is sure that no database server will ever accept aborting
that transaction due to Resolve messages. Hence no two database servers can
ever decide differently due to case 2. Q.E.D.

Validity V.1 - If the client delivers a result, then the result must have been
computed by an application server with, as a parameter, a request issued by
the client.

Proof The client delivers the result after it receives an Outcome message with
the commit indication from an application server for a given identifier. Such a
message is sent to the client if, and only if, the application server has received
from each database server an Outcome message with the commit indication for
that identifier. This happens only if the result has already been committed.
Given that a transaction associated with an identifier is committed only after
an application server has computed and prepared it on all the databases, and
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given that the application server computes and prepares the transaction only
after it has received the Request message with that identifier from the client,
then it is not possible that the client delivers the result unless it has issued a
request that has been computed by the application server. Q.E.D.

Validity V.2 - No database server commits a result unless all database servers
have voted yes for that result.

Proof A database server commits a result after it receives the Decide message
for that result with a commit indication. On the other hand, by Observation
3.2.1 in Section 3.2.4, such a message can be sent only after every database
server has logged an ITP for that result storing a prepared state value. By
the database server pseudo-code, an ITP with prepared state value is logged
only after the database server voted yes for that result. Thus, if a database
server commits a result, then all database servers must have voted yes for that
result. Q.E.D.

3.4 Garbage Collection and Other Practical issues

The following mechanism could be coupled with the protocol to deal with
garbage collection of unneeded recovery information (i.e. unneeded ITPs)
from the databases.

If the client experiences a nice run (i.e. a run with no suspect of failure),
then an acknowledgment message can be sent to the application server right
after the Outcome message has been received at the client side. Upon receipt
of this message, the application server simply issues a request for discarding
the corresponding ITPs to the back-end databases.

On the other hand, if the client receives the Outcome message for a given re-
quest identifier (possibly with the abort outcome) only after having suspected
the application server and after having sent Terminate messages for that re-
quest, the ITP (possibly inserted at each back-end database with the abort
value during the resolve phase handled by the application server) needs to be
maintained. This is done to avoid that the transaction associated with that re-
quest identifier, which is asynchronously processed by the originally contacted
application server, gets eventually committed, hence violating, e.g., the A.2
e-Transaction property due to a retransmission of a different request instance
by the client after the receipt of the abort outcome. In such a scenario, anyway,
the client could send a different type of acknowledgment message to the appli-
cation server. Upon receipt of this message the application server could inform
the database servers to discard the transaction result (while maintaining the



3.4. GARBAGE COLLECTION AND OTHER PRACTICAL ISSUES 47

other information) from the ITP entry associated with every transaction for
which a Terminate message was sent from the client. This is done since the re-
sult (e.g., an HTML page) is expected to occupy most of the storage required
for the ITP tuple. Hence discarding it means in practice freeing almost all the
storage allocated for the recovery information associated with a given client
request. We note however that, in practical life, nice runs represent the most
common cases. Hence, discarding the ITP in nice runs, while maintaining such
a recovery information only in case of unlikely failure (or suspect of failure)
situations, means in practice very limited growth of storage usage for recovery
information over time.

Garbage collection without acknowledgments from the client could be fur-
ther addressed if it were possible to determine a known period of time after
which the client does not retransmit requests and the application/database
servers do not attempt to perform further processing/resolve actions for a
given request. As already discussed in [44], these mechanisms are feasible if
the underlying system matches assumptions proper of a timed model, e.g. [32].
Anyway, in practical settings one could still rely on approaches based on the
association of an adequately selected Time-To-Leave (TTL) with each ITP,
after which deletion of the ITP itself from the database can be performed.

As an additional note, we have presented the protocol under the assump-
tion that all the back-end databases are accessed by the distributed transac-
tion. However, for real life applications on, e.g., large scale systems, it could
be possible that a request from a client needs transactional access only to a
subset of those databases. Dealing with such a case would require a mecha-
nism for persistently associating the client request with the identities of the
subset of back-end databases really involved in the distributed transaction. In
case the association can be deterministically defined by the application server
as a function of the client request content, persistence of the association could
be supported by including within the ITP the identities of the set of involved
database servers, so that they could be able to execute the resolve phase as-
sociated with pending pre-committed transactions at the back-end tier (see
Task 4 in Section 3.2.3). The request content should also be piggybacked on
Terminate messages from the client so that each application server can deter-
mine the set of involved database servers if the resolve phase is handled by
the middle-tier.

On the other hand, if the association between the request content and the
accessed back-end databases cannot be deterministically defined, one could
rely on the following mechanism. The client request identifier can be used as
the input of, e.g., a hash function determining the identity of a given database,
say DBx, on which the insertion of the ITP is forced during the prepare/resolve
phase, even though that database would not be required to be accessed by the
application logic. At the same time, the identities of the databases really
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involved in the transaction, plus the identity of DBx, can be logged within
the ITP. In this way, similarly to the above case, a database server keeping a
pre-committed transaction is able to activate the resolve phase since the list of
the involved databases is available within the ITP kept for that transaction.
Also, an application server receiving the Terminate message from the client
should send a Resolve message to DBx (identified via the hash function) for
either (i) retrieving the list of the involved databases, if the ITP with the
prepared state value has been inserted at DBx, in order to execute the resolve
phase on all of them, or (ii) allowing eventual abort of that transaction by
performing the insertion of the ITP with the abort value on DBx (8).

Overall, in the case of deterministically defined association between the
client request content and the set of involved back-end databases, we would
only require slightly larger storage space for the ITP, but no additional log
operations. On the other hand, in the case of non-deterministically defined
association between the client request content and the set of involved back-
end databases, we might require an additional round of messages in between
the application server and DBx during the resolve phase, in order to retrieve
the list of the other database servers involved in the transaction. However,
this additional communication cost does not need to be paid in nice runs. At
the same time, a properly defined hash function allowing even distribution
of additional forced ITP insertions (i.e. additional load) across the whole
back-end tier would also prevent bottlenecks.

Finally, our protocol has been presented for the case of clients not recov-
ering after a crash. This has been done in compliance with the e-Transaction
specification, which, as already hinted, assumes a pure crash model for the
clients. However, if stable storage capabilities were allowed at the client side,
our protocol could be easily extended to deal with clients recovering after a
crash. This could be done by logging Request/Outcome messages, and by hav-
ing the client send out, upon recovery, Terminate messages for any Request
message not having the corresponding Outcome in the log.

3.5 Performance Measures and Comparison

In this section, we aim at quantitatively comparing the performance of our
protocol against existing solutions. We carry out the comparison by present-
ing simple, yet realistic, models for the response time of each protocol, and
studying the output provided by the models while varying some system pa-
rameters. We are interested in the case of no data contention and light system

8In case the transaction has been prepared at some database other than DBx, this
database will eventually abort the transaction during a resolve phase since this phase will
find out the abort indication within the ITP maintained by DBx.
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load. This allows us to evaluate the impact of each protocol on response time
more accurately, since we avoid any interference due to overhead factors not
directly related to the distributed management of transaction processing per-
formed by the protocols themselves (e.g. the overhead caused by delay in the
access to data within the databases due to contention).

We are interested in studying the case of normal execution (nice runs),
i.e. when no process crashes or is suspected to have crashed. This is because,
as already hinted in Section 3.4, those runs are the most likely to occur in
practice, thus representing an adequate test-bed for the evaluation of the real
performance effectiveness of any solution. Anyway, it is worth remarking that
our protocol supports in practice the transfer of the transaction coordinator
role over the middle-tier without explicit coordination among different appli-
cation servers (transfer is triggered by the client retransmission logic). Hence,
as soon as there is at least one available (i.e. up and working) application
server instance, system availability when our protocol is employed only de-
pends on the availability of back-end database servers. As already hinted in
Section 3.3.1, this can be typically guaranteed via a set of solutions (see, e.g.,
[3, 29, 93, 94, 129, 122, 107]).

For simplicity of presentation, but with no loss of generality and with-
out penalizing any of the compared protocols, we will focus on response time
as seen by the application server, thus omitting the round-trip time between
client and application server. We compare our protocol with the following al-
ternatives, all addressing the scenario of atomic transactions spanning multiple
databases (9):

1. A baseline protocol that coordinates distributed transaction processing
via 2PC without logs on the coordinator (see Figure 3.6.a). This protocol
tolerates crashes, with recovery of the back-end databases only.

2. The persistent queue (PQ) approach [16], whose behavior is schematized
in Figure 3.6.b. This approach performs the enqueue of the client request
as the first action. Next, it requires START and PRECOMMIT logs
at the application server, i.e. classical 2PC, to guarantee atomicity of
the distributed transaction. As already mentioned, this transaction also
includes the enqueuing of the result of the data manipulation performed
during the compute phase.

3. The primary-backup replication scheme (PBR) presented in [45] and
the asynchronous replication scheme (AR) presented in [44]. The be-
havior of both these protocols can be schematized as shown in Figure

9The e-Transaction protocol in [43] is excluded from this comparison as it tackles the
more restricted case of single database in the back-end tier.
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3.6.c, where the COORDINATION phase represents either the activ-
ity of propagating recovery information (i.e. the client request and the
transaction result) from the primary application server to the backups
(this holds for PBR) or the activity of updating the consensus object,
i.e. the write-once register (this holds for AR).

For completeness, we also show (see Figure 3.6.d) the schematized behavior
of our protocol. Compared to the baseline we simply add (i) the insertion of
the ITP with prepared state value (this is done before the database server
sends out the Vote message) and (ii) the update of the state maintained by
the ITP to the commit value. However, the latter action is performed after
the database server sends out the Outcome message to the application server.
Therefore the cost of this operation does not contribute to the response time
perceived by the application server.

While building the response time models, we suppose with no loss of gen-
erality that (i) the back-end databases have the same computational capacity
and that (ii) the round-trip time between the application server and each
back-end database RTTas/db is equal for all the databases. (Actually, in the
case of heterogeneous databases and/or different round-trip times with the
application server, the expressions we propose are still representative when
considering the maximum value, across all the databases, for the terms they
contain.) Also, we model the case of transactional logic activated via a single
message, e.g. like in stored procedures, in order to avoid the introduction of
an arbitrary delay in the response time models caused by an arbitrary num-
ber of message exchanges between application and database servers for the
management of the transactional logic.

Concerning the response time of the baseline protocol Tbaseline in the case
of normal execution, seen by the application server, we have the following
expression:

Tbaseline = (TSQL + Txa prepare + Txa commit) + 3×RTTas/db (3.1)

where the term RTTas/db takes into account the fact that activation of func-
tions in the XA interface and of the SQL associated with the transaction needs
a message exchange from the application server to the database server and the
corresponding acknowledgment.

All the other protocols execute the same actions of the baseline plus addi-
tional actions (see Figure 3.6). Hence, the response time of each protocol can
be expressed as follows:
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Table 3.1: Measured Parameter Values (Expressed in msec).

common parameters
TSQL Txa prepare T

xa decide

186.78 6.07 9.99

PQ
Tstart T

precommit
T

req−enqueue
T

res−enqueue

1.66 0.44 20.30 0.77

our protocol
T

IT P insert
T

IT P update

2.22 (file system) or 20.30 (SQL) 0.46 (file system) or 0.81 (SQL)

TPQ = Tbaseline + Tstart + Tprecommit + 2×RTTas/qs +
+ Treq−enqueue + Tres−enqueue (3.2)

TPBR = TAR = Tbaseline + 2× Tcoordination (3.3)
Tour protocol = Tbaseline + TITP insert (3.4)

where RTTas/qs is the round-trip time between an application server and the
queuing system used by PQ, and Treq−enqueue (resp. Tres−enqueue) represents
the time to enqueue the client request (resp. the transaction result) within
that system.

Some parameters appearing in the latency models are left as independent
variables in the performance study. They are:

(i) RTTas/db, typically dependent on the relative locations of application
servers and database servers;

(ii) RTTas/qs, typically dependent on the relative locations of application
servers and the persistent queuing system; and

(iii) Tcoordination, which depends on the specific algorithm selected for either
the management of the update of backup application servers in PBR, or
the management of the consensus object (i.e. the write-once register) in
AR, and also on the speed of communication among application server
replicas.

Other parameters have been measured through prototype implementations
of PQ and of our protocol, relying on DB2 V8.1 and LINUX (kernel version
2.4.21). Our prototype of PQ performs the START and PRECOMMIT logs
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via operations on the file system, as in the approach commonly used by trans-
action monitors [17]. Also, as typically found in industrial environment (e.g.
[113]), persistent message storing is supported through a database system,
namely DB2 in our case. For what concerns our protocol, we have developed
two different implementations. The first one manipulates the ITP via local
transactions on DB2. In this case the ITP is maintained inside a user level
database table. The second implementation is instead based on an optimized
approach relying on the LINUX file system. In this case the ITP is maintained
on files and ACID properties, as well as support for primary key constraint
semantic, are ensured via standard file locking and synchronous operations on
the disk. In order to use a representative value for TSQL in the comparative
study, we have also implemented the TPC BENCHMARKTM C (New-Order-
Transaction) [119] (this benchmark portrays the activity of a wholesale sup-
plier), and measured the latency for the related SQL operations. Table 3.1 lists
obtained measures for the case of application server and database server both
hosted by a Pentium IV 2.66GHz with 512MB RAM and a single UDMA100
disk. The two different values for TITP insert and T

ITP update
refer to the cases

of ITP managed through either the file system or local transactions on DB2.
(As already pointed out, T

ITP update
does not contribute to the response time

of our protocol as seen by the application server side since the ITP update
is executed after the database server has sent the outcome to the application
server. However we report the obtained measure for this parameter in order to
provide the reader with indications on the update cost at the database side.)
Each reported value, expressed in msec, is the average over a number of sam-
ples that ensures a confidence interval of 10% around the mean at the 95%
confidence level. As we are interested in the case of no data contention and
light system load, all the measures have been taken for the case of requests
submitted one at a time.

We provide now quantitative comparisons among the protocols based on
the proposed response time models and the obtained measurements. We ana-
lyze two different, representative scenarios. In the first one, application servers
and database servers are assumed to be located on the same LAN; the same
happens for the persistent queuing system used by PQ. In this case we have
set Tcoordination = RTTas/qs = RTTas/db (10) and have varied the value of
these parameters between 50 µsec and 10 msec so as to figure out different

10In the absence of faults, a round of messages is the lower bound on message complexity
required for transmission and acknowledgment of recovery information between the primary
and the backups in the PBR solution. Also, as shown in [63], in the absence of faults a round
of messages is the lower bound on message complexity for achieving consensus, i.e. for the
management of the consensus object in AR. Therefore, the lower bound on the latency of
coordination can be modeled as a round trip among two application servers, which is equal
to RTTas/db if all the processes are hosted by machines on the same LAN.
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settings for what concerns the speed of the network and the communication
layer among application servers, or among application servers and the queuing
system in PQ. The case of 50 µsec is representative of settings in which the
hosts on the LAN are connected, e.g., by a high speed switch, coupled with
an ad-hoc message passing layer [91]. Instead, the case of 10 msec might be
representative of a slower LAN with less performance effective message passing
(e.g. based on RPC stacks such as RMI). In the second scenario we analyze,
database servers are assumed to be spread on the Internet, thus RTTas/db has
been set to the reasonable value of 250 msec [59]. Instead, Tcoordination and
RTTas/qs have been varied between 1 and 250 msec so as to capture different
organizations with respect to the spatial location of application server replicas
and the queuing system in PQ. Lower values capture the cases in which those
replicas (and the queuing system) are distributed, e.g., over the same LAN.
The extreme value of 250 msec captures, instead, the opposite case in which
they are distributed, e.g., over the Internet.

Figure 3.7 shows the percentage of overhead of the protocols compared
to the baseline. For the first scenario, we observe the following tendencies.
The optimized implementation of our protocol based on file system API ex-
hibits a negligible overhead percentage. For minimal values of Tcoordination

and RTTas/db, i.e. up to 0.5 msec, PBR and AR show the lowest overhead.
On the other hand, as soon as the round trip time on the LAN hosting the
processes gets larger, these protocols tend to perform similarly to the less
efficient implementation of our protocol based on SQL. As an extreme, for
round trip time of 10 msec, they show an increase in the overhead of up to
9 times as compared to the optimized implementation of our protocol. On
the other hand, PQ performs worse than our protocol independently of the
selected values for RTTas/qs and RTTas/db, with gain from our protocol that
increases while the values of RTTas/qs and RTTas/db increase. We note how-
ever that, independently of the relative values of their overhead percentages,
all the protocols, except PQ, actually exhibit additional overhead compared to
the baseline which is at most of 10%. With respect to the latter point, the op-
timized implementation of our protocol shows overhead percentage constantly
under 1.5%. In the second scenario our protocol outperforms PBR, AR and
PQ, for almost any considered value of Tcoordination and RTTas/qs. Specifi-
cally, these protocols show overhead percentage comparable to our protocol
only if Tcoordination (resp. RTTas/qs) is maintained up to 10 msec (resp. 1
msec). On the other hand, as soon as these parameters assume a larger value,
the overhead percentage of these protocols definitely grows. As an extreme,
with the value of 250 msec, such an overhead percentage gets up to 27 times
larger than the overhead percentage of the SQL based implementation of our
protocol. Also, differently from the first scenario, this time PBR, AR and PQ
exhibit a remarkable additional overhead compared to the baseline, i.e. up to
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Figure 3.7: Overhead Percentage vs the Baseline Protocol.

55%. Instead, our protocol keeps the additional overhead over the baseline
constantly under 2% for the SQL based implementation, and under 0.3% for
the optimized implementation relying on file system API. Overall, our protocol
keeps the percentage of overhead over the baseline under 10% (this is drasti-
cally reduced to 2% in case of the optimized implementation) for whichever
considered settings of both the investigated scenarios. This points out how,
differently from other proposals, it exhibits good performance independently of
the particular system organization, thus being attractive for usage in both the
cases of local and wide area distribution of the application/database servers.
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Chapter 4

Ensuring e-Transaction with
no Assumption on the
Accuracy of Failure Detection

In the previous chapter we have introduced an e-Transaction protocol which,
compared to state of the art approaches, avoids any form of explicit coor-
dination among middle-tier application servers, while providing these servers
with provide mutual fail-over capabilities. The correctness of that protocol
relies on the ability of the employed failure detection mechanism to provide
an adequate (although relatively weak) level of accuracy. (We recall that the
accuracy property of a failure detector embodies its ability not to indefinitely
falsely suspect correct processes to have crashed.) In this chapter we present
an e-Transaction protocol that, beyond the avoidance of application server
coordination schemes, exhibits the distinguishing features of being suited for
asynchronous systems and of not relying on any assumption on the accuracy of
failure detection. This allows a further enlargement of the spectrum of system
organizations covered by the provided solution, including general Web infras-
tructures where inaccurate fault monitoring and detection cannot be avoided,
like in the case of infrastructures belonging to (and controlled by) providers
offering different levels of guarantees, or even no guarantee at all, on, e.g., the
processing speed or the message transmission delay.

We note that the lack of accuracy in the failure detection may lead to the
pathological situation in which false failure suspicions are issued indefinitely
while handling the end-to-end interaction. In such a scenario, an extermina-
tion based approach before re-issuing requests (like the one adopted by the
protocol we have presented in Chapter 3 via the termination/resolve phase)
might yield to an indefinite sequence of aborts of on-going work carried out
on behalf of a given client by falsely suspected servers. On the other hand,

57
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if no extermination is performed, re-issuing requests might lead to blocking
situations (due to durable pre-commit locks) involving both newly activated
and previously activated work carried out by falsely suspected servers. In both
cases, liveness can get compromised.

To overcome these problems, the protocol we provide in this chapter ex-
ploits an innovative scheme for distributed transaction management, based
on ad-hoc demarcation and concurrency control mechanisms, which we refer
to as Multi-Instance-Precommit (MIP). With this scheme, we allow a falsely
suspected server to proceed with transaction processing and pre-commit (i.e.
no attempt to force the abort of its work is performed). Also, any server
performing fail-over of a client request is granted access to the pre-image of
any uncommitted data item updated by (falsely) suspected servers previously
processing that same client request. In this way newly activated work in case
of fail-over does not need to force the abort of previously activated one, and
the two works do not block each other, which provides liveness guarantees on
the end-to-end interaction. At the same time, the different (pre-committed)
work instances are reconciled at commit time to maintain application safety
(e.g. at-most once semantic for request processing).

Given that the MIP scheme is custom, and is actually not supported by
current, conventional database technology, this protocol cannot be straight-
forwardly implemented on top of conventional systems, which instead can be
done for the protocol presented in Chapter 3 (this expresses a trade-off be-
tween the two provided solutions). However, in this chapter we also discuss
hints on how to integrate the MIP scheme, as well as the whole e-Transaction
protocol, with conventional software systems.

4.1 Model of the System

Concerning client and application server processes, we consider here the same
identical model introduced in Section 3.1 of Chapter 3. Hence we focus on the
discussion of the database server model, which allow us to introduce the MIP
facility used as the building block for the construction of the e-Transaction
protocol.

4.1.1 Database Servers

Back-end database servers support distributed transactions according to the
innovative MIP scheme, whose features are described below:
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Transaction Demarcation

Database servers associate with each transaction an identifier, namely a XID,
which is composed by (1) a request identifier, namely req id, univocally as-
sociated with a given client request, and (2) a transaction instance identifier,
namely inst id, composed of a tuple < category, instance number >, where:

• category identifies a given process (client or database server);

• instance number is a numerical value greater than or equal to zero.

We assume that category values are ordered according to a lexicographic
relation such that category < category′ if category identifies a client process
and category′ identifies a database server. Also, in case both the values iden-
tify two database servers, we say that category < category′ in case category
identifies a database server which precedes the one identified by category′ when
ordering the set {DB1, . . . , DBm} according to some predetermined scheme
(i.e. the set is ordered on the basis of database servers indexes).

Exploiting the previous ordering relation on category values, we as-
sume that inst id values are ordered according to the following rela-
tion: inst id =< category, instance number > is less than inst id′ =<
category′, instance number′ > if (i) category < category′ or (ii) category =
category′ and instance number < instance number′. In the following, trans-
actions sharing the same the request identifier (req id) value but having dif-
ferent transaction instance identifier (inst id) values will also be referred to
as sibling transactions.

Atomic Commit Protocol (ACP) Supports

We model with the primitives prepare and decide, the database server inter-
face for supporting the ACP. The primitive prepare takes in input a XID (i.e.
a request identifier and a transaction instance identifier) and returns a value in
the domain {prepared, abort} reflecting whether the database server is able to
commit the transaction or not. The primitive decide takes in input a XID and
a decision in the domain {commit, abort}, and commits or aborts that trans-
action (i.e. determines the final outcome for that transaction). This primitive
commits a transaction only if it was already pre-committed and the input
decision is commit. We assume that, if invoked with the commit indication
for a prepared (i.e. pre-committed) transaction XID =< req id, inst id >,
decide also aborts any pre-committed transaction with the same req id hav-
ing a transaction instance identifier inst id′ different from inst id. With no
loss of generality we assume both prepare and decide to be non-blocking.
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Concurrency Control

In case a transaction T requires (read/write) access to some data item d pre-
viously accessed (written/read) by a not yet committed (e.g. pre-committed)
transaction T ′, T is granted access to the pre-image of d with respect to the
execution of T ′ if T and T ′ share the same req id (i.e. they are sibling trans-
actions). Hence any update performed by a not yet committed transaction T ′

is not visible to any sibling transaction T . On the other hand, no assump-
tion is made on how concurrency control regulates data accesses of non-sibling
transactions.

Multi Instance Pre-commit Tables

A Multi Instance Pre-commit table (MIPT) is persistently maintained by a
database server for each set of transactions having the same req id (i.e. sibling
transactions originated by the same client request). In the following, we will
denote with MIPTx the table keeping track of transactions with req id = x.
The y-th entry of MIPTx, namely MIPTx[y], stores the following information
related to the transaction with req id = x and transaction instance identifier
inst id = y:

(1) state: a value, in the domain {null, prepared, abort}, reflecting the
transaction current state at that database (we assume that null is the
default initialization value);

(2) result: the (non-deterministic) output produced by the execution of the
transaction at the back-end databases (also in this case we assume that
null is the default initialization value).

Each MIPTx also keeps a special field, namely MIPTx.req which records
the client request content that gave rise to the transactions with req id = x.

4.2 The Protocol

In this section we introduce the pseudo-code for the behavior of the different
processes involved in the application, i.e. client, application sever and database
server. For presentation simplicity this time we start with the database server
behavior.

4.2.1 Database Server Behavior

The pseudo-code for the behavior of the database server within our e-
Transaction protocol is shown in Figures 4.1 and 4.2. As in Chapter 3, we
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Class DatabaseServer{
List ASlist = {AS1, . . . , ASn};
ApplicationServer AS;
TypeMIPT MIPT ;
Request req;
State state;
InstanceIdentifier inst id;
Outcome outcome;
on stable storage Counter counter = InitialV alue;

void main(){
while(true){

cobegin
|| wait receive Prepare[req, < req id, inst id >, result] from ASi // Task 1

MIPT=vote(req, < req id, inst id >, result);
send Vote[req id, MIPT ] to ASi;

|| wait receive Decide[< req id, inst id >, decision] from ASi// Task 2
decide(< req id, inst id >,decision);
send DecideACK[< req id, inst id >] to ASi;

|| wait receive Resolve[< req id, inst id >] from ASi// Task 3
MIPT=resolve(< req id, inst id >);
send Vote[req id, MIPT ] to ASi;

|| background: // Task 4
for every transaction < req id,− > pre-committed longer than TIMEOUT period {

req = MIPTreq id.req;
AS = ASlist.next();
inst id =< GetMyCategory(), + + counter >;
send Request[req, < req id, inst id >] to AS;
reset TIMEOUT period for that transaction;

} // end for every
} // end while

} // end main

TypeMIPT vote(Request req, XID < req id, inst id >, Result result){ . . .}

TypeMIPT resolve(XID < req id, inst id >){ . . . }

} // end class

Figure 4.1: Database Server Behavior, Part 1.
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TypeMIPT DatabaseServer::vote(Request req, XID < req id, inst id >, Result result){
atomically do{

if (MIPTreq id does not exist) {create MIPTreq id; MIPTreq id.req = req;}
if (MIPTreq id[inst id].state == null) {

state = prepare(req id, inst id);
if (state == prepared)

MIPTreq id[inst id].(state, result) = (prepared, result);
else

MIPTreq id[inst id].(state, result) = (abort, null);
}// end if

} // end of atomic statement
return MIPTreq id;

} // end vote

TypeMIPT DatabaseServer::resolve(XID < req id, inst id >){
InstanceIdentifier x;

atomically do{
∀x < inst id do {

if ( MIPTreq id[x].state == null) MIPTreq id[x].state = abort;
}

}//end of atomic statement
return MIPTreq id;

}//end resolve

Figure 4.2: Database Server Behavior, Part 2.

avoid describing the database server behavior during the transaction execution
phase, which is abstracted through the application server’s compute primitive.
The database server executes three tasks triggered by the receipt of different
types of messages, and an additional background task.

Task 1: Upon the arrival of the Prepare[req,< req id, inst id >, result] mes-
sage from an application server, the vote method is invoked, which atom-
ically performs the following operations. If MIPTreq id does not exist (i.e.
the database server is attempting to prepare a transaction associated
with a given req id for the first time), the database server creates it and
stores the request content within it. In case the entry of MIPTreq id with
index inst id has a null state value (this always holds in case MIPTreq id

did not exist and has been just created), the database attempts to
prepare the transaction with XID =< req id, inst id > by invoking
prepare. In case the transaction is successfully prepared, the entry
MIPTreq id[inst id] is updated to store the prepared state value and the
result specified by the Prepare message. Otherwise, MIPTreq id[inst id]
is updated with the abort value. Finally, when the vote method returns,
MIPTreq id is sent back to the application server via a Vote message.

Task 2: Upon the arrival of the Decide[< req id, inst id >, decision] message
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from an application server, the decide primitive is invoked to determine
the requested outcome (commit or abort) for the transaction. If the
requested outcome is commit, decide (according to its specification)
also enforces the abort of any other pre-committed transaction having
the same req id. Finally, a DecisionACK message is sent back to the
application server.

Task 3: Upon the arrival of the Resolve[< req id, inst id >] message from
an application server, the resolve method is invoked, which atomically
performs the following operations. For all the values of x less than
inst id, it checks whether MIPTreq id[x] has a null value. In the positive
case, that value is set to abort. Finally, when the resolve method
returns, MIPTreq id is sent back to the application server via a Vote
message.

Task 4: This is a background task used to avoid maintaining any pre-
committed transaction blocked indefinitely. Within this task, the
database server periodically checks whether there are transactions that
are maintained in the pre-commit state longer than a timeout period. For
each of these transactions, the original request content req is retrieved
from the corresponding MIPT. Then, that same request is re-sent by the
database server to whichever application server via a Request message.
This message is also tagged with the original request identifier (i.e. req id
in the pseudo-code) and with a transaction instance identifier inst id ob-
tained by using (i) the database server identity as the category (i.e. the
value GetMyCategory()) and (ii) an incremented counter value. Note
that the used counter is assumed to be maintained on stable storage,
which allows the database server to ensure monotonic increase of the
counter even in case of recovery after a crash.

4.2.2 Observations

Observation 4.2.1 By the database server pseudo-code, an update on
whichever MIPTreq id[inst id] entry can only occur once, i.e. when that entry
has the null initialization value.

Observation 4.2.2 By the database server pseudo-code, whichever transac-
tion XID =< req id, inst id > can ever be prepared only if the corresponding
entry MIPTreq id[inst id] still keeps the null initialization value.

4.2.3 Client and Application Server Behaviors

Figure 4.3 shows the pseudo-code defining the client behavior. Within the
method issue, the client selects an application server and sends the request
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to this server, together with the request identifier req id (we abstract over the
details for the determination of the request identifier via SetId()) and the
transaction instance identifier inst id formed by a category value identifying
the client process and a counter value (i.e. the instance number) maintained
by the client application. It then waits for the reply, namely for an Outcome
message for the transaction (1). In case the Outcome message arrives, carry-
ing the commit indication, issue simply returns the result of the transaction.
On the other hand, if the outcome is abort, the client retransmits the same
request after having incremented by one the counter used to define the trans-
action instance identifier. Otherwise, in case the contacted application server
does not respond within a timeout period, the client selects a different appli-
cation server and retransmits its request to this server, also in this case after
having incremented by one the counter used to define the transaction instance
identifier. Then it waits again for an Outcome message from an application
server or for a timeout expiration.

Class Client{
List ASlist = {AS1, . . . , ASn};
ApplicationServer AS;
Result result;
Outcome outcome;
RequestIdentifier req id;
InstanceIdentifier inst id;
Counter counter = InitialV alue;

Result issue(Request req){
outcome = abort;
req id = SetId(req);
while(outcome == abort){

AS = ASlist.next();
set TIMEOUT;
inst id =< GetMyCategory(), + + counter >;
send Request[req, < req id, inst id >] to AS;
wait ( receive Outcome[< req id,− >, outcome, result] from any ASi ∈ ASlist

or TIMEOUT );
} // end while
return result;
} // end issue

} // end class

Figure 4.3: Client Behavior.

The pseudo-code defining the behavior of an application server is shown in

1The notation < req id,− > means that the instance identifier is a don’t care value.
Hence, the client actually waits for an Outcome message associated with the specified req id
and with whichever inst id value.
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Figure 4.4. The application server waits for a Request message from either a
client or a database server. In case the Request message comes from a client,
it is associated with either the original request transmitted by the client, or a
request retransmission performed by the client. In case the request comes from
a database server, say DBi, it means that there is at least one pre-committed
transaction instance associated with that same request, which has remained in
the pre-commit state at DBi for more than a timeout period (see Task 4 of the
database server pseudo-code in Figure 4.1). In both cases, the Request message
carries the request identifier (req id) univocally associated with that client
request, and the transaction instance identifier (inst id) defined by the identity
of the sending process (client or database server) and by a monotonically
increasing counter value. This simple scheme is sufficient to ensure that each
Request message is univocally associated with a globally unique XID.

After the receipt of the Request message, the application server performs
the compute phase for the corresponding transaction and determines the result
set on each database. Then, it activates the first phase of the ACP protocol,
during which it retransmits Prepare message to all the database servers on
a timeout basis, until a Vote message is received from all of them. In our
protocol, a Vote message from DBi carries the MIPTi

req id maintained by DBi

for transactions associated with that req id value. Therefore, at the end of
the Vote collection phase, an application server is informed not only about
the state of the transaction it is currently handling (i.e. the one whose XID
it specified in the Prepare message), but also about the state of any sibling
transaction at all the database servers.

Once collected MIPTi
req id from each database server DBi, the application

server verifies whether it is currently possible to take a positive (i.e. commit)
decision for one of those sibling transactions. Specifically, the application
server checks whether there is a transaction instance identifier j associated
with req id for which the following Commit Condition (CC) holds:

Sub-Commit-Condition-1 (SCC1): The transaction XID =< req id, j >
has been prepared at all the database servers (i.e. the condition ∀i ∈
[1,m], MIPT i

req id[j].state == prepared is verified); and

Sub-Commit-Condition-2 (SCC2): No sibling transaction hav-
ing XID =< req id, j′ >, with j′ < j, may ever be-
come prepared at all the database servers (i.e. the condition
∀j′ < j, ∃i ∈ [1,m] : MIPT i

req id[j
′].state == abort is verified -

by Observation 4.2.2, if the database server keeps the value abort on
a MIPT entry, the corresponding transaction instance cannot be ever
prepared at that database).

If no transaction instance associated with req id has been found prepared
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Class ApplicationServer{
List DBlist = {DB1, . . . , DBm}; Outcome outcome; Result result;
InstanceIdentifier PreparedInstance, CommittedInstance, InstanceToDecide;

void main(){
while(true){

wait receive Request[req, < req id, inst id >] from client or from DBi;
result =compute(req, < req id, inst id >);
repeat { // ACP vote phase

send Prepare[req, < req id, inst id >, result] to each DBi ∈ DBlist;
wait (receive Vote[req id,MIPTi

req id] from each DBi ∈ DBlist) or TIMEOUT

} until (received Vote[req id,MIPTi
req id] from each DBi ∈ DBlist);

repeat{
PreparedInstance = min(S), where S = {j : ∀i ∈ [1, m] MIPTi

req id[j].state == prepared};
if (PreparedInstance is not defined)

{ InstanceToDecide = inst id; outcome = abort; break; }
if (PreparedInstance is defined) and

(∀j < PreparedInstance, ∃i ∈ [1, m] : MIPTi
req id[j].state == abort)

{ InstanceToDecide = PreparedInstance; outcome = commit; break; }
repeat { // ACP resolve phase

send Resolve[< req id, PreparedInstance >] to each DBi ∈ DBlist;
wait (receive Vote[req id,MIPTi

req id] from each DBi ∈ DBlist) or TIMEOUT

} until (received Vote[req id,MIPTi
req id] from each DBi ∈ DBlist);

}until (TRUE);
repeat{ // ACP decision phase

send Decide[< req id, InstanceToDecide >, outcome] to each DBi ∈ DBlist;
wait (receive DecideACK[req id] from each DBi ∈ DBlist) or TIMEOUT

} until (received DecideACK[req id] from each DBi ∈ DBlist);
if (Request was received from client){

if (outcome == commit)
set result to whichever received MIPTi

req id[InstanceToDecide].result;

else result = null;
send Outcome[< req id,− >, outcome, result] to client

}
} // end while true
} // end main
} // end class

Figure 4.4: Application Server Behavior.



4.2. THE PROTOCOL 67

at all databases (i.e. SCC1 does not hold for any instance identifier, hence
PreparedInstance is not defined), then the application server makes sure that
the transaction instance it is currently managing (i.e. the one associated with
the received inst id) gets aborted at all the back-end databases. This is done
by setting InstanceToDecide to the value inst id, outcome to the value abort,
and then sending Decide messages with the negative (i.e. abort) indication for
the transaction XID =< req id, InstanceToDecide >. These messages are
re-sent on a timeout basis until acknowledgments are received from all the
database servers.

If both SCC1 and SCC2 are verified (i.e. PreparedInstance is defined
and no other transaction associated with req id and having instance identifier
less than PreparedInstance can eventually become prepared), the application
server sets InstanceToDecide to the value PreparedInstance, outcome to the
value commit, and then sends Decide messages with the positive (i.e. commit)
indication for the transaction XID =< req id, InstanceToDecide > to the
databases. Also in this case, these messages are re-sent on a timeout basis
until the acknowledgments have arrived from all the database servers.

The only case left is when the application server has found some transac-
tion instance associated with req id prepared at all the databases (i.e. SCC1
holds for some transaction instance j, hence PreparedInstance is defined),
but it is still in doubt whether a transaction associated with the same req id,
and having instance identifier j′ < PreparedInstance, can eventually become
prepared at all the databases (i.e. SCC2 does not currently hold). In this case,
the application server sends Resolve messages (with the indication that we want
to resolve doubts on instance identifiers up to PreparedInstance) and then
re-collects again Vote messages from each DBi with the updated MIPTi

req id.
(The Resolve message triggers some update operations on the corresponding
MIPT at the recipient database, which mark the null entries with index less
than PreparedInstance with the abort value in order to prevent the corre-
sponding transaction instances to be eventually prepared. Hence, the Vote
messages will carry MIPTs comprising the updates triggered by the Resolve
message, plus any update triggered by different types of messages, e.g. Prepare
messages, sent to the databases by whichever application server.) Such a re-
solve phase gets over when the application server detects an instance identifier
for which CC becomes satisfied (this might happen for a PreparedInstance
different from the one for which SCC1 was originally verified). At this point
the final part of the ACP is executed for that instance via Decide messages,
just as explained above.

As already hinted, the Request message triggering the activities at the
application server might come from either the client or a database server. In
case it comes from the client, the application server sends back to the client the
final outcome right after the conclusion of the ACP. This also requires that
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the application server assembles the result message for the client by using
all the result sets associated with the committed transaction instance (i.e.
InstanceToDecide) on all the databases (these result sets are retrieved from
the MIPTi

req id[InstanceToDecide] received by the application server from
each DBi). On the other hand, in case the Request message comes from a
database server, no reply needs to be sent back since database servers send
Request messages with the only purpose to determine a final outcome for some
transaction remained in the pre-commit state longer than a time-out period
(see Task 4), and are not interested in receiving the corresponding result.

4.3 Protocol Correctness

In this section we provide a formal proof of the protocol correctness with re-
spect to the seven Termination, Agreement and Validity e-Transaction proper-
ties, whose definition has already been recalled in Section 3.3. The correctness
assumption under which the proof is carried out are presented before the proof
itself. Also in this case we use auxiliary lemmas we introduce in order to sim-
plify the structure of the proof.

4.3.1 Correctness Assumptions

Differently from the solution we presented in Chapter 3, the correctness of this
protocol does not hinge on any assumption on the accuracy of the underlying
failure detection scheme. This distinguishing feature of our protocol is very
relevant since, as it is well-known [25], in a pure asynchronous system such
as the one we consider, it is impossible to devise a failure detector’s imple-
mentation providing any guarantee on its ability to correctly identify crashed
processes.

The correctness of this protocol, analogously to the one in Chapter 3, de-
pends the assumptions on that at least an application server is correct, mean-
ing that it does not crash, and that databases are good, which means: (1) they
always recover after crashes, and eventually stop crashing (i.e. eventually they
become correct), and (2) if the application servers keep re-trying transactions,
these are eventually prepared. Concerning point (1) the same considerations
done in Section 3.3.1 naturally apply also in this case. Regarding point (2), it
is interesting to underline that the ability to eventually commit transactions
in case we keep retrying them does not contrast with the structure of our pro-
tocol, even if it allows multiple sibling transactions, associated with the same
client request (i.e. tagged with the same req id), to be concurrently active
at the back-end databases (since they are activated on a timeout basis). In
fact, these transactions do not block each other even in case of access to the
same data, thanks to the assumed concurrency control scheme at the database
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side (see Section 4.2.1). Hence, the progress of none of these transactions is
indefinitely prevented due to mutual dependencies.

4.3.2 Correctness Proof

Lemma 4.3.1 If CC is ever verified for a transaction having XID =<
req id, inst id >, then CC cannot be ever verified for a transaction having
XID′ =< req id, inst id′ >, where inst id′ 6= inst id.

Proof (By Contradiction) Assume that CC is ever verified for XID =<
req id, inst id >, and that it is also found verified for XID′ =<
req id, inst id′ >, where inst id′ 6= inst id. Without loss of gener-
ality, consider the case inst id′ < inst id. By SCC1, in order for
CC to hold for XID′ =< req id, inst id′ > it must hold that ∀i ∈
[1,m] MIPTi

req id[inst id′].state == prepared, whereas, by SCC2, in order
for CC to hold for XID =< req id, inst id > it must be ∀j < inst id,∃i ∈
[1,m] : MIPTi

req id[j].state == abort. Since inst id′ < inst id, the latter
condition implies that ∃i ∈ [1,m] : MIPTi

req id[inst id′].state == abort,
which would prevent SCC1 (and hence CC) to hold for < req id, inst id′ >,
unless the state value of MIPTi

req id[inst id′] had changed at some database
server DBi from prepared to abort. Since this is impossible by Observation
4.2.1, the assumption is contradicted and the claim follows. Q.E.D.

Lemma 4.3.2 If an application servers sends a Decide[< req id, inst id >
, commit] message, the no application server ever sends a Decide[<
req id, inst id >, abort] message, and vice versa.

Proof An application server sends Decide[< req id, inst id >, commit] only
if it finds that CC holds for the transaction XID =< req id, inst id >.
By SCC1, it must hold that ∀i ∈ [1,m] MIPTi

req id[inst id].state ==
prepared. Conversely, an application server sends the message Decide[<
req id, inst id >, abort] for the same transaction only in case it verifies that
∃i ∈ [1,m] : MIPTi

req id[inst id].state == abort. Since by Observation 4.2.1,
no database server can ever update any MIPT entry from the abort to the
prepared state value and vice versa, the previous conditions can never be
both verified. Hence the claim follows.

Q.E.D.

Lemma 4.3.3 If for a transaction XID =< req id, inst id > a correct ap-
plication server finds condition SCC1 verified, this server eventually sends
Decide messages with the commit indication for a transaction XID′ =<
req id,− > to all the databases.
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Proof If a correct application server finds condition SCC1 verified for some
XID =< req id, inst id >, there are two cases:

(1) The application server also finds SCC2 verified for XID =<
req id, inst id >, in this case CC holds for XID =< req id, inst id >,
or it finds CC verified for some different value inst id′. Hence, the ap-
plication server sends out Decide messages with the commit indication
to all the database servers for some XID′ =< req id,− > and the claim
follows.

(2) The application server finds that SCC2 does not hold for XID =<
req id, inst id > and that CC does not hold for any different value
inst id′. In this case, the application server transmits, on a timeout
basis, Resolve messages to the database servers, until Vote replies are
received from all of them. Let t be the time after which the database
servers are up and do not crash. After time t, since the application
server is correct, the communication channels are reliable, and all the
statements within the resolve method are non-blocking, MIPTi

req id is
updated by whichever DBi due to the Resolve message from the correct
application server, and returned to this server via the Vote message.
Given that after the update of MIPTi

req id on whichever DBi, there will
be no entry with index j < inst id which still keeps the null value, and
given that, by Observation 4.2.1, SCC1 still holds for inst id, there are
two cases:

(A) ∀j < inst id,∃i ∈ [1, m] : MIPTi
req id[j].state == abort, then

SCC2 also holds for inst id, hence CC is verified for inst id.
(B) ∃j < inst id : ∀i ∈ [1,m] MIPTi

req id[j].state == prepared.
Consider the minimum value of j for which previous condition is
verified. We have that SCC1 holds for j. In such a case, we also
have that ∀j′ < j,∃i ∈ [1,m] : MIPTi

req id[j].state == abort,
hence SCC2 (and thus CC) also holds for j.

In both cases A and B, the application server eventually sends out Decide
messages with the commit indication to all the database servers for some
XID′ =< req id,− > and the claim follows.

Q.E.D.

Lemma 4.3.4 If a correct application server keeps on receiving Request mes-
sages for a given req id, with different transaction instance identifiers, it even-
tually sends Decide messages with the commit indication for a transaction
XID =< req id,− > to all the database servers.
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Proof (By Contradiction) Assume that a correct application server that
keeps on receiving Request messages tagged with a given req id does not even-
tually send Decide messages with the commit indication to all the database
servers for a transaction having XID =< req id,− >. Let t be the time after
which the database servers stop crashing and remain up. After time t, since
the correct application server keeps on receiving those requests, it will even-
tually send Prepare messages to all the databases, which will eventually arrive
due to reliability of communication channels. Similarly, since database state-
ments within the vote method are non-blocking, the databases will eventually
send Vote messages, which will also eventually arrive back to the application
server. After the receipt of the Vote messages there are two cases:

(A) The correct application server finds SCC1 verified for some transaction
XID′ =< req id,− >. In this case, by Lemma 4.3.3 the application
server eventually sends the Decide message with the commit indication
to all the database servers tagged with XID′′ =< req id,− >. Hence
the assumption is contradicted and the claim follows.

(B) The correct application server finds SCC1 verified for no value of j asso-
ciated with whichever transaction identifier XID =< req id, j >. Given
that the correct application server keeps on receiving Request messages
tagged with req id indefinitely, it will keep on retrying the correspond-
ing transactions after time t. Hence, by database goodness there will
be a transaction XID =< req id, j > that can be prepared at all the
databases (i.e. the prepare primitive does not return abort). Hence,
the only case in which SCC1 is not verified for XID =< req id, j > is
when for some DBi, MIPTreq id[j].state already keeps the abort value
(so that, by the database server pseudo-code, prepare is not invoked by
DBi for XID =< req id, j >). However, always by the database server
pseudo-code, the abort state value in MIPTreq id[j].state can ever be set
only in the following two cases:

(B.1) A Decide message with the abort indication from the correct appli-
cation server has been received and processed by DBi (due to the
uniqueness property for XID values, no other application server
can ever sent that message, since, by the application server pseudo-
code, Decide messages with the abort indication can ever be sent
only for XID associated with Request messages the server receives).
However, this is impossible since, upon the verification of SCC1
while handling whichever request with XID =< req id, j > (i.e.
right after the receipt of Vote messages from the databases), no
Decide message has been sent out at all tagged with that XID
value.
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(B.2) A Resolve message tagged with XID′ =< req id, j′ >, where
j′ > j, has been ever sent from some application server, and re-
ceived and processed by DBi. In this case, that application server
has found SCC1 verified for XID′ =< req id, j′ >. However,
given that the correct application server will keep receiving re-
quests, retrying the corresponding transactions and recollecting
Vote messages for req id indefinitely, and given that, by Observa-
tion 4.2.1, MIPTi

req id[j
′].state, once set to prepared will not even-

tually change on any DBi, the correct application server will also
find SCC1 verified for XID′ =< req id, j′ >. Hence we eventually
fall in case (A), and the claim follows.

Q.E.D.

Termination T.1 - If the client issues a request, then, unless it crashes, the
client eventually delivers a result (2).

Proof (By Contradiction) Assume by contradiction that a client issues
a request, does not crash and does not eventually deliver any result. In this
case, no Outcome message with the commit indication for a transaction asso-
ciated with that request, i.e. tagged with the corresponding req id, is received
by the client. Hence, by the client pseudo-code, it keeps on sending Request
messages tagged with req id as the request identifier to the application servers
indefinitely. Hence, by reliability of communication channels, a correct appli-
cation server will keep on receiving Request messages tagged with that req id
by the client. By Lemma 4.3.4, this application server will eventually send
Decide messages with the commit indication, tagged with req id, to all the
back-end databases. Also, given that there is a time t after which all the
database servers stop crashing and remain up, the Decide messages are re-
sent on a timeout basis, and the communication channels are reliable, the
database servers will eventually reply with DecideACK messages tagged with
req id, which are eventually received by the correct application server. Since
this server does not crash, and the Request came from a client, by the ap-
plication server pseudo-code, an Outcome message, tagged with req id, with
the commit indication and the corresponding transaction result is eventually
sent back and received by the client due to communication channel reliability.
That result is therefore eventually delivered by the client since it does not

2As in Chapter 3, we use “vote/decide for a result” as synonymous with “vote/decide for a
transaction”. Similarly, “commit/abort a result” is used as synonymous with “commit/abort
a transaction”. Also, delivery of the result at the client side expresses that the issue method
returns a result associated with a committed transaction.
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crash. Hence the assumption is contradicted and the claim follows. Q.E.D.

Termination T.2 - If any database server votes for a result, then the
database server eventually commits or aborts the result.

Proof (By Contradiction) Assume by contradiction that a database server
DBi prepares a transaction XID =< req id, inst id > (i.e. votes for that re-
sult) and never decides for this transaction. This means that, even after time
t, when DBi stops crashing and remains up, it does not eventually receive
any Decide message with either (A) a commit indication for a transaction
XID′ =< req id,− > or (B) an abort indication for the transaction XID.
In this case, by Task 4 of the database server pseudo-code, DBi keeps on
sending Request messages tagged with req id as request identifier to the ap-
plication servers indefinitely. Hence, by reliability of communication channels,
a correct application server will keep on receiving Request messages tagged
with that req id. By Lemma 4.3.4, this application server will eventually
send a Decide message with the commit indication to DBi for a transaction
XID′′ =< req id,− >. Given that we are at time after t, by channel reli-
ability, this message is eventually received by DBi which eventually invokes
decide for XID′′ =< req id,− >. By the specification of the decide primi-
tive, DBi decides for XID independently of the instance identifier associated
with XID′′. Hence, the assumption is contradicted and the claim follows.

Q.E.D.

Agreement A.1 - No result is delivered by the client unless the result is
committed by all database servers.

Proof The client delivers a result only when it receives an Outcome mes-
sage with the commit indication from an application server. On the other
hand, the application server sends the Outcome message with the commit in-
dication to the client only after it has sent Decide messages with the commit
decision for the corresponding transaction to all the database servers, and
has received DecideACK messages from all of them. Hence all the database
servers have executed the decide primitive with commit as input parame-
ter. Therefore, all we need to prove is that, prior to the execution of decide
with the commit indication (A) that transaction had been prepared and (B)
had not been aborted. Point (A) straightforwardly follows from SCC1, and
by that a MIPT entry can store a prepared state value for that transaction
only if the prepare primitive succeeds in preparing the transaction. Concern-
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ing point (B), a transaction XID =< req id, inst id > can be aborted by a
database server either because the database server receives a Decide message
with commit indication for a transaction having XID′ =< req id, inst id′ >,
where inst id 6= inst id′, which is excluded by Lemma 4.3.1, or because the
database server receives a Decide message with the abort indication for that
same transaction, which is excluded by Lemma 4.3.2. Hence the claim follows.

Q.E.D.

Agreement A.2 - No database server commits two different results

Proof A database server can commit two different results, i.e. two differ-
ent transactions XID =< req id, inst id > and XID′ =< req id, inst id′ >
associated with the same client request only, if it receives a Decide[<
req id, inst id >, commit] and a Decide[< req id, inst id′ >, commit] where
inst id 6= inst id′. In this case, some application server must have sent the
Decide messages with the commit indication for the two different transac-
tions XID =< req id, inst id > and XID′ =< req id, inst id′ >. Hence,
the application servers must have found CC verified for both XID =<
req id, inst id > and XID′ =< req id, inst id′ >. However, this is impos-
sible by Lemma 4.3.1. Q.E.D.

Agreement A.3 - No two database servers decide differently on the same
result.

Proof A database can decide commit for a result only if it receives a De-
cide message with the commit indication for the corresponding transaction,
whereas it can decide abort only if it receives a Decide message with the abort
indication for that same transaction or a Decide message with a commit indi-
cation for a different transaction associated with the same req id. By Lemma
4.3.2, it follows that no two database servers can ever receive Decide messages
with a commit indication for two different transactions associated with the
same req id. Finally, by Lemma 4.3.3 no two application servers can send a
Decide message with a commit indication and a Decide message with an abort
indication for the same transaction XID. Hence the claim follows. Q.E.D.

Validity V.1 - If the client delivers a result, then the result must have been
computed by an application server with, as a parameter, a request issued by
the client.
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Proof The client delivers the result after it receives the Outcome message
with the commit indication. Such a message is sent to the client by some
application server if, and only if, the application server has received from each
database server an Outcome message with the commit indication for that
result. This happens only in case the result has already been committed.

Given that a transaction associated with an identifier is committed only
after an application server has computed and prepared it on all the databases,
there are two cases: (i) The application server computes and prepares the
transaction after it has received the Request message with that identifier from
the client, in this case the claim trivially follows; (ii) The application server
computes and prepares the transaction after it has received the Request mes-
sage with that identifier from a back-end database server. In this case, given
that the database server does not spontaneously issue requests, it means that
an application server must have previously received a Request message with
that same request identifier from the client. Also in this case, therefore, the
claim follows. Q.E.D.

Validity V.2 - No database server commits a result unless all database
servers have voted yes for that result.

Proof A database server commits a result only after it receives the Decide
message for the corresponding transaction, with a commit indication. On the
other hand, by SCC1, an application server can send such a message only
after every having verified that all the database servers have a MIPT entry for
that result storing the prepared state value. By the database server pseudo-
code, a MIPT entry with prepared state value is stored only after the database
server prepared (i.e. voted positively) for that transaction. Thus, if a database
server commits a transaction, then all database servers must have prepared
that same transaction. Q.E.D.

4.4 On Practical Issues

In this section, analogously to what we did in Section 3.4, we discuss the
practical issues of how to avoid unbounded growth of recovery information
logged by the database servers, and of how to cope with application logics
that execute transactions spanning only a subset of the back-end servers.

For what concerns garbage collection of unneeded recovery information,
this protocol poses an additional difficulty with respect to the protocol de-
scribed in Chapter 3. This is essentially due to that, while in our former
proposal the client is the only process to generate and retransmit new request
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instances, in this latter protocol the database servers are as well allowed to
send out new request instances if a transaction were to remain locally prepared
for an excessively long period of time. Consequently, we are here faced with
the additional problem of ensuring that, following the removal of the MIPTs at
the databases server, no Request message (possibly) originated by a database
gets asynchronously processed giving raise to a (new) transaction that gets
eventually committed.

However, in the most likely scenario in which neither the client nor the
databases experience timeout expirations (and therefore do not submit ad-
ditional requests instances for a same client request), one could rely on the
following simple mechanism to allow safe removal of logged MIPTs. Database
servers should piggyback on the DecideACK message with the commit indica-
tion directed to the application server an additional flag conveying information
on that they did not perform any request retransmission associated with that
same request identifier. The client should also send an explicit acknowledg-
ment message to the application server upon receipt of the Outcome message.
At this point, the application server would simply notify the databases to
discard the corresponding MIPTs. This is safe given that neither the client
nor the database servers will ever re-transmit that request and that the only
transmitted Request message has been already processed by some application
server.

In case the client or the database server had to give rise to any request
retransmissions, an approach analogous to the one described in Section 3.4,
could be adopted to reduce the amount of space occupied by the stored MIPTs
at the database servers. Essentially, the above described acknowledgment
scheme could be modified as follows: the client, as well as the database servers,
could send to the application server a different acknowledgment message to
signal that they have performed some request retransmission. In this case the
application server could inform the database servers to discard the transaction
result (while maintaining the information on the transaction state) from every
entry of the MIPT associated with that request. As already discussed in
Section 3.4, this would allow to release most of the storage resources occupied
by the recovery information. Finally, just like for the protocol presented in
Chapter 3, in practical settings one could still rely on appropriately selected
TTL values, after which deletion of the MIPTs from the databases could be
performed.

For what concerns the issue of how to deal with client requests whose pro-
cessing requires transactional access only to a subset of the back-end databases,
there are two cases to consider.

If the identities of the involved databases were determined as a determin-
istic function of the client request content, no additional mechanisms be nec-
essary given that every application server processing an instance of the same
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client request would naturally interact with the same subset of databases.
Conversely, if the business logic residing at the application server selected

the databases to be accessed in a non-deterministic manner, additional mech-
anisms, similar in spirit to the one described in Section 3.4, would be required
in order to ensure that application servers processing different instances of the
same client request were forced to evaluate conditions SCC1 and SCC2 over
the same set of databases before attempting to commit a transaction.

Finally, if stable storage capabilities were allowed at the client side, our
protocol could be extended to permit correct recovery of clients after crashes
in an analogous manner to the one already discussed in Section 3.4. The
client should simply log the Request message sent out for each issued request,
as well as the first received Outcome message carrying a commit indication.
Upon recovery, if no Outcome message is logged with the commit indication,
the client should re-transmit a Request message tagged with the same request
identifier and an increased instance number value.

4.5 Overhead and Integration with Conventional
Technology

In this section we comparatively evaluate the overhead of our protocol vs other
solutions. Then, we discuss issues concerning its integration with Commercial
Off-The-Shelf (COTS) systems. We compare the protocol with the same state
of the art solutions considered in Chapter 3, namely:

• The baseline protocol;

• The persistent queue approach (PQ) [16]; and

• The coordination-based schemes AR and PBR presented, respectively,
in [44] and [45].

The behavior of these protocols was already detailedly described in Section
3.5 and schematized in Figure 3.6. Additionally, we consider in the comparison
also our own solution presented in Chapter 3. To distinguish between that
solution and the protocol presented in this chapter we use, respectively, the
notations Proto-A and Proto-B. Their comparative schematization is shown
in Figure 4.5.

Given that these two protocols exhibit the same message exchange pattern
and, that both of them avoid additional interactions with remote components
(namely the queuing system for PQ and the other application server replicas
for AR and PBR), the analytical model of Proto-A presented in Section 3.5
would essentially hold also for Proto-B, except for minor modifications of the
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Figure 4.5: Schematization of the (Normal) Behavior of Proto-A (a) and Proto-
B (b). (Filled boxes represent eager disk accesses)

values of some specific terms expressing local processing actions at the in-
volved processes. Hence, response time results analogous to the one achieved
for Proto-A in Section 3.5 would be obtained for Proto-B when using that
same analytical approach and parameterization in the comparison. (This also
means that Proto-B exhibits the same advantages of Proto-A compared to the
other solutions, in terms of performance effectiveness especially in large scale
systems.) For this reason, in this section we choose to compare the consid-
ered protocols at a higher level of abstraction. This is done by relying on two
classical metrics for distributed transaction processing, namely the number of
(server-side) message rounds needed before returning a response to the client,
and the number of required eager logs. Table 4.1 reports the corresponding
values for each of the considered protocols in case of a (likely) nice-run, not
incurring failures or suspect of failures. These values clearly show how Proto-
B achieves end-to-end reliability guarantees at the same cost of a baseline
protocol tolerating only database server failures.

It is also interesting to highlight that, when directly comparing our own
solutions, Proto-B achieves further overhead reduction compared to Proto-A.
This is achieved by saving the cost of an eager log at the back-end databases.
Specifically, as shown in Figure 4.5, Proto-A performs the insertion of the ITP
within an external transaction that is independent of the distributed transac-
tion coordinated by the application server, and whose commitment requires
an additional eager access to persistent storage. It is worthy underlining that,
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# message rounds # eager logs

baseline 2 2

PQ 4 5

PBR & AR 4 2

Proto-A 2 3

Proto-B 2 2

Table 4.1: Protocols Comparison.

rather than for theoretical reasons, performing the ITP manipulation out of
the scope of the application level distributed transaction is related on the
pragmatical design reason of ensuring Proto-A fully compliance with standard
distributed transaction processing technology. Manipulating the ITP directly
within the application level distributed transaction (e.g. by including the SQL
statements operating on the ITP table within the same transactional context of
the business logic transaction) would in fact require a modification of the con-
ventional database logic providing support for 2PC. This is due to that, upon
entering the pre-commit state for a transaction, a DBMS maintains durable
locks on any data item updated by that transaction, and consequently also on
the corresponding ITP tuple, until it does not receive a commit/abort deci-
sion for the transaction. In the meanwhile, it would be therefore impossible for
any application server to test the transaction outcome through a Resolve mes-
sage, as both the insert and lookup primitives in the ITPLogger’s try abort
method would be forced to block. With such a blocking scenario arbitrarily
protracting in case of crash (with no recovery) of the application server that
had originally prepared the blocking transaction.

On the other hand, Protocol-B has two essential building blocks in the
innovative, ad-hoc MIP concurrency control and transaction demarcation
schemes, whose integration within existing DBMS products mandatorily re-
quires alteration of their inner logic. On the other hand, this gives us more
space for optimizing the database treatment of recovery information. Specif-
ically, we may rely on custom mechanisms performing the MIPT’s manipula-
tions within the same context of the application level distributed transaction,
while releasing locks on the MIPT as soon as its manipulation (occurring
within the vote and resolve methods) ends, thus avoiding blocking situa-
tions.

Along the lines of the previous observations, we conclude this chapter by
discussing some practical aspects an implementor would face when adopting
our solution. For what concerns the implementation of the client retransmis-
sion logic, Proto-B does not pose any practical difficulty (3). The former could
be straightforwardly supported by a Web browser by relying on, e.g., a Java

3Actually these same considerations also apply to Proto-A.
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applet, Javascript technology or by exploiting browser proprietary technology,
such as ActiveX in Microsoft’s IE or ad-hoc developed extensions in Mozilla’s
Firefox.

Regarding the implementation of the middle-tier server logic, one could
exploit the strong trend exhibited by modern application server to be im-
plemented on top of off-the-shelf industry middleware frameworks (e.g. Sun
Microsystems’ Java 2 Platform Enterprise Edition - J2EE, and Microsoft’s
.NET). These permit assembly of services from reusable components, rely-
ing upon container environments to provide commonly required support for
naming, communication, security, clustering, persistence, and transactions.
In addition to providing an integrated environment for component execution,
which significantly reduces the time to design, implement, and deploy ap-
plications, such frameworks incorporate “best practices” designs. The latter
provide developers with design patterns, suggesting a standardized structure
upon which distributed component-based systems should be based [72]. For
what concerns transaction management, current industry standard middle-
wares already embed ad-hoc services, such as the well-known JTS for the
J2EE platform, providing the abstraction of “Container Managed Transac-
tions” [114]. This approach aims at saving application developers from the
burden of implementing low level, critical and error-prone mechanisms, such
as demarcation and coordination of distributed transactions. In such a con-
text, delegating the middleware container to host our protocol’s application
server logic (which can be basically viewed as a non-conventional, MIPT-based
transaction coordination scheme) appears as the most natural choice.

Finally, for what concerns the integration of the MIP scheme with COTS
database systems, in order to support, e.g., the ad-hoc transaction demarca-
tion and concurrency control mechanisms (see Section 4.2.1), as said we need
to alter the inner logic of the underlying DBMS. The hurdles an implementor
should face while developing a MIP implementation are strictly related to the
design choices of the specific DBMS. Anyway, MIP implementations could be
relatively easily developed in case of integration with DBMS relying on data-
item versioning for concurrency control purposes. Specifically, multiversion
databases (see, e.g., [118]), have the ability to maintain multiple versions of
a same data-item, so that concurrency control selects which version must be
supplied for a given read operation by a certain transaction [14]. Although
this approach is orthogonal to our proposal (since multiversion concurrency
control aims at increasing the concurrency level among independent transac-
tions by letting them access different versions of the same data items), it could
be anyway used as the basis for the concurrency control scheme required to
support the MIP semantic (which aims at increasing the concurrency level
only among sibling transactions associated with the same client request).



Chapter 5

Coping with Performance
Failures

Beyond traditional crash failures, we can envisage a wider type of failure class,
we can term as “performance failure”, which is very closely related to Quality-
of-Service (QoS) oriented, advanced system design. We say that a performance
failure occurs in a multi-tier application when the completion of request pro-
cessing and result delivery at the client side is delayed due to:

(i) A crash of some component; and/or

(ii) Poor responsiveness of some component due to, e.g., overload/congestion
situations.

We note that performance failures (independently of their origin) consti-
tute a relevant problem in real life applications. The user’s perceived response
time is in fact one of the main issue for differentiation among electronic ser-
vices, such as, e.g., e-Commerce or on-line stock trading applications, since
it directly determines the level of user’s satisfaction [19]. In the context of
e-Commerce applications, for example, a striking result shown in [130] is that
an increase of the user perceived response times can rapidly lead to the dev-
astating phenomenon of excessive users abandon rate. The empirical study
conducted in this work highlighted that while the abandon rate remains mod-
est (i.e. under the 2%) if the response time is under the threshold value of
7 seconds, it dramatically increases, up to 70% in case of a few additional
seconds of delay in the delivery of the output at the client side. In a broader
sense, response time is a critical factor that can have detrimental effects on the
business process supported by the growing number of real-time applications
that are nowadays accessible over the Internet, such as, e.g., on-line auctions
or stock/equity trading systems.

81
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We argue that an effective approach to tackle performance failures would be
to mask the original cause of the failure (either crash or overload/congestion),
by activating the processing of client requests in parallel along different chains
of components (as much uncorrelated as possible), so to let end users perceive
the latency of the quickest interaction and increase the likelihood to timely
deliver responses. Interestingly, the protocol described in Chapter 4 does al-
low multiple instances of the same client request to be (possibly) processed
in parallel by different application server replicas, reconciling them at com-
mit time. (In fact, in that protocol fail-over is performed on the basis of
simple timeout based request retransmission logic, and not via extermination
of previously submitted requests. Also, it avoids mutual blocking situations
among the different request instances, due to data conflicts and pre-commit
locks, thanks to the innovative MIP scheme for distributed transaction man-
agement.) Hence, it represents a natural building block to support a parallel
invocation scheme aimed at tackling not only classical crashes failures, but
also performance failures.

This Chapter addresses exactly the latter issue, showing how the protocol
in Chapter 4 can be naturally transmuted into a parallel invocation scheme.
We motivate, propose and evaluate the adoption of such a parallel invoca-
tion scheme in the context of large scale service delivery platforms, where the
correlation of different chains of components toward the back-end servers is
typically strongly reduced thanks to the large redundancy of geographically
distributed middle-tier server replicas and to the path diversity provided by
the underlying (multi-hop) network infrastructure [8, 28].

As we will discuss, this is, at the best of our knowledge, the first parallel
invocation scheme ever proposed in literature to address the relevant scenario
of business logics performing non-idempotent manipulations (e.g. updates) of
transactional data in a multi-tier system with stateless application servers.

5.1 Deriving a Parallel Invocation Protocol

This section is devoted to formalize the changes required to transmute the
protocol in Chapter 4 into a parallel invocation protocol suited for coping
with performance failures.

While presenting the parallel invocation protocol, we only focus on the
presentation of the client behavior and of the database server behavior since
the application server behavior remains identical among the two protocols. For
simplicity of presentation, we assume that the number of application server
replicas contacted in parallel by the clients is an a-priori known constant value,
which we refer to as ParallelismLevel. However, we will later show how to
avoid such an assumption via marginal modifications of the payload of the



5.1. DERIVING A PARALLEL INVOCATION PROTOCOL 83

Class Client{
List ASlist = {AS1, . . . , ASn}; ApplicationServer AS; Result result;
Outcome outcome; RequestIdentifier req id; InstanceIdentifier inst id;
Counter counter = InitialV alue;

Result issue(Request req){
outcome = abort;
req id = SetId(req);
while(true){
set TIMEOUT;
for (int i = 0; i < ParallelismLevel; i + +) {

AS = ASlist.next();
inst id =< GetMyCategory(), + + counter >;
send Request[req, < req id, inst id >] to AS;

}
wait (receive Outcome[< req id,− >, commit, result] from

any application server in ASlist) or (TIMEOUT);
if (received Outcome[< req id,− >, commit, result]) return result;
} // end while
} // end issue

} // end class

Figure 5.1: Client Behavior within the Parallel Invocation Protocol.

exchanged messages.

5.1.1 Client Behavior

Figure 5.1 shows a revised version of the client pseudo-code originally pre-
sented in Figure 4.3 of Chapter 4, updated to reflect the presence of parallel
invocation.

The client multicasts its request to a number of ParallelismLevel dif-
ferent application servers chosen from ASlist, and waits for the first Out-
come message reporting a commit indication from any of them, or for a
timeout expiration. In the former case, it returns the corresponding result.
Otherwise, the client keeps on multicasting its request to a different set of
ParallelismLevel application servers. The employment of the retransmis-
sion logic is obviously meant to tackle with the scenarios in which every
contacted application server either reports an abort outcome (e.g. because
the database servers refused to commit their transactions) or simply does
not timely deliver a reply (e.g. because all of them prematurely crashed).
In other words, the latter ones are the situations in which even the em-
ployment of the parallel invocation was unable to effectively tackle perfor-
mance failures in order to guarantee successful, timely completion of the
whole end-to-end interaction. Note that, just like in the protocol in Chap-
ter 4, each instance of a request message transmitted by the client is tagged
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with the same req id (and category), but with different, progressive values for
instance number. It trivially follows that the first ParallelismLevel request
instances initially multicast by the client will have instance numbers in the
range [InitialV alue, InitialV alue + ParallelismLevel).

5.1.2 Database Server Behavior

In Figure 5.2 we specify the pseudo-code for the behavior of database servers.
Actually, we do not report the whole pseudo-code, but only the modifi-
cations applied to the original database server pseudo-code in Chapter 4.
These are highlighted via a box, and are restricted to the Prepare method.
Such modifications are meant to maximize the performance benefits achiev-
able through the parallel invocation scheme, and specifically, to avoid ad-
ditional communication rounds (with respect to the standard two phases
of 2PC) in between application and database servers for the processing of
transactions having inst id =< ClientCategory, j > with instance number
j ∈ [InitialV alue, InitialV alue + ParallelismLevel) (i.e. associated with
the first set of ParallelismLevel requests multicast by the client). In fact,
as discussed in Section 4.2.3, the original protocol in Chapter 4 necessitates
two communication rounds for the processing of the first request spawned
by a client, i.e. the one associated with instance number = InitialV alue,
but may require an additional communication round for the exchange of Re-
solve/Vote messages (between application and database servers) when dealing
with transactions associated with subsequent client request retransmissions,
i.e. having instance number > InitialV alue. However, this feature is unde-
sirable for the parallel invocation protocol, as it would a-priori penalize (in
terms of performance) the processing of requests having instance number ∈
[InitialV alue + 1, InitialV alue + ParallelismLevel) with respect to the re-
quest having instance number = InitialV alue.

In order to cope with the latter performance issue, the database server
treats in an ad-hoc manner the transactions having instance identifier
inst id′ =< ClientCategory, j > with instance number j ∈ [InitialV alue +
1, InitialV alue + ParallelismLevel), i.e. all the transactions associated
with the first set of requests multicast by the client except the one having
instance number = InitialV alue. When asked to prepare one of these trans-
actions, the database server executes the resolve method with inst id′ as
input parameter immediately after having successfully invoked the prepare
primitive, rather than waiting for an explicit Resolve message from the appli-
cation server as in the original protocol version. This ensures that any sib-
ling transaction having inst id < inst id′ and not yet prepared, will never
be able to prepare in the future at that database (being its MIPT entry
marked with the abort state value). As a direct consequence, if we denote
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TypeMIPT DatabaseServer::vote(Request req, XID < req id, inst id >, Result result){
atomically do{

if (MIPTreq id does not exist) {create MIPTreq id; MIPTreq id.req = req;}
if (MIPTreq id[inst id].state == null) {

state = prepare(req id, inst id);
if (state == prepared) {

MIPTreq id[inst id].(state, result) = (prepared, result);

if ( inst id =<ClientCategory, j > and
j ∈ [InitialV alue + 1, InitialV alue + ParallelismLevel) )

resolve(req id, inst id);

} //end if (state == prepared)
else MIPTreq id[inst id].(state, result) = (abort, null);

}// end if
} // end of atomic statement
return MIPTreq id;

} // end vote

Figure 5.2: Database Server Behavior within the Parallel Invocation Protocol.

with minPrecommitted the minimum transaction instance identifier that an
application server, processing a transaction associated with the first set of re-
quests multicast by the client, were to find pre-committed at all the databases
after collecting the Vote messages (i.e. the minimum instance identifier for
which SCC1 were found to hold), then it is guaranteed that every transaction
having inst id < minPrecommitted will be marked as aborted in at least
one database MIPT. Hence both SCC1 and SCC2 will simultaneously hold
for inst id = minPrecommitted and the application server will not have to
activate any additional communication round.

To help clarifying discussion, in Figure 5.3 and Figure 5.4 we contrast
the processing of a transaction associated with a client transmitted request
having instance number = InitialV alue + 2 according to, respectively, 1)
the original database server pseudo-code presented in Section 4.2.1 and 2) the
above described database server pseudo-code assuming ParallelismLevel > 2.

It is important to underline that if we did not restrict such an ad-
hoc treatment to the transactions having instance identifier minor than
< ClientCategory, InitialV alue + ParallelismLevel >, we could in theory
give rise to the scenario in which, due to an unlucky interleaving of Prepare
messages at the database servers, transactions end up indefinitely aborting
each other, hence preventing any transaction from getting ever pre-committed
at all the databases (see Figure 5.5). In its turn, this would indefinitely avert
committing transactions associated with the client request and consequently
the delivery of a result to the client, thus leading to a violation of the T.1
e-Transaction property. However, by bounding to ParallelismLevel the num-
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Application
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Server 1

SCC 2 does not.
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hold.

SCC1 and SCC2

Database

Decide[InitialValue+2,commit]

Resolve[InitialValue+2]

Prepare[InitialValue+2]
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}
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−
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−

−
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Figure 5.3: Example Execution of a Transaction Associated with a (Client
Transmitted) Request Having instance number = InitialV alue+2 According
to the Database Server Pseudo-code in Figure 4.2. (Only relevant identifiers
are shown.)
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Application
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Figure 5.4: Example Execution of a Transaction Associated with a (Client
Transmitted) Request Having instance number = InitialV alue + 2 Ac-
cording to the Database Server Pseudo-code in Figure 5.2 and Assuming
ParallelismLevel > 2. (Only relevant identifiers are shown.)



88 CHAPTER 5

Database

Server 1

Prepare[InitialValue+2]

Prepare[InitialValue]

Database

Server 2

Prepare[InitialValue+3]

Prepare[InitialValue+1]

−
−

MIPT1

−

...
−

−

MIPT1

−

...
−

−
−

MIPT2

−

...
−

prepared

MIPT1

...
−

prepared

abort

prepared

MIPT2

−

...
−

abort

prepared

MIPT2

...

abort

prepared

abort

prepared

Prepare[InitialValue+2i] Prepare[InitialValue+2i+1]

MIPT1

...

prepared

...

abort

−

MIPT2

...

prepared

abort

prepared

...

Figure 5.5: Interleaving of Prepare Messages at the Database Servers Giving
Rise to an Unbounded Sequence of Mutual Aborts among Sibling Transac-
tions Assuming ParallelismLevel = ∞. (Only Prepare messages and relevant
identifiers are shown.)
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ber of transactions for which we autonomously execute the Resolve method
at the database side, we fall back to the original protocol treatment as soon
as the client or the back-end databases (experience a timeout and) retransmit
the request. This prevents unbounded mutual abort of sibling transactions and
allows us to preserve the whole set of e-Transaction guarantees.

As a final consideration, in order to remove the assumption that the
ParallelismLevel value is a-priori known by both the clients and the database
servers, all we would need to do is to have the client dynamically determine
such a value (e.g. by taking it as an additional input parameter of the issue
method) and piggyback it as a field of the request content. This would per-
mit to the database servers to differentiate the treatment of transactions, as
described above, on the basis of this information.

5.2 Innovation vs State of the Art Approaches

Over the years, a number of solutions, e.g., [108, 97, 80, 27, 22, 54], have
been proposed relying on the idea of simultaneously exploiting multiple net-
work paths among communicating parties in order to provide enhanced per-
formance and reliability. The common base underlying these approaches is to
leverage the inherent path-diversity of multi-hop networks so to reduce the
likelihood to incur link congestions or failures. Dispersity Routing [80] and
IDA [97] were probably some of the first works in the area of path-diversity.
They essentially proposed to split the transfer of information over multiple
network paths so to provide enhanced dependability and performance. Sim-
ulation results and analytic studies [9, 18] have later shown the benefits of
this approach in the context of real-time communications. More recently, the
notion of path-diversity has been exploited to achieve higher QoS levels in
content delivery applications, such as parallel file downloads [30, 22, 28], co-
operative Web cache sharing [126, 61], multimedia streaming [8] and access to
non-transactional Web-services [83]. Generally speaking, a promising result
highlighted in some of these works [8, 28] is that existing content/service de-
livery infrastructures seem to have the intrinsic potential for providing uncor-
related network paths among a client and multiple edge servers, even though
these infrastructures were originally designed to minimize distance from clients
to edge servers rather than for maximizing path disjointness. Compared to
all these approaches, our parallel invocation protocol has the distinguishing
feature of coping with requests that perform transactional manipulations (e.g.
updates) of application data which requires apposite mechanisms to address
the additional difficulties arising with respect to content delivery applications
(e.g., non-idempotence of requests processing or mutual blocking of sibling
transactions due to data conflicts).
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As a matter of fact, our parallel invocation protocol represents a solution
orthogonal to all the approaches relying on pervasive caching of both static
contents, e.g., [121, 36], and DBMS data, e.g., [84, 33, 69], at the edge server
side, which are aimed at tackling performance failures in large scale service
delivery infrastructures. These approaches effectively cope with performance
failures (due to server overloads and/or network congestions) for the case of
client requests performing read only access to (dynamic) application data. In-
stead, as pointed out above, our parallel invocation scheme copes with trans-
actional requests, that, for a number of relevant reasons, need direct access to
primary data copies at the back-end tier. These reasons can be schematized
as follows:

• Often it is the very same nature of the application to impose interac-
tions with third-party services, as in the case, e.g., of e-Shops relying on
trusted authorities for validation of electronic payments.

• Further, data replication over third-party owned, geographically dis-
persed edge servers may not be a viable option in very common appli-
cations due to privacy and security considerations, as in the case, e.g.,
of e-Health applications manipulating sensitive information on personal
health conditions and practices.

• However, even in those contexts where data replication represents a fea-
sible opportunity, the de facto standard approach [51] to transactional
WAN data replication is to rely on some primary copy scheme, which
impose redirecting update requests to (remote) primary databases. This
depends on that update anywhere-anytime-anyway transactional repli-
cation strategies, such as, e.g., [3, 93, 107, 122], are known to provide
good performance when the degree of replication is kept on the order
of a dozen of sites, but have unstable behavior as the number of repli-
cas and workload scale up [51], hence revealing ineffective in large scale
infrastructures composed by tens of thousands of servers.

Overall, our parallel invocation protocol targets precisely these scenarios
(i.e. applications performing update manipulations of remote transactional
resources), thus complementing existing data replication techniques by mask-
ing performance failures in contexts where these latter solutions would reveal
either not viable or ineffective.

Parallel invocation schemes are also at the basis of long established ac-
tive replication techniques [104, 103]. However, our approach assumes a dif-
ferent architectural model and tackles an orthogonal problem with diverse
techniques. Specifically, classical active replication exploits atomic multicast
protocols [35, 99] to ensure consistent evolution of the state trajectory of a set
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of stateful, deterministic server replicas. Instead, in our parallel invocation
protocol, clients multicast (in a non-atomic fashion) their requests to a set
of stateless, non-deterministic application server replicas so to pursue timely
delivery of results in presence of middle-tier servers’ crashes/overloads and/or
network congestions. Also, our protocol avoids the inherent costs of atomic
broadcast protocols, which have been shown to suffer from significant perfor-
mance degradations in WANs [6] due to relatively high loss rate and variations
in message propagation time.

Finally, we remark that many results exist for what concerns the design
and implementation of data centers (e.g. database systems) offering facilities
for supporting high performance, or even real-time applications. These facili-
ties span from (i) solutions for ad-hoc management of transactions with time
constraints (e.g. [112, 65, 64, 92, 109, 124]), to (ii) solutions aiming at reducing
the impact of the latency of distributed commit schemes on the availability of
pre-committed data (e.g. [34, 58]), to (iii) solutions for availability and reli-
ability of data centers (e.g. via replication and ad-hoc recovery schemes for
critical data, see [106, 129, 123]). Even though some of these solutions (e.g.
[109]) have been proposed in the context of Web applications, they do not
straightforwardly fit all the timing requirements of a whole end-to-end inter-
action along all the components of modern multi-tier applications, which is the
issue we aim at addressing, in an orthogonal way, via our parallel invocation
scheme.

5.3 Simulation Study

In this section we report the results of an extended simulation study devoted
at evaluating the impact of our parallel invocation protocol from a twofold
perspective:

1. Quantifying the benefits that can be achieved in terms of reduction of
user perceived latencies compared to a classical protocol for Web based
transactional applications not exploiting parallelism.

2. Evaluate possible variations in the system throughput due to the con-
current activations of multiple transactions at the back-end databases
on behalf of the same client request.

In other words, we study the impact of our protocol on performance from
both the end-user’s and the server side’s perspective. With no loss of gener-
ality, the simulation study will be focused on the case of performance failures
caused by overload/congestion of the network, which is the commonly rec-
ognized more likely scenario for this type of failures (hence representing an
adequate test bed). Also, we focus on the case of ADN like infrastructures,
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for which, as discussed in the previous section, our proposal represents a com-
plementary approach to well established techniques addressing performance
issues.

5.3.1 Network Model

As highlighted in a number of previous studies [4, 8], the effectiveness of any
parallel invocation scheme strongly depends on the actual disjointness among
the simultaneously explored paths, which determines the level of disjointness
of the chains of components involved in the processing of the client request.

To determine how our proposal fares in different networks, we took an
approach similar to the one used in [8]. In our experiments, we examined both
the BRITE [82] generated topology (obtained by using the standard settings
of the BRITE topology generator) and the NLANR [89] graph, representative
of connectivity among real Internet autonomous systems at the latest available
date, namely January 2000.

To assign the client, edge server and data center roles to a subset of the
nodes in the topologies, we used a placement algorithm based on the connec-
tivity degree of nodes:

• Edge Servers: To emulate edge server location proper of ADN infras-
tructures, we placed middle-tier application servers at the edges of a
topology, where edges are defined as nodes with degree of two or three.

• Data Centers: To emulate the location of data centers, hosting back-
end databases, at the most connected part of a network, we placed data
centers at the core nodes of the topology, which we define as nodes with
the highest degrees.

• Clients: To emulate client location at the furthest edge of a topology,
clients were randomly chosen among those nodes having degree of one.

Obviously the ideal case would be to use a real server location graph from
an ADN company, but such information is proprietary and not available, which
is the reason why we chose to rely on this simple placement algorithm inspired
by the one presented in [8] in the context of Content Delivery Networks (CDNs)
based video-streaming.

To generate realistic values for the network latencies perceived by the
hosts participating in our protocol, under both normal and anomalous (e.g.
congested) situations, the considered topologies were complemented by both
mathematical models and publicly available empirical measurements of Inter-
net latencies.
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For what concerns the packet loss model across the links, we chose the
widely adopted two-state Gilbert model parameterized by transition proba-
bilities {p,q} where p is the probability of going from no loss state to loss
state, and q is the probability of going from loss to no loss. The Gilbert model
is widely used to model bursty traffic for its simplicity and mathematical
tractability. Like in several other studies, e.g. [8], we assumed for simplicity
that faults over each link can be modeled as independent.

In order to accurately determine the message transfer time over TCP con-
nections in presence of packet losses, we adopted the TCP analytical model in
[24]. This model provides accurate estimations of TCP transfer times on the
basis of (i) the number of TCP fragments to be sent (i.e. the message size), (ii)
the expected number of packet losses, and (iii) the end-to-end RTT latency.
Given that a number of studies (e.g. [10]) have shown that WWW traffic
exhibits heavy-tailed message size distributions, our simulator determines the
message size according to a Pareto distribution. The end-to-end RTT for each
message transmission is derived by means of the RTT probability distribution
shown in [1], that was empirically obtained at the light of the RTT measure-
ments carried out between the NASA’s Glenn Research Center Web Server
and its clients. These RTTs are representative of end-to-end network latency
between hosts communicating across the Internet. In order to correlate the
length (in terms of number of hops) of a path in a topology with the corre-
sponding end-to-end RTT value, we determined the RTT on each link over
which packets are transmitted by scaling (dividing) the end-to-end value by
the average path length.

Note that in practice a strong correlation exists between a link RTT and
the occurrence of packet losses over that link. In fact, the RTT values are
comprehensive of router queuing delays, which are likely to be large in case of
packet losses (since losses are typically due to the excessive growth of routers
queues). In order to capture such a correlation in our simulator, in absence
of packet losses we randomly pick the current link RTT from the first half
of the empirical RTT distribution, namely the half collecting the lowest mea-
sured RTT values. Conversely, in presence of packet losses over a link, we
randomly pick the current link RTT from the second half of the empirical
RTT distribution.

As a final observation, the employed network model assumes that the ad-
ditional network load due to the usage of multiple paths (instead of a single
path) has negligible impact on network behavior (e.g. on the packet loss rate).

5.3.2 Edge Server Selection Policies

In conventional Web infrastructures (i.e. not leveraging parallel invocation
and path diversity), client requests are routed toward a single edge server over
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a single path, and the selected edge server is typically the one on the shortest
path to the client. This mechanism may be straightforwardly adopted in our
parallel invocation protocol by selecting the closest edge servers to the client,
or one may envision the development of more sophisticated policies taking into
account specific topological information in order to achieve larger benefits from
the multi-path approach.

To cope with a relatively wide spectrum of possibilities, we implemented
the following three selection policies in our simulator:

• Shortest Paths. Simply choose the closest edge servers to the client,
employing hop counts as distance metric. In the following, we will refer
this selection policy to as SP.

• Disjointness Ordered Paths. Always select the edge server on the shortest
path. Then choose the edge servers whose paths to the client have a
minimum number of links in common with the shortest path. If more
than one server has the same number of joint links with the shortest
path, choose the one having minimum length (measured in hop counts).
In the following, we will refer this selection policy to as DP.

• Disjointness×Length Ordered Paths. Always select the edge server on
the shortest path. Then choose the edge servers whose paths have the
minimum values of the product between (i) the correlation with the
shortest path and (ii) the additional length with respect to the shortest
path. With this policy, if the path toward an edge server is highly disjoint
from the shortest path, but such edge server is very far from the client,
this edge server will not be considered by the client as a good candidate
for the parallel invocation scheme. In the following, we will refer this
selection policy to as D×LP.

5.3.3 Transactional Workload Model

In order to model the activities and resource consumption of the database
servers we based our simulation model on the detailed distributed database
system simulator first used in [55] to evaluate the performance of the PROMPT
real-time distributed commit protocol and later employed in a number of
works, e.g., [115, 57, 58, 129], addressing “DBMS-centric” topics ranging from
advanced commit protocols to caching techniques for dynamically generated
Web pages.

The original simulator, whose thorough description can be found in [56],
is tailored for client/server distributed transaction processing environments
where transaction coordinators are colocated with the database systems. Also,
it provides a very simple network model representative of scenarios where in-
volved processes are interconnected by a fast local area network. On the other
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hand, it models very detailedly resource consumption due to network com-
munication, data access and manipulation, and logging activities to support
a variety of distributed commit protocol. Also, it ensures serializability of
transaction execution by means of an accurate model of the Strict Two Phase
Locking (S2PL) concurrency control mechanism [15].

The simulation components modeling database servers’ resource consump-
tion and concurrency control were extended and integrated with ad-hoc de-
veloped simulation software aimed at providing the following features:

• Integrate within the pre-existing S2PL concurrency control algorithm the
MIP schemes so to allow differentiated treatment of sibling transactions.
Data accesses among non-sibling transactions are instead regulated ac-
cording to the original S2PL concurrency control scheme.

• Implement an accurate model of the database system’s buffer manage-
ment, so to better evaluate the resource consumption due to the execu-
tion of sibling transactions.

• Explicitly modeling the behavior of the different processes interacting in
a three-tier system (i.e. clients, edge servers and data centers)

• Integrate the detailed network model described in Section 5.3.1.

For what concerns the transactional workload model used in the simulation,
we exploited the so called “shopping workload”, namely the reference trans-
action profile specified by TPC-W [120]. This benchmark is widely used for
measuring the performance of e-Commerce systems, and relies on simulation
of a breadth of activities of a business oriented transactional Web application.
The shopping transaction profile is derived by TPC-W on the basis of the
composition of two different customer profiles (also referred to as customer
interactions) known as browse and order, respectively. The browse interaction
involves browsing as well as querying activities, while the order interaction
involves real update of data at the data centers. The shopping transaction
profile is based on a composition of 80% browse interactions and 20% order
interactions.

5.3.4 System Settings

For what concerns the size of the data set maintained at each data center and
other system settings, we exploited the study in [71], where a global data set
size of about 20 GB has been presented as a reasonable value for typical e-
Commerce applications. In that study, the DBMS residing at the data center
has 4 KB page size and is run on an IBM eServer xSeries 255 machine, with
4 CPUs (1.5 GHz), 8 GB of RAM storage, 12 IBM U320 disks (15000 RPM),
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Topology BRITE NLANR
#nodes 5000 6474
#edges 5000 24467

Edge Servers average path length
Selection Policy between client and edge server

SP 9.1 3.0
DP 9.3 3.1

D×LP 9.1 2.3
Edge Servers average path length

Selection Policy between edge server and data center
SP/DP/D×LP 8.9 3.0
Edge Servers average correlation ratio

Selection Policy of used network paths (client side)
SP 0.53 0.42
DP 0.46 0.35

D×LP 0.52 0.41

Table 5.1: Summary of Topological Parameters.

running Windows 2000 Advanced Server. Also, the DBMS is placed on a
5-disk hardware RAID-0. For this data set size, the characterization of the
shopping transaction profile presented in [71] gives rise to an average number of
35 referenced pages for each interaction, with 96.6% of page references in read
only mode, and 3.4% of page references in write mode. Resource consumption
at the data centers while handling the interactions proper of the shopping
transaction profile have been explicitly simulated in our analysis on the basis
of such benchmarking results in [71].

We considered a service delivery infrastructure consisting of six back-end
data centers and twenty edge servers. As shown in previous studies related
to content delivery applications [7, 8], the number of paths that is expected
to maximize the benefits from parallel invocation protocols is on the order of
two. Hence we focused on the case of two edge servers contacted in parallel
by the client. Fixed this setting, for the reader’s convenience, we report in
Table 5.1 a summary of the main parameters related to the different analyzed
network topologies, together with information on the length and correlation
of network paths for the different edge server selection policies (i.e. SP, DP
and D×LP). These data have been obtained by considering clients spread in
500 different locations across the network.

In the simulation study we explicitly avoided to model caching of DBMS
data at the edge servers. This choice derives from that, as outlined before,
this type of caching requires explicit mechanisms for the maintenance of the
consistency of replicated data [51], which might impact on the latency seen
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by the users. Hence, we excluded caching of DBMS data in order to avoid
any interference due to these mechanisms while performing the evaluation
of the parallel invocation protocol. On the other hand, we remark that the
absence of caching mechanisms at the edge servers yields to a worst case
evaluation for the system saturation point since the back-end data centers
need to manage the whole volume of interactions requested by the clients,
including those interactions that would access data in read mode only (i.e.
browse interactions). Given that the back-end data centers typically represent
the system bottlenecks (especially when employing a an amount of edge servers
relatively larger than the number of data centers within the infrastructure),
our study focus on a representative situation for the evaluation of the effects
of the overhead from our protocol on the system throughput. At the same
time, we gathered statistical data by only considering the latency experienced
by users really performing updates of application data, for which caching of
DBMS data at the edge servers provides no advantage due to the fact that
the corresponding requests are redirected to the origin data centers in order
to manipulate the original data copy. This has been done to ensure fairness
in the evaluation. Also, given that we do not consider the scenario in which
the edge servers perform data caching, in our simulation study we do not to
explicitly model resource consumption at the edge server side.

Finally, to capture network congestion/overload situations, we have set the
parameter q of the Gilbert model to the value of 0.8, which corresponds to an
expected burst loss length of 1.25. (It has been shown [125] that consecutive
losses rarely last more than four packets and the value q=0.8 corresponds to the
longest average burst length measurement we are aware of.) For what concerns
the parameter p, we have considered two different values in the simulation
study, selected as representative of interconnection between edge serves and
data centers either via Internet or via a (virtual) private network under the
control of the ASPs. In the former case, p was set to yield a moderate end-
to-end loss rate of 5% for an average path length of 3 to 16 hops, depending
on the topology. In the latter case, p was set to yield the extremely reduced
end-to-end loss rate of 1% for the same average path lengths. The message
size distribution has been obtained through a Pareto with α=1.5 and b=2.

5.3.5 Results

We report in Figure 5.6 and in Figure 5.7 the cumulative distribution function
(CDF) of browser perceived response times for the BRITE and the NLANR
topologies. In other words, we report on the Y-axis the experimentally eval-
uated probability for a browser to experience response time lower than the
corresponding value on the X-axis. The plots report results for both a base-
line protocol where clients interact with a single edge server and our parallel
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Figure 5.6: Browser Perceived Response Time CDF for the Case of Edge
Servers and Data Centers Communicating via Internet.
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invocation protocol (with the three different policies for selecting the edge
servers to be contacted in parallel by the client).

By the plots we get that our parallel invocation protocol provides remark-
able benefits, in terms of increased system responsiveness. For the case of edge
servers communicating with data centers via the Internet (see Figure 5.6), our
parallel invocation scheme allows achieving browser perceived response times
less than 7 seconds (i.e. less than the maximum value complying with a rea-
sonable expectation for an interactive end-user [130]) in about the 80% of the
cases, whereas the baseline protocol achieves response times less than 7 sec-
onds in about the 65% of the cases. An interesting, not so intuitively result
highlighted by Figure 5.6 is that the DP edge server selection policy (which
chooses the alternative path(s) in order to maximize path disjointness with
respect to the shortest path) leads to a reduction of the benefits provided by
the parallel invocation protocol. We have found that this depends on that
the alternative path selected by DP might be significantly longer than the one
selected by the other policies, excessively penalizing the performance of the
request transmitted along that path.

The results related to the case of communication between edge servers
and data centers via a (virtual) private network (see Figure 5.7) confirm the
previous tendencies, with the only observation that, compared to the case
of Internet based communication, this time we expect higher system respon-
siveness due to the more controlled network behavior at the side of the Web
infrastructure (recall that for this configuration the parameter p has been set
to obtain the extremely reduced packet loss rate of 1% over a path). Hence,
the advantages from the parallel invocation protocol need to be evaluated for
response time on the order of the reasonable value of 3/4 seconds, which is
guaranteed by the multi-path protocol in about the 90% of the cases. Instead,
even in such a controlled network scenario, the baseline protocol guarantees
that response time value only in the 80% of the cases.

Overall, the plots show that our parallel invocation protocol determines
(slightly) larger improvements of the perceived response times in the case
of NLANR topology. This is coherent with the data reported in Figure 5.1
which points out that, with respect to the BRITE generated topology, the
NLANR graph is characterized by a higher average degree of connectivity and
a reduced correlation ratio among the network paths connecting the clients to
the selected edge servers.

Another important observation from the plots is that they show remarkable
benefits from the parallel invocation protocol even in case of no exploitation of
path correlation information in the selection of the edge servers to be contacted
in parallel by the client. In fact, the benefits achieved by users employing the
correlation unaware selection scheme, namely SP, are in practice identical
to those achievable with the other selection policies, or even larger. This is
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an interesting result that confirms the feasibility of the parallel invocation
protocol also in environments where it is difficult or impossible to infer the
path correlation of the underlying network topology.

The plots in Figure 5.8 and in Figure 5.9 provide a different perspective
to quantify the benefits achievable through the parallel invocation protocol.
In these graphs we report the histograms of the percentage reduction in re-
sponse time over the baseline for the two considered network topologies and
for the three edge server selection policies SP, DP and D×LP. Such a data
visualization highlights that there is a relevant percentage of clients experi-
encing a remarkable reduction in the perceived response time (evaluated as
Timebaseline−Timeparallel invocation

Timebaseline
) when the parallel invocation protocol is used.

Specifically, in all the topologies at least the 50% of clients get response time
reduction greater than (or equal to) 50%. Also, the 25% of clients get response
time reduction of at least 70%.

5.3.6 On the Overhead

The previous plots allowed us to evaluate the effectiveness of our protocol
from the point of view of an interactive end-user. However, the effectiveness
of any solution in support of a transactional application can not be realisti-
cally evaluated without taking into account its impact in terms of server side
throughput.

The parallel execution of multiple instances of a same distributed trans-
action obviously adds some overhead with respect to a baseline approach in
which clients’ requests are serially submitted to a single application server. In
current infrastructures for Web applications, the trend is to have a very high
degree of replication of the edge servers, hence the system bottlenecks tend
to be the back-end data centers, which need to support the whole volume of
multiple transaction instances associated with a same request from whichever
geographically dispersed client. As a consequence, the overhead at the data
centers imposed by the parallel invocation protocol is representative of the
possible impact of the protocol on the throughput and saturation point of the
whole infrastructure.

To this purpose, we report in Figure 5.10 the plots related to the variation
of the system response time (and so of the system saturation point) while
varying the workload in terms of number of concurrently active browsers (recall
that according to the TCP-W specification, in our simulation each simulated
browser requests interactions according to an exponentially distributed think
time interval with mean value 7.5 seconds). These plots have been obtained
considering the NLANR network topology, and the scenario of edge servers
and data centers communicating via Internet. However, very similar results
were obtained also when considering the BRITE generated topology and the
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scenario of edge server and data centers communicating via a (Virtual) Private
Network, which is the reason why we avoid reporting them here.

By the plots we observe that our parallel invocation protocol produces only
a limited reduction of the system throughput (i.e. of the system saturation
point). Specifically, it gives rise to system saturation when the workload is
on the order of about the 85% of the workload that gives rise to saturation
when the baseline is employed. We found that the relatively low overhead
imposed by our protocol, and consequently the small reduction in the database
throughput, is mainly due to that sibling transactions normally access the very
same data set. This means that some of the costs for accessing that data set
(e.g. the cost for transferring the data set from disk to the database buffers
in volatile memory) are paid only once.



Chapter 6

Specialization of the Results
for the Single Back-end
Database Scenario

The e-Transaction protocols presented in the previous chapters address the
general case of transactions involving an arbitrary number of distributed, au-
tonomous back-end databases. This naturally implies that those solutions
could be adopted even in the scenario in which the application interacts with
a single centralized back-end database server. However, these solutions have
been natively designed to cope with atomic distributed transactions. Hence
they result structurally dependent on a two-phase commit protocol, which is a
source of unnecessary overhead (in terms of additional messaging and database
logging activities) when dealing with applications accessing a single database,
where a cheaper one-phase commit protocol can be safely employed. Given
that such a scenario is in practice commonly found in a wide range of diverse
application domains [43], it would be highly desirable to design e-Transaction
protocols specifically optimized for this case.

This is precisely what we do in this chapter, where we present an e-
Transaction protocol specialized for the scenario of applications interacting
with a single back-end database. This protocol borrows some of the key ideas
already introduced in the previous chapters and adapts them so to maximally
exploit the implications related to the adoption of a one-phase commit pro-
tocol. It is worthy underlining that the solution presented in this chapter
retains the remarkable theoretical and practical benefits characterizing the e-
Transaction protocol presented in Chapter 4. Specifically, not relying on any
coordination scheme among application server replicas, it achieves very high
scalability levels and very limited overhead. Further, by avoiding forced ter-
mination of previously issued requests, it preserves its correctness even in a

105
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pure asynchronous system without relying on any assumption on the accuracy
of the failure detection mechanism. Our protocol improves the state of the art
exactly in that none of the existing solutions, not even those explicitly opti-
mized to tackle the single back-end database scenario, exhibit both of these
desirable features together. Additionally, the avoidance of the termination
scheme allows this solution to effectively support parallel invocation of trans-
actional requests, thus also permitting the treatment of performance failures
in a manner specifically optimized for the single back-end database scenario.

Beyond presenting the protocol, we also provide a formal proof of its cor-
rectness. Next, analogously to what we did for our previous solutions, we
discuss practical issues and possible integration with conventional software
technology. We conclude this chapter by comparatively evaluating the proto-
col with state of the art approaches.

6.1 Model of the System

For what concerns client and application server processes, we consider here
the same identical model used in Chapter 4 and Chapter 5. Hence, we avoid
re-describing them and move directly to present the database server model.

6.1.1 Database Server

We assume that the database server supports custom transaction demarcation
and concurrency control schemes, which are almost identical the ones proposed
in Section 4.1.1 and Section 4.1.1 to support MIP. (Such an assumption will
be later relaxed in section 6.5, where we will show how to pragmatically im-
plement the protocol by relying exclusively on standard transactional technol-
ogy.) Hence, also in this case we assume that the concurrency control scheme
avoids that sibling transactions incur mutual blocking due to conflicts on data
items accessed in common. The fundamental difference with the concurrency
control scheme underlying MIP is that, here, we are not faced with avoiding
transaction conflicts due to the presence of pre-commit locks (which only arise
in distributed transaction processing scenarios where an atomic commit pro-
tocol, e.g. 2PC, has to be employed). More formally, we assume that in case
a transaction T requires (read/write) access to some data item d previously
accessed (written/read) by a not yet committed (i.e. pending) transaction T ′,
T is granted access to the pre-image of d with respect to the execution of T ′

if T and T ′ share the same req id (i.e. they are sibling transactions). Hence
any update performed by a not yet committed transaction T ′ is not visible to
any sibling transaction T . No assumption is made on how concurrency control
regulates data accesses of non-sibling transactions.
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We model with the decide primitive, the database server interface for in-
voking the commitment/abort of a pending transaction. decide takes in input
a XID (i.e. a request identifier and a transaction instance identifier) and re-
turns commit/rollback depending on the final decision the database takes for
the transaction. Also, as in conventional database technology, if the database
server crashes while processing a transaction, it does not recognize that trans-
action as an active one after recovery. Therefore, if the decide primitive is
invoked with an identifier associated with an unrecognized transaction in in-
put, then the return value of this primitive is rollback. We assume the decide
primitive is non-blocking, i.e. it eventually returns unless the database server
crashes after the invocation.

The database server maintains some recovery information, which we refer
to as ITP (Information on Transaction Processing) in analogy to Chapter
3. The ITP is used to determine whether a sibling transaction has already
been committed and, in that case, to retrieve the non-deterministic result
produced by the execution of that transaction. However, with respect to the
protocol in Chapter 3, both the ITP structure and the logic that manipulates
it are simplified. More specifically, the ITP consists of (i) the identifier of
the transaction and (ii) the transaction result (i.e. the output of the compute
primitive executed by the application server that committed the transaction).

The ITP is manipulated by means of the insert and lookup primitives.
insert takes a client request identifier and a result as input parameters, and
records them (i.e. inserts the corresponding tuple) within a dedicated database
table, which we refer to as ITP table. As in Chapter 3, we assume the request
identifier to be a primary key for that database table. Therefore, any attempt
to insert the previous tuple within the database multiple times is rejected
by the database itself, which is able to notify the rejection event by raising
the ITPDuplicatePrimaryKeyException (1). In the following we say that a
transaction whose commitment would imply a violation of the primary key
constraint on the ITP table is illegal. Otherwise, we say that the transaction
is legal.

A fundamental difference with the ITP manipulation logic prescribed in
Chapter 3 is that, here, the insert primitive is executed within the same trans-
actional context activated by the application server by means of the compute
primitive (i.e. the ITP entry is stored in the database as part of the execution
of the transaction initiated by the application server). Hence, differently from
the solution in Chapter 3, in this approach no additional eager log operation
is required at the database side to support the ITP manipulation, achieving a
further reduction in the corresponding overhead.

1As we will see, the presence of an ITP entry associated with a client request identifier
implies that a transaction associated with that client request has already been committed
by the database.
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For presentation simplicity, but with no loss of generality, we assume that
the database server raises the ITPDuplicatePrimaryKeyException only at
the time the decide primitive is invoked to commit the illegal transaction.
In practical settings, however, our protocol could be employed also in case
the database server were to validate the legality of the insert statement
immediately, rather than at commit time. Also, as it normally happens in
classical transactional processing technology, we assume that if the database
detects that a transaction is attempting to violate a primary key constraint
on the ITP table, it autonomously aborts that transaction.

The lookup primitive takes in input a client request identifier and returns
the result stored within the corresponding entry in the ITP table, if any.

Both the lookup and the insert primitive are assumed to be non-blocking.

6.2 The Protocol

6.2.1 Client Behavior

The client behaves exactly like in our protocol presented in Chapter 4. Its
pseudo-code is presented in Figure 4.3 and is not replicated here. Essentially
the client keeps on retransmitting its request to different application server
replicas on a timeout basis. Each request message is tagged with the same
request identifier req id and with a different, unique instance identifier inst id.
The client stops retransmitting requests and delivers a result as soon as the
first Outcome message reporting a commit indication is received from an ap-
plication server.

6.2.2 Application Server Behavior

The application server behavior is shown in Figure 6.1. Upon receipt of a
Request message from the client, the application servers invokes the compute
primitive to activate the business logic executing a transaction against the
back-end database which is left pending (i.e. uncommitted). Then it asks
the database to commit the transaction by sending out a Commit message,
along with the result associated with the transaction execution returned
by the compute primitive. Next the application server waits for a Commi-
tACK message from the database server, reporting an outcome in the domain
commit/abort, reflecting whether the database server was able to commit the
transaction, and a result. As we will see in the next section the result speci-
fied within the CommitACK message could actually be different from the one
previously calculated through the compute primitive and sent along with the
Commit message: in such a case, the result contained within the CommitACK
message is the one associated with the first sibling transaction to have been
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committed by the database server for a given client request. If the application
server does not receive any CommitACK message within a timeout period, the
application server simply keeps on retransmitting the Commit message. As
soon as a CommitACK message is received, the application server sends in its
turn an Outcome message to the client specifying the outcome and the result
returned by the database through the CommitACK message.

Class ApplicationServer{
Outcome outcome;
Result result;

void main(){
while(true){

wait receive Request[req, < req id, inst id >] from client or from DB;
result =compute(req, < req id, inst id >);
repeat {

send Commit[< req id, inst id >, result] to DB;
wait (receive CommitACK[< req id, inst id >, outcome, result] from DB)

or (TIMEOUT);
} until received CommitACK[< req id, inst id >, outcome, result] from DB;
if (Request was received from client)

send Outcome[< req id,− >, outcome, result] to client
} // end while true

} // end main
} // end class

Figure 6.1: Application Server Behavior.

6.2.3 Database Server Behavior

The database server behavior is formalized by means of the pseudo-code in
Figure 6.2. This server executes one task triggered by the receipt of the Com-
mit message, and a background task aiming at ensuring that every computed
transaction is eventually aborted or committed.

Task 1 : Upon the receipt of a Commit message for a transaction having
XID =< req id, inst id > and specifying a corresponding result value,
the database server attempts to insert the specified result within the ITP
entry associated with the req id request identifier. Next, the decide
primitive is invoked to attempt to commit that transaction. If the
transaction is successfully committed, this means that any subsequent
attempt to commit a sibling transaction (i.e. a transaction associated
with the same request identifier) will be rejected by the database by
raising an ITPDuplicatePrimaryKeyException. This is indeed the key
mechanism we adopt to avoid duplicate transaction executions. In such
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Class DatabaseServer{
List ASlist = {AS1, . . . , ASn};
ApplicationServer AS;
Result result;
Outcome outcome;
InstanceIdentifier inst id;
on stable storage Counter counter = InitialV alue;

void main(){
while(true){

cobegin
|| wait receive Commit[< req id, inst id >, result] from ASi // Task 1

try {
insert(req id, result);
outcome= decide(< req id, inst id >, commit);
if (outcome==abort) result=nil;

}
catch (ITPDuplicatePrimaryKeyException ex) {

result =lookup(inst id);
outcome=commit;

}
send CommitACK[< req id, inst id >, outcome, result] to ASi;
if (outcome==commit) {

for every pending transaction having XID =< req id,− > do
decide(< req id,− >, abort);

} //end if
|| background: // Task 2

for every transaction having XID =< req id,− > computed with request content
req as input longer than TIMEOUT period {

AS = ASlist.next();
inst id =< GetMyCategory(), + + counter >;
send Request[req, < req id, inst id >] to AS;
reset TIMEOUT period for the transaction having identifier XID;

} // end for every
} // end while

} // end main
} // end class

Figure 6.2: Database Server Behavior
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a case, the database server sends back to the application server a Commi-
tACK message carrying a commit outcome as well as the original result
specified by the application server within the Commit message.

If the decide primitive fails to commit the transaction, there are two
cases to consider. If the transaction were aborted because it attempted
to duplicate a primary key on the ITP table (2), the lookup primitive
is invoked to retrieve the result stored by the sibling transaction that
previously committed. Then a CommitACK message is sent back to the
application server specifying the commit outcome and carrying the result
just retrieved from the ITP table. Note that in this case the database
server returns commit even though the transaction previously activated
by the application server through the compute primitive was actually
aborted. This is safe, since the application server is provided with the
(non-deterministic) result value produced by the execution of the first,
and only, sibling transaction to have been committed by the database.

The only case left is the one in which the decide
primitive returns an abort outcome without raising the
ITPDuplicatePrimaryKeyException, as in the case of unilateral
aborts due to, e.g., the concurrency control mechanism. In this case the
database returns a CommitACK message reporting an abort outcome
and a nil result value.

Prior to completing execution of Task 1, if a commit outcome was sent
back along with the CommitACK message (3), the database makes sure
that any pending transaction associated with the specified client req id
value is aborted. This is required to ensure that any previously computed
transaction gets eventually aborted. Note that aborting pending trans-
actions associated with previously issued request instances takes place
only after having ensured that one, among those sibling transactions,
was already committed. This preserves the liveness of the end-to-end in-
teraction even in those scenarios where no accuracy at all on the failure
detection can be guaranteed, like in a pure asynchronous system.

Task 2: The database server retransmits, tagged with a monotonically in-
creasing instance identifier, the request associated with each transaction
that remains pending for longer than a timeout period. This is done to
ensure that any transaction that was computed but left uncommitted
due to a crash of the corresponding application server gets eventually
committed or aborted. To allow such a behavior, we assume that the

2In this case the execution jumps at the first statement within the catch clause.
3Meaning that either the transaction specified in the Commit message could be committed

or that a sibling transaction was already found to have committed.
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database can store the request content, upon activation of the transac-
tion, in volatile memory (note that this is not shown in the database
pseudo-code as we do not explicitly model the compute phase). In case
of crash, in fact, any pending transaction would get anyway aborted.

6.3 Proof of Correctness

In this section we provide a formal proof of the protocol correctness with re-
spect to the e-Transaction properties. For the case of single back-end database,
these properties have been formalized in [43], and are recalled below:

Termination:
T.1 If a client issues a request, then unless it crashes, it eventually de-
livers a result.
T.2 If an application server computes a result, then the database com-
mits or aborts the corresponding transaction.

Agreement:
A.1 No result is delivered by the client unless the database commits the
corresponding transaction.
A.2 The database does not commit more than a single transaction for
each request.

Validity:
V If the client delivers a result, then the result must have been computed
by an application server with, as a parameter, a request issued by the
client.

6.3.1 Correctness Assumptions

The correctness of the protocol essentially relies on the same set of assumptions
also required by the protocol we presented in Chapter 4, which we briefly recall
here for reader’s convenience.

We assume a pure asynchronous system, hence not requiring any accuracy
from the underlying failure detection scheme, which is in fact implemented in
our protocol by means of plain timeouts, i.e. an arbitrarily inaccurate failure
detection mechanism in an asynchronous system.

Also, we assume that at least an application server is correct and that
the database server is good, which means that: (1) it always recovers after
crashes, and eventually stops crashing (i.e. it eventually becomes correct), and
(2) if the application servers keep re-trying a legal transaction, the database
can eventually commit it. Note that the assumption on database goodness
expressed in point (2) has been rephrased in this chapter so to require that the
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database is eventually be able to commit a legal transaction, i.e. a transaction
that does not violate an ITP primary key constraint. This is required in order
to reflect the fact that in this protocol we have forced an explicit primary
key conflict among the transactions associated with the same client request,
implying that the database will not be able to commit more that one of these
transactions.

6.3.2 Correctness Proof

Lemma 6.3.1 If a correct application server sends a Commit message to the
database server for a transaction, the application server eventually receives a
CommitACK message for that transaction.

Proof (By Contradiction) Assume by contradiction that a correct applica-
tion server sends a Commit message to the database server and that it never
receives a CommitACK for the corresponding transaction.

In this case, the correct application server keeps on retransmitting the
Commit message to the database server indefinitely. Hence, a Commit message
will be sent by the application server to the database server at time t′ >
t, where t is the time after which the database server stops crashing and
remains up. Given that after time t both the correct application server and
the database server are always up, for the assumption on the reliability of the
communication channels we can claim that the database server will eventually
receive the Commit message. Also, the database server will eventually take a
decision through the decide primitive (since it does not crash anymore and
decide is non-blocking) and will send a CommitACK message to the application
server. Again, since communication channels are assumed to be reliable, the
correct application server will eventually receive that CommitACK message.
Therefore the assumption is contradicted and the claim follows. Q.E.D.

Lemma 6.3.2 If a correct application server keeps on receiving Request mes-
sages tagged with the same request identifier and different transaction instance
identifiers, it eventually receives a CommitACK message tagged with that re-
quest identifier and carrying a commit outcome.

Proof (By Contradiction) Assume by contradiction that a correct appli-
cation server receives an unbounded number of Request messages tagged with
the same request identifier and different transaction instance identifiers and
never receives a CommitACK specifying a commit outcome for a corresponding
transaction.

If a correct application server receives a Request message, it calls the prim-
itive compute which, being non-blocking, eventually returns. Therefore the
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application server eventually sends to the database server the Commit mes-
sage. By Lemma 6.3.1, a CommitACK message for the transaction is eventu-
ally sent back by the database server and is eventually received by the correct
application server. Two cases are possible:

1. If the CommitACK message received from the database server carries a
commit indication, meaning that the database either successfully com-
mitted the specified transaction or that the specified transaction was il-
legal given that a sibling transaction had been already committed, then
the assumption is contradicted and the claim follows.

2. If the CommitACK message received from the database server carries
an abort indication, it means that the transaction was legal (given that
it would have otherwise risen an ITPDuplicatePrimaryKeyException
and we would have fallen in case 1) but that the database server was
unable to commit the required operations due, e.g., to decisions of the
concurrency control mechanism.

We note anyway that case 2 (i.e. the only one that does not contradict
the assumption) can’t occur indefinitely as the correct application server keeps
indefinitely retrying transactions and we have assumed that there is a time
after which the database server remains up and is able to commit any le-
gal transaction. Hence the assumption is contradicted and the claim follows.

Q.E.D.

Termination T.1 - If a client issues a request, then unless it crashes, it
eventually delivers a result.

Proof (By Contradiction) Assume by contradiction that the client issues a
request, does not crash and does not eventually deliver a result, meaning that
it never receives an Outcome message with a commit indication.

In this case, the client keeps on retransmitting the Request message tagged
with the same request identifier req id and different transaction instance iden-
tifiers inst id to the application servers indefinitely. As we have assumed that
channels are reliable and that at least an application server is correct (i.e. it
does not crash), an unbounded number of Request messages will eventually be
delivered to a correct application server. By Lemma 6.3.2, it follows that the
correct application server will eventually receive a CommitACK message tagged
with that request identifier and carrying a commit indication. In this case the
correct application server sends back to the client an Outcome message with a
commit indication and, given that client and application server do not crash
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and that channels are reliable, this message will eventually be received by the
client. Hence, the assumption is contradicted and the claim follows. Q.E.D.

Termination T.2 - If an application server computes a result, then the
database commits or aborts the corresponding transaction.

Proof (By Contradiction) Assume by contradiction that the database
server computes a result associated with the XID =< req id, inst id > trans-
action identifier and does not eventually commit or abort the corresponding
transaction, meaning that the decide primitive is never invoked with the XID
transaction identifier as an input parameter and that this transaction remains
pending for ever. This also implies that the database server does not crash
after having computed this transaction, otherwise the transaction would have
been aborted.

In this case, the database server activates indefinitely Task 4, meaning
that it keeps on indefinitely retransmitting to the application servers a Request
message containing the request content which was passed in input when the
pending transaction was activated through the compute primitive, and tagged
with the same client request identifier and different instance identifiers. As we
have assumed that channels are reliable and that at least an application server
is correct (i.e. it does not crash), an unbounded number of Request messages
will eventually be delivered to the correct application server.

By Lemma 6.3.2, it follows that the correct application will eventually
receive a CommitACK message tagged with the req id request identifier and
carrying a commit indication. By channel reliability, this implies that the
database server must have previously sent that CommitACK message. At this
point there are only two possibilities:

1. The database server crashes immediately after the transmission of the
CommitACK message to the application server, in which case the trans-
action with identifier XID is aborted. Hence the assumption is contra-
dicted and the claim follows.

2. The database server, immediately after the transmission of the Commi-
tACK message finds the local outcome variable set to the commit value.
In this case it invokes the decide primitive passing as input param-
eters the abort outcome value and the transaction identifiers of every
computed, still pending transaction having the request identifier req id,
including also the transaction identifier XID. Hence the assumption is
contradicted and the claim follows.

Q.E.D.
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Agreement A.1 - No result is delivered by the client unless the database
commits the corresponding transaction.

Proof The client delivers a result only after it receives from an application
server an Outcome message specifying a commit indication and tagged with
the request identifier (req id) corresponding to its previously issued request.
Such a message is sent to the client if, and only if, the application server has
received from the database server a CommitACK message with the commit
indication for that request identifier. Also, the result contained in the Outcome
message sent by the application server to the client, is the one specified in the
CommitACK message.

A CommitACK message carrying the commit indication and the req id
request identifier is sent by the database server only after it has invoked the
decide primitive for a transaction having request identifier req id. This can
give rise to two cases:

(1) The database server successfully commits the transaction associated to
the client request (also successfully performing the insertion of the cor-
responding ITP tuple). In such a case the client trivially follows.

(B) The database server detects a primary key conflict due to the insertion
of the ITP tuple. In this case, a transaction having the same req id, and
hence associated with a different instance of the same client request must
have been already committed by the database, and the corresponding
result must have been stored in the associated ITP tuple. Given that
in this case, the database returns to the application server the result it
retrieves from the corresponding ITP entry, the claim follows.

Q.E.D.

Agreement A.2 - The back-end database does not commit more than one
transaction for each client request.

Proof (By Contradiction) Given the structure of the protocol, it is possible
that multiple transactions associated with the same client request are activated
by the application servers. Assume, by contradiction, that a generic number
N > 1 of them are eventually committed.

In this case, the database server must have invoked multiple times the
decide primitive for transactions associated with the same client request iden-
tifier. By the database server pseudo-code, this server invokes the decide
primitive only after that the insertion of the unique client request identifier
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together with the result of the data manipulation through the insert primitive
has occurred. As a consequence, in order for the N > 1 transactions associated
with the same client request to be committed, they must have performed a
successful insertion of the unique request identifier within the database. How-
ever, this is impossible since the database maintains a primary key constraint
on the request identifier, hence no more than one of those N transactions
can successfully perform that insertion, whereas all the remaining ones will
be aborted by rising an ITPDuplicatePrimaryKeyException. Therefore the
assumption is contradicted and the claim follows. Q.E.D.

Validity V - If the client delivers a result, then the result must have been
computed by an application server with, as a parameter, a request issued by
the client.

Proof The client delivers a result only after it receives from an application
server an Outcome message specifying a commit indication and tagged with
the client request identifier (req id) corresponding to its previously issued re-
quest. Such a message is sent to the client if, and only if, the application
server has received from the database server a CommitACK message with the
commit indication for that request identifier. This happens only if the re-
sult has already been committed, and a result associated with that request
identifier can get committed only after an application server has computed it.
An application server computes a result only after it has received the Request
message with that request identifier either from the client, in which case the
claim trivially follows, or from the database server. In the latter case, however,
given that the database server does not spontaneously issue requests, it means
that an application server must have previously received a Request message
with that same request identifier from the client. Also in this case, therefore,
the claim follows. Q.E.D.

6.4 Supporting Parallel Invocation

In this protocol, just like in the one presented in Chapter 4, fail-over is per-
formed via a simple timeout based request retransmission logic and not via
extermination of previously submitted requests. Hence also this solution lends
itself to easily transmute into a parallel protocol analogous to the one described
in Chapter 5.

In this case the modification to apply to the original pseudo-code of the
various processes would be really minimal, requiring exclusively an obvious
transformation in the client pseudo-code along the lines of the one shown in
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Section 5.1.1. Conversely, the application and database server pseudo-codes
could be seamlessly employed within the parallel invocation scheme without
requiring any modification at all.

Finally, for what concerns the benefits, in terms of increased system re-
sponsiveness and (performance) failure masking, and the costs, in terms of
additional resource consumption at the database server, our simulation stud-
ies in [100] show very similar results to the ones already reported in Section
5.3 hence we avoid reporting them here.

6.5 On Practical Issues

In order to allow the garbage collection of unneeded recovery information from
the ITP database table, one could rely on the same mechanisms presented
while describing our protocol in Chapter 4. Essentially, in the most likely
scenario in which neither the client nor the databases experience timeout ex-
pirations, the database servers should piggyback on the CommitACK message
directed to the application server an additional flag conveying information on
that it did not perform any request retransmission associated with that same
request identifier (and that it won’t perform any request retransmission in
the future). Also, the client should send an explicit acknowledgment mes-
sage to the application server upon receipt of the Outcome message. At this
point, the application server could simply notify the database to discard the
corresponding ITP entry.

In case some request retransmission had to be performed either by the
client or by the database server, the above acknowledgment scheme could be
modified in the following way. The client and the database servers could inform
the application server via a different acknowledgment message that retrans-
missions have already taken place. The application server could then ask the
database servers to remove the transaction result from the corresponding ITP
entry, while maintaining the request identifier. This would allow a considerable
reduction of the storage space occupied by the recovery information.

Finally, just like in our previously presented protocols, an alternative, or
possibly complementary, approach to garbage collection of recovery informa-
tion, would be to rely on appropriately selected TTL values, after which dele-
tion of the ITP entry from the database can be performed.

A pragmatic optimization of the protocol behavior, which we will refer to
as “preventive check optimization”, is based on the observation that when an
application server receives a request retransmission, it is possible that some
previous request instance has already been committed by the database. In
the above version of our protocol however such an event is detected by the
database server only after the transactional business logic has been completely
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executed. We argue that, in order to reduce the user perceived fail-over la-
tency, a simple optimization could be to tag the request retransmissions with
an additional flag check, not included in the first request instance transmit-
ted by the client. This would inform the application server that it is currently
processing a retransmission of that request, so that it could specialize its treat-
ment. Specifically, the application server could exploit the lookup primitive
to discover whether some sibling transaction was already committed and, in
the positive case, return the corresponding result by saving time and resources
since neither the compute nor the insert would be executed. It is worthy un-
derlining that such an optimization aims exclusively at pursuing performance
benefits, as the safety properties of our protocol would still be ensured by
exploiting the above described primary-key conflict mechanism among sibling
transactions.

As hinted, a key feature of the protocol is to allow sibling transactions to
execute in parallel, rather than relying on an extermination based approach
to handle failure suspicions. Such an approach assumes that the database’s
concurrency control scheme is able to ensure the (eventual) progress of con-
currently active sibling transactions despite the possibility of mutual data
conflicts. A relevant pragmatic implication of dealing with a single back-end
database is that, in this context, the concurrency control does not need to
maintain durable (i.e. not unilaterally releasable) locks on data items. (These
are instead required in the context of distributed transaction processing, dur-
ing the pre-commit phase, in order to provide persistent guarantees on the
ability to subsequently commit a transaction [17, 52, 117].) Given that in this
case we are not concerned with durable locks, this protocol, differently from
the one presented in Chapter 4, does not necessarily require to be supported by
a custom, ad-hoc concurrency control mechanism. Specifically, we note that
a classic optimistic concurrency control (OCC) (in which transactions do not
mutually block and are validated at commit time) would be a perfect candi-
date to support the protocol, providing the potentialities for real parallelism,
which could even allow maximal exploitation of the benefits provided by the
parallel invocation approach discussed in Section 6.4. On the other hand, if
the database server adopted a pessimistic concurrency control (PCC), e.g. a
strict two-phase locking [17, 52], the transactions associated with a given re-
quest could be blocked by a pending sibling transaction instance, until this lat-
ter either commits/aborts or experiences lock timeout for deadlock detection
at the back-end database. The most critical scenario with PCC is probably
the one in which the application server processing the “blocking” transaction
were to crash before completing it. Even in this case, anyway, given that
the database must not maintain any durable lock, the blocking transaction
would eventually be aborted by the timeout based deadlock detection mech-
anism. This prevents blocking scenarios of unbounded duration and ensures,
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in practical contexts, that the liveness of the end-to-end interaction does not
get compromised. On the other hand, given that PCC could reduce the par-
allelism level among sibling transactions, it could reveal inviable in case of
parallel invocation aimed at masking performance failures.

Another practical issue is related to that our protocol assumes that a com-
mitting transaction can explicitly abort any pending sibling transaction so to
ensure that no transaction remains uncommitted for ever. Such a behavior is
directly supported by the standard XA transaction demarcation API. How-
ever, the XA APIs are normally employed in distributed transaction processing
environments and may not be supported by DBMS products that are not de-
signed to participate in distributed transactions, which normally provide only
a JDBC/ODBC connection oriented programming interface. In these environ-
ments, it is unfortunately not possible to request the abort of a transaction
associated with a different thread of control, i.e. with a different database con-
nection. However, in practical settings, it is the DBMS itself that eventually
aborts in an unilateral way any transaction that is left pending for too long
in order to release valuable system resources. One could therefore rely on the
DBMS to ensure the termination of pending sibling transactions, and develop
a pragmatical implementation of our protocol based exclusively on univer-
sally supported JDBC/ODBC. This standard feature of real DBMSs could be
exploited also to avoid reliance on the retransmission logic activated by the
database server’s background task (see Task 2) to ensure eventual termina-
tion of pending transactions. This could further simplify the implementation
of our protocol and its integration with COTS database products.

For what concerns the implementation of the ITP manipulation logic
(specifically the insertion of the ITP entry within a database table and the
handling of the corresponding duplicate primary key exception) one can envi-
sion a number of viable alternatives. The simplest one would probably be to
explicitly perform the ITP manipulations at the application level, by explicitly
extending the transactional business logic. A more elegant approach would be
to delegate this task either the JDBC/ODBC driver or, in the case, of applica-
tions relying on container managed transactions [114], to the container module
providing application components with lower level transactional services, e.g.
OTS in the J2EE platform. This would permit to transparently enforce the
e-Transaction guarantees without requiring modifications to the application
level logic.

As a final additional note, the same methodology discussed in Section 4.4
could be adopted also in this case, so to allow clients to correctly recover after
crashes.
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6.6 Comparison with State of the Art Approaches

In this section, we perform a qualitative and quantitative comparison between
our protocol and the existing e-Transaction solution natively optimized to
tackle the single back-end database scenario. Such a protocol, which we refer to
as FG in the following, was presented by Frolund and Guerrauoi in [43]. Then,
we present experimental data allowing us to evaluate the overhead introduced
by our solution with respect to a baseline protocol which does not provide
any reliability guarantee. These data help us to quantify the inherent cost
of reliability exhibited by our solution in a realistic transaction processing
environment.

6.6.1 Qualitative Comparison with FG

Like our solution, the FG protocol also avoids coordination schemes among
application server replicas and relies on the idea of logging some recovery
information at the back-end database while processing the transaction.

During normal operation mode, both our protocol and FG actually exhibit
the same behavior, shown in Figure 6.3.a. However, differently from our pro-
posal, the FG protocol handles failure suspicions through a termination phase
executed upon timeout expiration at the client side, see Figure 6.3.b. During
this phase, the client sends, on a timeout basis, terminate messages to the
application servers in the attempt to discover whether the transaction asso-
ciated with the last issued request was actually committed. An application
server that receives a terminate message from the client tries to rollback the
corresponding transaction, in case it were still uncommitted (possibly due to
crash of the application server taking care of it). At this point the application
server determines whether the transaction was already committed by testing
the presence of the recovery information. In the positive case, the application
server retrieves the transaction result to be sent to the client. Otherwise, a
rollback indication is returned to the client in order to allow it to safely send
a new request message (with a different identifier) to whichever application
server.

Our protocol avoids the termination phase since it makes request retrans-
missions idempotent operations thanks to the use of a primary key constraint
imposed on the recovery information supporting the testable transaction ab-
straction. From the point of view of performance, the avoidance of the termi-
nation phase reduces the latency of the fail-over phase as compared to [43],
as it will be clearly quantified in Section 6.6.2. More importantly, avoiding
the termination phase makes our protocol a more general solution. In fact,
by admission of the same authors, the employment of such a phase limits the
usability of their protocol to environments where it can be ensured that a
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Figure 6.3: Basic Client-Initiated Interactions for the Considered Protocols.
(Filled boxes represent eager disk accesses)

request message is always processed before the corresponding terminate mes-
sages. This is due to the fact that, when mapping the protocol on conventional
technology, according to the specifications of the standard interface for trans-
action demarcation, namely XA, upon a rollback operation for a transaction
with a given identifier, the database system can reuse that identifier for a suc-
cessive transaction activation (see [117] - state table on page 109). Hence, if a
terminate message was processed before the corresponding request message in
the FG protocol, the latter message could possibly give rise to a transaction
that gets eventually committed. On the other hand, upon the receipt of a re-
ply to a terminate message, the client might activate a new transaction, with
a different identifier, which could eventually get committed, thus leading to
multiple updates at the database and violating safety. This situation is shown
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client AS1 AS2 DB

Request[A]

Request[B]

Outcome[B,commit]
duplicate transaction

Terminate[A]

TIMEOUT

Outcome[A,rollback]

commit(B)
insert(B)
compute()

compute()

commit(A)

Figure 6.4: Duplicate Transaction Execution due to a Violation of the Pro-
cessing Order of Request and Terminate Messages.

in Figure 6.4, where the long transmission delay for the request message with
identifier A causes exactly such an undesirable pattern (i.e. the terminate
message for A is processed before the corresponding request message). On the
other hand, after the receipt of the reply to the terminate message for A, the
client sends a new request message with identifier B, so that both the request
messages associated with different identifiers A and B (but containing the
same request content) give rise to transactions that are eventually committed.
In order to achieve the required processing order constraint for request and ter-
minate messages, the authors suggest to delay the processing of the terminate
messages at the application servers. This expedient might reveal adequate in
case the application is deployed over an infrastructure with controlled message
delivery latency and relative process speed, e.g. a (virtual) private network or
an Intranet. However, if the system can experience periods during which the
message delivery latency gets unpredictably long and/or the process speeds
diverge, e.g. like in an asynchronous system, simply delaying the processing of
a terminate message would not suffice to ensure such an ordering constraint.
The latter constraint could be enforced through additional mechanisms (e.g.
explicit coordination among the servers), but these would negatively affect
both performance and scalability of this protocol. By all means, delaying the
processing of terminate messages, even if adequate for specific environments,
would further penalize the user perceived system responsiveness during the
fail-over phase as compared to our solution. Conversely, our protocol does



124 CHAPTER 6

not require constraints on the processing order of messages exchanged among
processes, thus it requires no additional mechanism to enforce such an order
and can be straightforwardly adopted in an asynchronous system, e.g. an
infrastructure layered on top of public networks over the Internet.

Finally, a drawback deriving from the reliance of the FG protocol on the
termination phase is that it needs to assume eventually perfect failure detec-
tion to preserve the liveness of the end-to-end interaction. Conversely, our
solution does not hinge on any assumption on the accuracy of the failure de-
tection scheme.

6.6.2 Quantitative Comparison with FG

In this section we focus on a quantitative comparison of the user perceived
fail-over latencies when employing our solution, extended with the “preven-
tive check optimization” described in Section 6.5, and the FG protocol. For
fairness, we avoid considering the parallel invocation version of our protocol
(see Section 6.4) in this comparison, given that the structure of the protocol
in [43] (i.e., its reliance on a termination phase to handle failure suspicions)
prevents its employment in the context of a parallel invocation scheme.

This is done through the introduction of relatively simple analytical models
for the protocol behaviors, suitable for comparing them in a wide range of
environmental settings. While developing the models we follow a bottom-up
approach. Specifically, we first present an analysis of the main client-initiated
interactions allowed by the two protocols (e.g. a termination interaction in
case of the FG protocol). Latency models for those interactions are used
as building blocks for the construction of complete models for the expected
end-to-end latency at the client side.

Models for Basic Client-Initiated Interaction

The models we provide in this section express mean latency values for basic
client-initiated interactions successfully completed with no timeout expiration
at the client side (the effects of timeouts will be included while composing these
models to evaluate the whole end-to-end latency perceived by the end-user).

The protocols are based on two different client-initiated interactions. The
FG protocol is based on a request transmission interaction, as schematized in
Figure 6.3.a, and on a request termination interaction, as schematized in Fig-
ure 6.3.b. Note that the request termination interaction can end with either a
commit or a rollback indication to the client, depending on whether the trans-
action was already committed upon the issue of the rollback request by the
application server to the database server. Actually, the real outcome is dis-
covered by using the recovery information at the database, which is accessed
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via a lookup phase. Our protocol is based on a request transmission interac-
tion, analogous to the one of the FG protocol shown in Figure 6.3.a, and on a
request retry interaction, as shown in Figure 6.3.c (4). This latter interaction
includes the check parameter. This allows checking, again through a lookup
phase, whether the transaction has been already committed before activating
any new instance. In the negative case, the new instance is activated. We
denote as Pcommit the probability that the application server finds the trans-
action already committed during either the request termination interaction in
Figure 6.3.b for the FG protocol or during the request retry interaction in
Figure 6.3.c for our protocol. (In other words, Pcommit indicates the proba-
bility that the lookup phase returns with an already established result for the
transaction.)

We can now derive expressions for the expected latency of the request
transmission interaction in Figure 6.3.a, proper of both protocols, which we
denote as Treq, and the expected latency of both the request termination and
retry interactions (in Figure 6.3.b and in Figure 6.3.b, respectively), each one
proper of a specific protocol, which we denote as Tterminate and Tretry. These
expressions are:

Treq = RTTCL/AS + RTTAS/DB + Tcompute + Tinsert (6.1)
Tterminate = RTTCl/AS + RTTAS/DB + Trollback + Tlookup (6.2)

Tretry = RTTCL/AS + RTTAS/DB + Tlookup +
+(1− Pcommit)[Tcompute + Tinsert] (6.3)

where:

• Tcompute is the average time required to execute the transactional busi-
ness logic (e.g. SQL statements).

• Tinsert is the average time required to log the recovery information (i.e.
the transaction identifier and the result) at the database.

• RTTCL/AS and RTTAS/DB represent, respectively, the average latency
for a request/response interaction between a client and an application
server, and between an application server and the database server, re-
spectively.

• Trollback is the time required for handling a forced rollback request for a
transaction.

4We avoid explicitly modeling the database initiated request retransmission logic (acti-
vated by Task 2 in Figure 6.2), since our study is focused on the evaluation of the perceived
latencies during fail-over from the client perspective.
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• Tlookup represents the time for performing a lookup operation in the table
maintaining the recovery information.

In the above expressions, analogously to the analytical model presented
in Section 3.5, we have considered the case of transactional logic (including
the insertion of the recovery information) executed through a single round
trip interaction between application and database servers, e.g., as in stored
procedures. This allows avoiding the introduction of an arbitrary delay in the
latency models, caused by an arbitrary number of interactions for the man-
agement of the transactional logic. Also, with no loss of fairness, we avoid to
model transaction aborts due to autonomous decisions of the database server.
Note also that, while modeling the FG’s request termination interaction, no
delay has been introduced for the processing of the terminate request at the
application server, which, as discussed in Section 6.6.1, might be required by
the FG protocol to ensure correct order of request/terminate message pro-
cessing. This choice derives from that no clear indication has been provided
by the authors on the delay value. However, we underline that omitting this
delay even favors the FG protocol in the comparative analysis.

We note that the expression for Tterminate in (6.2) does not depend on
Pcommit. This is because the termination phase for the FG protocol has the
same pattern independently of whether the transaction the application server
attempts to terminate through forced rollback was already committed or not.
Anyway, as we shall show in the next section, the parameter Pcommit plays
a role in the expression for the whole end-to-end latency provided by the
FG protocol since, in case the termination phase finds the transaction not
committed, a new instance of request, with a different identifier, needs to be
transmitted by the client.

End-to-end Latency Models

A key factor to build complete end-to-end latency models for the two protocols
is the occurrence of a timeout expiration at the client side, i.e. the mechanism
employed by the two protocols to support failure detection. The accuracy of
such an approach to failure detection is in practice affected by a large number
of factors, e.g. the choice of the timeout value with respect to the average
system speed, as well as the variance of the average system speed, and the
probability of failure of any process involved in the interaction. For simplicity,
we will abstract over these details, and model the effects of timeout expiration
by a single parameter PTO, namely the probability for a client to experience
a timeout during any client-initiated interaction.

As a last preliminary observation, we note that the typical behavior of
a Web browser (contacting the Web/application server through HTTP(S))
is to close the underlying TCP connection in case of timeout [116]. Hence,
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while deriving end-to-end latency models, we consider the case in which the
client-initiated interaction during which timeout is experienced does not get
eventually completed (just because the channel for the reply to the client is
closed upon timeout expiration).

On the basis of the above considerations, we can express the average user
perceived latency for the considered protocols, which we denote as T fg and
T our protocol, as:

T fg = (1− PTO)Treq + PTO(TO + T fg
failover) (6.4)

T our protocol = (1− PTO)Treq + PTO(TO + T our protocol
failover ) (6.5)

where

• TO is the timeout value at the client side.

• T fg
failover and T our protocol

failover represent the expected latency for the fail-over
phase for the two protocols.

By expressions (6.4) and (6.5), the timeout latency TO and the latency
for fail-over operations (i.e. T fg

failover and T our protocol
failover , respectively) are experi-

enced at the client side only in case of timeout expiration, i.e. with probability
PTO. In case of no timeout, the user perceived latency simply consists of the
time for a request transmission interaction Treq as expressed in (6.1). Also,
always for simplicity, but with no loss of fairness and generality, we avoid mod-
eling transaction rollback due to the concurrency control mechanism. This is
the reason why, in case of no timeout expiration, the end-to-end latency in
both protocols simply corresponds to Treq.

To complete the models, we have now to derive expressions for T fg
failover

and T our protocol
failover . Actually, these expressions can be derived by thinking that

fail-over is supported by simply composing client-initiated interactions among
those modeled in Section 6.6.2 on a timeout basis. Specifically, the FG proto-
col lets the client activate request termination interactions on a timeout basis
until an outcome is notified to the client. In case the outcome is rollback, the
client selects a new request identifier and regenerates its initial behavior by
activating a new request transmission interaction. Instead, our protocol lets
the client simply activate request retry interactions until one of them is even-
tually completed with positive outcome for the transaction. As a consequence,
the expected latency for the fail-over can be expressed for the two protocols
as follows:

T fg
failover = (1− PTO)[Tterminate + (1− Pcommit)T fg)] +

+PTO(TO + T fg
failover) (6.6)

T our protocol
failover = (1− PTO)Tretry + PTO(TO + T our protocol

failover ) (6.7)
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Tcompute + Tinsert Tlookup Trollback

195,18 1.42 0.55

Figure 6.5: Measured Parameters Values (Expressed in msec).

By means of simple algebraic transformations and replacements, we finally
obtain the following expressions for the end-to-end latency provided by the
two protocols:

T fg =
(1− PTO)Treq + PTO(TO + Tterminate + PTO

1−PTO
TO)

1− (1− Pcommit)PTO
(6.8)

T our protocol = (1− PTO)Treq + PTO(TO + Tretry +
PTOTO

1− PTO
) (6.9)

Parameter Treatment

Before presenting and discussing quantitative results deriving from the devel-
oped models in (6.8) and (6.9), we provide indications on how the parameters
appearing in the models have been treated in our analysis.

In order to use realistic values for Tcompute, Tinsert, Trollback and Tlookup, we
have developed prototype implementations of (i) basic modules supporting the
actions required by the protocols for the manipulation of the recovery infor-
mation, and of (ii) the TPC BENCHMARKTM C (New-Order-Transaction),
already used in the performance evaluation study presented in Chapter 3. The
table in Figure 6.5 lists the costs of the activity on the back-end database,
which have been measured using the same software/hardware configuration
already reported in Section 3.5. Also in this case, each reported value, ex-
pressed in milliseconds, is the average over a number of samples that ensures
confidence interval of 10% around the mean at the 95% confidence level.

For what concerns PTO, we selected the realistic value of 0.01, reflecting
the fact that, in practical settings, only a limited percentage of interactions
experience timeout. Pcommit was set to the value of 0.5, indicating that, during
fail-over, we equally likely find the transaction already committed or uncom-
mitted.

For what concerns the parameters RTTCL/AS and RTTAS/DB, we note that
they are typically dependent on the relative locations of clients, application
servers and database server. In the analysis we consider the following three
classical scenarios for what concerns the deployment of the different system
components in a multi-tier system (see Section 1.2.2):

Scenario-A: Clients, application and database servers are all geographically
distributed and communicate with each other through the Internet.
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RTTc/as RTTas/db

Scenario-A 150 150
Scenario-B 150 5
Scenario-C 5 5

Figure 6.6: Communication Latency Values (Expressed in msec).

Scenario-B: Geographically spread clients, connected to the application
servers through the Internet. Application and database servers resid-
ing on the same local area network.

Scenario-C: Clients, application and database servers residing on the same
local area network, as in the case of Intranet applications.

Results

The table in Figure 6.5 shows the considered values for RTTCL/AS and
RTTAS/DB, which have been chosen as representative for the corresponding
scenarios [59]. (We recall that, as discussed in Section 6.6.1, the FG protocol
needs assumptions on the message processing order that may not hold for some
of the considered scenarios. We include these scenarios in the comparison for
the sake of completeness. Such a choice also allows us to show that, even if
those assumptions were guaranteed without any additional penalty for the FG
protocol, e.g. without explicitly coordinating process activities, which is in
fact not modeled by expression (6.8), our protocol would anyway outperform
that solution.) For each scenario we leave the value of TO as the independent
parameter of the performance study. This allows us to compare the two pro-
tocols when considering settings with different features for the variance of the
end-to-end interaction latency. Specifically, lower values for TO are represen-
tative of settings with highly predictable performance (e.g., a closed system
with a limited number of clients), for which suspects of failures can be rea-
sonably triggered on the basis of relatively aggressive timeouts. On the other
hand, longer timeout values are representative of situations with much larger
fluctuations (and hence variance) for the end-to-end response time (as in sys-
tems layered on top of best effort public infrastructures), for which the timeout
values need to be more conservative in order not to incur excessive false failure
suspicions. To reflect the different degrees of variance in the expected laten-
cies characterizing the three considered scenarios, we let TO vary in the range
[30-90] for Scenario-A and Scenario-B (where clients interact with the system
across the Internet), and in the range [10-30] for Scenario-C (where clients are
on the same local area network also hosting the server side components).

The purpose of our analysis is to provide quantitative indications on the
impact of the two considered protocols on the user perceived latency during
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Additional Perceived Fail-over Latency
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Baseline Our protocol Overhead
TPC-C (New Order Transaction ) 192.84 195.18 +1.21%

Table 6.1: Quantification of the Inherent Cost of Reliability (Values in ms).

fail-over. To this aim, we use the end-to-end latency models previously pre-
sented to plot the Additional Perceived Fail-Over Latency (APFL) of the FG
protocol compared to our proposal, defined as:

APFL =
T fg

failover − T our protocol
failover

T our protocol
failover

(6.10)

In Figure 6.7 we report the plots of the APFL for the three considered scenar-
ios. Looking at the results, we note that our protocol provides fail-over latency
which is between the 25% and the 50% lower than the one of the protocol in
[43], with the largest advantages achieved in Scenario-A and Scenario-B. This
depends on that the Internet latency between client and application servers
have a penalizing impact on the additional termination phase required by the
FG in case of timeout expiration.

It is also interesting to note that, for all the considered scenarios, the APFL
curve is almost flat while varying the selected timeout values. This points out
how our proposal can be adopted to provide more responsive fail-over for the
case of both aggressive timeout values (suited for the case of predictable system
performance, i.e., low response time variance) and conservative timeout values
(suited for systems with higher response time variance).

6.6.3 Comparison with the Baseline Protocol

In this section we provide indications on the inherent cost of reliability when
using our protocol, namely the overhead imposed by our proposal with respect
to a baseline protocol which does not ensure any reliability guarantee. Such
a baseline protocol simply processes the client request within a transaction to
be performed by the middle-tier. In other words, the two protocols differ only
because in our solution an additional tuple is inserted in a user level database
table within the same transaction being executed on behalf of the application
business logic.

We focus on the overhead imposed by our protocol in terms of additional
processing time required by the database server to handle the insertion of the
recovery information within the database table. In other words, the overhead
evaluation we provide does not consider the communication latency among
processes. We note, however, that the real overhead would be even lower than
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the values we report if evaluated over the whole end-to-end latency instead of
simply the time to process the transaction at the database server.

We report in Table 6.1 the average processing time for SQL statements
associated with the New-Order-Profile of the TPC BENCHMARKTM C, in
a separate row, the exact cost for inserting the recovery information in a
database table. All these measures were obtained by means of the previously
described test system. These data clearly show that the overhead exhibited
by our protocol is minimal.
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