
Elastic cloud resources provisioning for life
insurance undertaking applications.

School of Engineering in Computer Science
Master of Science in Engineering in Computer Science

Candidate
Andrea La Rizza
ID number 1252622

Thesis Advisor
Prof. Bruno Ciciani

Co-Advisor
Ing. Alessandro Pellegrini

Academic Year 2014/2015

Thesis defended on 23 October 2015
in front of a Board of Examiners composed by:

Prof. Bruno Ciciani (chairman)
Prof. Fabrizio D’ Amore
Prof. Francesco Delli Priscoli
Prof. Leonardo Lanari
Prof. Paolo Liberatore
Prof. Francesco Quaglia
Prof. Marilena Vendittelli
Prof. Andrea Vitaletti

Elastic cloud resources provisioning for life insurance undertaking applications.
Master thesis. Sapienza – University of Rome

© 2015 Andrea La Rizza. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 17, 2016

Author’s email: andrelr89@gmail.com

mailto:andrelr89@gmail.com

to all those

who believe that

nothing is impossible...

v

Abstract

The Solvency II Directive (Directive 2009/138/EC) [14] is a European law adopted
in November 2009, and amended by Directive 2014/51/EU of the European Parlia-
ment and of the Council of 16 April 2014 (the so-called "Omnibus II Directive"). It
was enacted by the European Union to regulate the insurance sector through risk
management. Solvency II requires that European insurance companies conduct
consistent evaluations and constant monitoring of risk. The main regulation requires
the insurance undertaking to compute the SCR (Solvency Capital Requirement)
and the pdf (Probability Distribution Forecast). The SCR is the capital amount
that should hedge the losses up to a given level. To calculate the SCR the directive
allows the company to choose between two different computational methodology:
the standard formula and the internal model. The pdf is a mathematical function
that assigns to an exhaustive set of mutually exclusive future events a probability
of realisation. Its computation relies on non closed form calculus based on several
Monte Carlo simulations and different hypothesis.
To fulfill the directives, companies should equip themselves with particular computa-
tional systems which, due to their complexity, require for their execution significant
underlying IT infrastructures. This IT equipments represent a significant outlay for
the company, not only for what concerns their direct costs due to the purchase, but
also those for power consumption, cooling, maintenance and upgrades. Moreover,
the technological progress that characterizes the IT field makes these computing
resources become obsolete quickly. On the other hand, we face the risk that such
resources become underused since these procedures could be used only periodically
(at most monthly). If for the insurance company the utilization of "on premises"

resources may not be advantageous, for a cloud services provider, increasing steadily
its resources, leads to reduce the costs and consequently reduce the rates charged to
the user.
The idea of this work is to put together the needs arising from Solvency II accom-
plishment with the always more advantageous scenario of cloud services. Within the
project, as a case study, the focus is on a particular "module" of a more complex sys-
tem named DISAR® 1, that deals with the calculation of the pdf and other significant
items for an insurance company. This procedure relies on a Monte Carlo simulation
algorithm developed on parallel MPI environment. The goal of the project is to

1Dynamic Investment Strategy with Accounting Rules ®, developed by Alef srl [1].

vi

develop a framework that, by exploiting a learning algorithm is able to: calculate the
computational power and the size of the IT infrastructure necessary for the execution
of the procedure for a given input, deploy and make it available in a few minutes
on the cloud, transfer to the grid the data necessary to the simulation, execute it
and retrieve the output in a fully automated way transparent to the final user. The
latter has the only task of choosing the segregated funds 2 the to work on. Moreover
after each elaboration, the data relative to it are stored and subsequently utilized to
improve the model for the next simulation. The cloud services provider adopted
for this project is Amazon Web Services (AWS), however the core algorithm as the
methodology can be applied independently of the provider.

2segregated fund is the translation for the Italian gestione separata. In life insurance a gestione
separata is a fund specially established by the insurance and managed separately from the overall
activities of the company. The segregated funds are used in contracts of class I; They are characterized
by a composition of the investment typically prudent. The return obtained by separate management
is used to reevaluate the coverage of the contract; generally it is also recognized as a return guarantee
of the paid and/or a minimum return and the annual consolidation of results (which means that the
returns made are definitely acquired and can not be changed by any loss or by lower yields of the
following years).

vii

Contents

1 Introduction 1
1.1 State of the art . 1

1.2 Aim and motivations . 5

2 The financial context 7
2.1 The Solvency II directive . 7

2.1.1 The directive . 7

2.1.2 Solvency Capital Requirement (SCR) 8

2.1.3 Standard formula and internal model 10

2.1.4 Probability Distribution Forecast (PDF) 11

2.2 The nested Monte Carlo simulation and the "big computational
problem" . 12

2.2.1 Valuation of a life insurance policy 13

2.2.2 Nested Monte Carlo simulations 14

3 Overview of the Insurance Data System 17
3.1 IDS® . 17

3.1.1 IDS®architecture . 17

3.1.2 Subsystems and procedures 20

3.1.3 Disar®: a procedure of IDS®life subsystem 22

4 The implemented cloud solution 31
4.1 Performance analysis of Disar . 31

4.2 Execution time prediction . 35

4.2.1 Weka . 36

4.2.2 Disar prediction . 39

4.3 User interface and software tools 41

viii Contents

4.3.1 GUI . 41
4.3.2 AMI content . 43

5 Experimental results 47
5.1 Experimental results . 47

5.1.1 Multi Layer Perceptron 48
5.1.2 Random Tree and Random Forest 49
5.1.3 Ibk . 49
5.1.4 kStar . 52
5.1.5 Decision Table . 53
5.1.6 Comparison . 54

6 Conclusions and Future Work 61

Bibliography 65

1

Chapter 1

Introduction

1.1 State of the art

The IT services situation lately has quickly changed and it’s evolving itself. In-
creasingly, we talk now of services in the cloud. Cloud computing is a general
term for anything that involves delivering hosted services over the Internet. Despite
this, the cloud environment is a so vast and heterogeneous field which is difficult
to give a generic description of. First of all, to clarify some ideas, we can make a
differentiation into three types of cloud services: IaaS (Infrastructure as a Service),
SaaS (Software as a Service) and PaaS (Platform as a Service). In a IaaS Cloud, the
resource provider focuses on delivering resizable computing capabilities in the form
of VMs. SaaS is a software delivery method that provides access to software and
its functions remotely as a Web-based service. PaaS provides a platform allowing
customers to develop, run and manage Web applications without the complexity
of building and maintaining the infrastructure typically associated with developing.
For our purpose we are interested in IaaS and all that concerns with automated
resource provisioning. IaaS platforms offer highly scalable resources that can be
adjusted on-demand. This makes IaaS well-suited for workloads that are temporary,
experimental or change unexpectedly. Usually users are charged by the provider
only for the real time they use the resources, based on hourly or daily time scale. The
pay-as-you-go model eliminates the capital expense of deploying in-house hardware
and software. Leading IaaS providers include Amazon Web Services (AWS) [2],
Windows Azure [7], Google Compute Engine [4] and Verizon [8]. Despite the
presence of so many cloud providers, many large and medium-sized companies, for
different reasons, but specifically for data protection policies, prefer private cloud or

2 1. Introduction

Figure 1.1. Gartner’s hype cycle at July 2014.

ad hoc solutions, while many others choose hybrid ones (In figure 1.1 it is possible
to observe how hybrid cloud computing is placed still at an highest position in the
through of disillusionment with respect to cloud computing). Many companies in
recent years work to provide software and operating systems for the management
of private clouds. Many of these are based on open source projects managed by
the community. In this context, very particular is IBM’s position. Users may build
their own private cloud or purchase services hosted on the IBM cloud. Users may
also purchase IBM hardware, software and services to build their customized cloud
environment. Private, public and hybrid clouds are not strictly distinct, as IBM
allows the option to build a customized cloud solution out of a combination of public
cloud and private cloud elements. For example a company can choose a private
cloud solution, owned and operated by itself, or a private cloud solution, owned by
itself but operated by IBM. Moreover a private cloud owned and operated by IBM is
possible. Finally they offer virtual private cloud services and public cloud services.
All these services are grouped under the name of IBM SmartCloud Enterprise [6].
The software module to manage the cloud, named IBM Cloud Manager, is based
on the open project Open Stack [5], and can be considered an integration of Open-
Stack [11] along with a multitude of value additions that would serve enterprise

1.1 State of the art 3

customers. OpenStack is an open source cloud operating system. The project was
started by RackSpace Cloud [12] and NASA. The idea was that of an operating
system that controls large pools of compute, storage, and networking resources
throughout a datacenter, all managed through a dashboard that gives administrators
control while empowering their users to provision resources through a web interface.
Nowdays the OpenStack Foundation counts more than 200 companies, among which
Red Hat, SUSE Linux, VMware, Cisco, Dell, HP, IBM, AMD, EMC and Oracle.
Another open source project, but of a slightly different nature is Nimbus [9]. It
consists of some tools designed to launch, control and monitor cloud applications in
single cloud or multi-cloud scenario. The project currently supports only OpenStack
and Amazon EC2. More complex for offered services is Open Nebula [10]. It
offers provisioning services for Amazon EC2 infrastructure, as well the possibility
to create and manage private and hybrid cloud solution. It is able to orchestrate
storage, network, virtualization, monitoring, and security technologies allowing to
combine both data center resources and remote cloud resources. An other service
able to manage Amazon EC2 instance is Ansible [3]. Written in Python too, it is an
open source complex project to manage machines and nodes in general. Among its
features it allows to create, terminate, start or stop an instance in EC2. Despite this
large amount of tools that allow you to manage resources in EC2, for this work we
chose the one that is closer to our goal, that is the deployment of cluster for parallel
computing: StarCluster.

Starcluster We chose StarCluster [27] for the project, in order to simplify the
automated boot process on Amazon Web Services. It is an open source software
tool developed by the Massachusetts Institute of Technology (MIT) , released under
the LGPL license. It has been designed to automate and simplify the process of
building, configuring, and managing clusters of virtual machines on Amazon’s
Elastic Compute Cloud (EC2). StarCluster allows anyone to easily create a cluster
computing environment in the cloud suited for distributed and parallel computing
applications and systems. It is entirely developed in Python. In order to use it, a
config file must be customized, more than one cluster description template could
be defined in it. The file must be filled with all the necessary informations such
as the AMIs (described later in section 4.3) to use for the master and for workers
nodes, the machine typology, and the cluster dimension. Moreover the AWS login
credentials must be provided to the file. Once the configuration is well defined,

4 1. Introduction

Figure 1.2. Cloud computing logical schema.

Starcluster offers some APIs to easily manage the AWS resources. We have seen

Figure 1.3. Starcluster working schema.

how many software has been designed to easily handle the services offered by
the major resource provider in the cloud, and in particular AWS. However, there
are many studies that attempt to address the issue of cloud resources provisioning
in a theoretical and generic way, trying to develop models and frameworks that
that are interposed between the user and the service provider. Some of them are

1.2 Aim and motivations 5

focused on providing a multicloud based service, what results interesting are the
different criteria that are adopted in the different projects to choose among the
different providers. For example in [28], the key criterion is security. What they
want to do is to bind security in SLA, making it a measurable parameter. The
core project is a framework accessible from a Web GUI. Through the GUI the
costumer can negotiate different security levels. The user submits his security
requirements for VMs, the system processes the request and splitting the request
in technical constraints tries to solve them keeping as goal optimal costs. After
the customer submits the proposed solution, the engine instructs OpenStack to
launch the VM. A monitoring agent periodically keeps under control the SLA
requirements and sends data to a monitor server. In an other work [31] the authors
propose a SMS (Service Management System). The system collects and unifies the
infrastructure providers informations. The project is aimed at acting in dynamic
pricing multi-cloud environment. Moreover since it is thought to deal especially
with Web services, it takes into account some performance indicators, such as
requests/second. The number and the features of the VMs can dynamically change.
The matching criteria to make the choice on how to develop the VMs is based on
two target function: keeping always verified the performance constraints, minimize
the cost of the resources yield by the first function over multiple cloud providers.
Experimental results has showed how this approach leads to save from 6% to 8% of
budget compare with AWS itself strategy.

1.2 Aim and motivations

As we have seen in section 1.1, there are many studies and projects trying to automate
the resources provisioning on cloud, each one stressing different aspects, such as
multi provider provisioning. We have shown how someone has focused on the
particular problem of the provisioning for scientific applications [21]. Nevertheless
each problem and application is different from the other, and it is difficult, or almost
impossible, to think of a general solution that fits in all contexts without requiring
significant efforts in machine-learning and AI fields. Even if some existing projects
could be suitable for our purpose for what concerns the deployment, it is not the
same in relation to resources estimation and sizing. In fact, as we will see in the
following sections, our application problem is quite peculiar, although it is not
difficult from this point of view. However regardless the financial context, since

6 1. Introduction

the core algorithm is based on Monte Carlo simulations, the estimation algorithm,
keeping into account some thin differences, should be easy adapted and reused
in other works that rely on Monte Carlo algorithms. What would change would
be only the image from which the VM would be deployed, leaving unchanged the
technical framework. Moreover in developing our project we will base on Starcluster,
a pre-existing tool we have introduced in 1.1. As mentioned in the abstract, we
will work on a commercial Italian product named DISAR®. Its architecture and
functioning will be deeply explained in section 3.1.3. To introduce the project aim it
is sufficient to say that it is a modular insurance platform that is oriented to distributed
computing. It it composed of some clients used to pilot the computation, a database,
an orchestrator, and several nodes containing the engines. The orchestrator interacts
with the database and distributes the computation on the engine nodes. There are
two types of engines, the first typology computes what we will call the flows, the
second one, starting from flows results, computes what we will call the values. In
turn, the system provides a second branching, distributing layer, in fact a distributed
version of the second kind of engine has been developed relying on MPI library.
A procedure has been realized that, after the flows computation, reading from the
database, prepares the input data for the values computation. Such procedure makes
it possible to completely make the MPI engines autonomous, since the engines don’t
have to interact directly with the database and the orchestrator. At a computational
level, the values computation is the most resources and time consuming step of the
procedure (we will see why in section 2.2). Currently the insurance companies run
Disar on on premise architectures, and based on the input complexity, the procedure
can take from several hours until days to complete. The core idea of this project
is the outsorcing of part of the system in a cloud environment. Obviously, the
part interested to the migration is the one that involves the distributed MPI engines
since it is the most resources consuming. As previously said, this is much more
possible thanks to the fact that it can be completely made autonomous, allowing
to keep besides the database in place. Finally our intention is to the reverse the
resource/time relation. In fact if currently the architecture is given, and the time
necessary is a result, what we want to reach is a scenario in which we decide the
target time and the necessary resources are a direct result estimated and deployed by
the framework. Moreover the resource will be deployed on demand permitting the
core cloud formula "pay as you go" hold.

7

Chapter 2

The financial context

Before describing the details of the project, it’s necessary to introduce some prelimi-
nary financial notions useful for the reader for better understanding the context in
which the it arises. Moreover, the elements we are going to introduce here make
the reader’s mind build an idea of the computational complexity of the calculation
problem we face when we approach the pdf elicitation.

2.1 The Solvency II directive

In this section the Solvency II directive is introduced. The Directive in its entirety is
quite complex and intricate. However, for the purposes of this work we just give
a brief overview. Also we will address only the relevant aspects in order to have
a preliminary background needed to understand what we will discuss later in the
work. In 2.1.1 we give the directive overview, in 2.1.3 we explain the difference
between the standard formula and the internal model in the Solvency II framework.

2.1.1 The directive

The main purpose of the Solvency II directive is the protection of the policyholders
and the stability of financial market. The key instrument of the regulation is the
measure and control of the risk faced by the insurance and reinsurance firms. The
regulation process involves the national supervision agencies with an European di-
mension, in fact, the insurance companies are supervised by their national regulation
organisms like the Italian Istituto per la Vigilanza sulle Assicurazioni (IVASS).
However, in accordance with its European nature, a supra-national authority, the Eu-

8 2. The financial context

ropean and Occupational Pensions Authority (EIOPA) ensures the convergence
of the regulation standards. As stated by De Felice and Moriconi [20], the directive
has seven keywords: the risk, the governance system, the market-consistency, the
model, the data quality, the advanced technology and the knowledge. However the
main aim of the directive is the control of risk, the definition of risk is not stated
in it. A definition of risk can be find in A Global Framework for Insurer Solvency

Assessment [26] that define the risk as the chance of something happening that will

have an impact upon objectives. After we have established what the risk is, it is
important to identify how to measure it. The directive stated the risk measure as
a mathematical function which assigns a monetary amount to a given probability

distribution forecast and increases monotonically with the level of risk exposure

underlying the probability distribution forecast (Article 13, paragraph 39). Article
45, paragraph 1 says that every insurance undertaking shall conduct its own risk

and solvency assessment. Moreover Member States shall require all insurance and

reinsurance undertakings to have in place effective system of governance which pro-

vides for sound and prudent management of the business (Article 41). Summarizing
we have that insurance undertakings have to use a governance system to evaluate
and manage the risk, the methodology applied must be compliant with some well
defined data quality constraints.

2.1.2 Solvency Capital Requirement (SCR)

In the risk valuation a central concept is represented by the Solvency Capital Re-
quirement, the SCR computation requires two different phase: the measure of the
risk through the Value at risk and secondly the aggregation of risks. Solvency at
high level can be defined as the ability of an insurance undertaking to discharge its
indebtedness. The directive does not explicitly define the SCR, the Article 101 states:
The SCR shall be calibrated so as to ensure that all quantifiable risks to which an

insurance undertaking is exposed are taken into account. It shall cover existing

business, as well as the new business expected to be written over the following 12

months. With respect to existing business, it shall cover only unexpected loss. It

shall correspond to the Value at Risk of the basic own funds of an insurance and

reinsurance undertaking subject to a confidence level of 99.5% over a one-year

period. In a easier way, we can say that it determines the amount of capital that
ensures that an undertaking will be able to meets its obligations over one year with a
probability of at least 99.5%, which limits the chance of falling into financial ruin to

2.1 The Solvency II directive 9

less than once in 200 cases. [19] Let us denote with X the assets of the insurer and
with Y its liabilities. We introduce a new quantity that we will address as NAV (Net
Asset Value). If we define with V (t;X) and V (t;Y) respectively the market consist

values of assets and liabilities at time t, the NAV can be expressed with the formula:

NAV (t) =V (t;X)−V (t;Y), (2.1)

where

V (t;X) =
nx

∑
k=1

V x
k (t), V (t;Y) =

ny

∑
k=1

V y
k (t), (2.2)

with nx (ny) the number of assets (liabilities) and with V x
k (t) (V y

k (t)) the value of
the k−th asset contract (liability contract). The SCR estimation involves the evalu-
ation of the expected value of NAV (denoted with E[NAV (T)] and of a percentile,
at a prefixed confidence level α(= 0.005), of the NAV distribution at a future time
T > 0 (NAVα(T) with T = 1 year).

Using eq. 2.1 the SCR in t = 0 over an horizon T > 0 is:

SCRα(0,T) = [E[NAV (t)]−NAVα(T)]v(0,T), (2.3)

where v(0,T) is the risk-free appropriate discount factor prevailing on the financial
market at time zero for the maturity T .
In figure 2.1 is represented the graphical illustration of the “fundamental” measures
of Solvency II.

In the representation, assets and liabilities are put beside for emphasizing the
need to adopt an unified set of valuation criteria able to measure all elements
(‘"assets" vs "technical provisions" + SolvencyCapitalRequirement) in the logic of
"total balance sheet", implementing a consistent plan of "asset-liability management"
(ALM)1.

1The asset-liability management, in the Professional Actuarial Specialty Guide [30], is defined as
"the practice of managing a business so that decisions on assets and liabilities are coordinated; it can
be defined as the ongoing process of formulating, implementing, monitoring and revising strategies
related to assets and liabilities in an attempt to achieve financial objectives for a given set of risk
tolerances and constraints".

10 2. The financial context

Figure 2.1. Fundamental measures in Solvency II

2.1.3 Standard formula and internal model

Article 100 of the directive defines two classes for the SCR computation: The

Solvency Capital Requirement shall be calculated , either in accordance with the

standard formula [...] or using an internal model. The standard formula is a method
defined by the EIOPA, in the internal model, the undertaking, upon approval of
the supervision authorities, is allowed to substitute some or all modules of the
standard formula. The standard formula is specified by the European Commissions.
According to the Article 103, the Solvency Capital Requirement calculated on

the basis of the standard formula shall be the sum of the following items: (a) the

Basis Solvency Capital Requirement , as laid down in Article 104; (b) the capital

requirements for operational risk, as laid down in Article 107, (c) the adjustment for

the loss absorbing capacity of technical provisions and deferred taxes, as laid down

in article 108. The module (a) can be in turn divided into the following sub modules:
(a) non-life underwriting risk, (b) life underwriting risk, (c) health underwriting
risk, (d) market risk, (e) counter party default risk. In alternatives, the insurance
companies can use a full or partial internal model. Article 112 states that insurance

and reinsurance undertakings may use partial internal model for the calculation

of one or more of the following: (a) one or more risk modules, or sub-modules, of

the Basic Solvency Capital Requirement , as set out in Article 104 and 105; (b) the

capital requirement for operational risk as set out in Article 107; (c)the adjustment

referred to in Article 108. In addition, partial modeling may be applied to the whole

business of insurance and reinsurance undertakings, or only to one or more major

business units. However, the model has to be approved by the supervision authorities
and must be compliant with several requisites.

2.1 The Solvency II directive 11

2.1.4 Probability Distribution Forecast (PDF)

As previously stated in the abstract, the PDF is defined in the art. 13 of the Directive
Solvency II: "probability distribution forecast means a mathematical function that
assigns to an exhaustive set of mutually exclusive future events a probability of
realization"; it is considered a fundamental component of the "internal model".
The art. 121 says that the calculation of the probability distribution forecast has
to "be consistent with the methods used to calculate technical provisions" and the
art. 122 says that "where practicable" the SCR should be evaluated "directly from the
probability distribution forecast generated by the internal model" using the Value-at-
Risk approach at a confidence level of 99.5%, over a one-year period. An evaluation
principle must be introduced since, for estimating T P (Technical Provisioning)),
NAV , SCR, the valuation of both assets and liabilities is required. The valuation is
performed assuming that all the random variables concerning the valuation problem
are defined on a probability space(Ω,F ,P), where Ω denotes the space of events,
F the σ -algebra of the measurable events and P is the physical probability measure
(also known as the real-world measure). The most relevant technical issues in
the evaluation can be illustrated – without loss of generality – taking into account
only the "risk drivers" of financial risk. The risk drivers (interest rate, inflation,
stock price, exchange, credit, contract specific risk sources) are modeled by Z(t),
a multivariate stochastic process, eventually a Markov one. The value V (t) of a
generic contract (asset or liability) in 0≤ t ≤ H with term H, under the necessary
assumptions, is given by

V (t) = EP
[
ξ (H)V (H)

∣∣∣Ft

]
, (2.4)

where ξ (t) is a suitable "state-price deflator". In this market, we assume the existence
of a suitable equivalent martingale measure M (risk-adjusted, forward o others)
under which

V (t) = N(t)EM
[V (H)

N(H)

∣∣∣Ft

]
, (2.5)

where N(t) is the corresponding numéraire such that the process Y (t)=V (t)/N(t)

is a M-martingale; Ft is the filtration at time t. If the time t = 0 is the current time,
V (0) is known with certainty, while V (T), 0 < T ≤ H is a random variable de-
pending on the Z(t) trajectory in [0,T]. In many cases of practical interest, the

12 2. The financial context

closed-form solution (or accurate approximations at least) of assets value is avail-
able, while liabilities value, due to the complexity of payoff, cannot be computed
analytically; thus a viable approach is to rely on numerical simulations. The numeri-
cal approach for evaluating liabilities, shown below, can also be applied to assets
when no closed-form solution on the asset side is accessible. V (t) is the expected
value of a multivariate distribution that, as is the case of insurance contracts, is
defined on a very complex domain and with a cumulative distribution function
not available in closed-form. This leads to having to necessarily use Monte Carlo
simulation to computing the integral in (2.5), possibly in combination with other
techniques for the management of complex payoff. The SCR estimation requires the
evaluation of the expected value E[NAV (T)] and the percentile NAVα(T). In general,
the NAV distribution is not available even in cases in which the joint distribution of
risk drivers is known and a closed-form valuation of NAV is available. So also in this
case it is necessary to use simulation methods to numerically calculate approximate
values of SCR. Monte Carlo simulation is the most suitable one to elicit an empirical
probability distribution of NAV . In summary, considering the typical composition of
insurance company portfolio, in the evaluation process of NAV , the liability value
V (t;Y) has to be evaluated using Monte Carlo simulation (more detailed in section
2.2.1), either for t = 0 or for t = T , while in general the asset value V (t;X) can be
calculated in closed-form otherwise using in the same way Monte Carlo simulation.

2.2 The nested Monte Carlo simulation and the "big
computational problem"

In this section we will explain which are the issues that led us to develop this project
in a cloud scenario. In section 2.1.2 we have show how the SCR computation
requires to evaluate all the risks concerned with the business of the company. This
involves the valuation of life insurance policies. In 2.2.1 we show how to valuate a
life insurance policy contract. In 2.2.2 we introduce the key points of a nested Monte
Carlo simulation, we will give an idea of its working algorithm highlighting which
are the aspects that can make its application very computationally demanding. finally
we will address the aspects of policy valuation that make Monte Carlo complexity
increase to a point such that, it is non still convenient for a company to run it on an
on premise infrastructure, rather a cloud solution become more suitable.

2.2 The nested Monte Carlo simulation and the "big computational problem" 13

2.2.1 Valuation of a life insurance policy

The purpose is to introduce the life insurance policy, in particular the Italian gestione

separata, and point out how it depends on the performances of a segregated fund. To
better understand the scenario we give a formal definition of a life insurance policy:

Definition 1. A life insurance policy is a contract promising a financial compen-
sation, i.e. the benefits, against some random events which may affect the life of
its subscriber. The cost of this protection has the form of a premium paid on a
periodic basis and/or a capital transferred to the insurance company.

Let us define by the event E(T) "the insured event at time T" and by 1E(T) its
indicator function. Typical cases of the event E(T) are life, death and lapse that
correspond to the fact that the insured person at time T is alive or dead, or he request
the early lapse of the contract. These possible events, that are not certain and need
to be evaluated, are denoted as technical risks. The contract implies cash-flows
exchanges between the insurance firm and the policyholder in case these events
occur. Benefits and premia are linked to the yield of a segregated fund. Let us
consider a contract written at time 0 with term T years and initial sum insured C0.
The benefit Ct that should be paid by the insurer to the policyholder at time T is
determined by incrementing each year the sum insured by a fraction β of the interest
earned by the insurer on the investment of the premium. The technical reserve
is invested in a reference fund, directly managed by the insurance company. The
performance of this fund depends on those who are denoted as " financial risks".
Thus the service eventually received by the subscriber can be defined as:

YT =C0ΦT1E(T). (2.6)

ΦT in eq. 2.6 represents the readjustment factor in turn defined as:

ΦT =
T

∏
t=1

(1+ρt) = (1+ i)−t
T

∏
t=1

(1+max{β It , i}). (2.7)

where i is a basic technical rate. If the market value of this fund at time t (when the
premium is invested) is Ft , the rate of return earned by the fund in year [t−1, t] is:

It =
Ft

Ft−1
−1; (2.8)

14 2. The financial context

The Italian profit sharing system called "con minimo garantito" provide that if
It > i, part of the extra earned interest is credited to the insured by increasing the
insured sum by a readjusting factor at the end of the year following the rule:

Ct =Ct−1(1+ρt), t = 1,2, ...,T, (2.9)

where ρt is the readjustment rate defined as:

ρt =
max{β It , i}− i

1+ i
; (2.10)

where β ∈ (0,1) is the "participation coefficient" that together with i is contrac-
tually specified at time 0. The quantity β It is the portion of the fund credited to
the policyholder. The threshold rate i is a lower bound that guarantees that the sum
insured cannot decrease even if the rate i is not realized by the fund in that year.
Equation 2.6 is crucial to understand on which aspects liability depends. It is affected
by "financial" and "technical" (actuarial) uncertainty. What we are interested in is
to assign a value at time t to the random variable YT . Since C0 is known at time 0,
what we have to evaluate are both risk categories. If for the first category we are
able to evaluate them with a closed form, the variables for the second category are
several and not a priori known, thus since we have not a closed formula to evaluate
them, Monte Carlo simulation is the most suitable tool to address the problem.

2.2.2 Nested Monte Carlo simulations

The nested Monte Carlo simulation is at the current time, for insurance undertakings,
the most suitable approach to measure the Solvency Capital Requirement with the
Value-at-Risk approach as required by the Directive Solvency II, since it allows
to elicit an empirical probability distribution function of contracts values in future
time, and then the corresponding moments and percentiles. It is used to understand
the impact of risk and uncertainty in forecasting models. In developing forecasting
models we make some assumption about the investment return. In a Monte Carlo
simulation the model is calculated based on some random variables. The result of
the model is recorded, and the process repeated hundreds or thousands of times,
each time using different values. Once a simulation is terminated, we have a large
number of results, each based on random input values. These results are used to
describe the probability of reaching various results in the model. The nested Monte

2.2 The nested Monte Carlo simulation and the "big computational problem" 15

Carlo simulation is actually the most suitable tool for the SCR computation with
the Value-at-Risk approach. [16] A nested Monte Carlo simulation is based on two
operations:

1. the simulation of nP sample paths (Z(t)(i), i = 1, ...,nP from t = 0 to t = T

under the real world measure P, conditional to F0.

2. for each of these nP sample paths (Z(t)(i)) from t = 0 to t = T , the simulation
of nM sample paths (Z(t)(i, j)), j = 1, ...,nM, from t = T to t = H under the
equivalent martingale measure M (for example the risk-neutral probability Q),
conditional to FT .

The nP simulations are identified as the outer simulations while the nM are are
the inner ones. Monte Carlo simulation results in a nested stochastic simulation
with a large number of inner simulations for each outer scenario for the risk drivers
valuation. In insurance field, the total simulations number may be impressively if
we want to obtain reliable estimates. Moreover, the computational effort required
to evaluate liability cash flows in each single outer scenario could be very high.
This, along with the number of simulations, is to impact dramatically on resources
and time required to perform the Monte Carlo. What is particularly interesting, we
will address this deeper in section 4.1, is the fact that Monte Carlo is very suitable
for parallelization, in fact due to its schema, it provides a good scaling factor. The
development of a system able to deal with the requirements of the directive requires a
strong synergy between high-level theory and high-level technology, that is a synergy
between models and techniques of quantitative finance, computational schemes and
data management. The appropriateness of data quality and models as well as
accuracy and efficiency of computation and the adequacy of the IT infrastructure are
more and more preconditions for an efficient governance of insurance companies. In
section 3.1.3 we will introduce and describe Disar, a simulation system designed for
computing Technical Provisions and Solvency Capital Requirement in compliance to
the Own Risk and Solvency Assessment, as requested by the Directive to the "internal
model". The simulation process in Disar is based on stochastic models for values
and risks evaluation, to achieve this, Monte Carlo simulation is used.

17

Chapter 3

Overview of the Insurance Data
System

3.1 IDS®

The Insurance Data System (IDS®) is an IT platform developed by Alef, an Italian
company that produces solutions to the financial problems of public and private
firms, banks and insurance companies. The system aim is to manage: data bases,
data quality processes, computation’s engines and functions for analysis results. Its
design is based on a modular an pluggable logic that allows to easily develop new
components in case new needs arise. Before the elaboration, the centralized system
receives data from all the companies belonging to the group through well defined
protocols that ensure some specific data quality constraints.

3.1.1 IDS®architecture

The system’s architecture is composed of five logical components:

1. user interface

2. calculation’s orchestrator

3. engines for data management

4. computation engines

5. database

18 3. Overview of the Insurance Data System

The user interface is the component that provides management of procedures and
processes, the orchestrator disciplines and manages the execution of distributed and
parallel computing engines, engines for data management protect the data quality
and the organization of the results, computation engines realize the algorithmic
processes, the database contains all system’s data. All the necessary data, included
data produced by the system, are inside the database that is a Relational database
Management System (RDBMS) Oracle. The user interfaces are Windows and Web
applications, the engines for data management are written in PL-SQL, ANSI C,
C++, the computational engines are realized in ANSI C, C++, FORTRAN, while
the orchestrator is written in C++.

Assets
Tables

Life
Tables

Tables

Non Life

Tables

Support

Assets
Algorithms and processes

Algorithms and processes

Non Life

Algorithms and processes

Tables

Library, training
itineraries

Results

tables

Life

Algorithms and processes

Tables

Market

Results analysis
Algorithms and processes

Completion and

Control

Algorithms and processes Tables

Validation and

Archiviation

Company Archives

provider

Results

Users
Navigator for the

corporate culture

Figure 3.1. Architecture of the system Insurance Data System .

For the production environment the most recent version of each procedure
resides on a reference repository for the system. The procedures that reside on
the client are automatically updated at execution time. The database is made of
approximately 2000 "objects" that consist in tables, views and stored procedures.
As previously mentioned, the system’s modularity allows to divide it in four well
distinct subsystems:assets, life, non-life and corporate governance. Each procedure

3.1 IDS® 19

is composed of objects. An object may be common to more procedures. In the
database for each procedure there is an association with all of the component objects.
Each object is characterized by a version number. The database through mechanisms
of authentication and authorization, allows the certification of data and results. It
can be divided into 8 main components:

• the component Validation and storage contains tables for decoding and
standardize input data. It realizes the preliminary checks and the storage of
data in the database.

• the section Support contains tables of related informations, regulations, con-
ventions and rules for the calculations.

• the Market section is designed to contain quantitative information on the
markets situation, data are distinguished by date of detection, by type, and
source.

• the Assets archive is a database that contains demographic and business
information on standards and structured financial contracts. Demographic
data include information on the contract nature while, the corporate archives
contain information on contracts-be. Corporate data are distinct by consistency
date, portfolio and undertaking.

• the Life archive contains life and business data related to life insurance con-
tracts, that can be of 3 typologies: traditional, unit-linked or index-linked.
Personal data include information on the characteristics of the contracts that
derive from the technical note. The corporate archives contain information on
existing contracts. Corporate data are distinct by consistency date, portfolio
and undertaking.

• the Non-Life (in Italian commonly defined "Danni") archive contains informa-
tions on the damage payments, in the traditional form of triangles. Moreover
it contains data on reserves, data on premiums, expenses, assumptions about
the persistence and the new activities and reinsurers ratings. Stored informa-
tions, and in particular those about the triangles, are distinct by enterprise,
branch, detection date and data type. The information necessary to assess the
catastrophic risks (sums insured, estimated earned premiums, ...) are stored
together with informations, that about the reinsurance contracts, that are used
for the evaluation of specific risks.

20 3. Overview of the Insurance Data System

• the Tables of results contain data produced by the calculation engines. Data
are distinguished by calculation procedure and by processing key. These data
are used for defining and editing staff reports.

• section Library and training itineraries contains technical documentation
of the calculation procedures and their user manuals.

3.1.2 Subsystems and procedures

IDS is composed of 37 procedures, organized into 7 subsystems. Twelve of this are
for the management and protection of data quality and they are the following:

1. CD-Merc-I, procedure for the identification of market data required by elabo-
ration.

2. CD-Merc, procedure for market data storage.

3. CD-Titoli-C, procedure for personal details of the assets portfolios comple-
tion.

4. CD-TitoliAn, procedure for the acquisition of personal data relative to assets
portfolios.

5. CD-TitoliAz, procedure for the acquisition of enterprise data relative to assets
portfolios.

6. CD-IndexAn, procedure for the acquisition of personal data relative to struc-
tured contracts.

7. CD-IndexAz, procedure for the acquisition of enterprise data relative to
structured contracts.

8. CD-VitaAn, procedure for the acquisition of personal data relative to life
contracts.

9. CD-VitaAz, procedure for the acquisition of enterprise data relative to life
contracts.

10. CD-StatVi, procedure for the acquisition of demographical statistical bases
for the life business.

3.1 IDS® 21

11. CD-NonLifeAz-gf, procedure for fine grained data acquisition for the non-life
business.

12. CD-NonLifeAz-ag, procedure for aggregated data acquisition for the non-life
business.

Six procedures are instead dedicated to econometric and statistical estimates:

1. E-CIR, procedure for the estimates of parameters relative to the model for
interest rate expiration.

2. E-VolCor, procedure for volatility and correlations estimates on historical
series.

3. E-Mor, procedure for mortality tables calibration.

4. E-Lapse, procedure for lapse tables calibration.

5. E-USPReserve, procedure to calculate the undertaking specific parameters
for the reserve risk.

6. E-USPPremium, procedure to calculate the undertaking specific parameters
for the premium risk.

Three procedures belong to the Assets subsystem:

1. T-VRStandard, procedure for the portfolios evaluation containing standards
financial contracts.

2. T-VRIndex, procedure for the evaluation of structured contracts.

3. T-CredRisk, procedure for the control of credit risk.

Non Life subsystem is composed of seven procedures:

1. D-Reserve, procedure for the calculation of the characteristical quantities of
the claims provision (riserva sinistri).

2. D-Premium-TS, procedure for the SCR calculation for premium. (on histori-
cal series)

3. D-Premium-FS, procedure for the SCR calculation for premium. (with
Frequency-Severity model)

22 3. Overview of the Insurance Data System

4. D-CatRisk, procedure for the SCR calculation for catastrophe risk.

5. D-LapseRisk, procedure for the SCR calculation for lapse.

6. D-RCBusiness, procedure for the SCR calculation for business.

7. D-RCTasso, procedure for the SCR calculation for in-force business rate and
renewals.

The Corporate Governance subsystem is composed of two procedures:

1. G-StanFor, procedure for the standard formula calculation.

2. G-Consol, procedure for the consolidation of the characteristical quantities
of Solvency II.

The Life subsystem, that is the one we are particularly interested in, counts the
following six procedures:

1. V-Disar, it is a procedure for the evaluation and risk management of segre-
gated funds (see section 3.1.3).

2. V-Index, it is a procedure for the evaluation and risk management of indexed-
linked contracts.

3. V-Unit, it is a procedure for the Fevaluation and risk management of unit-
linked contracts.

4. V-NonInd, it is a procedure for the evaluation and risk management of non-
indexed contracts.

5. V-Hypothesis, it is a procedure for the management of segregated funds.

6. V-ProfitTest, it is a procedure for planning and do economic evaluation of
life insurance policies.

3.1.3 Disar®: a procedure of IDS®life subsystem

For the purpose of this thesis we treat deeply Disar® that, as we have previously
seen, is a procedure of the IDS®life subsystem. The Disar (Dynamic Investment
Strategy with Accounting Rules) procedure is aimed at the evaluation and control

3.1 IDS® 23

of revaluable life policies hooked to "segregated funds". It is based on "market-

consistent" evaluation criteria under uncertainty and on "asset-liability" management

schema. It takes into account accounting rules that control the segregated fund
budget and the management strategy for the financial contracts portfolio. The
adopted stochastic model considers more sources of uncertainty such as the interest
rate risk, equity risk, currency risk, credit risk, share price, exchange rate, inflation,
default of counterparts, furthermore actuarial risks such as longevity/mortality and
lapse are treated. Actuarial risks are assumed to be independent between each other,
while financial risks are possibly correlated. All this is done in compliance with the
Solvency II regulations.

The Disar procedure consists of two main phases:

• phase A – Actuarial valuation, that is the calculation of actuarially expected
cash-flows generated by the contracts.

• phase B – Alm valuation, that is the evaluation of market consistent values of
contracts.

Elaboration

Units

Figure 3.2. Disar®Architecture.

Disar®architecture

Disar®has a client/server working paradigm that allows simultaneous utilization
from different concurrent workstations. The distributed computing structure is of
grid type, the nodes in the grid contain the engines that are utilized through an "at

service" logic. In figure 3.2 the following main logical components are represented:

24 3. Overview of the Insurance Data System

1. A Database Server, hosting a Relational database Management System.

2. A Master Server, hosting the Disar Master Service (DiMaS).

3. A set of Computing Units: each unit hosts the Disar Engine Service (DiEng)
that manages the Disar Actuarial Engine (DiActEng) and the Disar Alm
Engine (DiAlmEng).

4. A set of Clients, each hosting the Disar Interface (DiInt) that allows to set
computational parameters and monitors the progress of the elaborations.

Disar procedure

The whole procedure is managed through the Disar Interface that access the database
and allows the user to have a full control on the computation. As we can see in
figure 3.3 the user can choose a set of company’s portfolios on which he wants to
perform the elaboration. Other masks allow to set the elaboration hypothesis and
many others input parameters.

At this point it is useful to introduce a definition that we will encounter several
times during this work:

Definition 2. An elementary elaboration (eeb) is a set of a segregated fund and

computational and market hypothesis.

A mask of the interface is fully dedicated to the grid configuration, it displays a
list of DiMaS servers and elaboration units, a working configuration must contain a
DiMas and a pool of elaboration units.
When the computations is started, what the DiMaS do is to divide all the input data
in elementary elaborations of the above type. The DiMaS acts as orchestrator, it
defines the elementary elaboration blocks, estimates the complexity of the elabora-
tions, establishes the elaboration schedule, distributes the elementary requests to the
processing units and monitors the process.

The DiEng that is present on each node, delivers the elaboration to the DiActEng
or to the DiAlmEng depending on the elaboration type:

• The DiActEng is in charge of phase A, that is performs an EEB of type A,
it operates on the policy portfolio related to the segregate fund, it receives
as input the contractual informations, the consistency of policies and the

3.1 IDS® 25

Figure 3.3. Disar®Interface, mask for the selection of portfolios to evaluate.

technical informations and it calculates on the related schedule the aggregate
"probabilized flows" related to net performances, without loss of information.

• The DialmEng is in charge of phase B, that is performs an EEB of type B.
Disar Asset-liability management Engine is the financial engine that operates
on the policy portfolio related to the segregated fund, it receives as input
the contractual informations, the accounting informations, the probabilized
flows computed by the DiActEng related to net performances, the financial
hypothesis on the market structure, the features of the management strategy
and produces the characteristical quantities useful to evaluate and to manage
the risk such the evaluation of market consistent values of policies.

When the engines terminate the elaboration, the DiEng may write the results
directly to the Database or return them to the Master Server.

The engine algorithm is realized through the use of Monte Carlo simulation
(details in Section: 3.1.3) that performs a large number of trail runs, called simula-
tions, and infers a solution from the collective results of the trial runs. It generates

26 3. Overview of the Insurance Data System

thousands of probable investment performance outcomes, called scenarios, that
might occur in the future. The simulation incorporates economic data such as a
range of potential interest rates, inflation rates, tax rates, and so on. The data is
combined in random order to account for the uncertainty and performance variation
that’s always present in financial markets. Disar adopts risk neutral and natural

probability distributions, whose result is the computation of certain quantities that
are relevant for budgeting and management.
The simulations in "risk-neutral" environment, allow to calculate the market-consistent
value of some characteristical quantities related to the policy portfolio, for example
stochastic reserve, value of embedded options in the guaranteed minimum, value
of business in force (VBIF). Moreover "forward - risk-neutral" expectations of
some fund characteristical quantities are computed (budgetary reserve, future profits,
return for re-evaluation).
In "natural environment" the simulation produces instead the distributions for the
characteristical quantities related to future dates, computing their expectation.
In "mixed environment", using both natural and risk-neutral probabilities, the finan-
cial capital risks (interest rate, equity, default) are instead calculated.
In each relevant date Disar, in particular at the end of each year, makes available
details about typical sizes of management : equities value, solvency, net income, av-
erage balance, management performance, write-downs or write-back value, reserves,
profit for the year.
The computation of the market consistent valuation and risk assessment is performed
using Monte Carlo simulations for each segregated fund and then aggregating the
results. The computations are performed separately for each segregated fund, how-
ever if there is only a segregated fund, then evaluations correspond to elementary
elaborations. The DiMaS commands the computation process, as we have shown, it
receives the request from the clients and organizes the computation grid. Once the
elementary elaborations are processed, the server collects their output and writes
them on the database.

DiAlmEngParNs: A parallel version of the DiAlmEng

Disar is a high complexity simulation system, its engines are data intensive and
CPU intensive. The most time consuming jobs are those relative to the phase B,
and so the DiAlmEng that evaluate TP, NAV and SCR. Since the engine relies on
Monte Carlo, a further improvement of the system is achievable by parallelizing the

3.1 IDS® 27

simulations.
The parallelization strategy is based on the distribution of simulations among proces-
sors. Consequently a parallel version of the financial engine has been developed that
is DiAlmEngParNs (Disar Asset-liability management Engine Parallel Nested
simulations).
In this implementation processors operate concurrently in the calculation of the av-
erage "local" values, which then are suitably combined to produce the final "global"
results. The engine is written in Fortran, the parallelization is achieved through the
use of the MPI Library.

Previously, in reference to multicore architectures, different solutions have been
explored. [15] One of these involved shared memory parallel programming based
on non-uniform memory access (NUMA) and Uniform Memory Access (UMA)
technology. Others implementations involved hybrid paradigms (message passing
and shared memory parallel programming), the tested message passing libraries are
IntelMPI and OpenMPI.

Let M be an appropriate probability "equivalent martingale" measure1, denoted
with nM the number of simulations of the trajectories of probability M, and with I
the number of MPI ranks, each rank performs [nM/I] simulations independently and
calculates the average values on the basis of local simulations. Subsequently it com-
petes with the others to calculate the average global values. Therefore, inter-process
communication is confined to the phase of the final values production. Processing of
the remaining r = nM mod I simulations is distributed among the ranks numbered
from 1 to r, that perform hence [nM/I]+1 simulations.

The parallelized simulations are those related to the trajectories with "natural"

probability measure P, these simulations are called "external simulations" and are
distributed with the strategy described above. Denoted with nP the number of natural
simulation, each process performs autonomously [nP/I]+1 simulations if it belongs
to processes in range [1,r] with r = nP mod I, conversely [nP/I] if it is in range

1Also known with the name of risk-neutral measure, it stems from the fact that, under it, all the
financial assets of the economy have the same expected return (called risk-free), regardless of their
risk level. This happens in contrast to the so-called physical measurement, i.e. the "true" probability
distribution yield, according to which in general characterized by an increased risk securities have a
yield on average higher (that is, are characterized by a risk premium positive).

28 3. Overview of the Insurance Data System

r+1, I.

4e+05 5e+05 6e+05 7e+05 8e+05

0.
0e

+
00

4.
0e

−
06

8.
0e

−
06

1.
2e

−
05

NAV(1) (euro)

em
p

ir
ic

al
 d

en
si

ty
 f

u
n

ct
io

n

5000 x 2000
10000 x 1000
25000 x 400
100000 x 100
100000 x 10000

[]

Figure 3.4. Empirical density function of NAV (T) with T = 1 year for different value of nP

x nM

As previously stated, for each portfolio the computation is divided in several
elementary elaboration. Each elementary elaboration required a certain amount of
time to complete, depending on two main factors: the complexity of the belonging
portfolio, and the quantities it is going to compute, e.g. market all risks, underwriting
all risks, underwriting mortality risks, underwriting lapse risks etc. For some of
them, for example the evaluation of the empirical probability distribution of NAV (T)

with T = 1 year, which is needed to calculate the NAVα(T) and the SCR(0,T), is
performed a nested Monte Carlo simulation: for each natural simulation, the process
of rank i, runs inside its [nP/I] simulations, even the elaboration of the nM "internal

simulations".

3.1 IDS® 29

The consistency of the results of parallel and sequential algorithms is guaranteed by
the application of appropriate implementation techniques of procedures for gener-
ating pseudo-random numbers. The generation of independent streams is realized
by the technique of block-splitting (also known as skipping ahead [24]) which
divides the original sequence into k non-overlapping blocks, where k is the number
of independent streams. Each flow generates pseudo-random numbers from the
corresponding block. Given I processes, wishing to obtain the same results from the
parallel version of the sequential algorithm, fixed the same initial seed, if N is the
number of random numbers generated, a block of pseudo-random numbers of size
[N/I]+1 is assigned to the processes from 1 to r with r = N MOD I, and a block of
size [N/I] is assigned to the remaining processes. The high performance computing
systems identified for the development of the engine are multicore systems. For the
engine version used in this work, the Intel Cluster Studio XE 2013 environment
has been used and for the concurrent processes management the Intel MPI Library,
the library for the message-passing management, compliant with the MPICH ABI
Compatibility Initiative, which guarantees both hardware and software product porta-
bility. The chosen math library is the Intel MKL Library. Applications allow the
use of the generators MCG 31, MT2203 and MT 19937 that are based on Mersenne
Twister algorithm for Large Scale Monte Carlo simulation on distributed computing
systems. The choice of the generator is determined by a value assigned to an input
parameter.

A particular procedure, named DiIOAlmEng, has been developed to this engine
version aid. It access the database, reads data in it, and taking in account result of
phase A previously stored, generates all the input files necessary to the DialmEng-
ParNs engine.
This procedure makes parallel nested engines autonomous. Moreover since the
engine does not have to interact directly with the database, it can run even in an
environment where there are no other Disar components, provided that input data
produced by the DiIOAlmEng are transferred on the disk of the master node of the
cluster (that with rank 0) or in the cluster shared disk.

31

Chapter 4

The implemented cloud solution

4.1 Performance analysis of Disar

In this section we show the results obtained from a performance analysis of the DiAl-
mEngParNs engine. The analysis has been carried out on the AWS infrastructure.
For the purpose we have chosen three portfolios of a well-known Italian insurance
company. Among all the eebs composing these portfolios, we have selected fif-
teen of them we consider significant, belonging respectively to a group of five to
three different segregated funds. The elementary elaborations are identified by id
in E231815-E231829. We have divided the funds into three complexity classes,
respectively large, small and medium. For what concerns each segregated fund,
each of the five eeb produces different quantities, respectively: market all risks,
underwriting mortality risks, underwriting lapse risks, underwriting expense risks,
underwriting all risks.
We have run and tested the fifteen elaborations on six different typologies of AWS
instances with the respective virtualized feature:

• m4.4xlarge with Intel Xeon E5-2676 v3 (Haswell) 2.4 GHz, 16 vCPUs, 64
GiB of RAM;

• m4.10xlarge with Intel Xeon E5-2676 v3 (Haswell) 2.4 GHz, 40 vCPUs, 160
GiB of RAM;

• c3.4xlarge with Intel Xeon E5-2680 v2 (Ivy Bridge), 16 vCPUs, 30 GiB of
RAM;

32 4. The implemented cloud solution

• c3.8xlarge with Intel Xeon E5-2680 v2 (Ivy Bridge), 32 vCPUs, 60 GiB of
RAM;

• c4.4xlarge with Intel Xeon E5-2666 v3 (Haswell), 16 vCPUs, 30 GiB of
RAM;

• c4.8xlarge with Intel Xeon E5-2666 v3 (Haswell), 36 vCPUs, 60 GiB of
RAM.

The tests have been carried out on more than one instance of the same typology up
to a maximum of three instances. The number of risk neutral iterations has been
fixed at 50 for all the simulations, a value that as it has often been said previously
introduces an acceptable statistical error. Instead, for the natural iterations, in a first
testing phase, we have performed multiple simulations by varying this parameter
and leaving all the others unchanged. What has came out is a time trend mighty
linear varying the number of natural iterations as can be seen in figure 4.1. Taking
into account this linear dependence, in the subsequent test phase, all simulations to
significantly reduce the overall execution time, have been performed by fixing the
number of natural iterations to 1000. To appreciate how the execution time change
when varying the instances number, for each elementary elaboration we have plotted
and computed the sped-up and the scaling factor.

11

210

480

960

1440

1920

1000 12000 25000 50000 75000 100000

tim
e

(s
ec

)

natural iterations

Figure 4.1. Variation of the execution time of the engine on an c3.4xlarge AWS instance
with 16 cores increasing the number of natural iteration.

Definition 3. Speed-up is a metric for measuring performance improvement when

4.1 Performance analysis of Disar 33

executing a task, we can define it as:

S =
Told

Tnew
(4.1)

where Told was the execution time before the improvement and Tnew is the execution

time after the improvement.

The notion of speed-up is a general concept that shows the effect of any perfor-
mance enhancement. In our case, the improvement consists in the growth of the
number of adopted cores. If we address with n the number of the cores adopted in
the improved trial execution,

Definition 4. following from the speed-up definition, we define the scaling factor
ρ as the ratio between the speed-up and the number n:

ρ =
S
n

(4.2)

In figure 4.2 the plots of the speed-up and the scaling factor for the first elabora-
tion belonging to each class of complexity are displayed. We have chosen to show
only one elaboration for each class because the behavior is quite analogue within the
group, this makes the three cases representative for understanding a general trend.
The machine typology is a c3.4xlarge with 16 vCPU. The trend is shown scaling up
three machines. However in table 4.1 the full acquired dataset is reported. For each
eeb the table shows the belonging fund, the computed quantity and the execution
time on the different machine configurations. The time relative to the fund of small
complexity are expressed in millisecond to appreciate the scaling at a more fine
granularity. What can be observed is that scaling up makes worse performance in
accordance with decreasing complexity. Since the inter process communication
introduces a certain delay, in case of an elaboration of small complexity, the benefit
introduced by the extra instance is exiguous compared to that delay. On the other
hand, the situation partially improves when the third instance is added and the the
initial disadvantage is partly cushioned. This trend can be observed in plot 4.2(d)
where the curve assumes a V behavior. The curve is quite different in 4.2(b) that
is relative to the large eeb. In fact after the first hop delay due to the first inter
machines communication, the decay goes down more smoothly since the single

34 4. The implemented cloud solution

process execution time is greater. Three aspects must be taken into account consid-
ering these trends. First of all we are in a cloud virtual simulation environment that
does not provide us accurate details about the fact that two instances are virtualized
within the same rack or not and consequently does not ensure latency constraint
except from some specific instance typology. A proof of this is the fact that different
trial on the same configuration for the same elaborations (relatively to small ones)
returned different values. Secondly, in order to save time we have performed all the
computations with 1000 natural iteration that are not enough to ensure an acceptable
statistical error and thus a so low value is never used in real computations. Increasing

1

1.96

2.91

1 2 3

sp
ee

d-
up

instances

(a)

0.97

0.98

1

1 2 3

sc
al

in
g

(%
)

instances

(b)

1

1.09

1.81

1 2 3

sp
ee

d-
up

instances

(c)

0.55

0.60

1

1 2 3

sc
al

in
g

(%
)

instances

(d)

1

1.98

2.63

1 2 3

sp
ee

d-
up

instances

(e)

0.87

0.99
1

1 2 3

sc
al

in
g

(%
)

instances

(f)

Figure 4.2. Trend of speed-up and scaling factor on c3.4xlarge instances for three elabora-
tion, one for each class of complexity, respectively large, small, medium.

4.2 Execution time prediction 35

that number would make the complexity highest, making better cushioning for inter
process communications. The last and probably the most relevant aspect is that eebs
are never elaborated individually but all the elaborations relative to one portfolio are
usually treated together, and more than one portfolio at time is evaluated. Usually
eeb are elaborated in batch and that will further amortize the waste. A smarter
approach to the simulation management will be presented in chapter 6.

elaboration-ID fund quantity # inst. m4.4.xlarge # inst. m4.10.xlarge # inst. c3.4.xlarge # inst. c3.8.xlarge # inst. c4.4.xlarge # inst. c4.8.xlarge
E231815 G001 MAR 1 854 sec 1 386 sec 1 823 sec 1 457 sec 1 790 sec 1 387 sec
E231815 G001 MAR 2 431 sec 2 257 sec 2 420 sec 2 232 sec 2 417 sec 2 199 sec
E231815 G001 MAR 3 309 sec 3 147 sec 3 283 sec 3 172 sec 3 281 sec 3 143 sec
E231816 G001 UMR 1 1419 sec 1 660 sec 1 1502 sec 1 798 sec 1 1361 sec 1 681 sec
E231816 G001 UMR 2 751 sec 2 365 sec 2 791 sec 2 420 sec 2 722 sec 2 348 sec
E231816 G001 UMR 3 499 sec 3 250 sec 3 518 sec 3 287 sec 3 481 sec 3 248 sec
E231817 G001 ULR 1 1121 sec 1 475 sec 1 1082 sec 1 583 sec 1 970 sec 1 464 sec
E231817 G001 ULR 2 558 sec 2 248 sec 2 556 sec 2 309 sec 2 523 sec 2 250 sec
E231817 G001 ULR 3 375 sec 3 178 sec 3 367 sec 3 210 sec 3 342 sec 3 172 sec
E231818 G001 UER 1 45 sec 1 390 sec 1 823 sec 1 453 sec 1 819 sec 1 377 sec
E231818 G001 UER 2 434 sec 2 218 sec 2 443 sec 2 231 sec 2 417 sec 2 197 sec
E231818 G001 UER 3 311 sec 3 143 sec 3 286 sec 3 167 sec 3 292 sec 3 142 sec
E231819 G001 UAR 1 2039 sec 1 1180 sec 1 2342 sec 1 1245 sec 1 2115 sec 1 1231 sec
E231819 G001 UAR 2 1025 sec 2 618 sec 2 1190 sec 2 650 sec 2 1114 sec 2 611 sec
E231819 G001 UAR 3 692 sec 3 459 sec 3 810 sec 3 452 sec 3 796 sec 3 427 sec
E231820 G002 MAR 1 11025 msec 1 5082 msec 1 11000 msec 1 3076 msec 1 9095 msec 1 5097 msec
E231820 G002 MAR 2 11010 msec 2 7006 msec 2 10072 msec 2 8024 msec 2 10004 msec 2 3020 msec
E231820 G002 MAR 3 6010 msec 3 5012 msec 3 6063 msec 3 5032 msec 3 7010 msec 3 4081 msec
E231821 G002 UMR 1 11031 msec 1 5057 msec 1 11018 msec 1 3080 msec 1 9091 msec 1 5031 msec
E231821 G002 UMR 2 11015 msec 2 6058 msec 2 6098 msec 2 8009 msec 2 10014 msec 2 5097 msec
E231821 G002 UMR 3 7058 msec 3 2041 msec 3 7005 msec 3 5048 msec 3 5070 msec 3 4082 msec
E231822 G002 ULR 1 10098 msec 1 5062 msec 1 10093 msec 1 3081 msec 1 9093 msec 1 5035 msec
E231822 G002 ULR 2 10087 msec 2 6094 msec 2 7037 msec 2 9002 msec 2 10004 msec 2 5077 msec
E231822 G002 ULR 3 4060 msec 3 4089 msec 3 6029 msec 3 5016 msec 3 4010 msec 3 4056 msec
E231823 G002 UER 1 10098 msec 1 5084 msec 1 10090 msec 1 3077 msec 1 9087 msec 1 5076 msec
E231823 G002 UER 2 10067 msec 2 7032 msec 2 7030 msec 2 8026 msec 2 10014 msec 2 6013 msec
E231823 G002 UER 3 4078 msec 3 5092 msec 3 7091 msec 3 5018 msec 3 4010 msec 3 4064 msec
E231824 G002 UAR 1 11071 msec 1 5084 msec 1 6039 msec 1 3084 msec 1 10031 msec 1 5051 msec
E231824 G002 UAR 2 11026 msec 2 6098 msec 2 6018 msec 2 8056 msec 2 10032 msec 2 6000 msec
E231824 G002 UAR 3 6081 msec 3 5029 msec 3 4077 msec 3 5034 msec 3 6015 msec 3 4068 msec
E231825 G0020 MAR 1 398 sec 1 171 sec 1 379 sec 1 162 sec 1 183 sec 1 165 sec
E231825 G0020 MAR 2 204 sec 2 103 sec 2 191 sec 2 67 sec 2 187 sec 2 89 sec
E231825 G0020 MAR 3 137 sec 3 71 sec 3 144 sec 3 74 sec 3 127 sec 3 67 sec
E231826 G0020 UMR 1 476 sec 1 202 sec 1 464 sec 1 166 sec 1 424 sec 1 196 sec
E231826 G0020 UMR 2 241 sec 2 118 sec 2 229 sec 2 128 sec 2 222 sec 2 106 sec
E231826 G0020 UMR 3 164 sec 3 81 sec 3 160 sec 3 87 sec 3 151 sec 3 188 sec
E231827 G0020 ULR 1 448 sec 1 188 sec 1 432 sec 1 155 sec 1 398 sec 1 184 sec
E231827 G0020 ULR 2 226 sec 2 111 sec 2 216 sec 2 120 sec 2 207 sec 2 158 sec
E231827 G0020 ULR 3 153 sec 3 78 sec 3 150 sec 3 82 sec 3 141 sec 3 73 sec
E231828 G0020 UER 1 399 sec 1 171 sec 1 390 sec 1 159 sec 1 358 sec 1 165 sec
E231828 G0020 UER 2 205 sec 2 102 sec 2 192 sec 2 111 sec 2 188 sec 2 89 sec
E231828 G0020 UER 3 140 sec 3 70 sec 3 149 sec 3 75 sec 3 126 sec 3 64 sec
E231829 G0020 UAR 1 553 sec 1 339 sec 1 530 sec 1 191 sec 1 498 sec 1 233 sec
E231829 G0020 UAR 2 284 sec 2 137 sec 2 269 sec 2 151 sec 2 274 sec 2 126 sec
E231829 G0020 UAR 3 232 sec 3 93 sec 3 203 sec 3 103 sec 3 176 sec 3 91 sec

Table 4.1. DiAlmEngParNs execution time in ms. measured on clusters from 1 up to 3 EC2
instances and on six different instances typology.

4.2 Execution time prediction

In this section we deal with the problem of predict the DiAlmEngParNs engine
execution time depending on the underlying IT infrastructure. The adopted approach
is that of the machine learning algorithms. In section 4.2.1 we introduce Weka [22]
[23] an open source machine learning software, while in section 4.2.2 we explain
how we have integrated Weka in our project.

36 4. The implemented cloud solution

4.2.1 Weka

Weka is an open source software developed by the University of Waikato in New
Zealand [13] and distributed under GNU General Public License. Weka is the
acronym for Waikato Environment for Knowledge Analysis. The first original
version was released in 1993, the actual version is the 3.7. The software is develop in
Java, and is a collection of algorithm and functionality to deal with data mining and
machine learning problems. The user can interact with weka through three different
modalities: command line, graphical user interface and own code integration. The
main provided functionalities are:

• the Preprocess that allows to import datasets in the platform using a proper
kind of file with .arg extension or either a more common CSV file. Moreover
the functionality let the user apply some filters to transform the input data and
their attributes in order to make them more suitable to scope.

• Classify functionality provides the so called classifiers that are classification
and regression algorithms. The goal is that of create prediction model and
estimate their accuracy.

• Cluster section provides instead clustering techniques such as the k-means
algorithm.

Multi Layer Perceptron

Multi layer perceptron is a feed forward neural network. Neural network are so
called because they emulate the human brain structure. A MLP is applied in those
cases in which there is no a linear dependence between the input and output data
and so a standard linear perceptron is not applicable [25]. The structure of a MLP is
a direct weighed acyclic graph within which vertex are called neurons, in a MLP we
distinguish three neuron typology: input, output and hidden neurons. The network
consists of two or more layers, at least the input and the output layers, these in
the middle are called hidden layers. Each layer is connected to the following, it
elaborates data and sends its results to the next one and so on until the output
layer is reached. A MLP utilization consists of a first training phase that relies
on a supervised learning technique called back-propagation. Once the network is
trained and has created its predictive model it processes new data and tries to make

4.2 Execution time prediction 37

prediction on them. Each layer retrieves a relation between input and output data,
creating a function that is able to get that relation, the result is that the final output is
a composition of functions.

Random Tree and Random Forest

Random Forest is an ensemble learning algorithm introduced by Leo Breiman. [18]
The idea of the algorithm is that of using a combination of classifiers to reduce the
error that a single classifier may introduce. The classifiers adopted by the Random
Forest are all classification trees. Classification trees suffer from the over fitting
problem, that occurs when learning phase is excessive and consequently the model
could have been adapted itself to features that are specific only the training set but
are not generalized, in the presence of over fitting, performance on the training
data will increase, while the performance on new unknown data will be worse. A
random forest constructs n different trees, each of them is built by using only a
subset of the instance attributes, these subsets are chosen in such a way that they
are the more independent as possible, in order to reduce the correlation between
the different classifiers. The test instance is evaluated independently on all the
classifiers, and then the results are combined together to obtain a final classification
based on majority. The single classifiers adopted by the forest is itself a Random
Tree that means that the set of attributed on which the model is built is a subset of
the original one, these avoid to let the tree complexity grow too much. Weka allow
the user to set the number k of trees that will compose the forest. Even if a too large
value of k may slow the algorithm, it does not introduce over fitting since there is
not correlation among the classifiers.
Out of Bag error. When Random Forests algorithm builds the k trees it creates k

datasets of same size as original by randomly re-sampling of data in the training
set with replacement, each of these is called a bootstrap data set. Each data set
might present duplicate records or several records can be missing with respect to
the original datasets and this is what is called Bagging. When the Forest is trained
each entry of the original data set is tested on all the trees whose relative data set
does not contains it. This is the out-of-bag example. Obviously the classification of
such entry is the aggregation of votes only over those tree that does not contain it.
Out-of-bag error is the error rate of such tests. Breiman’s study on the topic [17]
proves that the out-of-bag estimate is as accurate as using a test set of the same size
as the training set.

38 4. The implemented cloud solution

IBk

Instance Based Learner is the name with which Weka identify its implementation
of the K-Nearest-Neighbor Algorithm. It does not relies on the construction of
a model but instead try to predict the result of the instance we have to test just in

time. The idea is that of transform all the instances of the training set in vectors
in a multidimensional space. To make the prediction the algorithm search for the
k nearest instances to the test instance, and it assigns to the test one, the class that
appears more frequently among the nearest instances. To compute the distances, IBk
adopts the Euclidean distance, however we should choose also Chebyshev Distance,
Filtered Distance, Manhattan Distance, Minkowski Distance, Normalizable Distance
or write our own function. Weka permits to the user to set the value of k. The choose
of k is very important and depends mainly on data. If it is too small, the method is
susceptible to noise in the data. but if it is too large, the decision is smeared out,
covering too great an area of instance space.

KStar

K-Star is as the IBk algorithm an instance based classifier and it is very similar to
it. The algorithm is quite the same except that the way to find distance between the
new entry x and the already present yi instances is the entropic distance computed as
K∗(yi,x) =− logP∗(yi,x) where P∗ is the probability of all transformational paths
from instance x to yi by randomly choosing between all possible transformations.
[29].

Decision Tables

Decision Tables algorithms create some associations between some conditions and
actions to perform in case that set of conditions occur. The table is filled creating
a row for each possible condition and it has a number of columns equal to all the
possible combinations of the conditions. Then the table is filled by inserting a
boolean value for each cell. The result is that each column represents a possible
scenario, in which some conditions hold (true) and some others no (false). At each
of these set of conditions corresponds an action to perform. Decision Tables should
became no more feasible in case there are so many attributes that make hard to
manage all possible combinations.

4.2 Execution time prediction 39

4.2.2 Disar prediction

The approach we have adopted to estimate Disar eebs execution time take advantage
of Weka functionality, both for its efficiency and for the ease of integration with the
own code. To avoid data set to became mess we have decided to build a training
set for each instance typology (the same utilized in the performance analysis), and
let the classifiers make prediction separately for each of them. The six training
sets are stored in .arff files, the file extension utilized by Weka. We have chosen
some financial parameters that relative to each elaboration that from several previous
studies within the company it has been proved to be significant for the purpose of
forecasting. For their inherent complexity but also because it is beyond the scope of
this work, we will avoid to describe what each all them represents, but we give in
figure 4.3 the header of a single training set to give the reader an idea. A previous
test phase has been conducted using the Weka gui to identify the most suitable
machine learning algorithms and how to tune them in order to obtain the lowest
relative absolute error. The tests have adopted a split percentage of 50% that means
that half of the entries where used to train the classifier while the remaining to test it.
The most suitable algorithms for our aim results to be those introduced in section
4.2.1. the criteria that we will use to evaluate the goodness of the algorithms, are
the average value of the difference between the predicted values and the real values,
let call it δ̄ and the study of the distribution of such differences on the tails. Let us
denote the real values of interest as Θ and the estimated values using the algorithms
as Θ̂, it can be calculated as:

δ̄ =

n
∑

i=1
Θ̂i−Θi

N
(4.3)

with N = number of instances in the sample. This average value is important to
understand how much on average, the estimated values deviate from the real ones,
the more this value is small less error is made by the algorithm. Moreover it allows
us to understand if on average the algorithm tends to overestimate or underestimate.
In fact if this value is positive it means that in most cases the predicted value is
bigger than the real one and viceversa. On the other hand, this value alone is not
enough, in fact an algorithm might present a a very small δ̄ , but in turn the points
that have the bigger absolute value of δi, could make the difference, even though
they are few. In fact if these points represents an over estimation, never mind, we

40 4. The implemented cloud solution

will perhaps lose some euros, but in the opposite case we might wait for the result
much more than we have expected. that is why it is necessary to study the tails.
This study also allows us to see what are the situations in which this problem above
occurs, in fact a only case on all the sample in which the δ is for example of one
hour is surely most important that 10 cases that make a prediction mistake of 5
minutes.

A summary of the δ̄ reported by each algorithm in this preliminary phase can
be see in table 4.2. However the implemented version of the classifiers we have
developed adopts the strategy of separate training sets described above, in the last
coloumn of the table, the error committed by the algorithms on an unique database,
is also reported since the analysis might result to be not accurate on a so small data
set. Due to this, only for the analysis aim we will rely on the complete data set.
The resulting errors obtained till here are not so significative if we consider that the
sample is very small, in addition it has been in turn splitted in half. However, this
analysis has been useful to determine which algorithms to discard, if we consider
that those not listed in the table yield value of δ̄ very high in any analysis context.
The sample used in this phase is the same that has been used in the performance
analysis in section 4.1. A more accurate estimate of the algorithms goodness will be
given further in chapter 5.1.

Figure 4.3. Header of a training set where it is possible to read the parameters utilized for
the classification.

4.3 User interface and software tools 41

m4.4.xlarge m4.10.xlarge c3.4.xlarge c3.8.xlarge c4.4.xlarge c4.8.xlarge all
IBk 44.8 (s) 24.6 (s) -19.5 (s) -4.6 (s) 44.4 (s) 24.1(s) 16.7 (s)
KStar 125 (s) 59.2 (s) 59.0 (s) 36.6 (s) 120.5 (s) 60.5 (s) 12.3 (s)
Random Tree 77.4 (s) 34.4 (s) -10.2 (s) 0.4 (s) 102.9 (s) 35.4 (s) 1.1 (s)
Random Forest 78.1 (s) 40.2 (s) 14.6 (s) 15.0 (s) 77.8 (s) 42.3 (s) 13. 4 (s)
Multy Layer Perceptron 2.6 (s) -6.7 (s) -72.8 (s) -33.6 (s) -12.2 (s) -0.1 (s) -9,9 (s)
Decision Table 1.3 (s) 3.8 (s) -70.5 (s) -28.2 (s) -1.2 (s) 2.5 (s) 14.5 (s)

Table 4.2. δ̄ reported by each classifier on each of the six training set with a 50% splitting
percentage.

4.3 User interface and software tools

4.3.1 GUI

To manage all the functionalities of the DiAlmEngParNs in the cloud environment
a java user interface has been realized. The choice of the language has been also
driven by the possibility to integrate the in the source code the interaction with
WEKA. In figure 4.4 the main view of the interface can be seen. It allows the user
to select the number and the typology of instance to launch and start the cluster.
The operation takes on average no more that two/three minutes. A scrolling menu
permits to select the single eeb to elaborate, or eventually all the eebs related to
a chosen segregated fund. Once the grid is ready, the number of MPI ranks on
which the simulation should be distribute and the number of natural simulations we
want to perform, must be selected. Three buttons make possible the transfer of the
input/output data toward/from the cluster and the simulation start up.
Before launching the simulations, the user has the possibility to have an idea of

Figure 4.4. User interface of the system.

the execution time they will take. From the same menu designed for select the
elaborations, the eeb whose we want to predict the execution time, can be chose,

42 4. The implemented cloud solution

while in the menu immediately below, the desired machine learning algorithm is
selectable. Pressing the prediction button the user can have the estimated time for
that elaboration on different type and number of instances.

Auxiliary scripts

Quite all the functions activated by buttons pressure, are performed by python
scripts, this make their implementation quite simple since many of these operations
contain file manipulation. Moreover python adoption does not introduce an extra
dependence since it is already required by Starcluster. The first script is called when
the cluster parameters are set, it modify some fields of the starcluster config file on
the user machine, including the AMI id. These parameters are afterward used during
the boot phase. An other script recall the starcluster executable and launch the
cluster with the given configuration. After this, a series of scripts start, one after the
completion of the previous one, once the instances have booted, the "mpd.hosts" file
is generated and transferred on the master node of the cluster. The file is used by the
mpi library to known all the machines on which the MPI ranks should be distributed
together with each machine’s relative available cores. This last parameter is retrieved
during the file creation from a map contained in the java code, that keep note for each
instance type the number of maximum cores available. The same class that contains
the map that is named Utility.java, wraps several information about AWS that must
be periodically update, including instances prices. SSH infra-nodes password-less
communication is set on the nodes through the generation and exchange of rsa keys,
this allows inter process communication for the MPI library. A virtual volume
is shared among all the cluster nodes. A progress bar and a log panel show the
succession of all these phases. When the instances are booted, it is notified to the
user through the log view. After segregated funds are selected, a script compresses
all the input data necessary to the simulation, that have been previously generated
by the DiIOAlmEng procedure, transfers them to the shared device and unzip their
content. All those operation are managed through ssh connection between the local
machine and the master node. Immediately after the same script generate the run

file that contains the mpirun command with the relatives parameters set until now
from the user through the UI. Once that file is generated, it is made executable and it
is send on the master node. At this point, it is possible to start the engine, the button
start simulation with its relative script executes the run file, showing the simulation
progress on the log windows and the progress bar. After its completion, the output

4.3 User interface and software tools 43

data, together with log and error files are taken back to the user workstation. The
user may at this point start new elaborations or chose to stop the cluster, in this case
every component is shut down stopping paying for it.

Prediction implementation

The prediction function is achieved taking advantage of Java Weka classes. Every
time a new elaboration is successfully completed, a new entry is inserted in the six
training sets. The system supports prediction with all the algorithms introduced in
section 4.2.1. When the prediction is started six classifiers are build from the six
training sets, while new instances relative to the elaboration to test are appended
in others arff file containing the test sets. A script reads the parameters in figure
4.3 from the input files and inserts n new entries in each test set. The last n

instances of the single test set are tested on the relative classifier, and the results are
communicated to the user on the log area of the GUI. Regarding the IBk algorithm,
the parameter k that represents the number of neighbors on which the classification
is given, is set to 5, such value after different trials is the one that returns the lowest
error. The number of trees in the random forest s set to 500, while the number
of attributes on which each tree is build in equal to 500. The evaluation measure
adopted for the decision table is the mean absolute error (MAE). The MAE measures
the average magnitude of the errors in a set of forecasts, without considering their
direction. It measures accuracy for continuous variables. The MAE is the average
over the verification sample of the absolute values of the differences between forecast
and the corresponding observation and it is a linear score which means that all the
individual differences are weighted equally in the average. The training time for
the MultiLayerPerceptron is set to 1000ms. All these features tunings have been
calibrated taking advantages of several estimation trials.

4.3.2 AMI content

The AMI (Amazon Machine Images) id stored in the configuration file we men-
tioned previously, is relative to a system image stored on the AWS account. Once
this image is saved in the own account, the user we has the possibility to run in-
stances with the desired (virtualized) hardware features, starting from the AMI
snapshot. To realize the AMI there are some different way. One consist in starting
an instance based on a public AMI in the marketplace, custom it and do a snapshot

44 4. The implemented cloud solution

(a) (b)

(c)

Figure 4.5. Examples how how some machine learning algorithms build its own inference
rules, respectively: 5.2(b): Random Forest, 4.5(b): Decision Tables, 4.5(c): MultyLayer-
Perceptron.

of the instance creating an own private AMI. An other possibility is to import into
AWS an image obtained doing a snapshot of an on premise virtual machine already

4.3 User interface and software tools 45

running on the top of a VMware vSphere system. 1 The AMI used for Disar has
been created through the first option, we start from a 64 bit version of CentOS 6.5.
The CentOS Linux distribution is a stable platform derived from the sources of Red
Hat Enterprise Linux (RHEL). Due to its stability it is suitable for servers in Linux
environment. On the OS we have installed the Intel Cluster Studio XE environ-
ment that even if it embeds more software modules than those we need, it contains
all necessary libraries. For our purpose it was important to set the environment
variables related to the following runtimes :

• Intel MKL math library

• Intel MPI library (impi)

• Intel Fortran (ifort)

On the OS we have created a work directory that contains the last version of
the DiAlmEngParNs engine. Since the engine is written in Fortran, we need ifort
runtime to run it. the mkl library is used for the generation of pseudo random
numbers necessary to the Monte Carlo.

1VMware vSphere is the brand name for VMware’s suite of virtualization products. Before 2009,
VMware vSphere was known as VMware Infrastructure.

47

Chapter 5

Experimental results

5.1 Experimental results

In this section we will report the results obtained by the application of the algorithms
introduced in section 4.2.1. They have been tested on 25 more elaborations and
in different contexts. For each algorithm we will discuss pros and cons and we
will analyze the reasons that make them perform well or bad depending on the
prediction we want to obtain. According to what stated in section 4.1, we have
worked moving into two direction: for the first we have make 190 predictions using
a training set of 126 instances on different instance typology, for the second we
have make 27 predictions with a training set of 41 elaborations, always on the same
single instance typology. Despite the software implemented solution relies on the
second methodology, we have decided to show both results because the tests on the
single instance are too few and they could sometimes show significant errors since
they could be not enough. Subsequently we have actually performed the simulations,
comparing then the predicted and real values in both situations. We have plotted
for each elaboration a point having coordinates x = Θi and y = Θ̂i, i.e. real and
estimated execution time. In figure 5.7 we have instead plotted the distribution of
δ to study the behavior in correspondence of the tails. The red line represents the
bisecting line. If the point relative to an elaboration is placed up the red line it means
that the prediction for that elaboration has been over estimated, in the contrary if
the point lies under the line the prediction has been under estimated. Moreover,
observing the plot is possible to understand in which situation the classifier takes a
certain behavior. For example if the plot takes the shape similar to a triangle with
the point to left and the base to the right, it means that it estimates well for small

48 5. Experimental results

●

●

●

●

●

●

●

●

●

●

● ●

●●

●● ●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●
● ●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●
●
●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00

MLP

real (sec)

pr
ed

ic
te

d
(s

ec
.)

Figure 5.1. Plot of real and estimated execution time using Multi Layer Perceptron algorithm
on the unified data set.

time values and fails for big ones. Viceversa the base to left and the point to right
means the contrary. The resulting shape could be even irregular.

5.1.1 Multi Layer Perceptron

The initial seed for random number generation has been set to 7 with a number
of epochs equal to 1000 that through different trials results to be a good value to
avoid network over fitting. Reading table 5.1 we can see that the neural network
yield a δ̄ = −33sec., meaning that it slightly under estimates. According to this,
what we can observe in figures 5.1 is that most of the misplaced points lies in the

5.1 Experimental results 49

bottom-right side of the plot. This means that the algorithm tends to under estimate
especially when Θi grows more that about 850. We can also note a vertical points
disposition in the axis origin, it represents those estimation errors related to all those
elaborations whose Θi is of the order of seconds. This highlights that the algorithm
fails in estimating this class of elaborations. The most plausible cause of this is the
fact that the samples representing this type of elaborations in the training set are
very few, as also those whose time is closer to 50 minutes, causing that the network
is unable to catch the patterns related to them. If we observe the tails distribution in
figure 5.7(a) we see that it is quite populated in the left side. The standard deviation
is equal to 6.5 minutes, this implies that the 68% of the sample fall into an error of
about 7 minutes.

5.1.2 Random Tree and Random Forest

For both Random Tree and Random Forest we have used the value k = 8 for the
number of randomly chosen attributes on which to construct the trees. The forest
is made of 500 trees. What is immediately clear to the observer eye comparing
figures 5.2(a) and 5.2(b) is the better accuracy of Random Forest in the left side of
the plot, this is predictable since Random Forest apply something more with respect
to Random Tree that is the final voting among the classifications obtained by all the
trees composing the forest. In fact with respect to Random Tree, Random Forest is
able to recover some wrong over estimations that can be see as on horizontal line in
figure 5.2(a) in corrispondence of the value of about 1500 on the y axis. Both the
algorithms fail on the same samples Multi Layer Perceptron do for big value, while
they behave slightly better on very small values with respect to MLP, since they fail
only on Θi with value lower than 6\7 seconds, while MLP under approximately
1 minutes. The mean committed error is of 38 seconds. The distribution in figure
5.7(b) presents a standard deviation of 6.10 minutes.

5.1.3 Ibk

Ibk algorithm shows the second biggest vale for δ that is equal to −66.7 seconds. It
is difficult to tune the parameter k = number of nearest neighbors once for all since
it depends not only from the general density of sample, but in particular from the
local density we are working around. If in that zone the sample is dense enough, an
high, but limited value of k results in a good approximation since it gives an average

50 5. Experimental results

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00

Random Tree

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(a)

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

● ●

●

●●●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00

Random Forest

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(b)

Figure 5.2. Plot of real and estimated execution time using Random Tree 5.2(a) and Random
Forest 5.2(b) algorithm on the unified data set.

5.1 Experimental results 51

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●●●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●
●

●

●●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00
ibk

real (sec)

pr
ed

ic
te

d
(s

ec
.)

Figure 5.3. Plot of real and estimated execution time using ibk algorithm on the unified
data set

value among the neighbors, but if the zone is not enough populated we risk to embed
neighbors that are too far from the zone our test will be located. A good value for the
both the tests results to be k = 8. Looking at plot in figures 5.3 we can observe that
generally the algorithm tends to under estimate especially after elaborations whose
real value is bigger than 15 minutes. In fact for how the algorithm is designed, the
instances in the right side are too distant among each others. The dense distribution
of the left tail can be observed in figure 5.7(d). The standard deviation is of 6.7
minutes, meaning that the 68% of the sample fall into an error of about 8 minutes.

52 5. Experimental results

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00

kstar

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

Figure 5.4. Plot of real and estimated execution time using kstar algorithm on the unified
data set.

5.1.4 kStar

Kstar achieve the smaller value for δ =−1.6sec., but what is interesting observing
figure 5.4 is that this is due to a balancing between underestimations and overesti-
mations. In fact it fails giving an underestimation, in predicting some values that
are the same for which MLP fails, even if, in that zone kstar is a little bit more
accurate. While in the upper part of the plot we can observe that it suffer of overesti-
mation for some points that instead MLP guesses. The two algorithms seem to be
quite complementary from this point of view. Its standard deviation is equal to 6.7
minutes.

5.1 Experimental results 53

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●●●

●

● ●

●●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

0 500 1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00
Decision Table

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

Figure 5.5. Plot of real and estimated execution time using Decision Table algorithm on the
unified data set.

5.1.5 Decision Table

Decision Table shows the higher values for δ respect to other classifiers. Moreover
the behave in completely different on the two data sets figure 4.5(b) and figure 5.6(f).
The tails in figure 5.7(f) are very wide in both direction, with a standard deviation
of 7.3 minutes with a resulting δ +σ = 8.5 minutes. Due to its implementation,
Decision Table’s output are only some discrete values, this is observable looking at
figure 4.5(b), in which we can see some horizontal lines.

54 5. Experimental results

5.1.6 Comparison

An important and main limitation encountered in carrying out this work is surely
related to time and costs. In fact, the used sample contains a few instances for an
exhaustive accurate estimate, but enrich it during the evolution of the work would
involve huge expenses for testing, having to repeatedly turn on different instances,
of which the most performing have a considerable cost, considering that already for
tests carried out up to here the expense was not indifferent. Also make the sample
homogeneous would require many elaborations with fairly distributed execution
times in order to avoid the problem encountered for those elaborations of short
duration. This would result in many hours of testing. However the problem is not
limiting as the system is designed to come up to steady state and make training more
and more accurate as new elaborations are performed. Despite this we have shown
how quite satisfactory results can be achieved applying some algorithms. In figures
5.8 we have compared the three classifiers that better achieve the goal. For each
real value three corresponding points, red, green, blue represent the time predicted
by respectively :MLP, kstar and Random Forest. To have a better view, we have
divided the image into two, in order to have a zoom-in in the region where points
are too close to each other. In figure 5.8(a) it is possible to observe elaborations
whose real value is less than 800 seconds. In the first left side we can better observe
what has been previously discussed. MLP fails in predicting values below about
50 seconds by over estimation. In the same region Random Forest gives the same
values for all the elaborations, this is represented by the blue horizontal line. A
better results is achieved instead by kstar. In the region between 100 and 800 MLP
is the best accurate, while the others two classifiers fluctuate around the bisector
line, especially kstar, that is why its mean error results so low. In figure 5.8(b) we
can observe the remaining region of the plot. Excluding some common mistakes,
MLP is still the most accurate even in this region. What is interesting to note is that
the error committed by MLP for small elaborations, even if completely wrong, all
represent overestimation with a positive gap of in average 100 seconds. This implies
that such mistakes are not evident on the tails of figure 5.7(a), since it is a value
closer to 0, and so they simply broaden the base of the distribution. Summing up we
can derive that MLP, is the most suitable classifier for our purpose, despite some
inaccuracies, that could be probably correct by enriching the sample in some less
dense regions.

5.1 Experimental results 55

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

MLP

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(a)

●●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Random Forest

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(b)

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Random Tree

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(c)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

ibk

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(d)

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

kstar

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(e)

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Decision Table

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(f)

Figure 5.6. Plot of real and estimated execution time using: 5.6(a) MLP, 5.6(b) Random
Forest, 5.6(c) Random Tree, 5.6(d) Ibk, 5.6(e) kStar, 5.6(f) Decision Table algorithms
on the c4.8xlarge instances.

56 5. Experimental results

MLP

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
20

40
60

80
10

0

(a)

Random Forest

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
20

40
60

80

(b)

Random Tree

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
10

20
30

40
50

60

(c)

Ibk

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
10

20
30

40
50

60

(d)

KSTAR

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
10

20
30

40
50

60

(e)

Decision Table

predicted − real (sec)

F
re

qu
en

cy

−3000 −2000 −1000 0 1000 2000 3000

0
10

20
30

40
50

60

(f)

Figure 5.7. Histogram of δ distribution using: 5.7(a) MLP, 5.7(b) Random Forest, 5.7(c)
Random Tree, 5.7(d) Ibk, 5.7(e) kStar, 5.7(f) Decision Table.

5.1 Experimental results 57

0 200 400 600 800

0
50

0
10

00
15

00

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(a)

1000 1500 2000 2500 3000

0
50

0
10

00
15

00
20

00
25

00
30

00

real (sec.)

pr
ed

ic
te

d
(s

ec
.)

(b)

Figure 5.8. Plot of real and estimated execution time achieved by MLP (red), kstar (green)
and Random Forest (blue).

c4.8.xlarge all
IBk 31.9 (s) -66.7 (s)
KStar 31.9 (s) -1.6 (s)
Random Tree 17.4 (s) -33.5 (s)
Random Forest 24.3 (s) -38.37 (s)
Multy Layer Perceptron 11.0 (s) -33.0 (s)
Decision Table 65.8 (s) -75.8 (s)

Table 5.1. Values of δ̄ reported by each classifier on the test sets.

58 5. Experimental results

real ibk kstar MLP Random Tree Random Forest Decision Table
650000.0 628563.1 1053398.92 588015.18 287000.0 941883.978 985000.0
2342000.0 1094333.333 1329790.228 2250939.379 1513333.333 1343113.495 1513333.333
768000.0 533763.1 736916.991 757703.123 747000.0 597616.308 747000.0
250000.0 228000.0 456875.675 304310.45 459000.0 405461.709 310666.667
1121000.0 800000.0 696509.475 1064248.33 854000.0 713842.881 1019666.667
7037.0 8152.2 7535.491 4885.696 9219.961 9156.241 7301.6
390000.0 500222.222 590798.881 361895.171 475000.0 405912.57 689000.0
819000.0 781125.0 706663.41 775510.859 790000.0 673266.889 689000.0
5048.0 7024.875 6606.434 52621.184 9219.961 9156.241 5206.75
660000.0 578777.778 1306746.704 766014.446 1502000.0 850976.132 1019666.667
63000.0 55896.75 125350.498 132372.91 251000.0 173244.257 21500.0
143000.0 256250.0 279577.987 152838.239 157000.0 249960.545 205200.0
10004.0 7160.0 7340.244 26806.897 9219.961 9156.241 7301.6
5070.0 6590.222 7449.17 50338.34 9219.961 9156.241 5206.75
205000.0 330250.0 144380.13 217960.893 398000.0 273317.681 171875.0
192000.0 440375.0 145046.246 187248.929 269000.0 171384.584 171875.0
475000.0 100261.375 251000.0 211485.359 125500.0 274463.997 284832.135
118000.0 138000.0 226275.613 113307.539 71000.0 148316.838 171875.0
798000.0 349078.875 1101873.187 861651.051 1502000.0 779461.776 1019666.667
339000.0 318400.0 330695.411 211448.626 171000.0 205218.231 260666.667
6013.0 10291.5 7354.336 7780.196 9219.961 9156.241 7301.6
377000.0 375666.667 589171.931 323133.238 387000.0 365170.241 689000.0
348000.0 316000.0 734486.118 422313.187 611000.0 571966.663 485000.0
464000.0 446555.556 633122.996 474936.26 387000.0 371578.463 1019666.667
81000.0 138111.111 188939.396 105439.074 71000.0 129452.554 122000.0
157000.0 804203.875 18671.003 65316.709 1631.0 296954.233 1631.0
137000.0 155625.0 157049.429 204360.089 398000.0 271471.726 122000.0
365000.0 45764.375 251000.0 123365.13 125500.0 253927.952 89333.333
64000.0 123777.778 115138.0 74695.291 107500.0 120571.347 122000.0
4077.0 6046.444 5790.847 47609.13 9219.961 9156.241 5206.75
481000.0 396700.0 575662.859 454068.937 722000.0 596887.154 310666.667
309000.0 348545.455 373329.25 337509.67 261923.077 520969.464 205200.0
2041.0 5251.3 6261.044 19405.938 9219.961 9156.241 5206.75
176000.0 51399.25 251000.0 210410.827 251000.0 258135.916 21500.0
796000.0 649375.0 1042449.454 645188.95 1114000.0 1008690.152 459000.0
390000.0 529222.222 159776.579 373975.726 269000.0 222551.154 260666.667
472000.0 380703.875 350500.0 364043.092 350500.0 332643.229 350500.0
76000.0 138000.0 187495.832 111699.757 107500.0 157664.975 122000.0
188000.0 240875.0 254640.909 200087.635 171000.0 182098.717 260666.667
229000.0 458000.0 209663.997 195986.952 269000.0 223053.336 171875.0
5018.0 7024.875 6381.009 55007.354 9219.961 9156.241 5206.75
309000.0 380000.0 326922.285 334572.012 172000.0 318860.146 485000.0
106000.0 195000.0 224435.405 128831.071 107500.0 162316.529 171875.0
10067.0 8601.667 8372.082 63467.214 9219.961 9156.241 7301.6
386000.0 489666.667 645137.496 388649.199 475000.0 420464.045 689000.0
147000.0 219777.778 265341.734 160527.33 143000.0 197131.768 205200.0
4078.0 6673.75 5958.365 99223.339 9219.961 9156.241 5206.75
137000.0 293777.778 198596.763 116302.766 80333.333 131238.085 171875.0
1419000.0 730363.636 1306746.704 1441394.134 1502000.0 1031403.464 1019666.667
167000.0 206818.182 216520.199 193479.215 172000.0 225324.042 205200.0
434000.0 667777.778 415010.174 423761.39 261923.077 608244.65 431500.0
3076.0 38017.625 7204.345 10513.183 9219.961 9156.241 7416.412
213000.0 208000.0 350499.99 128005.092 209000.0 232001.284 284832.135
4068.0 8859.727 5645.385 22512.53 9219.961 9156.241 5206.75
14000.0 13162.125 15027.054 24370.664 9219.961 11973.541 21500.0
73000.0 126416.667 127930.769 100255.533 107500.0 157019.83 122000.0
274000.0 383125.0 268382.517 221330.236 188000.0 250307.581 171875.0
4089.0 5171.625 5530.336 14060.833 9219.961 9156.241 5206.75
3081.0 7782.375 7755.82 12767.054 9219.961 9156.241 7416.412
144000.0 271375.0 101412.332 161326.054 154500.0 151773.064 122000.0
618000.0 610545.455 954114.604 626679.019 459000.0 793219.336 985000.0
164000.0 163000.0 219792.288 216427.846 241000.0 258413.086 122000.0
399000.0 250000.0 164956.529 372899.461 398000.0 310769.342 260666.667
4064.0 13041.0 5793.885 17438.716 9219.961 9156.241 5206.75
692000.0 583777.778 900294.251 668876.193 1025000.0 851848.0 459000.0
432000.0 690500.0 283712.199 422555.765 269000.0 360359.109 260666.667
102000.0 191500.0 49000.0 271913.536 350500.0 137819.231 284832.135
103000.0 129666.667 111465.8 104551.704 71000.0 97335.099 171875.0
375000.0 321777.778 275395.466 402922.373 261923.077 505517.093 310666.667
751000.0 524000.0 734486.118 731303.058 1025000.0 827514.387 485000.0
810000.0 428125.0 963031.932 725324.803 1190000.0 879209.639 459000.0
151000.0 292000.0 228572.668 109474.77 125500.0 196698.922 171875.0
91000.0 175666.667 158860.457 119463.043 107500.0 147548.285 122000.0
233000.0 263750.0 257255.164 225576.265 181666.667 190467.154 260666.667
1910000.0 445666.667 104711.637 169442.983 269000.0 169602.563 171875.0
191000.0 323250.0 377565.897 216898.51 125500.0 255402.185 260666.667
5084.0 6989.182 7325.359 21958.224 9219.961 9156.241 7416.412
11071.0 7848.2 6051.358 79629.011 9219.961 9156.241 7416.412
7005.0 6798.25 6931.803 36464.558 9219.961 9156.241 5206.75
420000.0 402875.0 552476.471 414724.23 287000.0 556565.485 485000.0
6098.0 8461.833 8301.598 4494.346 9219.961 9156.241 7301.6
1265000.0 78259.0 200250.0 574080.596 251000.0 340518.81 21500.0
216000.0 386625.0 134178.663 209540.182 269000.0 238148.471 171875.0
102000.0 138000.0 178375.252 91245.946 80333.333 93219.784 171875.0
165000.0 219000.0 200250.0 184041.18 181666.667 152282.109 260666.667
120000.0 161250.0 242464.303 121247.032 93000.0 179339.534 171875.0
128000.0 186250.0 185149.858 100568.453 125500.0 178954.015 171875.0
87000.0 136375.0 200250.0 104749.272 125500.0 169073.455 122000.0
226000.0 354727.273 8901.584 237064.198 398000.0 285326.784 171875.0
9087.0 7874.0 326922.285 70586.878 9219.961 9156.241 7416.412
558000.0 526875.0 4591.719 553476.025 261923.077 615600.568 485000.0

Table 5.2. Real and predicted execution time provided by each algorithm in ms.

5.1 Experimental results 59

real ibk kstar MLP Random Tree Random Forest Decision Table
558000.0 526875.0 4591.719 553476.025 261923.077 615600.568 485000.0
4081.0 32641.7 394097.737 382.961 9219.961 9156.241 5206.75
232000.0 299750.0 115031.021 261415.609 172000.0 291725.638 431500.0
187000.0 327222.222 838123.608 184584.201 188000.0 187118.162 171875.0
452000.0 324444.444 117863.018 349977.371 287000.0 768749.605 459000.0
820000.0 130454.545 7135.614 119773.716 93000.0 162286.381 122000.0
10004.0 7242.4 6565.024 34324.761 9219.961 9156.241 7301.6
10032.0 7025.556 696509.475 37835.324 9219.961 9156.241 7301.6
583000.0 354578.875 7088.297 641191.693 457000.0 422137.543 1019666.667
5057.0 6393.333 270451.886 21811.579 9219.961 9156.241 7416.412
166000.0 222250.0 256153.142 186192.944 125500.0 229514.323 260666.667
207000.0 334125.0 1162264.931 211557.437 188000.0 219830.456 171875.0
1231000.0 796625.0 710197.599 1112757.047 1513333.333 1037107.367 1513333.333
450000.0 647750.0 5723.513 785094.725 854000.0 706300.02 689000.0
6081.0 6293.0 28000.0 101733.534 9219.961 9156.241 5206.75
42000.0 38017.625 305327.835 12277.596 9219.961 37418.048 89333.333
218000.0 365500.0 6187.591 186359.589 143000.0 255062.739 431500.0
6063.0 6815.222 6010000.0 30242.712 9219.961 9156.241 5206.75
3086000.0 984759.625 316037.381 5704678.407 6010000.0 4068870.819 284832.135
222000.0 334125.0 736916.991 203082.086 188000.0 259565.142 171875.0
744000.0 533763.1 16954.277 757703.123 747000.0 597616.308 747000.0
17000.0 44778.0 218795.967 35557.276 9219.961 12781.017 89333.333
379000.0 503636.364 6258.262 354190.042 269000.0 227242.232 260666.667
3084.0 15529.375 620842.135 31057.952 9219.961 9156.241 7416.412
431000.0 547666.667 272253.329 428370.841 261923.077 631381.64 431500.0
250000.0 307250.0 734486.118 270393.186 157000.0 284083.004 485000.0
365000.0 370375.0 581742.878 409162.192 459000.0 541612.001 485000.0
417000.0 543875.0 7379.349 393426.324 342000.0 567254.433 431500.0
10072.0 8294.25 148193.696 15629.52 9219.961 9156.241 7301.6
89000.0 210625.0 259991.194 94292.603 107500.0 123622.906 171875.0
464000.0 590100.0 350499.999 408148.414 269000.0 360065.053 260666.667
110000.0 253000.0 464051.623 109597.152 52000.0 230087.744 284832.135
257000.0 238500.0 5203.661 211583.785 143000.0 274718.536 431500.0
4056.0 8543.5 217613.516 11578.726 9219.961 9156.241 5206.75
311000.0 326555.556 7141.922 326074.286 261923.077 500427.096 205200.0
7032.0 5314.125 5838.888 6342.14 9219.961 9156.241 7301.6
10031.0 7550.625 7083.522 75779.226 9219.961 9156.241 7416.412
11010.0 7942.4 197652.028 35856.746 9219.961 9156.241 7301.6
204000.0 259666.667 7473.568 200780.748 398000.0 277847.624 171875.0
5076.0 6423.5 414342.312 20142.948 9219.961 9156.241 7416.412
417000.0 659555.556 212178.972 372293.776 342000.0 519761.245 431500.0
213000.0 300625.0 438627.626 190798.082 209000.0 195671.283 7301.6
483000.0 339078.875 117863.018 366580.816 350500.0 306132.303 7416.412
153000.0 145500.0 411960.871 225625.058 398000.0 272100.035 122000.0
231000.0 371828.875 6704.366 254631.582 172000.0 281918.448 431500.0
11026.0 8590.667 5931.838 70746.196 9219.961 9156.241 7301.6
6010.0 6784.25 456875.675 86211.25 9219.961 9156.241 5206.75
248000.0 300666.667 1306746.704 334410.908 611000.0 448904.245 310666.667
681000.0 486300.0 350499.999 713278.711 1502000.0 807028.692 1019666.667
216000.0 253000.0 6100.737 109597.152 52000.0 230087.744 284832.135
6029.0 6427.5 189511.352 41050.254 9219.961 9156.241 5206.75
158000.0 210625.0 8413.388 120637.245 107500.0 165918.317 171875.0
3077.0 15529.375 218023.172 22233.077 9219.961 9156.241 7416.412
183000.0 406625.0 8100.273 374233.98 411000.0 285286.108 260666.667
11025.0 8055.0 693298.587 29266.874 9219.961 9156.241 7416.412
427000.0 321666.667 694101.993 528921.489 611000.0 629601.328 459000.0
453000.0 389828.875 8360.673 465918.252 457000.0 403433.269 689000.0
7030.0 8821.0 456875.675 13085.634 9219.961 9156.241 7301.6
499000.0 391250.0 538372.694 498756.005 1025000.0 657873.115 310666.667
556000.0 680125.0 7772.383 570652.826 431500.0 520660.164 485000.0
10087.0 8601.667 217458.904 55632.698 9219.961 9156.241 7301.6
292000.0 338000.0 326667.987 246932.129 342000.0 407658.417 205200.0
553000.0 367625.0 166872.979 457657.915 284000.0 317172.456 260666.667
358000.0 471555.556 650874.514 375265.065 411000.0 265974.81 260666.667
970000.0 781125.0 174041.934 1078894.219 790000.0 653640.487 1019666.667
103000.0 129111.111 258969.066 98890.305 125500.0 182967.49 122000.0
476000.0 353444.444 9268.437 398327.788 241000.0 306773.597 260666.667
10098.0 8939.625 18671.003 68285.192 9219.961 9156.241 7416.412
1616000.0 804203.875 308380.847 65316.709 1631.0 296954.233 1631.0
197000.0 319875.0 377565.897 176261.212 157000.0 278418.125 431500.0
226000.0 339882.0 972960.185 200827.93 125500.0 173210.754 70000.0
1361000.0 896400.0 313499.015 1487731.861 1502000.0 1127777.283 1019666.667
530000.0 468363.636 55000.0 476901.888 269000.0 387992.072 260666.667
103000.0 192250.0 6144.632 269676.911 350500.0 138816.474 284832.135
4060.0 6673.75 118090.075 96186.082 9219.961 9156.241 5206.75
111000.0 138000.0 111307.885 115558.978 80333.333 113944.094 171875.0
140000.0 145500.0 251000.0 209407.465 398000.0 265877.751 122000.0
210000.0 81387.125 87174.03 236729.961 209000.0 252558.486 52000.0
74000.0 138125.0 1262357.866 106885.118 67000.0 88928.536 122000.0
2039000.0 1044100.0 90600.182 2056828.3 1513333.333 1225761.048 1513333.333
67000.0 130000.0 215329.569 97229.111 107500.0 113160.251 122000.0
232000.0 244200.0 8232.924 229466.946 284000.0 262526.262 122000.0
9091.0 8547.0 351165.053 59010.265 9219.961 9156.241 7416.412
281000.0 406875.0 5631.745 271656.008 342000.0 455339.295 205200.0
7010.0 6650.25 439289.432 50161.226 9219.961 9156.241 5206.75
199000.0 289000.0 283712.199 201724.723 157000.0 326232.956 431500.0
155000.0 347875.0 239773.355 210048.798 159000.0 237164.631 260666.667
151000.0 284875.0 6006.63 167871.564 133500.0 234939.843 122000.0
6098.0 5832.556 125649.502 3306.982 9219.961 9156.241 7301.6
3310000.0 55896.75 251000.0 132375.575 251000.0 173244.257 21500.0
429000.0 242500.0 100982.881 312585.104 444000.0 307599.584 284832.135
127000.0 261111.111 5826.159 158546.832 133500.0 166683.617 122000.0
7006.0 5430.5 896985.295 13418.485 9219.961 9156.241 7301.6
791000.0 679750.0 283712.199 783483.076 518000.0 850791.594 485000.0
448000.0 317111.111 117863.018 414715.807 398000.0 325504.611 260666.667
150000.0 279375.0 332493.892 185480.856 203000.0 198068.11 122000.0
523000.0 726250.0 157676.901 520118.865 342000.0 496454.075 485000.0
2582000.0 99893.0 275395.466 220060.676 125500.0 358539.267 89333.333

Table 5.3. Real and predicted execution time provided by each algorithm in ms.

61

Chapter 6

Conclusions and Future Work

Conclusion
In this work a study of a specific and particular distributed application has been con-
ducted. The purpose of the work is to take the most time and resources consuming
part of a more complex IT system dedicated to the insurance field in a cloud envi-
ronment. In particular the idea is to fully exploit the formula pay as you go trying to
minimize as much as possible the costs. Since the context we are dealing with might
in some cases require some urgency, or in any case a bounded time to produce some
results, the idea is to be able to estimate the IT infrastructure necessary to achieve
that goal in the desired time with the minimal expense. The porting of this portion
of the system in the cloud, may represent a significant savings for the company,
which may choose to vary the processing time according to need by finding the
right compromise between time and costs. Since these procedures do not require
daily use, this choice might prevent the company purchasing very high-performance
computing infrastructure together with their maintenance. First we have given a
general overview of the laws that require this kind of computation, its aim, and the
context in which the problem arises to contextualize it. We have then analyzed the
performance of the system, underlining its behavior when it is scaled up/down on
several cloud machines and giving a trend of its scaling factor and speed-up. The
computation depends on so many aleatory variables and conditions such that it is
hard to establish a mathematical model that describe the algorithm complexity. The
observed behavior is almost linear varying the number of natural iterations of the
Monte Carlo simulation, thus a naive approach could be a trial of the elaboration on
a very small number of iterations and then multiply the result to obtain an estimation
on a bigger number of iteration. However this approach requires to a priori turn on

62 6. Conclusions and Future Work

the machines to carry out the test, disregarding the fact that this approach may not
capture what would be adding machines to the cluster. To deal with the situation
in a more efficient way we have tried to exploit some machine learning algorithms
that training themselves on all previous successfully completed elaborations till the
current one, they try to grasp as much as possible dependencies and patterns that
affect the execution time, and give a prediction on that one that must be elaborated.

Future work
Within the entire work, we based all our reasoning using as reference unit the indi-
vidual elementary elaborations (eeb). This is to analyze more closely the problem,
since each eeb has its own characteristics that has said in section 4.1 could be
completely different from the others belonging to the same portfolio. On the other
hand an eeb is never treat independently from the other, considering even that it
would be a waste purchasing an instance for a single eeb. Therefore it would make
sense to reason on an total complexity considering someway an aggregation of all
the predictions regarding the entire portfolio. Due to this substantial difference
among the elaborations, the cluster could be result underestimated for some and less
suitable for others. Taking into account this, a further optimization might consist in
partitioning the grid, in order to launch concurrently the less complex elaboration on
a small partition of the cluster and dedicate an higher number of cores to the more
complex ones. The implementation of this strategy would require more effort as
well as greater granularity approach. In view of a service that can be convenient,
competitive and optimal, we consider the possibility to integrate the software with a
multi cloud support. That means that the system should be able not only to find the
best configuration, but even the best configuration on the most convenient provider
at that moment, considering that always more frequently the providers offer the
possibility of instances auctions, as it is already provided by AWS with the bidding
service on the spot instances. 1

1Amazon EC2 Spot instances are spare EC2 instances that you can bid on to run your cloud
computing applications. Since Spot instances are often available at a lower price, you can signifi-
cantly reduce the cost of running your applications, grow your application’s compute capacity and
throughput for the same budget, and enable new types of cloud computing applications.

63

Bibliography

[1] Alef srl. Available from: http://www.alef.it/.

[2] Amazon web sevices. Available from: https://aws.amazon.com/it/.

[3] Ansible. Available from: http://www.ansible.com/home.

[4] Goolgle compute engine. Available from: https://cloud.google.com/
compute/.

[5] Ibm cloud manager with openstack. Available from: http://www.ibm.com/
developerworks/servicemanagement/cvm/sce.

[6] Ibm smart cloud. Available from: http://www.ibm.com/cloud-
computing/us/en/.

[7] Microsoft azure. Available from: http://azure.microsoft.com/it-it/.

[8] Nimbus. Available from: http://cloud.verizon.com/.

[9] Nimbus. Available from: http://www.nimbusproject.org/.

[10] Open nebula. Available from: http://opennebula.org/.

[11] Open stack. Available from: http://www.openstack.org/.

[12] Rackspace cloud. Available from: http://www.rackspace.com/cloud.

[13] Waikato university. Available from: http://www.waikato.ac.nz/.

[14] Directive 2009/138/EC of the European Parliament and of the Council of 25
november 2009 on the taking-up and pursuit of business of Insurance and
Reinsurance (Solvency II). Official Journal of the European Union, L351/1
(17.12.2009).

http://www.alef.it/
https://aws.amazon.com/it/
http://www.ansible.com/home
https://cloud.google.com/compute/
https://cloud.google.com/compute/
http://www.ibm.com/developerworks/servicemanagement/cvm/sce
http://www.ibm.com/developerworks/servicemanagement/cvm/sce
http://www.ibm.com/cloud-computing/us/en/
http://www.ibm.com/cloud-computing/us/en/
http://azure.microsoft.com/it-it/
http://cloud.verizon.com/
http://www.nimbusproject.org/
http://opennebula.org/
http://www.openstack.org/
http://www.rackspace.com/cloud
http://www.waikato.ac.nz/

64 Bibliography

[15] ANGELIS, P. L. D., PERLA, F., AND ZANETTI, P. Hybrid mpi/openmp
application on multicore architectures: The case of profit-sharing life insurance
policies valuation. Applied Mathematical Sciences, 7 (2013), 051 .

[16] BAUER, D., REUSS, A., AND SINGER, D. On the calculation of the solvency
ii capital requirement based on nested simulations. Astin Bulletin, 42 (2012),
453.

[17] BREIMAN, L. Out-of-bag estimation. (1996).

[18] BREIMAN, L. Random forests–random features. (1999).

[19] CASARANO, G., CASTELLANI, G., PASSALACQUA, L., PERLA, F., AND

ZANETTI, P. Relevant applications of monte carlo simulation in solvency ii.
Soft Computing, (2015).

[20] DE FELICE, M. AND MORICONI, F. Una nuova finanza d’impresa. Le

imprese di assicurazione, Solvency II, le Autorità di vigilanza. Itinerari. Il
Mulino (2011).

[21] EVOY, G. M. AND SCHULZE, B. Understanding scheduling implications for
scientific applications in clouds. MGC (2011).

[22] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,
AND WITTEN, I. H. The weka data mining software: An update. SIGKDD

Explorations, 11 (2009).

[23] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P.,
AND WITTEN, I. H. The weka data mining software: An update. SIGKDD

Explorations, Volume 11 (2009).

[24] HAROMOTO, H., MATSUMOTO, M., NISHIMURA, T., PANNETON, F., AND

P., L. Efficient jump ahead for f2− linear random number generators. IN-

FORMS Journal on Computing, 20 (2008), 385.

[25] HAYKIN, S. AND NETWORK, N. A comprehensive foundation. Neural

Networks, 2 (2004).

[26] IAS. A Global Framework for Insurer Solvency Assessment (2004). Research
Report of the Insurer Solvency Assessment Working Party.

Bibliography 65

[27] MIT. Starcluster. Available from: http://star.mit.edu/cluster/docs/
latest/overview.html.

[28] POLITO, S. G. AND ADRIANO COSTANZO. Demo paper: Automatic provi-
sioning, deploy and monitoring of virtual machines based on security sevice
level agreement in the cloud. IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, 14 (2014), 536.

[29] RAINER SCHMIDT, G. F., HEIKE WEISS. Advances in Data Mining. Applica-

tions and Theoretical Aspects. (2012).

[30] W.R., L., ET AL. Professional Actuarial Speciality Guide - Asset-Liability

Management. Society of Actuaries (2002).

[31] YAO, J. On-demand optimal cloud service provisioning composition across
multi-cloud. International Conference of Computational and Information

Sciences, (2013), 1566.

http://star.mit.edu/cluster/docs/latest/overview.html
http://star.mit.edu/cluster/docs/latest/overview.html

67

Ringraziamenti

This page has been written in Italian, so that all the people to whom it is addressed

can read it easily ...

Questa pagina é stata scritta in italiano, in modo tale che tutti coloro alla quale é

dedicata possano leggerla facilmente...

Il primo grande grazie va ai miei genitori, che mi hanno dato la possibilitá materiale

ma ancor prima l’appoggio morale per arrivare fino a qui, oltre al grande dono

della vita. Ai miei fratelli Francesco e Stefano, anche lui ha dato il suo grande

contributo rinunciando a una cosa per lui molto importante, la mia presenza.

Un grandissimo ringraziamento va al dott. Giuseppe Casarano, che mi ha dato

la grande opportunitá non solo di svolgere questo lavoro di tesi in un ambito piú

che interessante, ma soprattutto di lavorare in un ambiente eccezionale, formato da

persone altrettanto speciali che mi hanno fatto sentire fin dal primo giorno parte

del gruppo, senza mai farmi sentire l’ultimo arrivato. Grazie a Enzo, Gabriele,

Giuseppe C., Giuseppe F., Luana, Leonardo, Paolo, Pietro, Stephane, Vincenzo,

grazie al prof. Passalacqua, al prof. Castellani e al prof. De Felice. Grazie anche a

tutti gli altri componenti di Alef, ognuno di loro ha contribuita alla buona riuscita

di questo lavoro, anche se solo con un sorriso.

Grazie ai ragazzi del coffee group, con i quali abbiamo condiviso questi anni di

universitá e i discorsi assurdi e spesso metafisici che hanno caratterizzato i nostri

pranzi, a Daniele S., Romolo, Francesca, Daniele U., Ion, Nick, Luigi, Eleonora,

Davide, Giuseppe e Alessio, con alcuni di loro abbiamo affrontato scogli insor-

montabili, ma che assieme si sono rivelati molto meno spigolosi e alti di quel che

sembravano.

Grazie al mio prof. Bruno Ciciani, esempio di serietá, disponibilitá ma sopra ogni

cosa di umiltá, virtú spesso difficile da trovare in persone che ricoprono il suo ruolo.

Grazie all’Ing. Alessandro Pellegrini, una presenza costante che ha sempre creduto

nelle mie capacitá anche quando io stesso non ci credevo, e che ha sempre saputo

darmi lo stimolo per progredire oltre che la sua estrema disponibilitá.

In ultimo solo per ordine di arrivo nella mia vita, ma non per importanza grazie a

Susanna, che mi ha conosciuto nel momento in cui non potevo dedicarle il tempo che

avrei voluto, ha sempre ascoltato le mie ansie, accolto le mie difficoltá, sopportato i

miei momenti no, eppure ha deciso di restare.

Grazie a tutti coloro che ci sono o ci sono stati, perché una piccola parte di questo

successo é anche opera vostra.

Andrea

	Introduction
	State of the art
	Aim and motivations

	The financial context
	The Solvency II directive
	The directive
	 Solvency Capital Requirement (SCR)
	Standard formula and internal model
	Probability Distribution Forecast (PDF)

	The nested Monte Carlo simulation and the "big computational problem"
	Valuation of a life insurance policy
	Nested Monte Carlo simulations

	Overview of the Insurance Data System
	IDS®
	IDS®architecture
	Subsystems and procedures
	Disar®: a procedure of IDS®life subsystem

	The implemented cloud solution
	Performance analysis of Disar
	Execution time prediction
	Weka
	Disar prediction

	User interface and software tools
	GUI
	AMI content

	Experimental results
	Experimental results
	Multi Layer Perceptron
	Random Tree and Random Forest
	Ibk
	kStar
	Decision Table
	Comparison

	Conclusions and Future Work
	Bibliography

