
Universit

�

a degli Studi di Roma \La Sapienza"

Dottorato di Ricerca in Ingegneria Informatica

XI Ciclo { 1999

Consistent Checkpointing in Distributed

Computations: Theoretical Results and Protocols

Francesco Quaglia

Universit

�

a degli Studi di Roma \La Sapienza"

Dottorato di Ricerca in Ingegneria Informatica

XI Ciclo - 1999

Francesco Quaglia

Consistent Checkpointing in Distributed

Computations: Theoretical Results and Protocols

Thesis Committee

Prof. Bruno Ciciani (Advisor)

Prof. Giacomo Cio�

Prof. Silvio Salza

Reviewers

Prof. Jean Michel H�elary

Prof. Mukesh Singhal

Author's address:

Francesco Quaglia

Dipartimento di Informatica e Sistemistica

Universit�a degli Studi di Roma \La Sapienza"

Via Salaria 113, I-00198 Roma, Italy

e-mail: quaglia@dis.uniroma1.it

www: http://www.dis.uniroma1.it/�quaglia

Abstract

This thesis is focused on the study of consistent checkpointing in distributed

computations. The model of the computation is asynchronous. The inves-

tigated checkpointing approach is known as communication-induced. In this

approach, processes of the distributed computation take checkpoints at their

own pace (namely basic checkpoints) and some additional checkpoints (namely

forced checkpoints) are induced by a lazy coordination scheme, in order to

guarantee consistency of global checkpoints. The lazy coordination is real-

ized by piggybacking control information on application messages. Upon the

receipt of a message, the recipient process evaluates a predicate basing on

the incoming control information and on its local context; if the predicate is

evaluated to TRUE, a forced checkpoint is taken. The thesis reports both

theoretical results on this issue and protocols derived from those results.

Chapter Organization

The �rst three chapters are devoted to the description of basic concepts and

theories on checkpointing.

Original contributions of the thesis starts from Chapter 4 where a taxon-

omy of communication-induced checkpointing protocols is presented splitting

protocols in VP-enforced and VP-accordant (

1

).

Chapter 5 introduces an equivalence relation between checkpoints and

presents a VP-enforced communication-induced checkpointing protocol based

on such a relation. Its performance is also investigated. The equivalence rela-

tion here introduced provides actually a framework that can be used to design

e�cient checkpoint timestamping mechanisms.

Chapter 6 provides a characterization of the necessary and su�cient con-

dition for the absence of useless checkpoints (i.e., checkpoints that cannot be

members of any consistent global checkpoint) in a distributed computation,

which was previously an open question. Then, the characterization is used

1

VP stands for \Virtual Precedence property".

i

ii CHAPTER 0. ABSTRACT

as a basis for the design of VP-accordant checkpointing protocols ensuring no

useless checkpoint. Applications of the proposed protocols are also discussed.

Finally, in Chapter 7, a necessary and su�cient condition for the consis-

tency of global checkpoints of distributed databases is provided by extending

results taken from the context of distributed computations. Non-intrusive

transaction-induced checkpointing protocols are also presented.

Most of this work can be found in the following papers:

R. Baldoni, F. Quaglia and P. Fornara, An Index-Based Checkpointing Al-

gorithm for Autonomous Distributed Systems, Proc. 16th IEEE Int. Sympo-

sium on Reliable Distributed Systems, 1997, pp. 27-34 (an expanded version

appeared on IEEE Transactions on Parallel and Distributed Systems, vol.10,

no.2, February 1999).

R. Baldoni, F. Quaglia and B. Ciciani, A VP-Accordant Checkpointing Pro-

tocol Preventing Useless Checkpoints, Proc. 17th IEEE Int. Symposium on

Reliable Distributed Systems, 1998, pp. 61-67.

R. Baldoni, F. Quaglia and M. Raynal, Consistent Checkpointing in Dis-

tributed Databases: Towards a Formal Approach, Tech. Rep. 27-97, Di-

partimento di Informatica e Sistemistica, Universita' di Roma \La Sapienza",

July 1997 (submitted paper).

F. Quaglia, R. Baldoni and B. Ciciani, A Low-Overhead Z-Cycle-Free Check-

pointing Algorithm for Distributed Systems, Proc. European Research Semi-

nar on Advances in Distributed Systems, 1997, pp. 198-203.

F. Quaglia, B. Ciciani and R. Baldoni, A Checkpointing-Recovery Scheme for

Distributed Systems, in Dimiter R. Avresky, David R. Kaeli, editors, \Fault

Tolerant Parallel and Distributed Systems" (Chapter 5), Kluwer Academic

Publishers, 1998.

F. Quaglia, R. Baldoni and B. Ciciani, On the No-Z-Cycle Property in Dis-

tributed Executions, Tech. Rep. 01-99, Dipartimento di Informatica e Sis-

temistica, Universita' di Roma \La Sapienza", January 1999 (submitted pa-

per).

F. Quaglia, R. Baldoni and B. Ciciani, Characterizing the \No-Z-Cycle" Prop-

erty in Distributed Computations, submitted paper.

F. Quaglia, B. Ciciani and R. Baldoni, Checkpointing Protocols in Distributed

iii

Systems with Mobile Hosts: a Performance Analysis, Proc. 3rd Workshop on

Fault Tolerant Parallel and Distributed Systems, LNCS 1388, 1998, pp.742-

755.

iv CHAPTER 0. ABSTRACT

Acknowledgments

My deepest debt of gratitude goes to my advisor Bruno Ciciani, for his help

during the whole Ph.D. course. He suggested me to study problems related

to checkpointing. I started to study such problems together with him in the

context of optimistic synchronization protocols, then we moved to the context

of distributed computations. Bruno always inspired and encouraged me during

all troubled times.

I'm also deeply indebted with Roberto Baldoni, with whom most of the

results of this thesis have been obtained. He showed me how to tackle the

checkpointing problem from a theoretical point of view, and also how theoret-

ical results can provide a basis for protocols with practical impact.

I would like to thank Michel Raynal, with whom results reported in Chap-

ter 7 have been obtained. It was a honour to discuss with him issues related

to checkpointing.

I express my gratitude to Jean Michel H�elary for comments he gave me on

a preliminary version of a technical report dealing with the characterization

introduced in Chapter 6, and for his help in the construction of the proof of

Theorem 7.4.3 in Chapter 7. I thank him also for having accepted to be an

external referee for this thesis.

I would like to thank Ravi Prakash, who gave me interesting criticisms on

the characterization theorem.

Special thank goes to Paolo Fornara and Luca De Santis. They helped me

to develop simulation code and to collect simulation data reported in Chapter

5 and in Chapter 6.

I also thank Giacomo Cio� and Silvio Salza for being internal referees,

Prof. Mukesh Singhal as external referee, Luigia Carlucci Aiello and Giorgio

Ausiello as presidents of the Ph.D. Committee of the Dipartimento di Infor-

matica e Sistemistica.

Finally, I thank my parents Angela and Gennaro, my sisters Maria Paola

and Rossella, and my girlfriend Cristina, for strength and invaluable help they

give me.

Francesco

v

vi CHAPTER 0. ACKNOWLEDGMENTS

Contents

Abstract i

Acknowledgments v

1 Introduction 1

1.1 Model of the Distributed Computation 2

1.2 Checkpoint and Communication Patterns of Distributed Com-

putations . 3

1.3 Consistent Global Checkpoints 4

1.4 Checkpointing Protocols . 6

1.4.1 Uncoordinated Protocols 6

1.4.2 Coordinated Protocols 7

1.4.3 Communication-Induced Protocols 9

2 Consistent Checkpointing 11

2.1 Netzer and Xu Theory . 12

2.1.1 Z-Paths . 12

2.1.2 Z-Cycles . 14

2.2 Properties of Checkpoint and Communication Patterns 14

2.2.1 The No-Z-Cycle Property 14

2.2.2 The Rollback-Dependency-Trackability Property 15

2.2.3 Relation Between Properties 16

3 Communication-Induced Protocols: Overview 19

3.1 Protocols Ensuring the No-Z-Cycle Property 19

3.2 Protocols Ensuring the Rollback-Dependency-Trackability Prop-

erty . 27

4 A Taxonomy of Protocols 33

4.1 The Virtual Precedence Property 33

4.1.1 Description . 33

vii

viii CONTENTS

4.1.2 Equivalence Between the No-Z-Cycle Property and the

Virtual Precedence Property 35

4.2 A Taxonomy of Protocols Based on the Virtual Precedence

Property . 35

4.2.1 VP-Enforced Protocols 36

4.2.2 VP-Accordant Checkpointing Protocols 37

4.3 Applying the Taxonomy to Existing Protocols 38

5 A Virtual Precedence Enforced Protocol 41

5.1 Relation of Equivalence Between Checkpoints 41

5.2 Sequence and Equivalence Numbers of a Consistent Global Check-

point . 44

5.2.1 Tracking Equivalent Checkpoints 45

5.2.2 Sequence and Equivalence Number Based Protocol

(SENBP) . 49

5.2.3 A Modi�cation of SENBP (M-SENBP) for the Case of

Periodic Basic Checkpoints 52

5.2.4 An Implementation of M-SENBP 52

5.2.5 Correctness Proof . 53

5.3 Performance Measures: a Case Study in the Context of Rollback

Recovery . 57

5.3.1 The Simulation Model 58

5.3.2 Results of the Experiments 59

6 Virtual Precedence Accordant Protocols 67

6.1 Preliminary De�nitions . 68

6.1.1 Message Chains . 68

6.1.2 Concatenation Relations 70

6.1.3 Concatenation Operators 71

6.1.4 A Formal Rede�nition of the Z-Cycle 71

6.2 A Characterization of the No-Z-Cycle Property 72

6.2.1 Elementary Z-Cycles . 73

6.2.2 Prime Z-Cycles . 74

6.2.3 Core Z-Cycles . 76

6.2.4 A Characterization Theorem 79

6.3 Deriving VP-Accordant Protocols 80

6.3.1 Suspect Core Z-Cycles 80

6.3.2 A Remark on Characterizations Stronger than NCZC . 83

6.3.3 A Checkpointing Protocol (P1) Preventing SCZCs . . . 84

6.3.4 A Comparison with Previous VP-Accordant Protocols . 87

6.3.5 Reducing the Size of the Control Information of P1: Pro-

tocol P2 . 89

CONTENTS ix

6.3.6 A Comparison with VP-Enforced Protocols 91

6.4 Consistent Global Checkpoints that Contain a Given Local Check-

point . 94

6.4.1 Consistent Global Checkpoint Collection 94

6.5 Applications of the Presented Protocols 97

6.5.1 Recovery from Transient Failures in Long Running Sci-

enti�c Applications . 97

6.5.2 The Output Commit Problem 98

7 Consistent Checkpointing in Distributed Databases 101

7.1 Database Model . 103

7.1.1 Data Objects . 103

7.1.2 Transactions . 103

7.1.3 Concurrency control . 104

7.2 Distributed Database . 104

7.2.1 Execution . 104

7.3 Consistent Global Checkpoints 105

7.3.1 Local States and Their Relations 105

7.3.2 Consistent Global States 106

7.3.3 Consistent Global Checkpoints 107

7.4 Extension of Netzer-Xu Theory to Distributed Databases . . . 107

7.4.1 Dependence on Data Checkpoints 107

7.4.2 Dependence Path . 109

7.4.3 Necessary and Su�cient Condition 110

7.5 Deriving \Transaction-Induced" Checkpointing Protocols . . . 112

7.5.1 Protocols A and B: Behavior of a Transaction Manager 113

7.5.2 Protocol A: Behavior of a Data Manager 113

7.5.3 Protocol B: Behavior of a Data Manager 114

7.5.4 Short Comparison with Previous Protocols 115

Bibliography 117

Glossary 123

x CONTENTS

Chapter 1

Introduction

A global state of a distributed computation is a set of individual process

states, also called local states, one for each process. Each local state repre-

sents a snapshot of the process at a given point of the computation. A local

checkpoint, or simply checkpoint, is a local state saved onto stable storage. A

set of checkpoints, one for each process, is a global checkpoint of the distributed

computation.

Global checkpoints have application in several problems of distributed

computing such as hardware/software fault tolerance [19, 49], distributed de-

bugging [16, 23], the determination of distributed breakpoints [22, 39] and

of shared global states [24], the evaluation of global predicates [34], proto-

col speci�cation [25] and others [63, 64]. However, the application of global

checkpoints to previous problems may result ine�ective, or even useless, if the

problem of consistency is not tackled.

A global checkpoint is consistent if no checkpoint in the global checkpoint

depends on another one. Informally, consistency means that there does not

exist any message whose receive event is recorded in the global checkpoint

whereas the corresponding send event is not recorded. If this happens, the

global checkpoint represents a snapshot of the computation recording a de-

pendence which is not yet generated. Such a dependence is the source of the

inconsistency of the global checkpoint.

As an example of drawbacks due to inconsistency, in the context of fault

tolerance through checkpoint-based rollback, the absence of consistent global

checkpoints requires, in case of failure, the distributed computation to be

restarted from its initial state (this unbounded rollback extent is known as

domino e�ect [49]). This is a highly undesirable phenomenon implying that all

checkpoints taken (i.e., the overhead imposed to the computation for taking

them) result to be useless for protecting against the loss of all useful work

performed until the occurrence of the failure.

1

2 CHAPTER 1

Depending on the way checkpoints are taken by processes, checkpoint-

ing protocols can be split into three classes: uncoordinated, coordinated and

communication-induced.

This thesis focuses on the communication-induced class and considers a

particular model of the distributed computation usually termed in the litera-

ture as asynchronous model with non-FIFO communication between processes.

Such a model is presented in Section 1.1 of this chapter. Both theoretical and

practical aspects of communication-induced checkpointing are investigated.

Starting from theoretical results, communication-induced checkpointing pro-

tocols are derived with the aim at improving system performance compared

to previous solutions.

Note that when a checkpointing protocol runs at processes, the outcom-

ing distributed computation is modeled not only as a partial order of events,

but also as a set of relations among checkpoints. Thus, in Section 1.2 of this

chapter, the notion of checkpoint and communication pattern of a distributed

computation is presented. Then, in Section 1.3 the formal de�nition of con-

sistent global checkpoint is provided.

Although this thesis presents results for communication-induced check-

pointing, Section 1.4 of this chapter is devoted to the description of features

of protocols in each class in order to outline basic di�erences among dis-

tinct classes. We give details while describing protocols of the uncoordinated

and coordinated class; instead, less details are given about protocols of the

communication-induced class as they will be extensively described in Chapter

3. As it will be shown, some of the coordinated checkpointing protocols re-

quire more strict constraints on the computational model investigated in this

thesis (for example FIFO communication). Whenever one of these protocols

is described, the imposed constraints are explicitly mentioned.

A set of preliminary de�nitions and notations forming a basis for any

future reasoning or description are also presented somewhere in this chapter.

Additional de�nitions/notations are introduced whenever they are needed.

1.1 Model of the Distributed Computation

A distributed computation consists of a set P of n processes fP

1

; P

2

; : : : ; P

n

g.

Processes do not share memory and do not share a common clock value; fur-

thermore, no private information of any process (such as clock drift, clock

granularity or clock precision) is known by other processes. They communi-

cate only by exchanging messages. Each pair of processes is connected by an

asynchronous, directed logical channel. Transmission delays over channels are

unpredictable but �nite.

Processes of the distributed computation are sequential. A process pro-

1.2. CHECKPOINT AND COMMUNICATION PATTERNS OF

DISTRIBUTED COMPUTATIONS 3

duces a sequence of events; each event moves the process from one local state

to another. The x-th event in process P

i

is denoted as e

i;x

. We assume events

are produced by the execution of internal, send and receive statements. The

send and receive events of a message m are denoted respectively by send(m)

and receive(m).

De�nition 1.1.1

In process P

i

an event e

i;x

precedes an event e

i;y

, denoted e

i;x

�

P

e

i;y

, i�

x < y.

De�nition 1.1.2

An event e

i;x

of process P

i

precedes an event e

j;y

of process P

j

due to message

m, denoted e

i;x

�

m

e

j;y

, i�:

(e

i;x

= send(m)) ^ (e

j;y

= receive(m))

Lamport's Happened-Before relation [33], denoted as

e

!, is the transitive

closure of the union of relations �

P

and �

m

. Let H be the set of all events

produced by a distributed computation, the computation can be modeled by

the partial order

b

H = (H;

e

!). The relation

e

! expresses causal dependences

between events. If e

i;x

e

!e

j;y

, then e

j;y

is causally dependent on e

i;x

.

Let us now introduce some graphical notations. In any picture, horizontal

lines extending towards the right end side represent process execution; arrows

between processes represent messages. As an example, in Figure 1.1 we have a

computation consisting of three processes and two messages. Process P

2

sends

a message m to P

1

and then receives message m

0

sent by P

3

.

P

1

P

2

P

3

m

m

0

messages

Figure 1.1: An Example of Distributed Computation.

1.2 Checkpoint and Communication Patterns of Dis-

tributed Computations

A local state of a process saved on stable storage is called a checkpoint of the

process. A local state is not necessarily recorded as a local checkpoint, so the

set of local checkpoints is a subset of the set of local states.

4 CHAPTER 1

The x-th checkpoint of process P

i

is denoted as C

i;x

where x is called

the rank of the checkpoint. The rank of checkpoints of a process increases

monotonically: each time a checkpoint is taken the rank is increased by one. It

is assumed that each process P

i

takes an initial checkpoint C

i;1

(corresponding

to the initial state of the process) and that after each event a checkpoint will

eventually be taken. Hence the execution of a process always terminates with

a checkpoint. A checkpoint interval I

i;x

is the set of events between C

i;x

and

C

i;x+1

.

Let us �nally introduce the concept of checkpoint and communication pat-

tern related to a distributed computation:

De�nition 1.2.1

A checkpoint and communication pattern of a distributed computation is a

pair (

b

H; C

b

H

) where

b

H is a distributed computation and C

b

H

is a set of local

checkpoints de�ned on

b

H.

From a graphical point of view, the action of taking a checkpoint at a

given point of the execution is pictured as a rectangular box placed on the

line representing the process execution. As an example, in Figure 1.2 we have

a computation with three processes and four checkpoints. Checkpoints C

1;1

,

C

2;1

and C

3;1

correspond to the initial states of the processes. The checkpoint

interval I

2;1

(corresponding to events occurring in P

2

between C

2;1

and C

2;2

)

is marked in the picture. Note that the termination of the computation is not

shown (otherwise a checkpoint should be placed at the end of each horizontal

line).

P

1

P

2

P

3

m

m

0

C

1;1

C

2;1

C

3;1

C

2;2

I

2;1

Figure 1.2: An Example of Distributed Computation with Checkpoints.

1.3 Consistent Global Checkpoints

A global checkpoint of a distributed computation is a set of local checkpoints

fC

1;x

1

; : : : ; C

n;x

n

g, one for each process. The notion of consistent global check-

point [14] can be easily formalized by using the following precedence relation

between checkpoints:

1.3. CONSISTENT GLOBAL CHECKPOINTS 5

De�nition 1.3.1

A checkpoint C

i;x

of process P

i

precedes checkpoint C

j;y

of process P

j

, denoted

C

i;x

�

ckpt

C

j;y

, if there exists a message m such that:

((send(m) 2 I

i;x

0

) ^ (x

0

� x)) ^ ((receive(m) 2 I

j;y

0

) ^ (y

0

< y))

In other words, De�nition 1.3.1 states that C

i;x

precedes C

j;y

if there exists

a message m which is sent by P

i

after C

i;x

was taken and is received by P

j

before taking C

j;y

. In the literature, such a message is said to be orphan with

respect to the ordered pair (C

i;x

; C

j;y

) [14]. As an example, in Figure 1.3 a

computation with two processes and an orphan message m with respect to the

ordered pair (C

1;1

; C

2;2

) is shown. Due to m, checkpoint C

1;1

precedes C

2;2

through the �

ckpt

relation.

De�nition 1.3.2

A global checkpoint fC

1;x

1

; : : : ; C

n;x

n

g is consistent i� for any pair of check-

points (C

i;x

i

; C

j;x

j

) in it:

(:(C

i;x

i

�

ckpt

C

j;x

j

)) ^ (:(C

j;x

j

�

ckpt

C

i;x

i

))

Intuitively, from De�nition 1.3.2 a global checkpoint is consistent if for

any message m whose receive event is recorded in the global checkpoint then

also the corresponding send event is recorded in the global checkpoint. As

an example, the global checkpoint fC

1;1

; C

2;2

g in Figure 1.3 is not consistent

because the send event of message m is not recorded in it. In the context of

rollback recovery based on checkpointing, the inconsistency of the ordered pair

(C

1;1

; C

2;2

) means that, in case of failure, the application cannot be rolled back

to the global checkpoint fC

1;1

; C

2;2

g. If P

1

rolls back to C

1;1

then it undoes

all the events produced after taking that checkpoint, including the send event

of message m. If P

2

rolls back to C

2;2

then the receive of m is not undone. In

such a case, there exists a message which is not sent but has been received,

hence the global checkpoint records a causal dependence between P

1

and P

2

which is not yet generated.

global checkpoint

P

2

C

1;1

C

2;1

C

2;2

m

P

1

non-consistent

Figure 1.3: An Example of Precedence Between Checkpoints.

6 CHAPTER 1

1.4 Checkpointing Protocols

In this section a description is given of checkpointing protocols in the uncoordi-

nated and coordinated classes. Furthermore, basic concepts about communica-

tion-induced checkpointing are also presented (communication-induced proto-

cols are, instead, extensively discussed in Chapter 3).

1.4.1 Uncoordinated Protocols

Uncoordinated (or independent) checkpointing protocols allow each process

to decide independently when to take checkpoints. The main advantage is

the low overhead imposed to the computation because no coordination among

processes is necessary. Autonomy in taking checkpoints also allows each pro-

cess to select appropriate checkpoint positions in order to further reduce the

overhead: (i) by saving smaller amounts of state information (this may hap-

pen in the case of processes having dynamic state size) or (ii) by checkpointing

during idle CPU periods.

The main disadvantage of the uncoordinated approach is the possibility

that no consistent global checkpoint can ever be formed. As already outlined,

this can lead to an unbounded rollback extent in the case of fault tolerance

realized through checkpoint-based rollback.

The dependences between checkpoints caused by message exchanges need

to be recorded in order to reconstruct a consistent global checkpoint whenever

it is reclaimed. To this purpose, a direct dependency tracking technique [9,

57, 59] is commonly adopted. It works as follows: whenever a process P

i

executing at its checkpoint interval I

i;x

sends a message m to P

j

, the pair

(i; x) is piggybacked on m. If P

j

receives m in its checkpoint interval I

j;y

,

the dependence between C

i;x

and C

j;y+1

is recorded when C

j;y+1

is taken.

Whenever a consistent global checkpoint is reclaimed by a process P

k

, the

latter broadcasts a dependency request message for collecting the dependency

information from the other processes. Upon the receipt of the message, process

P

h

replies to P

k

with the dependency information. The consistent global

checkpoint is then calculated by P

k

basing on the collected information. Such

a calculation is realized building and analyzing either a rollback-dependency-

graph [9, 13, 63] or a checkpoint-graph [57, 62].

Basically, in a rollback-dependency-graph each node corresponds to a check-

point and an edge exists between C

i;x

to C

j;y

if: (1) i 6= j and a message m is

sent by P

i

in the checkpoint interval I

i;x�1

and is received by P

j

in I

j;y�1

, or

(2) i = j and y = x+1. The name rollback-dependency-graph comes from the

context of fault tolerance and indicates that if there exists an edge between

C

i;x

and C

j;y

, and the interval I

i;x�1

is rolled back on P

i

, then the interval

I

j;y�1

must be rolled back as well (because C

j;y

depends on C

i;x�1

). To calcu-

1.4. CHECKPOINTING PROTOCOLS 7

late a consistent global checkpoint containing C

i;x

the following algorithm is

used [9, 63]: the node corresponding to C

i;x+1

is marked; then all the nodes

reachable by the initially marked node are marked as well (i.e., a reachability

analysis is performed on the graph); the last unmarked node for each process

corresponds to a checkpoint which is a member of the consistent global check-

point. Note that it is not guaranteed that the identi�ed global checkpoint

actually contains C

i;x

(i.e., the corresponding node could be marked during

the analysis).

The checkpoint-graph is quite similar to the rollback-dependency graph,

with the di�erence that an edge exists between nodes corresponding to C

i;x

and C

j;y

if there exists a message m which is sent in I

i;x

and is received in I

j;y

.

Also in this case, reachability analysis is used for identifying consistent global

checkpoints [57, 60].

1.4.2 Coordinated Protocols

In coordinated checkpointing protocols, processes coordinate their checkpoint-

ing actions in order to ensure consistency of a global checkpoint. In the context

of checkpoint-based rollback recovery, coordinated protocols allow computa-

tions which are free from the domino e�ect as, after the occurrence of a failure,

the computation can be always resumed from the last taken global checkpoint

(being it consistent). The main disadvantages are: (i) the sacri�ce of process

autonomy and (ii) the message overhead due to the coordination.

A simple approach to coordinate checkpointing actions is to block interpro-

cess communication until the end of the execution of the checkpointing proto-

col [18, 55]. This can be done through a simple two-phase based protocol struc-

tured as follows. The initiator process broadcasts a checkpoint request mes-

sage and takes its checkpoint; upon the receipt of that message, any process,

other than the initiator, takes a checkpoint, stops sending application messages

and replies to the initiator with a local checkpoint donemessage. After having

received the local checkpoint done message from all the other processes, the

coordinator starts the second phase by broadcasting a global checkpoint done

message. Upon the receipt of the latter message, any process resumes normal

execution.

An alternative to the blocking technique is non-blocking coordination. In

this type of coordination, processes other than the initiator do not block send-

ing application messages when the checkpoint request message is received.

The problem incurred is that a process P

j

can receive an application mes-

sage m sent by P

i

after the latter received the checkpoint request message

from the initiator. Such a situation is depicted in Figure 1.4.a. If P

j

re-

ceives and processes the message m before the receipt and the processing

of the checkpoint request message then checkpoints C

i;x

and C

j;y

cannot be

8 CHAPTER 1

part of a consistent global checkpoint due to the presence of m which estab-

lishes the following relation C

i;x

�

ckpt

C

j;y

. As a result, the outcoming global

checkpoint is not consistent. In the case of FIFO communication channels,

Chandy and Lamport provide a solution to this problem [14] by forcing pro-

cess P

i

to send a checkpoint request message to P

j

before the sending of m

and imposing to each process to take a checkpoint upon the receipt of the

�rst checkpoint request message. In such a case process P

j

takes the check-

point before the receipt of m (see Figure 1.4.b), thus avoiding inconsistency of

the global checkpoint. A modi�cation of the Chandy-Lamport scheme for the

case of non-FIFO communication channels has been presented in [32]. Such

solution avoids the sending of the checkpoint request message from P

i

to P

j

,

instead, the checkpoint request is piggybacked on m. Upon the receipt of m

piggybacking the request, a checkpoint is taken by P

j

before processing the

message. In the case of non-FIFO communication channels, it is possible that

a checkpoint request with index ind

1

is received when a checkpoint request

with index ind

2

> ind

1

was already processed. In such a case the checkpoint

request with index ind

1

is discarded.

(a)

(b)

P

i

P

j

P

k

C

i;x

P

k

is the initiator

C

k;z

m

C

j;y

checkpoint request

P

i

P

j

P

k

m

C

i;x

C

j;y

checkpoint request

P

k

is the initiator

C

k;z

Figure 1.4: A Global Checkpoint which is not Consistent (a); a Consistent

Global Checkpoint (b).

A way to reduce the impact of coordination on the execution is to force

coordination itself only among processes that really need to coordinate (i.e.,

processes that have communicated with the initiator since the last taken check-

point) [8, 31]. In the scheme presented by Koo and Tueg [31] a two-phase

approach is adopted with the following characteristics. In the �rst phase the

initiator identi�es all the processes that communicated with it since its last

checkpoint and sends a checkpoint request message to all of them. Upon the

receipt of that message, a process behaves in a similar way (i.e., it identi�es

its set of communicating processes since the last checkpoint and sends them

the request). When all processes are identi�ed, the second phase is started, in

1.4. CHECKPOINTING PROTOCOLS 9

which the checkpointing actions are performed. This scheme requires blocking

coordination.

A rather di�erent way to reduce the overhead due to coordination mes-

sages is the usage of synchronous, or quasi synchronous, checkpointing clocks

[17, 48, 56]. Note that synchronous clocks imply the computational model to

be more strict than the general one described in Section 1.1. Furthermore, an

additional restriction is that checkpoints can be triggered only on a periodic

basis. If processes take local checkpoints approximately at the same time then

the need for broadcasting a checkpoint request message is avoided. To guar-

antee consistency in the presence of drift between clocks, either the sending of

messages is blocked for a given amount of time (related to the maximum de-

viation between clocks) or checkpoint requests are piggybacked on application

messages. In the latter case, if upon the receipt of a message m piggybacking

the request the recipient process has not yet taken the checkpoint (due to drift

between clocks) then it takes the checkpoint prior to processing the message.

1.4.3 Communication-Induced Protocols

In communication-induced checkpointing, the coordination between check-

pointing actions at distinct processes is realized in a lazy fashion by piggy-

backing control information on application messages. Upon the receipt of an

application message, the recipient process examines the information prior to

processing the message. If a given predicate P is evaluated to TRUE then a

checkpoint is taken before processing the message. Such a checkpoint is called

forced checkpoint. Protocols in this class di�er by the amount of control in-

formation piggybacked on the application messages and by the predicate P

triggering checkpoints upon the receipt of a message. Note that the control

information incoming with application messages is commonly used to update

local control information, namely local context, proper of the recipient process.

In this kind of approach we can distinguish between two types of check-

points: (i) basic checkpoints, that are taken by a process according to its own

local strategy (an example of local strategy is periodic checkpointing), and (ii)

forced checkpoints, which are triggered by the lazy coordination scheme.

In contrast with coordinated checkpointing, no coordination message is ex-

changed among processes, hence the only information available to the check-

pointing protocol at the receive event of an application message is the one

encoded by the control information piggybacked on that message plus the lo-

cal context of the process. This information is related to the causal past of

that event which is captured by the

e

! relation. The following constraints

commonly identify the communication-induced class:

C1. The usable knowledge at an event e is the knowledge of the restriction of

10 CHAPTER 1

(

b

H; C

b

H

) to e's causal past;

C2. Upon the arrival of a message m at process P

i

, the checkpointing pro-

tocol has to evaluate the predicate P on-the-
y (i.e., without additional

delays). If it is evaluated to TRUE, a forced checkpoint has to be taken

before processing m;

C3. The evaluation of the predicate is based on the usable knowledge avail-

able at that event (i.e., the local context of the process plus the control

information piggybacked on the application message). In other words,

no control message is allowed;

C4. The content of an application message cannot be interpreted by the check-

pointing protocol;

C5. Information about other processes (such as clock speed, clock drift, etc.)

and about the network's characteristics (such as the maximum message

transmission delay) are not known by any process.

The structure of the predicate P determines the property ensured by the

outcoming checkpoint and communication pattern of the distributed computa-

tion. Two main properties are of interest for most applications: the no-Z-cycle

property and the rollback-dependency-trackability property. Informally, the

no-Z-cycle property stipulates that each local checkpoint belongs to at least

one consistent global checkpoint. Both previous properties will be presented in

Chapter 2. Finally, an overview of communication-induced protocols ensuring

either one or the other property will be reported in Chapter 3.

Chapter 2

Consistent Checkpointing

The de�nition of consistency of a global checkpoint relies on the notion of

causality, as consistency means that no checkpoint in the global checkpoint

depends on another checkpoint in the global checkpoint through the �

ckpt

relation - see De�nition 1.3.2 - (such a relation captures causal dependences

between checkpoints due to the exchange of a single message). However, rea-

soning by causality has been for long time the major cause preventing the

answers to the following fundamental questions:

� Q(C

i;x

; C

j;y

): given a pair (C

i;x

; C

j;y

) of checkpoints of distinct processes,

which is the necessary and su�cient condition for these checkpoints to

be members of a same consistent global checkpoint?

� Q(C

i;x

): given a checkpoint C

i;x

of process P

i

, which is the necessary

and su�cient condition ensuring that checkpoint C

i;x

can be member of

at least one consistent global checkpoint?

The precedence relation �

ckpt

between checkpoints, and, more generally,

the concept of causality have been shown by Netzer and Xu to be not enough

powerful to form a basis for providing answers to previous questions. Netzer

and Xu provided those answers in a recent past [40] by starting from a notion

of dependence superseding the causal one. Actually they provided the answer

to the following question Q(S), which includes both Q(C

i;x

; C

j;y

) and Q(C

i;x

):

� Q(S): given a set S of checkpoints of distinct processes, including at least

one checkpoint and at most one checkpoint for each process, which is the

necessary and su�cient condition for these checkpoints to be members

of a same consistent global checkpoint?

Their results, which are described in this chapter, are of interest not only

from a theoretical point of view but also from a practical one as they gave a

11

12 CHAPTER 2. CONSISTENT CHECKPOINTING

strong shot to research in the �eld of design of communication-induced check-

pointing protocols.

2.1 Netzer and Xu Theory

2.1.1 Z-Paths

Netzer and Xu generalized the notion of causal dependence through the intro-

duction of the concept of zigzag path (Z-path for short) [40]. Z-paths are par-

ticular kind of dependences between checkpoints which include both causality

and non-causality.

Informally, a Z-path between a checkpoint C

i;x

and a checkpoint C

j;y

is

a particular sequence of messages [m

1

; : : : ;m

q

] such that the sending of a

message m

i

belongs on a process to the same, or to a successive, checkpoint

interval of the receive of the message m

i�1

. Formally, a Z-path from C

i;x

to

C

j;y

is de�ned as follows:

De�nition 2.1.1

A Z-path exists from checkpoint C

i;x

to checkpoint C

j;y

i� there exists a se-

quence of messages [m

1

;m

2

; : : : ;m

q

] such that:

(1) (send(m

1

) 2 I

i;x

0

) ^ (x

0

� x)

(i.e., m

1

is sent by process P

i

after taking C

i;x

);

(2) 8p : 1 � p < q) if receive(m

p

) 2 I

k;z

then (send(m

p+1

) 2 I

k;z

0

) ^

(z

0

� z)

(i.e., ifm

p

(1 � p < q) is received by process P

k

in the checkpoint interval

I

k;z

, then m

p+1

is sent by P

k

in the same or in a later checkpoint interval,

although m

p+1

may be sent before or after m

p

is received);

(3) (receive(m

q

) 2 I

j;y

0

) ^ (y

0

< y)

(i.e., m

q

is received by process P

j

before taking C

j;y

).

Figure 2.1.a and Figure 2.1.b show two examples of Z-path between C

i;x

and C

j;y

formed by messages [m

1

;m

2

].

The following fundamental theorem has been proved by Netzer and Xu

[40]:

Theorem 2.1.1

A set of checkpoints S, where each is from a di�erent process, can belong to

the same consistent global checkpoint i� no checkpoint in S has a Z-path to

any checkpoint in S.

2.1. NETZER AND XU THEORY 13

(a)

m

1

(b)

(c)

m

1

m

3

P

j

m

2

P

i

P

i

P

j

m

2

m

1

C

i;x

C

i;x

C

j;y

C

j;y

P

i

C

i;x

m

2

Figure 2.1: A causal Z-path from C

i;x

to C

j;y

(a), a non-causal Z-path from

C

i;x

to C

j;y

(b), a Z-cycle involving C

i;x

(c).

Basing on Theorem 2.1.1, we have that, though C

i;x

and C

j;y

in Figure

2.1.a and in Figure 2.1.b do not depend on each other through the relation

�

ckpt

, they cannot be members of a same consistent global checkpoint as there

exists a Z-path between them.

Z-paths can be split in two families: the causal Z-paths which are actually

casual paths of messages and the non-causal Z-paths in which there exists at

least one message m

p

whose send precedes the receive of m

p�1

in the same

checkpoint interval. Formally:

De�nition 2.1.2

A Z-path from C

i;x

to C

j;y

formed by messages [m

1

; : : : ;m

q

] is causal if

8p : 1 � p < q) receive(m

p

) �

P

send(m

p+1

)

Otherwise the Z-path is non-causal.

As an example, the Z-path from the checkpoint C

i;x

to C

j;y

formed by

[m

1

;m

2

] shown in Figure 2.1.a is a causal one. Instead, the Z-path from C

i;x

to C

j;y

formed by [m

1

;m

2

] shown in Figure 2.1.b is a non-causal one.

14 CHAPTER 2. CONSISTENT CHECKPOINTING

2.1.2 Z-Cycles

Due to the presence of non-causal Z-paths, it is possible for a sequence of

messages to establish a relation between a checkpoint C

i;x

and itself. Such

a relation has been formalized by Netzer and Xu with the name zigzag cycle

(Z-cycle for short) [40]. Therefore, a Z-cycle involving C

i;x

is a Z-path from

C

i;x

to itself.

As an example, the sequence of messages [m

2

;m

3

;m

1

] shown in Figure

2.1.c involves checkpoint C

i;x

in a Z-cycle. Using the notion of Z-cycle, the

following fundamental Corollary has been derived from Theorem 2.1.1:

Corollary 2.1.2

A checkpoint C

i;x

of process P

i

can belong to at least one consistent global

checkpoint i� C

i;x

is involved in no Z-cycle.

2.2 Properties of Checkpoint and Communication

Patterns

Starting from the notions of Z-path and Z-cycle, two fundamental properties

of checkpoint and communication patterns of distributed computations have

been studied. These properties are described in this section.

2.2.1 The No-Z-Cycle Property

Given a checkpoint C

i;x

belonging to a checkpoint and communication pattern

(

b

H; C

b

H

) of a distributed computation, then, by Corollary 2.1.2, C

i;x

can be part

of at least one consistent global checkpoint i� it is involved in no Z-cycle. If the

property of being involved in no Z-cycle holds for any checkpoint in (

b

H; C

b

H

),

then (

b

H; C

b

H

) is said to satisfy the No-Z-Cycle (NZC) property. More formally:

Property 2.2.1

A checkpoint and communication pattern of a distributed computation (

b

H; C

b

H

)

satis�es the No-Z-Cycle property (NZC) i� no Z-cycle exists in (

b

H; C

b

H

).

NZC is a highly desirable property in the context of many applications. In

particular, in a checkpoint and communication pattern (

b

H; C

b

H

) of a distributed

computation satisfying NZC the progress of the global consistent checkpoint

is guaranteed (because each time a local checkpoint is taken then there exists

at least a global consistent checkpoint including it). In the context of rollback

recovery, ensuring the NZC property means rollback without the risk of the

domino-e�ect.

2.2. PROPERTIES OF CHECKPOINT AND COMMUNICATION

PATTERNS 15

2.2.2 The Rollback-Dependency-Trackability Property

Sometimes applications relying on checkpointing also involve other problems.

For example, rollback recovery involves problems as recovery line identi�ca-

tion, garbage collection and output commit. Identifying a recovery line of a

distributed computation means determining the global consistent checkpoint

more close to the end of the computation (the computation is then rolled back

to that recovery line in order to minimize the amount of lost work). All the

checkpoints preceding the recovery line can be garbage collected for recovering

storage. Instead, the output commit problem appears whenever there exist in-

teractions with external entities (for example an external client) which cannot

be required to rollback.

E�cient solutions to previous problems can be found in a simple way if pro-

cesses can calculate e�ciently the minimum and maximum consistent global

checkpoint containing a given local checkpoint(

1

). For example, the e�cient

calculation of the maximum consistent global checkpoint is the basis for an

e�cient rollback minimizing the amount of lost work. Also, the e�cient calcu-

lation of the minimum consistent global checkpoint recording all the outputs

is the basis for e�cient solutions to the output commit problem.

Wang has shown [64] that if all dependences between checkpoints due to Z-

paths are trackable on-the-
y (i.e., at the time a checkpoint is taken) then the

individuation of the minimum and maximum consistent global checkpoints as-

sociated to a speci�ed set of checkpoints is quite straightforward. Dependences

between checkpoints due to Z-paths are trackable i� they can be revealed by

causality.

A dependence between two checkpoints C

i;x

and C

j;y

due to a non-causal

Z-path from C

i;x

to C

j;y

cannot be revealed by causality. An example of

this type of dependence is the one between C

i;x

and C

j;y

due to messages

[m

1

;m

2

] in Figure 2.1.b. However, if given a dependence due to a non-causal

Z-path, the same dependence is also established by a causal Z-path then such

a dependence can be tracked on-the-
y. Whenever a dependence between

checkpoints established by a non-causal Z-path is also established by a causal

one, then the original Z-path is said to be causally doubled.

As an example, in Figure 2.2 the dependence between C

i;x

and C

j;y

due

to the non-causal Z-path formed by [m

1

;m

2

] is also established by the causal

Z-path formed by [m

1

;m

3

], hence process P

j

is able to track such dependence

involving C

j;y

on-the-
y by exploiting causality (i.e., the non-causal Z-path is

causally doubled).

The ability for each process to track on-the-
y all dependences due to Z-

paths and involving its checkpoints, deriving from the fact that all non-causal

1

The minimum (resp. maximum) consistent global checkpoint containing C

i;x

corre-

sponds to the earliest (resp. latest) consistent global checkpoint containing C

i;x

[35, 63, 64].

16 CHAPTER 2. CONSISTENT CHECKPOINTING

P

i

P

j

m

2

m

1

C

i;x

C

j;y

m

3

Figure 2.2: A non-Causal Z-path from C

i;x

to C

j;y

Formed by [m

1

;m

2

] which

is Causally Doubled by the Causal Z-path Formed by [m

1

;m

3

].

Z-paths are causally doubled, is a property of the checkpoint and communica-

tion pattern of the distributed computation known as Rollback-Dependency-

Trackability (RDT) [3, 64]. Formally:

Property 2.2.2

A checkpoint and communication pattern (

b

H; C

b

H

) of a distributed computation

satis�es the Rollback-Dependency-Trackability property (RDT) i� all its Z-

paths are causally doubled.

As shown byWang [64], in a checkpoint and communication pattern (

b

H; C

b

H

)

satisfying the RDT property all dependences due to Z-paths can be tracked

on-the-
y by a transitive dependency tracking mechanism. Details about such

a mechanism will be discussed in Chapter 3 while describing checkpointing

protocols ensuring the RDT property.

2.2.3 Relation Between Properties

Note that a Z-path from a checkpoint C

i;x

to itself (i.e., a Z-cycle involving

that checkpoint) is a particular non-causal Z-path that cannot be doubled by

any causal Z-path (such a doubling would lead to a cycle in the Happened-

Before relation which is acyclic). This observation straightforwardly implies

the following result: if all the non-causal Z-paths are doubled in a checkpoint

and communication pattern (

b

H; C

b

H

) of a distributed computation, then no

Z-cycle exists in (

b

H; C

b

H

). In terms of properties we get:

RDT) NZC

In other words, if (

b

H; C

b

H

) satis�es the RDT property, then it also satis�es

the NZC property. Therefore, none of the local checkpoints of a checkpoint

and communication pattern satisfying RDT is useless (as no Z-cycle exists

in (

b

H; C

b

H

) due to the implication between properties). Furthermore, to each

2.2. PROPERTIES OF CHECKPOINT AND COMMUNICATION

PATTERNS 17

checkpoint is on-the-
y associable the set of checkpoints on which it depends

on due to Z-paths. The latter feature is not guaranteed in a checkpoint and

communication pattern of a distributed computation satisfying NZC but not

RDT .

18 CHAPTER 2. CONSISTENT CHECKPOINTING

Chapter 3

Communication-Induced

Protocols: Overview

This chapter is devoted to the description of communication-induced check-

pointing protocols existing in the literature and ensuring either NZC orRDT .

Recall that this type of protocols induce a separation of checkpoints into basic

ones and forced ones (forced checkpoints are triggered whenever, upon the

receipt of a message, a predicate P proper of the protocol is evaluated to

TRUE).

3.1 Protocols Ensuring the No-Z-Cycle Property

As formally stated, theNZC property stipulates that no checkpoint of a check-

point and communication pattern (

b

H; C

b

H

) of a distributed computation is

involved in any Z-cycle. Equivalently, NZC is ensured whenever, each check-

point belongs to at least one consistent global checkpoint.

As shown in Chapter 1, a simple way to guarantee that each checkpoint

belongs to at least one consistent global checkpoint is to start a explicit co-

ordination protocol each time a local checkpoint C

i;x

is taken by process P

i

.

Such a coordination will determine a consistent global checkpoint including

C

i;x

.

Briatico et al. [12] argued that previous coordination can be realized, in the

context of communication-induced checkpointing, by introducing the concept

of sequence number of a consistent global checkpoint and by piggybacking

as control information on the application messages the value of the sequence

number.

More technically, each process P

i

is endowed with a sequence number sn

i

,

which is initialized to zero at the beginning of the execution. When a check-

point C

i;x

is taken, the current value of sn

i

is recorded onto stable storage

19

20

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

together with the checkpoint. Hence, to each checkpoint C

i;x

is associated

a sequence number denoted C

i;x

:sn, with C

i;1

:sn = 0. Each time a basic

checkpoint is scheduled by P

i

then sn

i

is increased by one prior to taking the

checkpoint. Each time an application message m is sent by P

i

to any other

process, the value of sn

i

is attached to m as control information, denoted as

m:sn.

As the aim of the protocol by Briatico et al. [12] is to force consistency

(i.e., independence) between checkpoints having the same value of the sequence

number, then the following behavior characterizes the handling of the receipt

of any message: when P

i

receives in the checkpoint interval I

i;x�1

a message

m piggybacking a sequence number greater than the local one, then the local

sequence number is set to m:sn and a forced checkpoint C

i;x

is taken prior to

processing m (hence, C

i;x

:sn = m:sn).

As an example, in Figure 3.1 process P

1

sends a message m

2

to P

2

after

taking checkpoint C

1;2

whose sequence number is equal to 1 (thereforem

2

:sn =

1). Upon the receipt of m

2

, P

2

takes the forced checkpoint C

2;2

prior to

processing the message and assigns to that checkpoint the sequence number 1

(i.e., the sequence number received with the message m

2

).

forced checkpoint
checkpoint

P

1

m

1

P

2

consistent global

C

1;1

:sn = 0

C

2;1

:sn = 0

C

1;2

:sn = 1

m

2

:sn = 1

C

2;2

:sn = 1

Figure 3.1: An Example of Applying of the Briatico et Al. Protocol.

The NZC property is guaranteed since the following features are ensured

by the protocol to the resulting checkpoint and communication pattern of the

computation:

(A) C

i;x�1

:sn < C

i;x

:sn;

(B) if a message m is sent by P

i

after taking C

i;x

(i.e., send(m) 2 I

i;x+�

with

� � 0), then m:sn � C

i;x

:sn;

(C) along any Z-path [m

1

; : : : ;m

q

] from C

i;x

to C

j;y

then 8p : 1 � p < q)

m

p+1

:sn �m

p

:sn;

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 21

(D) if a message m is received by P

k

, it is received in a checkpoint interval

I

i;x

such that C

i;x

:sn � m:sn.

The combination of constraints (A), (B), (C) and (D) guarantees the ab-

sence of Z-cycles. As a sketch proof (for a complete proof the reader can refer

to [37], where a theoretical framework for classifying communication-induced

protocols is presented), let us assume the existence of a Z-cycle involving C

i;x

.

It implies the existence of at least a Z-path from C

i;x

to itself formed by

a sequence of messages [m

1

; : : : ;m

q

]; note that m

q

is received by P

i

before

C

i;x

is taken (i.e., in a checkpoint interval I

i;x��

with � > 0). Due to con-

straint (B) then m

1

:sn � C

i;x

:sn; due to constraint (C) m

q

:sn � m

1

:sn, hence

m

q

:sn � C

i;x

:sn. As m

q

is received by P

i

before C

i;x

is taken, it is received

in a checkpoint interval I

i;x��

, with � > 0, such that C

i;x��

:sn < C

i;x

:sn due

to constraint (A). By the combination of previous results, m

q

:sn > C

i;x+�

:sn

thus violating constraint (D).

This protocol guarantees that checkpoints with the same sequence number

are members of a consistent global checkpoint as, due to previous constraints,

no Z-path exists among them (note that, due to the updating rule of the

sequence number upon the receipt of a message m, there could be some gap

in the sequence numbers assigned to checkpoints by a process; Briatico et al.

[12] proved that if a process has not assigned the sequence number num, the

�rst local checkpoint of the process with sequence number num

0

, such that

num

0

> num, can be included in the consistent global checkpoint formed by

local checkpoints with sequence number num).

From the point of view of the checkpointing overhead, the taking of forced

checkpoints pushes the sequence number at some processes higher which may

cause more forced checkpoints to be taken. At worst the number of forced

checkpoints induced by a basic one is n�1. In the best case, if all processes take

a basic checkpoint at the same physical time, the number of forced checkpoints

per basic one is zero. This denotes that the behavior of the protocol in terms of

checkpointing overhead may be strongly dependent on the correlation among

the policies adopted for taking basic checkpoints at distinct processes. Such

an observation is con�rmed by simulation results reported in [7].

Furthermore, whenever a consistent global checkpoint associated to a given

sequence number is reclaimed, there is no guarantee that the obtained global

checkpoint is the closest one to the end of the computation. An example of this

drawback is shown in Figure 3.2. If process P

2

reclaims the global consistent

checkpoint with sequence number 1 at some point X of its execution, then the

global checkpoint fC

1;2

; C

2;2

; C

3;2

g is identi�ed which is not the closest one to

the end of the computation (the closest one is fC

1;3

; C

2;2

; C

3;3

g). Such a draw-

back can lead, in the context of rollback recovery, to rollback extents which

are larger than what actually needed to resume the computation from a con-

22

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

closest to the end of the
consistent global checkpoint

computation

consistent global checkpoint

P

1

P

3

C

1;1

C

2;1

C

3;1

C

3;3

C

1;3

reclaimed by P

2

XP

2

C

1;2

:sn = 1

C

2;2

:sn = 1

C

3;2

:sn = 1

Figure 3.2: P

2

Reclaims a Global Checkpoint which is not the Closest one to

the End of the Computation.

sistent global checkpoint. On the other hand, the guarantee that checkpoints

with the same sequence number are members of the same consistent global

checkpoint allows easy and e�cient calculation of a global checkpoint includ-

ing a given local checkpoint (such a calculation does not require exchange of

information among processes related to dependences between checkpoints). As

an example of exploitation of this feature in the context of rollback recovery,

an e�cient asynchronous distributed protocol to rollback the computation to

a consistent global checkpoint formed by checkpoints with a given sequence

number has been presented by Manivannan and Singhal [36]. In their scheme,

the sequence number characterizing the global consistent checkpoint to which

the computation must be rolled back is identi�ed by the failed process P

i

when

resuming the execution (such number corresponds to the sequence number of

the last taken checkpoint of P

i

). Then the rollback is realized by broadcasting

to all the other processes a rollback message, carrying the sequence number

identi�ed by P

i

.

Manivannan and Singhal also presented a quasi synchronous protocol [36]

for reducing the checkpointing overhead of the protocol in [12]. In their pro-

tocol, each process P

i

is endowed with both a sequence number sn

i

, and a

next to be assigned

i

integer variable recording the sequence number to be as-

signed to the next to be taken checkpoint. The value of the sequence number

is piggybacked on any outgoing application message. As in the protocol in

[12], upon the receipt of a message m at P

i

with m:sn > sn

i

, sn

i

is updated

from m:sn and a forced checkpoint is taken.

The assumption underlying the protocol is that every process increments

its next to be assigned sequence number at the same regular time interval cor-

responding to the smallest of the checkpoint time intervals of all the processes

(note that such assumption requires processes to have a common clock, hence

the computational model is more strict compared to the general one described

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 23

in Section 1.1 of Chapter 1). This is done in order to keep sequence numbers

to be assigned to checkpoints of distinct processes close to each other. Upon

the scheduling of a basic checkpoint, the checkpoint is skipped if a forced

checkpoint was taken with sequence number equal to the next to be assigned

one. Since the sequence numbers of the latest checkpoints of the processes are

close to each other, the global consistent checkpoint associated to the sequence

number of the last taken checkpoint of P

i

results close to the global checkpoint

which is the closest one to the end of the computation.

If common clock is not guaranteed, the technique of skipping basic check-

points still remains a good way to reduce the checkpointing overhead. In par-

ticular, a version of the original protocol well suited to computations without

common clock among processes is based on the following observation: there is

no reason to take a basic checkpoint if at least one forced checkpoint has been

taken during the current checkpoint period. So, assuming each process P

i

has

a
ag skip

i

which indicates if at least one forced checkpoint is taken in the

current checkpoint period (this
ag is set to FALSE each time a basic check-

point is scheduled, and is set to TRUE each time a forced checkpoint is taken),

then, when P

i

schedules a basic checkpoint C

i;x

, such checkpoint is taken only

if skip

i

= FALSE, otherwise it is skipped. Note, however, that the skipping

of basic checkpoints sometimes may not be applicable. This may happen, for

example, whenever basic checkpoints are scheduled on a non-periodic basis.

Another improvement of the protocol in [12] aiming at reducing the number

of forced checkpoints per basic one has been presented by H�elary et al. [28].

The protocol exploits the information spread by causality about values of the

sequence numbers of the processes in order to ensure that if there exists a

Z-path from C

i;x

to C

j;y

then C

i;x

:sn < C

j;y

:sn. This is a guarantee that no

Z-cycle can even be formed. More technically, if the protocol would allow the

formation of a Z-cycle involving C

i;x

, then there should exist a Z-path from

C

i;x

to itself; in such a case the inequality C

i;x

:sn < C

i;x

:sn should be veri�ed,

which is, obviously, an absurd.

In the presented protocol, the sequence number sn

i

of P

i

becomes the

local clock lc

i

. Each process P

i

piggybacks on any application message m

the following data structures: clock

i

(m:clock), ckpt

i

(m:ckpt

i

) and taken

i

(m:taken). The explanation of the data structures is as follows:

� clock

i

is a vector of n integers with the following meaning: clock

i

[j] represents,

to the knowledge of P

i

the highest value of the local clock of P

j

(i.e.,

lc

j

); upon the receipt of a message m, P

i

updates clock

i

from m:clock

by taking a component-wise maximum;

� ckpt

i

is a vector of n integers with the following meaning: ckpt

i

[j] represents,

24

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

to the knowledge of P

i

the highest value of the rank of checkpoints of

P

j

(i.e., it counts how many checkpoints have been taken by P

j

to the

knowledge of P

i

); upon the receipt of a message m, P

i

updates ckpt

i

from m:ckpt by taking a component-wise maximum;

� taken

i

is a vector of n booleans with the following meaning: taken

i

[j] is equal

to TRUE if there exists a causal Z-path between the last checkpoint of

P

j

seen by P

i

through causality and the next checkpoint of P

i

, and the

causal Z-path includes a checkpoint (the updating rule of this vector is

out of the scope of this description).

Furthermore, process P

i

has the following local data structures:

� send to

i

which is a vector of n booleans; send to

i

[j] is equal to TRUE i� P

i

sent

a message to P

j

in its current checkpoint interval;

� min to

i

which is a vector of n integers; min to

i

[j] records the local clock of P

i

which has been piggybacked on the �rst message sent by P

i

to P

j

in its

current checkpoint interval.

Basing on previous data structures, the authors introduce a protocol guar-

anteeing that no Z-Path exists between any pair of checkpoints (C

i;x

; C

j;y

)

such that C

i;x

:sn = C

j;y

:sn. Therefore no Z-path exists from a checkpoint to

itself, implying the absence of Z-cycles. In the protocol, a forced checkpoint

is taken by P

i

upon the receipt of a message m sent by P

j

if the following

predicate holds:

P � 9k : send to

i

[k] ^

(m:clock[j] > min to

i

[k]) ^

((m:clock[j] > max(clock

i

[k];m:clock[k])) _

(m:ckpt[i] = ckpt

i

[i] ^m:taken[i]))

Basically predicate P means that there exists a process P

k

such that P

i

sent a message to P

k

in its current checkpoint interval and: the local clock of

P

j

piggybacked on m is larger that the local clock of P

k

known by P

i

through

causality, or, there exists a causal Z-path between the last checkpoint of P

i

and the next to be taken checkpoint of P

i

which includes a checkpoint of a

process.

3.1. PROTOCOLS ENSURING THE NO-Z-CYCLE PROPERTY 25

The authors proved that other protocols [12, 36] trigger the forced check-

point according to a predicate P

0

such that P) P

0

. However, the potential

reduction of the checkpointing overhead due to the reduction of the number of

forced checkpoints per basic one compared to the other protocols is not quan-

ti�ed. Recall that the inclusion between predicates means that the protocol by

H�elary et al. takes a forced checkpoint whenever the other protocols do it only

under the same causal past. As there is no guaranty that the computation

evolves at the same way under di�erent checkpointing protocols, performance

of the protocol by H�elary et al., in terms of forced checkpoints per basic one,

is not guaranteed to be better than that of the other protocols. This is the

reason why we use the term \potential reduction".

All previous protocols ensure that checkpoints with the same sequence

number are members of the same consistent global checkpoint. However, not

all dependences between checkpoints in (

b

H; C

b

H

) due to Z-paths can be known

by a process as these protocols allow non-causal Z-paths to be not causally

doubled (i.e., RDT is not guaranteed). Let us consider the example with

three processes shown in Figure 3.3 where CGC

0

(resp. CGC

1

) represents

the consistent global checkpoint formed by checkpoints with sequence number

equal to 0 (resp. 1). There exists a non causal Z-path from checkpoint C

3;1

to checkpoint C

1;2

due to messages [m

1

;m

2

] which is not causally doubled.

P

1

P

2

P

3

C

1;1

C

2;1

C

3;1

C

2;2

m

2

m

1

C

1;2

C

3;2

CGC

0

CGC

1

Figure 3.3: An Example of Z-path which is not Causally Doubled.

Partial Absence of Z-cycles

Wang and Fuchs [61] modi�ed the protocol in [12] by introducing the notion

of laziness. The latter is a positive integer Z such that only checkpoints with

sequence number which is a multiple of Z are mutually consistent (i.e., no Z-

paths exists among them). Therefore, only the global checkpoints consisting of

local checkpoints with sequence number which is a multiple of Z are guaranteed

to be consistent. This protocol shows the advantage of a reduction of the

number of forced checkpoints (as the lazy coordination acts less frequently)

26

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

but has the disadvantage to not guarantee NZC (as only local checkpoints

with sequence number which is a multiple of Z are guaranteed to belong to a

consistent global checkpoint). In the context of rollback recovery, this protocol

allows the possibility to reduce the checkpointing overhead at the expense of

a potentially larger rollback extent. If the laziness parameter Z is set to one,

the protocol boils down to the Briatico et al. one.

A di�erent approach to the partial absence of Z-cycles has been presented

by Xu and Netzer in [67]. They introduced a checkpointing protocol which

prevents the formation of a particular type of Z-cycles. The particular type of

Z-cycle, that for the sake of clarity is below referred to as XN-cycle, is de�ned

as follows:

De�nition 3.1.1

A Z-cycle due to [m

1

; : : : ;m

q

] involving checkpoint C

i;x

is an XN-cycle i�:

R � 8p : 2 � p < q) receive(m

p

) �

p

send(m

p+1

)

In other words, an XN-cycle is a Z-cycle in which message m

1

is the only

one that is received after the successive message in the sequence is sent (i.e.,

the sequence of messages [m

2

; : : : ;m

q

] constitutes a causal path).

Their protocol induces the recipient process of message m

1

to take a forced

checkpoint upon the receipt of such message. As an example, in Figure 3.4.a

we have a Z-cycle involving C

1;2

formed by messages [m

1

;m

2

;m

3

]. In this

Z-cycle, predicate R holds as only for message m

1

we have :(receive(m

1

) �

p

send(m

2

)). This Z-cycle is prevented by the protocol through a forced check-

point C

3;2

taken upon the receipt of m

1

(see Figure 3.4.b). In Figure 3.5

a Z-cycle which in not prevented by the protocol is shown (in this Z-cycle,

predicate R does not hold as there are two messages, m

1

and m

2

, for which

:(receive(m

1

) �

p

send(m

2

)) and :(receive(m

2

) �

p

send(m

3

))).

In their protocol, each process P

i

maintains a dependency vector DV

i

of

n integers. The i-th entry records the rank of the last checkpoint taken by

P

i

. The j-th entry records the rank of the last checkpoint taken by P

j

known

by P

i

through causality. Causal information is spread among processes by

piggybacking on each outgoing message m the current value of DV (m:DV).

Upon the receipt of a message m by P

i

, the vector DV

i

is updated from m:DV

by taking a component-wise maximum.

When a checkpoint is taken, the value of DV

i

is copied into a vector ZV

i

.

ZV

i

[j] = y means that there exists a causal path from the y-th checkpoint

of process P

j

to the DV

i

[i]-th checkpoint of process P

i

. Each message m

sent by P

i

to P

j

piggybacks, together with the current value of DV

i

, the

integer ZV

i

[j] (m:Zid). Upon the receipt of m, P

j

takes a forced checkpoint

if m:Zid = DV

j

[j].

3.2. PROTOCOLS ENSURING THE

ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 27

Although both protocols in [61] and [67] allows the presence of Z-cycles,

they are completely di�erent. The protocol in [61] guarantees that, at some

point of the computation, a global checkpoint will exist which is distinct from

the initial one (unless Z = 1). On the contrary, the protocol in [67] does

not guarantee that feature, as the absence of XN-cycles does not imply that

a global checkpoint will ever be formed.

P

1

P

2

P

3

C

1;1

C

2;1

C

2;2

C

3;1

m

1

m

2

C

1;2

C

3;2

(b)

P

1

P

2

P

3

C

1;1

C

2;1

C

2;2

C

3;1

m

1

m

2

C

1;2

(a)

m

3

m

3

Figure 3.4: A Z-cycle in which Predicate R Holds (a); the Z-cycle is Prevented

by the Xu-Netzer Protocol Through the Forced Checkpoint C

3;2

(b).

P

1

P

2

P

3

C

1;1

C

2;1

C

2;2

C

3;1

m

1

C

1;2

m

2

m

3

Figure 3.5: Z-cycle which is not Prevented by the Xu-Netzer Protocol.

3.2 Protocols Ensuring the Rollback-Dependency-

Trackability Property

The RDT property has been introduced by Wang [64]. He also designed a

checkpointing protocol ensuring that property which is a generalization of sev-

eral previous existing protocols ensuring the same property. A protocol which

cannot be considered as deriving from Wang's protocol has been presented

in [4] (a preliminary version also appeared in [5]). Such a protocol will be

discussed in this section as last one.

Wang's protocol ensures RDT by exploiting the Fixed-Dependency-After-

Send (FDAS) model. This model can be easily explained by looking at Figure

3.6 showing an example involving three processes. In the computation in

28

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

Figure 3.6.a, there exists a Z-path from C

3;1

to C

1;2

, due to messages [m

1

;m

2

],

which is not causally doubled. In this case the FDAS model pushes P

2

to take a

forced checkpoint before the receipt of m

2

in order to prevent the formation of

that non-causal Z-path. The resulting checkpoint and communication pattern

of the computation does not contain non-causal Z-paths which are not causally

doubled. On the other hand, if there exists the messagem

3

, as shown in Figure

3.6.b, then there is no need to take the forced checkpoint as the Z-path from

C

3;1

to C

1;2

due to [m

1

;m

2

] is doubled by the causal Z-path due to [m

3

;m

2

].

The substantial di�erence between the two scenarios is as follows. In Figure

3.6.b, at the time of sending message m

2

establishing a dependence involving

C

1;2

, process P

2

already tracked by causality the existence of C

3;1

, hence,

always by causality, process P

1

can track the dependence of C

1;2

on C

3;1

due

to the Z-path formed by [m

3

;m

2

]. In Figure 3.6.a, P

2

tracks the existence of

C

3;1

only upon the receipt of m

1

when the dependence due to m

2

was already

generated. As a consequence P

1

is prevented to track the dependence due to

[m

1

;m

2

]. The insertion of the forced checkpoint C

2;2

in the scenario in Figure

3.6.a prevents the formation of the non-trackable dependence between C

3;1

and C

1;2

.

non-causal Z-path which is not

causally doubled

P

2

P

3

P

1

C

2;1

C

1;1

C

3;1

m

2

m

1

C

1;2

m

3

(b)

P

2

P

3

P

1

C

2;1

C

1;1

C

3;1

m

2

m

1

C

1;2

forced checkpoint breaking the

(a)

Figure 3.6: The FDAS model.

Wang has shown [64] that FDAS can be implemented by endowing each

process P

i

with a transitive dependency vector D

i

of n integers and a boolean

variable after first send

i

indicating if there has been at least a send event

in the current checkpoint interval of P

i

.

D

i

[i] represents the rank of the last checkpoint taken by P

i

. Such a vector

is piggybacked as control information on any message m (m:D). Upon the

receipt of a message m, D

i

is updated from m:D by taking a component-wise

maximum. Hence, the j-th entry represents the maximum rank of checkpoints

of P

j

known by P

i

through causality. Upon the receipt of a message m in the

checkpoint interval I

i;x

which is about to chance at least one entry of D

i

(i.e.,

P

i

becomes aware of the existence of at least one new checkpoint) then a forced

checkpoint is taken by P

i

if after first send

i

= TRUE.

3.2. PROTOCOLS ENSURING THE

ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 29

In the FDAS protocol, all dependences due to Z-paths involving check-

points of P

i

are tracked by causality (as the outcoming checkpoint and com-

munication pattern of the distributed computation satis�es RDT) and are

recorded in the vector D

i

. More technically, if at the time C

i;x

is taken,

D

i

[j] = y, then there exists a dependence between the y-th checkpoint of P

j

and C

i;x

due to a Z-path. P

i

learns that no dependence due to a Z-path will

ever exist between C

j;y+1

and C

i;x

, therefore they can be members of a con-

sistent global checkpoint. Let D

i;x

be a vector of n integers associated to C

i;x

and obtained, at the time C

i;x

is taken, as follow:

� D

i;x

[i] = x;

� 8j : (1 � j � n) ^ (j 6= i)! D

i;x

[j] = D

i

[j] + 1;

then, Wang proved the following theorem:

Theorem 3.2.1

Given a checkpoint C

i;x

of a checkpoint and communication pattern (

b

H; C

b

H

)

of a distributed computation satisfying RDT , the minimum consistent global

checkpoint containing C

i;x

can be computed as:

[

1�j�n

C

j;D

i;x

[j]

Theorem 3.2.1 implicitly states that the calculation of the minimum consis-

tent global checkpoint containing a given checkpoint C

i;x

can be done locally

by P

i

without the need for exchanging dependency information with other pro-

cesses. Protocols for minimum and/or maximum consistent global checkpoints

collection can be found in [1, 29, 35, 63, 64].

Other communication-induced checkpointing protocols ensuring RDT to

the outcoming checkpoint and communication pattern of the distributed com-

putation are discussed below.

The Fixed-Dependency-Interval (FDI) protocol [58] is a derivation of FDAS.

Upon the receipt of a message m, FDI induces P

i

to take a forced checkpoint

if at least one entry of D

i

is about to be chanced (irrespective whether there

have been send events in the current checkpoint interval).

Another protocol deriving from FDAS is No-Receive-After-Send (NRAS) in

which a checkpoint is taken by P

i

upon the receipt ofm if after first send

i

=

TRUE (irrespective whether the D

i

vector is going to be updated). Such

a protocol is equivalent to Russell's MRS protocol [50] where M stands for

\take a checkpoint", S stands for \send" and R stands for \receive". NRAS

(and therefore also MRS) generates a checkpoint and communication pattern

(

b

H; C

b

H

) of a distributed computation in which in any checkpoint interval there

does not exist a send event preceding a receive one (i.e., all Z-paths in (

b

H; C

b

H

)

30

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

are causal). For the context of rollback recovery, a modi�cation of Russell's

protocol has been presented in [15]. The protocol does not allow a send event

to precede a receive one in a checkpoint interval; furthermore, a checkpoint

is taken after � consecutive receive events in order to reduce the amount of

lost work in case of failure (� is selected in function of failure probability and

other system parameters).

Other deriving protocols are: Checkpoint-Before-Receive (CBR) in which

a forced checkpoint is taken before the receipt of any message; Checkpoint-

After-Send (CAS) in which a forced checkpoint is taken after the send of

any message and Checkpoint-After-Send-Before-Receive (CASBR) in which a

checkpoint is taken both before the receipt and after the send of any message.

Also for CBR, CAS and CASBR no send event precedes a receive one in any

checkpoint interval.

Note that NRAS, CBR, CAS and CASBR actually may work without the

need for piggybacking control information. Indeed, the piggybacked depen-

dency vector is used only to track dependences between checkpoints by not to

determine the insertion of forced checkpoints (i.e., the predicate that triggers

forced checkpoints is evaluated by using only the local context of a process

related to events occurred in the current checkpoint interval).

All previously described protocols are based on the removal of some Z-paths

in order to ensure the absence of non-causal Z-paths which are not causally

doubled. Baldoni et al. [3] gave a characterization of RDT by founding a

small subset of Z-paths to be causally doubled in order to ensure that all Z-

paths of the checkpoint and communication pattern of the computation are

causally doubled. They termed these Z-paths as Elementary-Prime-Simple-

Causal-Message-Z-paths (EPSCM-paths), and introduced a protocol which

breaks only those EPSCM-paths which, upon their formation, are perceived as

not causally doubled (a technical description of the protocol, which appeared

in [4], will be given in Chapter 6 where a comparison with a checkpointing

protocol presented in the same chapter is performed). Simulation results have

shown that their protocol, compared to all the other protocols ensuringRDT ,

achieves a reduction of the number of forced checkpoints in any environment

(e.g., client-server, master-slave etc.).

As �nal point of this section we recall some concepts of the classi�cation of

protocols ensuring RDT presented by Manivannan and Singhal in [37]. These

protocols are splitted into two classes: Strictly Z-path Free (SZpF) and Z-

path Free (ZpF). The classi�cation is based on the degree to which non-causal

Z-paths are allowed by the protocol in the checkpoint and communication

pattern of the computation.

A communication-induced checkpointing protocol is said to be SZpF i� it

generates a checkpoint and communication pattern of a distributed computa-

tion containing no non-causal Z-path. NRAS, CAS, CBR, and CASBR are

3.2. PROTOCOLS ENSURING THE

ROLLBACK-DEPENDENCY-TRACKABILITY PROPERTY 31

examples of SZpF protocols as they do not allow the formation of non-causal

Z-paths. The disadvantage of an SZpF protocol is the potentially unacceptable

checkpointing overhead needed for the prevention of all non-causal Z-paths.

A communication-induced checkpointing protocol is said to be ZpF i� it

generates a checkpoint and communication pattern of a distributed computa-

tion in which all non-causal Z-paths are causally doubled. A ZpF protocol has

the same advantages of an SZpF one concerning the possibility to use infor-

mation related to causality for determining consistent global checkpoints (as

under both type of protocols dependences due to causal Z-paths are represen-

tative of all dependences between checkpoints). Furthermore, a ZpF protocol,

compared to an SZpF one, shows a potential reduction of the checkpointing

overhead as checkpoints are taken only to prevent the formation of non-causal

Z-path which are not causally doubled (i.e., not all the non-causal Z-paths are

prevented).

32

CHAPTER 3. COMMUNICATION-INDUCED PROTOCOLS:

OVERVIEW

Chapter 4

A Taxonomy of Protocols

This chapter is devoted to the introduction of a taxonomy of communication-

induced checkpointing protocols ensuring eitherNZC orRDT . The taxonomy

relies on the Virtual-Precedence (VP) property introduced by H�elary et al.

[27].

We show that, although protocols ensuring NZC (or RDT) also ensure

the VP property to the outcoming checkpoint and communication pattern of

the distributed computation, a taxonomy of protocols can be made basing on

the way the VP property is used in the design of the protocol. The proposed

taxonomy splits protocols in: VP-enforced and VP-accordant.

4.1 The Virtual Precedence Property

4.1.1 Description

As shown in Chapter 1, a distributed computation can be modeled as a par-

tially ordered set of events. A higher level abstraction of the computation

has been introduced in [27] by considering the execution of each process as

a sequence of intervals. Each interval consists of a set of consecutive events

produced by the process. The proposed abstraction is such that

� every event belongs to a single interval;

� every interval contains at least one event.

The i-th interval of process P

i

in the abstraction is denoted as I

i;x

.

To the abstraction of the computation a directed graph is associated,

namely Abstraction-graph (A-graph), structured as follows:

� each vertex corresponds to an interval I

i;x

;

33

34 CHAPTER 4. A TAXONOMY OF PROTOCOLS

� there exists an edge from I

j;y

to I

i;x

if:

{ j = i and y = x� 1 (local edge); or

{ there exists a messagem such that (send(m) 2 I

j;y

)^(receive(m) 2

I

i;x

) (communication edge).

Note that abstractions of di�erent computations can produce the same

A-graph. Furthermore, depending on the abstraction, the A-graph may have

cycles.

Let consider each message m and each interval I

i;x

to be marked with a

timestamp. Informally, an abstraction of a distributed computation satis�es

the VP property if it is possible to timestamp messages and intervals in a way

that:

F1 : for any pair of messages m and m

0

such that receive(m) 2 I

i;x

and

send(m

0

) 2 I

i;x

then the timestamp of m is smaller than or equal to the

timestamp of m

0

;

F2 : the timestamp of I

i;x

is larger than or equal to the timestamp of all

messages received in I

i;x

and is smaller than or equal to the timestamp

of all messages sent in I

i;x

.

This means that, in the logical time (timestamp), communications can

be seen as causal in each interval. That is, communication events can be

reordered in any interval making all the receive events to precede all the send

events and timestamp does not decrease following causal paths. An example

of this is shown in Figure 4.1.

with timestamp = 9

(b)

timestamp = 10

timestamp = 7

timestamp = 10

(a)

P

i

P

i

interval I

i;x

before reordering

interval I

i;x

timestamp = 7

after reordering

Figure 4.1: The Virtual Precedence Property.

In other words, an interval-based abstraction of a distributed computation

satis�es VP if, and only if, it is possible to associate a timestamping function

within intervals with the following characteristics: (i) intervals which are con-

nected by a message must be timestamped in a non-decreasing way (safety

part) and (ii) the timestamp of a process must increase after communication

4.2. A TAXONOMY OF PROTOCOLS BASED ON THE VIRTUAL

PRECEDENCE PROPERTY 35

(liveness part). It is easy to see that if we consider each interval I

i;x

formed by

a single event, then the timestamping function boils down to the Lamport's

scalar clock [33] or the Fidge-Mattern's vector time [21, 38]. H�elary et al.

([27]) proved the following theorem:

Theorem 4.1.1

An abstraction of a distributed computation

b

H satis�es the VP property i�

the corresponding A-graph has no cycle including a local edge.

4.1.2 Equivalence Between the No-Z-Cycle Property and the

Virtual Precedence Property

In the particular context of the checkpointing problem, intervals of the ab-

straction correspond to checkpoint intervals. Then, the abstraction of the

distributed computation corresponds to a checkpoint and communication pat-

tern.

Given a checkpoint and communication pattern (

b

H; C

b

H

) of a distributed

computation

b

H, the following properties hold [27]:

(A) if there exists a Z-cycle in (

b

H; C

b

H

) then the A-graph corresponding to

the abstraction of the computation contains at least one cycle involving

a local edge;

(B) if no Z-cycle exists in (

b

H; C

b

H

) then the A-graph corresponding to the

abstraction of the computation contains no cycle involving a local edge.

Property (A) means VP) NZC. Property (B) means VP (NZC.

Therefore, Theorem 4.1.1 can be reformulated as:

Theorem 4.1.2

A checkpoint and communication pattern (

b

H; C

b

H

) of a distributed computation

satis�es the VP property i� it satis�es the NZC property (i.e., VP , NZC).

4.2 A Taxonomy of Protocols Based on the Virtual

Precedence Property

All communication-induced checkpointing protocols generating checkpoint and

communication patterns (

b

H; C

b

H

) which satisfy NZC, make these checkpoint

and communication patterns to satisfy VP as well due to Theorem 4.1.2. This

means the VP property constitutes a common basis for all such protocols.

However, the design of a checkpointing protocol not necessarily relies on

such a common basis. In the following sections we exploit latter concept by

introducing the notions of VP-enforced protocol and VP-accordant protocol.

36 CHAPTER 4. A TAXONOMY OF PROTOCOLS

4.2.1 VP-Enforced Protocols

Let a timestamping function be assumed to timestamp messages and check-

point intervals consistently with rules F1 and F2 described in Section 4.1.1.

Then a checkpointing protocol ensuring VP to the outcoming checkpoint and

communication pattern (

b

H; C

b

H

) of the computation can be derived as follows.

Timestamps are piggybacked on any sent application message. Then, upon the

arrival of a messagem at P

i

in the checkpoint interval I

i;x

, the communication-

induced checkpointing protocol pushes P

i

to take a forced checkpoint C

i;x+1

before receiving m whenever one of the rules F1 or F2 would be violated by

that receive event. The new created checkpoint interval I

i;x+1

is then times-

tamped by the protocol according to the chosen timestamping function. In

this approach we have:

� the timestamp assigned to the checkpoint interval I

i;x+1

depends on the

chosen timestamping function;

� the timestamps assigned to messages sent in I

i;x+1

depend on the times-

tamping function (note that such timestamps cannot be smaller than

the timestamp assigned to I

i;x+1

due to rule ii); they can assume the

same value of the timestamp assigned to the interval I

i;x+1

).

We name any protocol designed starting, has done above, by an a priori

assumed timestamping function as a VP-enforced protocol.

The goodness of a VP-enforced protocol, evaluated in terms of induced

checkpoints per basic checkpoint, depends on the goodness of the a priori

assumed timestamping function. In particular, the timestamping function is

considered as \good" if the deriving checkpointing protocol produces check-

point and communication patterns with a low number of forced checkpoints

per basic one (note that low number of forced checkpoints per basic one im-

plicitly means low probability that upon the receipt of a message either rule

F1 or rule F2 is violated).

Basically, the predicate that triggers the taking of the forced checkpoint

C

i;x+1

is evaluated to TRUE whenever the message m arriving at P

i

in I

i;x

piggybacks a timestamp larger than the timestamp assigned to I

i;x

. Hence,

less forced checkpoints are taken whenever timestamps of incoming messages

do not exceed timestamps of local checkpoint intervals. Two main approaches

can be envisaged for achieving this:

(1) let the timestamps of checkpoint intervals to increase at the same speed

at distinct processes;

(2) let the timestamps of checkpoint intervals to increase as slowly as possi-

ble.

4.2. A TAXONOMY OF PROTOCOLS BASED ON THE VIRTUAL

PRECEDENCE PROPERTY 37

Approach (1), envisaged for example in the protocol by Manivannan and

Singhal [36] requires a kind of synchronization of checkpointing clocks at dis-

tinct processes, thus imposing a constraint on the computational model de-

scribed in Chapter 1. In particular, if basic checkpoints are taken at the same

physical time and newly created intervals are timestamped with the same

timestamp value, then no forced checkpoint is ever taken.

Approach (2) consists of re�ning the a priori assumed timestamping func-

tion as much as possible in order to slow down the rate for the increasing of

the timestamp at each process. In latter context both the protocol by Briatico

et al. [12] and the protocol by H�elary et al. [28] can be seen as generated by an

a priori assumed timestamping function (the function is such that the times-

tamp does not decrease along any Z-path), and the timestamping function

of the latter protocol can be considered as a re�nement of the timestamping

function of the former one.

4.2.2 VP-Accordant Checkpointing Protocols

We name VP-accordant any protocol which is designed without a priori as-

suming a timestamping function consistent with rules i) and ii) of Section

4.1.1. Instead, it relies on the study of the structure of sub-patterns (i.e.,

portions) of a checkpoint and communication pattern (

b

H; C

b

H

) of a distributed

computation.

Sometimes it is possible to prove that if a checkpoint and communication

pattern (

b

H; C

b

H

) does not contain sub-patterns with a given structure, namely

STR, then (

b

H; C

b

H

) satis�es NZC or RDT . An example of this is the study

presented by Baldoni et al. in [3] where, as outlined in Section 3.2 of Chapter 3,

it is shown that if all EPSCM-paths are causally doubled then the checkpoint

and communication pattern of the distributed computation satis�es RDT (in

such a case, the structure STR to be avoided is that of an EPSCM-path which

is not causally doubled).

The absence of sub-patterns with structure STR is, therefore, a su�cient

condition guaranteeing (

b

H; C

b

H

) satis�es eitherNZC orRDT . Thus the design

of a VP-accordant protocol starts by the identi�cation of the structure STR,

whose formation has to be prevented by the protocol itself.

In this approach the predicate that triggers the action to take a forced

checkpoint C

i;x+1

at P

i

upon the receipt of a message m depends upon the

structure of checkpoint and communication sub-patterns that are going to be

formed if the message would be received by P

i

in I

i;x

. Thus, if the predicate is

evaluated to TRUE, at least one \bad" checkpoint and communication sub-

pattern (i.e., one having structure STR) is going to be formed. Then the

protocol takes a forced checkpoint to prevent the formation of that pattern.

As VP , NZC, also for a VP-accordant protocol there will exist a times-

38 CHAPTER 4. A TAXONOMY OF PROTOCOLS

tamping function that could be used to timestamp checkpoint intervals of

the computation produced by the protocol consistently with rules i) and ii).

However such a function is not used while designing the protocol.

4.3 Applying the Taxonomy to Existing Protocols

In this section the proposed taxonomy is applied to classify existing communic-

ation-induced checkpointing protocols discussed in Chapter 3.

All communication-induced checkpointing protocols ensuring NZC de-

scribed in Section 3.1 of Chapter 3 are in the VP-enforced class. This is

because they are designed by assuming a timestamping function which pre-

vents timestamp from decreasing along any Z-path.

Also the FDI protocol ensuringRDT [58] described in Section 3.2 of Chap-

ter 3 is in the VP-enforced class. This is because it timestamps messages and

intervals with a dependency vector and takes forced checkpoints whenever,

upon the receipt if a message at least one entry of the local dependency vector

is about to be changed (irrespective of the sub-patterns that are going to be

formed due to that receive event). Then, if we consider the following relation

among two di�erent timestamps T

1

and T

2

:

T

1

� T

2

, 8j : 1 � j � n) T

1

[j] � T

2

[j]

the protocol imposes that the timestamp of messages does not decrease along

any Z-path. H�elary et al. [27] de�ned a meta timestamping function and

showed that all above mentioned protocols derive from instantiations of the

meta function (i.e., instantiations of a meta protocol).

All the other protocols ensuring RDT , described in Section 3.2 of Chapter

3, are in the VP-accordant class, as they aim at preventing sub-patterns with

a given structure.

A graphical representation of the application of the taxonomy is shown in

Table 4.3.

Note that, to the best of our knowledge, there does not exist any communic-

ation-induced checkpointing protocol belonging to the VP-accordant class

which ensures NZC but not RDT . We will design protocols with this feature

in Chapter 6, by preliminary studying sub-patterns of a checkpoint and com-

munication pattern of a distributed computation. In particular, properties on

Z-cycles will be studied and a particular type of Z-cycle, namely core Z-cycle,

is identi�ed such that, given a checkpoint and communication pattern (

b

H; C

b

H

)

of a distributed computation, then no Z-cycles exists in it i� no core Z-cycles

exists. The designed protocols prevent the formation of core Z-cycles ensuring

that the outcoming checkpoint and communication pattern of the distributed

computation satis�es NZC.

4.3. APPLYING THE TAXONOMY TO EXISTING PROTOCOLS 39

ensured VP-enforced VP-accordant

property protocols protocols

Briatico et al.

NZC Manivannan-Singhal

H�elary et al.

FDAS

NRAS

MRS

RDT FDI CAS

CBR

CASBR

Baldoni et al.

Table 4.1: Application of the Taxonomy to Existing Protocols.

40 CHAPTER 4. A TAXONOMY OF PROTOCOLS

Chapter 5

A Virtual Precedence

Enforced Protocol

This chapter is devoted to the design of a VP-enforced checkpointing protocol

ensuring NZC. The protocol is designed starting from a notion of equivalence

between local checkpoints of a process, here introduced. Such a notion allows

to slow down the rate at which timestamps grow at distinct processes, thus re-

ducing the probability of forced checkpoints. Therefore, such protocol exploits

approach (2) envisaged in Section 4.2.1 of Chapter 4.

The usefulness of the proposed protocols is demonstrated by simulation

results of a case study in the context of rollback recovery.

Note that the equivalence relation here de�ned provides actually a frame-

work that can form a basis for the design of other communication-induced

protocols in the VP-enforced class. Furthermore, the presented protocol does

not represent an instantiation of the meta protocol by H�elary et al. [27] as it

uses the notion of provisional timestamp (that will be referred to as provisional

index) which is not considered in the meta protocol.

5.1 Relation of Equivalence Between Checkpoints

Let consider two successive checkpoints C

i;x

and C

i;x+1

of process P

i

. We

de�ne the following equivalence relation among them:

De�nition 5.1.1

Two local checkpoints C

i;x

and C

i;x+1

of process P

i

are equivalent with respect

to a consistent global checkpoint CGC, denoted C

i;x

CGC

� C

i;x+1

, if:

(i) C

i;x

2 CGC; and

(ii) 8C

j;y

2 CGC : j 6= i) :(C

j;y

�

ckpt

C

i;x+1

).

41

42 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

In other words, if C

i;x

belongs to the consistent global checkpoint CGC

then C

i;x+1

is equivalent to C

i;x

with respect to CGC if it does not depend,

through the relation �

ckpt

, on any checkpoint in CGC. As an example of

equivalence, in Figure 5.1 a scenario with three processes is shown. There

exists a global consistent checkpoint CGC = fC

1;x

1

; C

2;x

2

; C

3;x

3

g. As C

2;x

2

+1

does not depend through the �

ckpt

relation on both C

1;x

1

and C

2;x

2

then

C

2;x

2

CGC

� C

2;x

2

+1

.

From a graphical point of view, we can distinguish a right end side of

the computation with respect to CGC and a left end side. The right end side

consists of events produced by any process P

j

after taking the checkpoint C

j;x

j

belonging to CGC. Instead, the left end side consists of events produced by

any process P

j

before C

j;x

j

, belonging to CGC, is taken. Going back to the

example in Figure 5.1, C

2;x

2

+1

does not depend, through the �

ckpt

relation,

on any checkpoint in CGC means there does not exist any message m which

has been sent from the right end side of CGC and is received by P

2

before

C

2;x

2

+1

is taken.

P

2

P

3

P

1

C

1;x

1

C

2;x

2

C

3;x

3

CGC

C

2;x

2

+1

Figure 5.1: An Example of Pairs of Equivalent Checkpoints.

The notion of equivalence between local checkpoints is important because

of the following lemma:

Lemma 5.1.1

If C

i;x

i

CGC

� C

i;x

i

+1

then the set of checkpoints CGC � fC

i;x

i

g [fC

i;x

i

+1

g is a

consistent global checkpoint.

Proof

C

i;x

i

CGC

� C

i;x

i

+1

implies CGC is a consistent global checkpoint including C

i;x

i

.

Therefore, by De�nition 5.1.1

8C

j;x

j

2 CGC : j 6= i) :(C

j;x

j

�

ckpt

C

i;x

i

+1

)

As CGC is consistent, then, by De�nition 1.3.2

5.1. RELATION OF EQUIVALENCE BETWEEN CHECKPOINTS 43

8C

j;x

j

2 CGC : j 6= i) :(C

i;x

i

+1

�

ckpt

C

j;x

j

)

thus CGC � fC

i;x

i

g [fC

i;x

i

+1

g is a consistent global checkpoint. Q:E:D:

Having two successive checkpoints C

i;x

i

and C

i;x

i

+1

of process P

i

equivalent

with respect to a given consistent global checkpoint CGC implies:

(i) the �rst checkpoint, namely C

i;x

i

belongs to CGC (i.e., it is involved in

no Z-cycle);

(ii) by Lemma 5.1.1, the second checkpoint, namely C

i;x

i

+1

automatically

belongs to the consistent global checkpoint CGC

0

obtained by substi-

tuting C

i;x

i

+1

to C

i;x

i

in CGC (therefore also C

i;x

i

+1

is involved in no

Z-cycle).

An example of non-equivalent checkpoints C

2;x

2

and C

2;x

2

+1

with respect

to CGC is shown in Figure 5.2. The non-equivalence is due to the presence of

message m which establishes the following relation: C

3;x

3

�

ckpt

C

2;x

2

+1

(i.e.,

there exists a message m which has been sent from the right end side of CGC

and has been received by P

2

before C

2;x

2

+1

is taken). Note that in this case,

if we substitute C

2;x

2

+1

to C

2;x

2

in CGC we obtain a global checkpoint which

is not consistent.

P

2

P

3

P

1

C

1;x

1

C

2;x

2

C

3;x

3

CGC

C

2;x

2

+1

m

Figure 5.2: C

2;x

2

is not Equivalent to C

2;x

2

+1

with Respect to CGC due to m.

From the point of view of communication-induced checkpointing, when a

checkpoint is taken which is equivalent to the previous one with respect to

some consistent global checkpoint, then no lazy coordination must be started

in order to guarantee that checkpoint to be not involved in any Z-cycle (as

this is automatically veri�ed). Furthermore, the consistent global checkpoint

is automatically advanced by including the taken checkpoint.

44 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

From an operational point of view, the equivalence between checkpoints

can be detected exploiting dependences between checkpoints established by

message exchange.

In the following sections we show a solution for detecting the equivalence

on-the-
y which requires to piggyback on any application message one integer

plus a vector of n integers (i.e. the asymptotic space-complexity of the control

information is O(n)). Such information also represents the timestamp associ-

ated to a message. The proposed solution is based on the notion of sequence

number, as well as on the introduction of the notion of equivalence number of

a checkpoint.

5.2 Sequence and Equivalence Numbers of a Con-

sistent Global Checkpoint

We suppose process P

i

owns two local variables: sn

i

and en

i

. The variable sn

i

stores the sequence number of the current consistent global checkpoint. The

variable en

i

represents the number of equivalent local checkpoints with respect

to the current global checkpoint number (both sn

i

and en

i

are initialized to

zero).

Whenever a checkpoint C

i;x

is taken, together with the checkpoint two

integers are recorded onto stable storage, namely C

i;x

:sn and C

i;x

:en, which

represent, respectively, the consistent global checkpoint number and the equiv-

alence number of P

i

at the time C

i;x

is taken. The pair of integers < sn

i

; en

i

>

is also called local index of P

i

, hence, to each checkpoint C

i;x

is associated the

index < C

i;x

:sn; C

i;x

:en >.

In the remainder of this chapter, the notation C

i;x

(< sn; en >) is used

whenever the checkpoint C

i;x

of P

i

whose index is < sn; en > has to be identi-

�ed. Therefore, C

i;x

(< sn

i

; en

i

>) always identi�es the last checkpoint taken

by P

i

. Furthermore, the notation I

i;x

(< sn; en >) identi�es the checkpoint

interval I

i;x

starting after C

i;x

(< sn; en >) is taken. To the �rst checkpoint

C

i;1

of process P

i

the index < 0; 0 > is assigned.

Similarly to the classical sequence number based approach [12, 36], forced

checkpoints are taken as follows. Each application message sent by P

i

pig-

gybacks the current sn

i

value. Whenever a message m arrives at P

i

in I

i;x

such that m:sn > sn

i

then the local index of P

i

is set to < m:sn; 0 > and

a forced checkpoint C

i;x+1

is taken with index < m:sn; 0 >. The updating

rule of the local index is such that whenever the sequence number sn

i

is in-

creased the equivalence number en

i

is set to zero. For any pair of checkpoints

C

i;x

(< sn; 0 >) and C

j;y

(< sn; 0 >) the following relation holds:

(:(C

i;x

�

ckpt

C

j;y

)) ^ (:(C

i;x

�

ckpt

C

j;y

))

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 45

hence, checkpoints with the same sequence number and equivalence number

equal to zero are members of a consistent global checkpoint.

Each time a basic checkpoint C

i;x+1

is taken which is equivalent to its

predecessor C

i;x

with respect to some consistent global checkpoint then, by

Lemma 5.1.1 such checkpoint is not involved in any Z-cycle. Therefore, the

lazy coordination for determining a consistent global checkpoint containing

C

i;x+1

must be started only if the equivalence is not veri�ed.

Denoting with CGC(C

i;x

) the global consistent checkpoint containing C

i;x

,

then, upon the scheduling of a basic checkpoint C

i;x+1

, the local index is

updated according to the following rule:

if C

i;x

CGC(C

i;x

)

� C

i;x+1

then en

i

 en

i

+ 1

else sn

i

 sn

i

+ 1; en

i

 0;

In other words, if C

i;x

is equivalent to C

i;x+1

with respect to the consistent

global checkpoint CGC(C

i;x

), then the same sequence number of C

i;x

and an

equivalence number increased by one are assigned as index to C

i;x+1

. Oth-

erwise, the index of C

i;x+1

becomes < C

i;x

:sn + 1; 0 >. Note that whenever

the sequence number is not increased, no lazy coordination inducing forced

checkpoints in other processes in started (as forced checkpoints are triggered

basing only on the comparison between the sequence number piggybacked on

an arriving message and the local sequence number of the recipient process).

The increasing of the sequence numbers is the basis for the communication-

induced coordination (as in the protocols in [12, 36]), whereas the increasing

of equivalence numbers is used to spread the knowledge on the automatic ad-

vancement of the consistent global checkpoint due to the occurrence of equiva-

lences between local checkpoints of a process. Whenever a process learns that

the consistent global checkpoint has moved, then it may track new equivalences

with respect to the advanced global checkpoint. The next section is devoted

to the explanation of latter concept and to the description of a mechanism to

track the dynamically created equivalences on-the-
y.

5.2.1 Tracking Equivalent Checkpoints

Let consider the three processes scenario in Figure 5.3.a. There exists a

consistent global checkpoint CGC = fC

1;x

1

; C

2;x

2

; C

3;x

3

g formed by check-

points with index < sn; 0 >. Checkpoint C

2;x

2

+1

is equivalent to C

2;x

2

with

respect to CGC as there does not exist any message m which has been

sent from the right end side of CGC and has been received by P

2

before

C

2;x

2

+1

is taken. This equivalence generates a new consistent global check-

point CGC

0

= fC

1;x

1

; C

2;x

2

+1

; C

3;x

3

g. Figure 5.3.b shows that in the progress

46 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

of the execution process P

1

takes the checkpoint C

1;x

1

+1

. Such a checkpoint is

not equivalent to C

1;x

1

with respect to CGC due to the presence of the mes-

sage m which establishes the following relation C

2;x

2

�

ckpt

C

1;x

1

+1

. However,

C

1;x

1

+1

is equivalent to C

1;x

1

with respect to CGC

0

. This means that the

equivalence between C

2;x

2

and C

2;x

2

+1

, allowing the consistent global check-

point to advance from CGC to CGC

0

, also permits the equivalence to exist

between C

1;x

1

+1

and C

1;x

1

with respect to CGC

0

, allowing thus to advance

the consistent global checkpoint from CGC

0

to CGC

00

. In what follows it is

shown how equivalence numbers can be used in order to let P

2

track the equiv-

alence between C

2;x

2

and C

2;x

2

+1

, and then let P

1

track the advancement of

the consistent global checkpoint from CGC to CGC

0

.

P

1

P

2

CGC

0

C

2;x

2

(< sn; 0 >)

C

1;x

1

(< sn; 0 >)

C

3;x

3

(< sn; 0 >)

C

2;x

2

+1

(b)

C

1;x

1

+1

P

3

CGC

CGC

00

P

2

P

1

P

3

CGC

CGC

0

C

2;x

2

(< sn; 0 >)

C

1;x

1

(< sn; 0 >)

C

3;x

3

(< sn; 0 >)

C

2;x

2

+1

(a)

m m

Figure 5.3: An Example of Equivalence Between Checkpoints Generated by

the Advancement of the Consistent Global Checkpoint.

Let process P

i

be endowed with a vector EQ

i

of n integers. The j-th entry

of the vector represents the knowledge of P

i

about the equivalence number of

P

j

with the current sequence number sn

i

(thus the i-th entry corresponds to

en

i

). EQ

i

is updated according to the following rules:

� each application message m sent by process P

i

piggybacks the current

sequence number sn

i

(m:sn) and the current EQ

i

vector (m:EQ);

� upon the receipt of a message m, if m:sn = sn

i

, EQ

i

is updated from

m:EQ by taking a component-wise maximum; if m:sn > sn

i

, the values

in m:EQ and m:sn are copied in EQ

i

and sn

i

, respectively.

Let us remark that the set [

8j

C

j;x

j

(< sn;EQ

i

[j] >) is a consistent global

checkpoint (a formal proof of this property is given in Theorem 6.2.4). So,

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 47

to the knowledge of P

i

, the vector EQ

i

actually identi�es the most recent

consistent global checkpoint with sequence number sn

i

.

Upon the arrival of a message m at P

i

in the checkpoint interval I

i;x

(<

sn

i

; en

i

>) one of the following three cases is true:

(1) (m:sn < sn

i

) or ((m:sn = sn

i

) and (8j m:EQ[j] < EQ

i

[j]));

in this case m has been sent from the left side of the consistent global

checkpoint [

8j

C

j;x

j

(< sn;EQ

i

[j] >);

(2) (m:sn = sn

i

) and (9j : m:EQ[j] � EQ

i

[j]);

in this case, m has been sent from the right side of the consistent global

checkpoint [

8j

C

j;x

j

(< sn;EQ

i

[j] >);

(3) (m:sn > sn

i

);

in this case m has been sent from the right side of a consistent global

checkpoint whose sequence number is unknown by P

i

(i.e., P

i

is not

aware of that consistent global checkpoint).

As explained in previous section, a message m falling in case (3) directs

P

i

to take a forced checkpoint C

i;x+1

with index < m:sn; 0 > (note that after

taking the forced checkpoint, message m falls in case (2) with respect to the

checkpoint interval I

i;x+1

).

When a forced checkpoint is taken upon the receipt of a messagem, process

P

i

has no possibility to select an index for that checkpoint as the index <

m:sn; 0 > must be assigned to it. Therefore, the only interesting cases for

tracking the equivalence, and thus increasing the equivalence number, are (1)

and (2).

When the basic checkpoint C

i;x+1

is scheduled, P

i

falls in one of the fol-

lowing two alternatives:

(i) If no message is received in I

i;x

(< sn; en >) that falls in case (2), then

C

i;x

[

8j

C

j;x

j

(<sn;EQ

i

[j]>)

� C

i;x+1

. This equivalence can be tracked by a pro-

cess using its local context at the time the checkpoint C

i;x+1

is scheduled.

Thus C

i;x+1

:sn C

i;x

:sn and C

i;x+1

:en C

i;x

:en+1. The equivalence

C

2;x

2

CGC(C

2;x

2

)

� C

2;x

2

+1

, shown in Figure 5.4, is an example of such a case;

(ii) If there exists at least a messagem received in I

i;x

(< sn; en >) which falls

in case (2), one checkpoint belonging to the consistent global checkpoint

[

8j

C

j;x

j

(< sn;EQ

i

[j] >) precedes C

i;x+1

through the �

ckpt

relation.

Such a situation is shown in Figure 5.4 where [

8j

C

j;x

j

(< sn;EQ

1

[j] >

) = fC

1;x

1

; C

2;x

2

; C

3;x

3

g, and due to m, C

2;x

2

�

ckpt

C

1;x

1

+1

. The conse-

quence is that process P

i

cannot determine, at the time the checkpoint

48 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

C

i;x+1

is scheduled, if C

i;x

is equivalent to C

i;x+1

with respect to some

consistent global checkpoint.

P

2

P

3

P

1

C

2;x

2

+1

C

1;x

1

+1

C

3;x

3

(< sn; 0 >)

m

m

0

m

00

C

2;x

2

(< sn; 0 >)

C

1;x

1

(< sn; 0 >)

CGC(C

2;x

2

)

CGC(C

2;x

2

+1

)

Figure 5.4: Upon the Receipt of m

0

, P

1

Detects C

1;x

1

CGC(C

2;x

2

)

� C

1;x

1

+1

.

To solve the problem raised in point (ii), two approaches can be envisaged.

If, at the time the basic checkpoint C

i;x+1

is scheduled, the equivalence between

C

i;x

and C

i;x+1

is undetermined (case (ii) discussed above) then:

Pessimistic Approach.

Process P

i

pessimistically assumes the two checkpoints are not equivalent with

respect to any consistent global checkpoint even though this determination

could be revealed wrong in the future of the computation. In such a case,

upon the taking of C

i;x+1

the local index is updated as follows sn

i

 C

i;x

:sn+

1 and en

i

 0. Figure 5.4 shows a case in which message m

0

brings the

information (encoded in m

0

:EQ) to P

1

that C

2;x

2

CGC(C

2;x

2

)

� C

2;x

2

+1

and that

the consistent global checkpoint was advanced including C

2;x

2

. In such a case,

P

1

can determine C

1;x

1

is equivalent to C

1;x

1

+1

with respect to CGC(C

2;x

2

+1

)

corresponding to the set fC

1;x

1

; C

2;x

2

+1

; C

3;x

3

g. A simple implementation of

the pessimistic approach requires each process P

i

to be endowed with a boolean

variable equiv

i

. P

i

sets equiv

i

to TRUE each time a new checkpoint interval

I

i;x

starts and equiv

i

is set to FALSE whenever a message m such that

m:sn = sn is received in I

i;x

. Upon scheduling C

i;x+1

, if :(equiv

i

) then the

index < sn+ 1; 0 > is assigned to C

i;x+1

. This implementation [44, 45] does

not require to piggyback the vector EQ.

Optimistic Approach.

Process P

i

assumes optimistically (and provisionally) that C

i;x

is equivalent to

C

i;x+1

. So the index of C

i;x+1

becomes < C

i;x

:sn; C

i;x

:en+ 1 >.

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 49

As provisional indices cannot be propagated in the system (this would lead

to a non consistent view of processes regarding information on other processes

spread through causality), if at the time of the �rst send event occurring after

C

i;x+1

is taken the equivalence is still undetermined, then the index of C

i;x+1

is re-updated as < C

i;x

:sn + 1; 0 > (thus, sn

i

 sn

i

+ 1, en

i

 0, and

8j : EQ

i

[j] 0). Otherwise, the provisional index becomes permanent.

Figure 5.4 shows a case in which C

1;x

1

CGC(C

2;x

2

)

� C

1;x

1

+1

and this is detected

by P

i

before sending m

00

. In this case the index of C

i;x

i

+1

becomes permanent

upon the send of m

00

.

In the next section a communication-induced checkpointing protocol is

described which follows the optimistic approach.

5.2.2 Sequence and Equivalence Number Based Protocol

(SENBP)

In this section a Sequence and Equivalence Number Based Protocol (SENBP)

following the optimistic approach in the detection of equivalent checkpoints

is presented. The protocol can be sketched by three rules: take-basic,

take-forced and send-message.

Take-Basic Rule.

Whenever a basic checkpoint is scheduled, the local sequence number is not

updated by optimistically assuming that each basic checkpoint is equivalent to

the previous one. Hence, each process P

i

is endowed with a boolean variable

provisional

i

which is set to TRUE whenever a provisional index assignment

occurs. It is set to FALSE whenever the index becomes permanent. So we

have:

take-basic :

When a basic checkpoint is scheduled:

en

i

 en

i

+ 1;

Take a checkpoint with a provisional index < sn

i

; en

i

>;

provisional

i

 TRUE;

Send-Message Rule.

Due to the presence of provisional indices caused by the existence of non

resolved equivalences, the protocol needs a rule, when sending a message,

in order to disseminate only permanent indices of checkpoints. Let us then

assume each process P

i

has a boolean variable after first send

i

which is set

to TRUE if at least one send event has occurred in the current checkpoint

50 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

interval. It is set to FALSE each time a checkpoint is taken. The actions of

the rule send-message are the following:

send-message :

Before sending a message m in I

i;x

:

if :(after first send

i

) and provisional

i

then

if :(C

i;x�1

[

8j

C

j;x

j

(<sn;EQ

i

[j]>)

� C

i;x

)

then sn

i

 sn

i

+ 1; en

i

 0; 8j EQ

i

[j] 0;

the index < sn

i

; en

i

> of the last checkpoint becomes permanent;

provisional

i

 FALSE;

EQ

i

[i] en

i

;

the message m is sent piggybacking sn

i

and EQ

i

;

Take-Forced Rule.

The last rule of the protocol take-forced re�nes the corresponding rules in

protocols in [12, 36] by using a simple observation.

Observation 5.2.1

Upon the receipt of a message m in I

i;x

(< sn

i

; en

i

>) such that m:sn > sn

i

,

there is no reason to take a forced checkpoint if there has been no send event

in I

i;x

(< sn

i

; en

i

>).

Indeed, no �

ckpt

relation can be established between the last checkpoint

C

i;x

(< sn

i

; en

i

>) and any checkpoint with sequence number m:sn and, thus,

the index of C

i;x

(< sn

i

; en

i

>) can be replaced permanently with the index

< m:sn; 0 >. As discussed in Section 3.2 of Chapter 3, Observation 5.2.1 has

been used for the �rst time by Wang in [64] to develop the Fixed-Dependency-

After-Send protocol. The take-forced rule is as follows:

take-forced :

Upon the receipt of a message m in I

i;x

(< sn

i

; en

i

>):

case

sn

i

< m:sn and after first send

i

! /* part (a) */

sn

i

 m:sn; en

i

 0;

a forced checkpoint C

i;x+1

(< m:sn; 0 >) is taken

and its index is permanent;

provisional

i

 FALSE;

8j EQ

i

[j] m:EQ[j];

sn

i

< m:sn and :(after first send

i

) ! /* part (b) */

sn

i

 m:sn; en

i

 0;

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 51

P

2

P

3

P

1

C

1;x

1

(< sn; en

1

>) C

1;x

1

+1

(< sn+ 1; 0 >)

P

2

P

3

P

1

C

1;x

1

(< sn; en

1

>) C

1;x

1

+1

(< sn+ 1; 0 >)

C

2;x

2

+1

(< sn+ 1; 0 >)

C

3;x

3

(< sn; en

3

>)

C

3;x

3

(< sn; en

3

>)

C

2;x

2

+1

(< sn+ 1; 0 >)

m

0

(a)

(b)

m

m

C

3;x

3

+1

(< sn+ 1; 0 >)

C

2;x

2

(< sn; en

2

>)

C

2;x

2

(< sn; en

2

>)

Figure 5.5: Upon the Receipt of m, C

3;sn;en

3

can be Part of a Consistent

Global Checkpoint with Sequence Number sn+1 (a); C

3;sn;en

3

cannot belong

to a Consistent Global Checkpoint with Sequence Number sn+ 1 (b).

the index of the last checkpoint C

i;x

is replaced

permanently with < m:sn; 0 >;

provisional

i

 FALSE;

8j EQ

i

[j] m:EQ[j];

sn

i

= m:sn ! /* part (c) */

8j EQ

i

[j] max(m:EQ[j]; EQ

i

[j]);

end case;

the message m is processed;

For example, in Figure 5.5.a, the local checkpoint C

3;x

3

can belong to

the consistent global checkpoint with sequence number sn + 1 and formed

by fC

i;x

1

+1

; C

2;x

2

+1

; C

3;x

3

g (so the index < sn; en

3

> can be replaced with

< sn + 1; 0 >). On the contrary, due to the send event of message m

0

in

I

3;x

3

(< sn; en

3

>) depicted in Figure 5.5.b, a forced checkpoint C

3;x

3

+1

with

index < sn+ 1; 0 > has to be taken upon the receipt of message m.

52 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

Part (b) of take-forced decreases the number of forced checkpoints com-

pared to the protocols in [12, 36]. The then alternative of send-message

represents the cases in which the action to take a basic checkpoint leads to

update the sequence number with the consequent induction of forced check-

points in other processes.

5.2.3 A Modi�cation of SENBP (M-SENBP) for the Case of

Periodic Basic Checkpoints

Performance of the SENBP protocol, in terms of checkpointing overhead im-

posed to the computation can be improved in the case basic checkpoints are

scheduled on a periodic basis by including in the protocol the technique of

skipping basic checkpoints presented by Manivannan and Singhal [36]. They

have shown that there is no reason to take a basic checkpoint if at least one

forced checkpoint has been taken during the interval between two scheduled

basic checkpoints.

So, let us assume process P

i

endows a
ag skip

i

which indicates if at least

one forced checkpoint is taken in the current checkpoint period (this
ag is set

to FALSE each time a basic checkpoint is scheduled, and set to TRUE each

time a forced checkpoint is taken). A version of the take-basic rule including

the skipping technique is as follows:

take-basic :

When a basic checkpoint is scheduled:

if skip

i

then skip

i

 FALSE

else en

i

 en

i

+ 1;

Take a checkpoint with a provisional index < sn

i

; en

i

>;

provisional

i

 TRUE;

The checkpointing protocol embedding the skipping technique will be re-

ferred to has Modi�ed SENBP (M-SENBP). An implementation of M-SENBP

is described below.

5.2.4 An Implementation of M-SENBP

We assume each process P

i

has the following data structures:

sn

i

, en

i

: integer;

after first send

i

, skip

i

, provisional

i

: boolean;

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 53

Past

i

; P resent

i

; EQ

i

: ARRAY[1,n] of integer.

Present

i

[j] represents the maximum equivalence number en

j

sent by P

j

and

received in the current checkpoint interval by P

i

, and piggybacked on a message

that falls in the case 2 of Section 5.2.1. Upon taking a checkpoint or when

updating the sequence number, all the entries of Present

i

are initialized to -1.

If the checkpoint is basic, Present

i

is copied in Past

i

before its initialization.

Each time a message m is received such that Past

i

[h] < m:EQ[h], Past

i

[h]

is set to -1. So, the predicate (9h : Past

i

[h] > �1) indicates that there is a

message received in the past checkpoint interval that has been sent from the

right side of the consistent global checkpoint (case 2 of Section 5.2.1) currently

seen by P

i

.

In Figure 5.6 and in Figure 5.7 the behavior of process P

i

is shown (the

procedures and the message handler are executed in atomic fashion). The

shown implementation assumes that there exist at most one provisional index

in each process. So each time two successive provisional indices are detected,

the �rst index is permanently replaced with < sn

i

+ 1; 0 >.

5.2.5 Correctness Proof

In what follows, a formal proof is given that at any time under M-SENBP

the set [

8j

C

j;x

j

(< sn;EQ

i

[j] >) is a consistent global checkpoint (note that

the proof holds also in the case the skipping technique of basic checkpoints is

removed by the protocol). At this aim, let us introduce the following simple

observations and lemmas:

Observation 5.2.2

For any checkpoint C

i;;x

(< sn; 0 >), there does not exist any message m with

m:sn � sn such that receive(m) 2 I

i;x��

with � > 0. This observation derives

from rule take-forced of M-SENBP when considering C

i;x

(< sn; 0 >) is the

�rst checkpoint with sequence number sn.

Observation 5.2.3

For any message m sent by P

i

in I

i;x

(< sn; en >) or in a later checkpoint in-

terval, then m:sn � sn. This observation derives from the rule send-message

of M-SENBP.

Lemma 5.2.4

For any pair of checkpoints (C

i;x

(< sn; en >); C

j;y

(< sn; 0 >)) the following

predicate holds:

:(C

i;x

�

ckpt

C

j;y

)

54 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

init P

i

:

sn

i

:= 0; en

i

:= 0;

after first send

i

:= FALSE; skip

i

:= FALSE; provisional

i

:= FALSE;

8h EQ

i

[h] := 0; 8h Past

i

[h] := �1; 8h Present

i

[h] := �1;

when message m arrives at P

i

from P

j

:

if m:sn > sn

i

then % P

i

is not aware of the sequence number m:sn %

begin

if after first send

i

then

begin

take a checkpoint; % taking a forced checkpoint %

after first send

i

:= FALSE;

end;

sn

i

:= m:sn; en

i

:= 0;

assign the index < sn

i

; en

i

> to the last taken checkpoint;

provisional

i

:= FALSE; % the index is permanent %

8h Past

i

[h] := �1; 8h Present

i

[h] := �1;

Present

i

[j] := m:EQ[j];

8h EQ

i

[h] := m:EQ[h];

end

else if m:sn = sn

i

then

begin

if Present

i

[j] < m:EQ[j] then Present

i

[j] := m:EQ[j];

8h EQ

i

[h] := max(EQ

i

[h]; m:EQ[h]); % a component-wise maximum %

8h if Past

i

[h] < m:EQ[h] then Past

i

[h] := �1;

end;

process the message m;

Figure 5.6: M-SENBP - Part A.

Proof (By Contradiction)

Suppose by the way of contradiction, that C

i;x

�

ckpt

C

j;y

. In this case, there

exits a messagem sent by P

i

after C

i;x

is taken and received by P

j

before taking

C

j;y

. Due to Observation 5.2.3 m:sn � sn, therefore, due to Observation 5.2.2,

it cannot be received by P

j

before C

j;y

(< sn; 0 >). Thus the assumption is

contradicted and the claim follows. Q:E:D:

Lemma 5.2.5

Let i, j and k be three integers. At any given time for a pair of checkpoints

(C

i;x

(< sn;EQ

k

[i] >); C

j;y

(< sn;EQ

k

[j] >)) the following predicate holds:

:(C

i;x

�

ckpt

C

j;y

)

Proof (By Contradiction)

Suppose by the way of contradiction that R � C

i;x

�

ckpt

C

j;y

holds due to a

message m. Four cases have to be considered:

5.2. SEQUENCE AND EQUIVALENCE NUMBERS OF A CONSISTENT

GLOBAL CHECKPOINT 55

when P

i

sends data to P

j

:

if provisional

i

^ (9h : Past

i

[h] > �1) % last ckpt not equivalent to previous one %

then

begin

sn

i

:= sn

i

+ 1; en

i

:= 0;

assign the index < sn

i

; en

i

> to the last taken checkpoint;

provisional

i

:= FALSE; % the index is permanent %

8h Past

i

[h] := �1; 8h Present

i

[h] := �1; 8h EQ

i

[h] := 0;

end;

m:content = data; m:sn := sn

i

; m:EQ := EQ

i

; % packet the message %

send (m) to P

j

;

after first send

i

:= TRUE;

when a basic checkpoint is scheduled from P

i

:

if provisional

i

then % two successive provisional indices %

if (9h : Past

i

[h] > �1) % last ckpt not equivalent to previous one %

then

begin

8h past

i

[h] := �1;

sn

i

:= sn

i

+ 1; en

i

:= 0;

assign the index < sn

i

; en

i

> to the last checkpoint; % permanent index %

8h EQ

i

[h] := 0;

end

else 8h Past

i

[h] := Present

i

[h]; % last ckpt is equivalent to previous one %

take a checkpoint; % taking a basic checkpoint %

en

i

:= en

i

+ 1;

EQ

i

[i] := en

i

;

assign the index < sn

i

; en

i

> to the last checkpoint;

provisional

i

:= TRUE; % the index is provisional %

8h Present

i

[h] := �1;

after first send

i

:= FALSE;

Figure 5.7: M-SENBP - Part B.

1) if i = j predicate R contradicts De�nition 1.3.1;

2) if (k = i) ^ (i 6= j):

{ if EQ

i

[j] = 0, Lemma 6.2.2 is contradicted;

{ if EQ

i

[j] > 0 then: (i) C

j;y

(< sn;EQ

i

[j] >) is equivalent to

C

j;y�1

(< sn;EQ

i

[j] � 1 >) and (ii) there exists a causal path of

messages which brings to P

i

the information of that equivalence in

the current checkpoint interval I

i;x

(< sn;EQ

i

[i] >).

From De�nition 5.1, C

j;y

(< sn;EQ

i

[j] >) can be equivalent to

C

j;y�1

(< sn;EQ

i

[j]� 1 >) only if EQ

j

[i] > EQ

i

[i]. The latter is a

contradiction to the fact that the current equivalence number of P

i

is EQ

i

[i]. This case is shown in Figure 5.8.a.

56 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

3) if (k = j) ^ (i 6= j):

{ if EQ

j

[j] = 0, Lemma 6.2.2 is contradicted;

{ if EQ

j

[j] > 0 then C

j;y

(< sn;EQ

j

[j] >) is equivalent to C

j;y�1

(<

sn;EQ

j

[j]� 1 >). Let en

i

be the value stored in EQ

j

[i]. From the

rule send-message of M-SENBP, an equivalence number is stored

in EQ only when the index is permanent. This means that in the

interval of events between the checkpoint C

j;y

(< sn;EQ

j

[j] >) and

the �rst send event of a message m

0

, there must exist a causal path

of messages starting after a checkpoint C

i;x+�

(< sn; en >) (with

en > en

i

) and ending in I

j;y

(< sn;EQ

j

[j] >) before the sending of

m

0

. In such a case the previous equivalence holds. Due to the rules

to update the vector EQ, after the receipt of the last message of

that causal path, the value stored in EQ

j

[i] is en. This contradicts

the fact that the value stored in EQ

j

[i] is en

i

. This case is shown

in Figure 5.8.b.

4) if (k 6= i) ^ (k 6= j) ^ (i 6= j):

{ if EQ

k

[j] = 0, Lemma 6.2.2 is contradicted;

{ if EQ

k

[j] > 0 then C

j;y

(< sn;EQ

k

[j] >) is equivalent to C

j;y�1

(<

sn;EQ

k

[j]�1 >). Let en

i

be the value stored in EQ

k

[i]. Due to the

initial assumption, in order to ensure that the equivalence is veri�ed

there must exist (i) a causal path of messages �

0

starting after a

checkpoint C

i;x+�

(< sn; en >) (with en > en

i

) and ending in I

j;y

(<

sn;EQ

k

[j] >) and (ii) a causal path of messages �

00

starting after

the receipt of the last message of �

0

which brings the information

of the equivalence to P

k

. Due to the rules to update the vector EQ

(see Section 5.2), the value stored in EQ

k

[i] is en. This contradicts

the fact that the value stored in EQ

k

[i] is en

i

. This case is shown

in Figure 5.8.c.

In all cases the assumption that the predicate R holds leads to a contra-

diction. Then the claim follows. Q:E:D:

Theorem 5.2.6

At any given time the set S = [

8j

C

j;x

j

;

(< sn;EQ

i

[j] >) is a consistent global

checkpoint.

Proof

The proof follows from Lemma 6.2.3 applied to any distinct pair of checkpoints

in S and from the De�nition 1.3.2. Q:E:D:

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE

CONTEXT OF ROLLBACK RECOVERY 57

P

i

P

j

C

j;y

causal path

(b)

m

0

m

P

i

P

j

m

C

i;x

C

j;y

causal path

I

i;x

(sn;EQ

i

[i] >)

(a)

P

i

P

j

causal path

C

i;x

(< sn;EQ

k

[i] >)

causal path

(c)

C

i;x

(< sn;EQ

j

[i] >) C

i;x+�

(< sn; en >)

C

k;z

(< sn;EQ

k

[k] >)

�

0

�

00

C

i;x+�

(< sn; en >)

C

j;y

(< sn;EQ

k

[j] >)

m

P

k

Figure 5.8: Proof of Lemma 6.2.3

Note that each local checkpoint produced by the protocol belongs to, at

least, one consistent global checkpoint. In particular, C

i;x

i

(< sn; en >) be-

longs to all consistent global checkpoints having sequence number sn

0

such

that C

i;x

i

�1

:sn < sn

0

� sn.

5.3 Performance Measures: a Case Study in the

Context of Rollback Recovery

In this section, a performance comparison between M-SENBP and previous

protocols is presented in the context of rollback recovery. Performance data

are obtained through simulation. Performance measures are related to the

overhead imposed by the protocols during failure free computation and to the

extent of rollback in case of failure.

58 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

5.3.1 The Simulation Model

The simulation compares the protocol in [12] (hereafter BCS), the protocol in

[36] (hereafter MS) and M-SENBP (

1

) in an uniform point-to-point environ-

ment in which each process can send a message to any other and the destination

of each message is an uniformly distributed random variable. We assume a

system with n = 8 processes, each process executes internal, send and receive

operations with probability p

i

= 0:8, p

s

= 0:1 and p

r

= 0:1, respectively. The

time to execute an operation in a process is exponentially distributed with

mean value equal to 1 time units. The time for taking a checkpoint, T

ckpt

is

10 time units. The the message propagation time is exponentially distributed

with mean value 10 time units for all the protocols.

We also consider a bursted point-to-point environment in which a process

with probability p

b

= 0:1 enters a burst state and then executes only internal

and send events (with probability p

i

= 0:8, p

s

= 0:2 respectively) for B check-

point intervals (when B = 0 we have the uniform point-to-point environment

described above).

Basic checkpoints are taken periodically. Let bcf (basic checkpoint fre-

quency) be the percentage of the ratio t=T where t is the time elapsed between

two successive periodic checkpoints and T is the total execution time. For ex-

ample, bcf= 100% means that only the initial local checkpoint is a basic one,

while bcf= 0.1% means that each process schedules 1000 basic checkpoints.

We also consider a degree of heterogeneity among processes H. For exam-

ple, H = 0% (resp. H = 100%) means all processes have the same checkpoint

period t = 100 (resp. t = 10), H = 25% (resp. H = 75%) means 25% (resp.

75%) of processes have the checkpoint period t = 10 while the remaining 75%

(resp. 25%) has a checkpoint period t = 100.

A �rst series of simulation experiments were conducted by varying bcf from

0:1% to 100% and we measured (a) the ratio Tot between the total number

of checkpoints taken by a protocol and the total number of checkpoints taken

by BCS and (b) the average number of checkpoints F forced by each basic

checkpoint.

In a second series of experiments we varied the degree of heterogeneity

H of the processes and then we measured (c) the ratio E between the total

number of checkpoints taken by M-SENBP and MS.

Each simulation run contains 8000 message receives and for each value of

bcf and H, we did several simulation runs with di�erent seeds and the result

were within 4% of each other, thus, variance is not reported in the plots.

1

Simulation results of the protocol in [28] are not reported as for the considered environ-

ment they are quite similar to those of BCS.

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE

CONTEXT OF ROLLBACK RECOVERY 59

5.3.2 Results of the Experiments

Total Number of Checkpoints

Figure 5.9 shows the ratio Tot of MS and M-SENBP in an uniform point-to-

point environment. For small values of bcf (below 1.0%), there are only few

send and receive events in each checkpoint interval, leading to high probability

of equivalence between checkpoints. Thus M-SENBP saves from 2% to 10% of

checkpoints compared to MS. As the value of bcf is higher than 1.0%, MS and

M-SENBP takes the same number of checkpoints as the probability that two

checkpoints are equivalent tends to zero. An important point lies in the plot

of the average number of forced checkpoints per basic one taken by MS and

M-SENBP shown in Figure 5.11. For small values of bcf, M-SENBP induces

up to 70% less than MS.

The reduction of the total number of checkpoints and of the ratio F is am-

pli�ed by the bursted environment (Figure 5.10 and Figure 5.12) in which the

equivalences between checkpoints on processes running in the burst mode are

disseminated to the other processes causing other equivalences. In this case,

for all values of bcf, M-SENBP saves from 7% to 18% checkpoints compared

to MS, and induces up to 77% less than MS.

Heterogeneous Environment

The low values of F shown by M-SENBP suggested that its performance could

be particularly good in a heterogeneous environment in which there are some

processes with a shorter checkpointing period. These processes would push

higher the sequence number leading to very high checkpointing overhead using

either MS or BCS.

In Figure 5.13, the ratio E as a function of the degree of heterogeneity H of

the system is shown in the case of uniform (B = 0) and bursted point-to-point

environment (B = 2). The best performance (about 30% less checkpointing

than MS) are obtained when H = 12:5% (i.e., when only one process has a

checkpoint frequency ten times greater than the others) and B = 2.

In Figure 5.14 we show the ratio Tot as a function of bcf in the case of

B = 2 and H = 12:5% which is the environment where M-SENBP got the

maximum gain (see Figure 5.13). Due to the heterogeneity, bcf is in the range

between 1% and 10% of the slowest processes. We would like to remark that

in all the range the checkpointing overhead of M-SENBP is constantly around

30% less than that of MS.

60 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.9: Tot vs. bcf in the Uniform Point-to-Point Environment (B = 0).

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.2

0.4

0.6

0.8

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.10: Tot vs. bcf in the Bursted Point-to-Point Environment (B = 2).

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE

CONTEXT OF ROLLBACK RECOVERY 61

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

1.0

10.0

F
 (

av
er

ag
e

fo

rc
ed

 c
kp

t p
er

 b
as

ic
 o

ne
)

MS
M-SENBP

Figure 5.11: F vs. bcf in the Uniform Point-to-Point Environment (B = 0).

0.1 1.0 10.0 100.0
bcf (% checkpoint period / total execution time)

0.1

1.0

10.0

F
 (

av
er

ag
e

fo

rc
ed

 c
kp

t p
er

 b
as

ic
 o

ne
)

MS
M-SENBP

Figure 5.12: F vs. bcf in the Bursted Point-to-Point Environment (B = 2).

62 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0 20 40 60 80 100
H (heterogeneity)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

E
 (

to

ta
l c

kp
t M

-S
E

N
B

P
 /

to

ta
l c

kp
t M

S
)

B=0
B=2

Figure 5.13: E vs. Heterogeneity in both the Uniform Point-to-Point Envi-

ronment (B = 0) and the Bursted Point-to-Point Environment (B = 2).

1.0 3.0 5.0 7.0 9.0
bcf (% checkpoint period / total execution time)

0.50

0.60

0.70

0.80

0.90

T
ot

 (

to
ta

l c
kp

t /
 #

 to
ta

l c
kp

t B
C

S
)

MS
M-SENBP

Figure 5.14: Tot vs. bcf of the Slowest Processes in a Bursted Point-to-Point

Environment (B = 2) with H = 12:5%

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE

CONTEXT OF ROLLBACK RECOVERY 63

Rollback Recovery

We measured the average amount of the undone computation UE, in terms of

number of events, (i.e., the rollback distance) after the occurrence of a failure

of a process. UE is evaluated without simulating the rollback phase but

considering the amount of undone events as it can be seen by an omniscient

observer of the system. In particular, each time a process fails, the observer

individuates the most recent consistent global checkpoint of the application

associated to the sequence number of the last taken checkpoint of the failed

process and counts the number of events undone to rollback to that global

checkpoint.

The consistent global checkpoint to which the application should be rolled

back is build as follows: the failed process restarts its computation from its

last checkpoint, say A, forcing the other processes to rollback to the global

checkpoint to which A belongs, say CGC(A).

During the rollback phase, in MS and M-SENBP, if the checkpoint with se-

quence number A:sn does not exists a process rolls back to the �rst checkpoint

with sequence number greater than sn, if any, otherwise no rollback action is

required for that process.

In M-SENBP, if the index of A is not permanent, the index is replaced

with < sn + 1; 0 > prior the rollback. Otherwise, each process rolls back to

the most recent checkpoint with sequence number sn (i.e., the one with the

higher equivalence number).

Simulation experiments were conducted in the uniform point-to-point en-

vironment. In Figure 5.15, UE as a function of bcf is shown. Given the large

checkpointing overhead of BCS during failure-free computations (see Figure

5.9), the consistent global checkpoint to which the application is rolled back is

closest, on the average, to the end of the computation compared to M-SENBP

and MS. As an example in the case of bcf = 2:5% (i.e., 40 basic checkpoints for

each process), M-SENBP and MS takes about 80% less checkpoints compared

to BCS as depicted in Figure 5.9 while BCS's UE is 70% less than M-SENBP

and MS (see Figure 5.15). This points out an evident tradeo� between UE

and the checkpointing overhead in failure free computation.

This behavior is con�rmed by plots shown in Figure 5.16 in an environment

whose heterogeneity degree is 12:5% and bcf varies from 1% to 10% of the

slowest processes. As an example, if bcf = 1% then MS's UE is 30% less than

M-SENBP, while M-SENBP saves about 35% of forced checkpoints compared

to MS (see Figure 5.14).

64 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

0 1 10 100
bcf (% checkpoint period / total execution time)

10

100

1000

10000

100000

UE

BCS
MS
M-SENBP

Figure 5.15: UE vs. bcf in the Uniform Point-to-Point Environment (B = 0

and H = 0%).

1 2 3 4 5 6 7 8 9 10
bcf (% checkpoint period / total execution time)

0.0

100.0

200.0

300.0

400.0

500.0

UE

BCS
MS
M-SENBP

Figure 5.16: UE vs. bcf in the Uniform Point-to-Point Environment (B=0

and H = 12:5%).

5.3. PERFORMANCE MEASURES: A CASE STUDY IN THE

CONTEXT OF ROLLBACK RECOVERY 65

Total Overhead Analysis

In this section we introduce a function OH(N

f

) which quanti�es the total

overhead added to the computation by checkpointing and recovery as a func-

tion of the number N

f

of failures. We study the behavior of the function OH

in BCS, MS and M-SENBP by varying the number of failures occurring in the

computation.

The total overhead due to checkpointing can be expressed by the product

N

ckpt

T

ckpt

whereN

ckpt

is the total number of checkpoints taken during a failure

free computation and T

ckpt

is the average time spent for a checkpoint operation.

The average overhead due to a single failure (as it can be seen by the

external observer of the system) can be expressed by the sum of two terms.

The �rst term is the product UC � T

ckpt

where UC is the average number of

checkpoints that are undone due to a rollback. The second term is the product

UE �T

ev

where T

ev

is the average event execution time. We have that the total

recovery overhead due to N

f

failures is N

f

(UC �T

ckpt

+UE �T

ev

). By combining

the checkpointing and the recovery overhead we get:

OH(N

f

) = N

ckpt

T

ckpt

+N

f

(UC � T

ckpt

+ UE � T

ev

)

Figure 5.17 showsOH/(OH of BCS) vs. the number of failures. These plots

were obtained in an uniform point-to-point environment with heterogeneity

H = 12:5%. A total number of 80000 events were simulated.

The results show that the function OH of M-SENBP is widely less than

the one of BCS and MS. The total overhead imposed by the three protocols

becomes comparable only for a very high failure rate (in the order of 10

2

failures per an execution of 80000 events) which is extremely unlikely in real

distributed systems.

66 CHAPTER 5. A VIRTUAL PRECEDENCE ENFORCED PROTOCOL

1 10 100
Nf (number of failures)

0.50

0.60

0.70

0.80

0.90

1.00

O
H

 /
O

H
 o

f B
C

S

MS
M-SENBP

Figure 5.17: OH/(OH of BCS) vs. N

f

in the Uniform Point-to-Point Envi-

ronment (B=0 and H = 12:5%).

Chapter 6

Virtual Precedence Accordant

Protocols

The aim of this chapter is to study the structure of a checkpoint and com-

munication pattern (

b

H; C

b

H

) of a distributed computation in order to identify

particular sub-patterns whose absence implies (and is implied by) the absence

of Z-cycles. More technically, a characterization of the NZC property is in-

troduced, which was previously an open problem.

The particular sub-pattern identi�ed in this study has been named Core

Z-Cycle (CZC)

1

. The derived characterization is based on a property which

stipulates that there is no core Z-cycle in the computation (NCZC property).

A Core Z-cycle is a Z-cycle with several constraints on its structure.

More precisely, the following result is proved:

� NZC , NCZC (i.e., the characterization theorem). This is obtained by

introducing successive embedded subsets of Z-cycles, namely, elementary

Z-cycles, prime Z-cycles and core Z-cycles, whose members satisfy pro-

gressively stronger constraints on their checkpoint and communication

pattern structure.

This result has been obtained thanks to the introduction of concatenation

relations on message chains and checkpoints that allow to express, in an easy

way, the basic structure of checkpoint and communication patterns.

The introduced characterization is important not only from a theoretical

point of view but also from a practical one as communication-induced check-

pointing protocols ensuring the NZC property can be derived.

1

In the rest of the chapter capitalized words denote a speci�c checkpoint and communica-

tion pattern, bold capitalized words denote a set of checkpoint and communication patterns

of the same type and calligraphic style denotes properties related to checkpoint and commu-

nication patterns.

67

68CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

In particular, members of CZC cannot be tracked on-the-
y, however, a

particular checkpoint and communication pattern, namely Suspect Core Z-

Cycle (SCZC) is identi�ed, which represents the causal part of any CZC. As

it is causal, it is on-the-
y trackable by a communication-induced protocol.

A �rst communication-induced protocol, namely P1, preventing the for-

mation of SCZCs is introduced. The protocol pushes processes to take forced

checkpoints basing on a predicate P

1

, and has control information with space-

complexity O(n

2

). Then, a second protocol, namely P2 is derived. It is based

on a predicate P

2

weaker than P

1

, and has control information with space-

complexity O(n).

These protocols are, to the best of our knowledge, the �rst VP-accordant

protocols explicitly designed to ensure the NZC property, but not RDT .

Performance of the proposed protocols are compared to that of previous ones

both through a theoretical analysis and through simulation results. Finally,

a distributed protocol for consistent global checkpoint collection is presented.

Applications of the checkpointing and global checkpoint collection protocols

are �nally discussed.

6.1 Preliminary De�nitions

This section introduces a formal de�nition of causal and non-causal message

chains (the notion of message chain has already been used in previous chap-

ters, for example under the name of \sequence of messages forming a Z-path",

but without a formal de�nition, which becomes now mandatory) and two

concatenation relations on checkpoints and/or chains of messages. These rela-

tions express both causal and non-causal ways for checkpoints and/or chains

of messages to be combined, and allow synthetic expressions for checkpoint

and communication sub-patterns of a checkpoint and communication pattern

(

b

H; C

b

H

) of a distributed computation. Finally, the concept of Z-cycle is refor-

mulated using the concatenation relations.

6.1.1 Message Chains

De�nition 6.1.1

A message chain is a sequence of messages � = [m

1

;m

2

; : : : ;m

`

] such that

8k : 1 � k � `� 1) (receive(m

k

) 2 I

i;x

) ^ (send(m

k+1

) 2 I

i;y

) ^ (x � y)

In other words, a message chain corresponds to the sequence of messages

which establishes a Z-path between two checkpoints. As an example, in Figure

6.1.b we have a message chain formed by messages [m

1

;m

2

;m

3

]. A particular

case of message chain is the causal message chain, in which the receive of a

6.1. PRELIMINARY DEFINITIONS 69

m

2

C

1;x

1

P

1

C

1;x

1

m

2

P

1

P

3

C

2;x

3

+1

C

3;x

3

C

2;x

2

C

2;x

2

+1

C

2;x

2

C

2;x

2

+1

m

1

P

2

P

2

m

1

m

3

(a) (b)

P

3

C

3;x

3

C

2;x

3

+1

m

3

Figure 6.1: (a) a Message Chain Formed by Messages [m

1

;m

2

;m

3

] ; (b) a

Causal Message Chain Formed by Messages [m

1

;m

2

;m

3

].

message always precedes on a process the send of the successive message of

the chain. More formally we have:

De�nition 6.1.2

A message chain � = [m

1

;m

2

; : : : ;m

`

] is causal if

8k : 1 � k � `� 1) receive(m

k

) �

P

send(m

k+1

)

otherwise, the chain is non causal.

In other words, a causal message chain corresponds to the sequence of

messages which establishes a causal Z-path between two checkpoints. It also

corresponds to a formal de�nition of the notion of causal path of messages

used in previous chapters. An example of causal message chain is the one

formed by messages [m

1

;m

2

;m

3

] in Figure 6.1.b. Recall that a chain with

only one message is always causal.

For the sake of clarity, the Greek letter � indicates a causal message chain.

Furthermore we denote with �:first (resp. �:last) the �rst (resp. last) message

of a message chain �.

j�j denotes the number of messages forming the chain � (i.e., the dimension

of �). In particular, j�j = ` means that the chain � consists of ` messages.

The operator minus is used to denote the removal of a subchain from a chain;

for example � � �:last (resp. � � �:first) denotes a chain obtained from �

by removing its last (resp. �rst) message; � �

b

� denotes a chain obtained by

removing the subchain

b

� from � where

b

� can be either the initial or the �nal

part of �.

Let us �nally give the concept of sequence of checkpoint intervals related

to a message chain. To each message chain � = [m

1

;m

2

; : : : ;m

`

] is associated

a sequence of checkpoint intervals S(�) = (I

j

1

;z

1

; I

j

2

;z

2

; : : : ; I

j

`

;z

`

) such that

send(m

i

) 2 I

j

i

;z

i

with (1 � i � `).

70CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

P

i

(c)

�

C

i;x

�

0

P

i

C

i;x

�

0

�

(d)

P

i

C

i;x

�

(a)

P

i

C

i;x

�

(b)

Figure 6.2: Examples of Applying of the Concatenation Relations.

6.1.2 Concatenation Relations

In this section two concatenation relations are introduced, which are used to

express and combine, in an easy way, checkpoint and communication patterns.

Causal Concatenation

The causal concatenation, denoted by the symbol �, can be applied to express

the causal combination of two objects (an object can be either a checkpoint

or a message chain). Such a concatenation is de�ned as follows:

De�nition 6.1.3

An object a is causally concatenated to an object b, denoted a � b, i�:

1. a = C

i;x

, b = � and 9v � 0 : send(�:first) 2 I

i;x+v

; or

2. a = �, b = C

i;x

and 9v > 0 : receive(�:last) 2 I

i;x�v

; or

3. a = �, b = �

0

and receive(�:last) �

P

send(�

0

:f irst).

Examples of causal concatenation are shown in Figures 6.2.a (� � C

i;x

), 6.2.b

(C

i;x

� �) and 6.2.c (� � �

0

).

Non-Causal Concatenation

The non-causal concatenation, denoted by the symbol �, can be applied to

express the non-causal combination of message chains. Such a concatenation

is de�ned as follows:

6.1. PRELIMINARY DEFINITIONS 71

De�nition 6.1.4

A message chain � is non-causally concatenated to a message chain �

0

in the

checkpoint interval I

k;y

, denoted �

k;y

� �

0

, i� the following predicate holds:

NCC � (receive(�:last) 2 I

k;y

) ^

(send(�

0

:f irst) 2 I

k;y

) ^

(send(�

0

:f irst) �

P

receive(�:last))

An example of non-causal concatenation �

i;x

� �

0

is shown in Figure 6.2.d. In

other words, a message chain � is non causally concatenated to a message chain

�

0

in the checkpoint interval I

k;y

if both send(�

0

:f irst) and receive(�:last)

belong to the same checkpoint interval I

k;y

, with send(�

0

:f irst) happening

before receive(�:last). For the sake of simplicity of the notation, whenever not

necessary the index of the interval is dropped from the non-causal relation.

6.1.3 Concatenation Operators

Let consider two message chains � = [m

1

; : : : ;m

q

] and �

0

= [m

0

1

; : : : ;m

0

p

].

If � � �

0

(or � � �

0

) then by De�nition 6.1.1, there exists in the checkpoint

and communication pattern of the distributed computation a message chain

�

00

= [m

1

; : : : ;m

q

;m

0

1

; : : : ;m

0

p

]. Therefore, whenever two message chains are

concatenated (either causally or non-causally), then there exists in the com-

putation a chain resulting from that concatenation and containing all the

messages of the two original chains.

This property allows to use concatenation relations applied to message

chains also as concatenation operators generating message chains. For the

previous example, the generated message chain is �

00

= � � �

0

(or, in case of

non-causal concatenation, �

00

= � � �

0

).

6.1.4 A Formal Rede�nition of the Z-Cycle

By using the concatenation relations, in this section the notion of Z-Cycle (ZC)

is reformulated. Basically, a ZC is a checkpoint and communication pattern

involving a checkpoint C

i;x

and a chain

b

� such that:

b

� � C

i;x

�

b

�

(an example of such a concatenation is shown in Figure 6.3.a) (

2

). However,

it is always possible to separate

b

� into two subchains, a causal chain � and a

2

For the sake of simplicity,

b

� � C

i;x

�

b

� stands for (

b

� � C

i;x

) ^ (C

i;x

�

b

�).

72CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

C

i;x

P

i

P

i

P

k

�

C

i;x

C

k;y

(b)(a)

I

k;y

C

k;y+1

�

b

�

Figure 6.3: The Structure of a Z-Cycle.

message chain � such that

b

� = �

k;y

� �, this concatenation is shown in Figure

6.3.b (this is an example of how the non-causal concatenation is used as an

operator on message chains). This observation gives rise to the following Z-

cycle de�nition

3

:

De�nition 6.1.5

A ZC is a checkpoint and communication pattern ZC(C

i;x

; �

k;y

� �) such that:

� � C

i;x

� �

k;y

� �

6.2 A Characterization of the No-Z-Cycle Property

To get a characterization of the NZC property, successive embedded subsets of

Z-cycles, namely Elementary Z-Cycle (EZC), Prime Z-Cycle (PZC) and Core

Z-Cycle (CZC) are introduced, which are Z-cycles that satisfy progressively

stronger constraints on their checkpoint and communication pattern structure

as depicted in Figure 6.4. In particular, an EZC is a ZC(C;� � �) imposing a

constraint on the dimension of �. A PCZ is an EZC imposing a constraint on

� and, �nally, a CZC is a PZC with a constraint on the sequence of checkpoint

intervals associated to �.

The lemmas in this section prove the following results:

(i) if there exists a ZC in (

b

H; C

b

H

) then an EZC exists as well;

(ii) if there exists an EZC in (

b

H; C

b

H

) then a PZC exists as well;

(iii) if there exists a PZC in (

b

H; C

b

H

) then a CZC exists as well.

3

Recall that although the notion of Z-cycle is here expressed in a di�erent way, it is

equivalent to the Netzer-Xu formulation.

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 73

In other words, each (non-core) Z-cycle involving a checkpoint C embeds a

core Z-cycle involving a checkpoint A (see Figure 6.4). This means that ZC is

empty if, and only if, CZC is empty as will be proved in the characterization

theorem (Section 6.2.4 of this chapter).

PZC

ZC

C

CZC

A

EZC

Figure 6.4: Relations Between ZC, EZC, PZC and CZC.

6.2.1 Elementary Z-Cycles

This section introduces the notion of Elementary Z-Cycle (EZC). It is inter-

esting because of the result in Lemma 6.2.1 stating that if there is a Z-cycle in

a checkpoint and communication pattern of a distributed computation then

there exists in that checkpoint and communication pattern an EZC whose size

of its chain � is smaller than, or equal to, the one of the Z-cycle.

De�nition 6.2.1

ZC(C

i;x

; �

k;y

� �) is an Elementary Z-Cycle, denoted EZC(C

i;x

; �

k;y

� �) if there

does not exist any message chain �

0

such that j�

0

j < j�j and ZC(C

i;x

; �

k;y

� �

0

)

exists.

Lemma 6.2.1

If there exists ZC(C

i;x

; �

k;y

� �)

then there exists EZC(C

i;x

; �

k;y

� �

0

) with j�

0

j � j�j.

Proof

Let us consider ZC(C

i;x

; �

k;y

� �) , if j�j = 1 then the claim follows. Otherwise

(i.e., j�j > 1), there are two cases:

� There does not exist a chain �

�

such that j�

�

j < j�j and ZC(C

i;x

; �

k;y

� �

�

)

exists. Hence, ZC(C

i;x

; �

k;y

� �) is an EZC by de�nition;

74CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

� There exists a chain �

�

such that j�

�

j < j�j and ZC(C

i;x

; �

k;y

� �

�

) exists.

In this case, let consider ZC(C

i;x

; �

k;y

� �

�

). If that Z-cycle is elemen-

tary then the claim follows. Otherwise we iterate previous reasoning on

ZC(C

i;x

; �

k;y

� �

�

). After a �nite number of steps we get either an ele-

mentary Z-cycle or a Z-cycle whose size of �

�

is equal to one (it is then

elementary). Hence, the claim follows.

Q:E:D:

6.2.2 Prime Z-Cycles

This section introduces the notion of Prime Z-Cycle (PZC). It is interesting

because of the result in Lemma 6.2.3 stating that if there is an elementary Z-

cycle in a checkpoint and communication pattern of a distributed computation

then there exists in that checkpoint and communication pattern a PZC whose

size of its chain � is smaller than, or equal to, the one of the elementary Z-cycle.

Given a pair (C

i;x

; P

k

), let us consider the set of causal chains � starting

after C

i;x

whose recipient of �:last is P

k

denoted M(C

i;x

; P

k

). This set is

partially ordered by the relation:

� � �

0

, receive(�:last) �

P

receive(�

0

:last)

Letmin(M(C

i;x

; P

k

)) denote the set of theminimum elements inM(C

i;x

; P

k

)

(

4

). This set contains causal chains starting after C

i;x

and sharing the last mes-

sage. By using these notions the concept of Prime-Z-Cycle (PZC) is introduced

as follows:

De�nition 6.2.2

EZC(C

i;x

; �

k;y

� �) is a PZC, denoted PZC(C

i;x

; �

k;y

� �), i� � 2min(M(C

i;x

; P

k

)).

As an example EZC(C

i;x

; �

0

k;y

� �) shown in Figure 6.5 is not a PZC while

EZC(C

i;x

; �

k;y

� �), shown in the same Figure, is a PZC. Let us introduce the

following lemma:

Lemma 6.2.2

If there exists EZC(C

i;x

; �

k;y

� �) such that j�j = 1

then there exists PZC(C

i;x

; �

0

k;y

� �).

4

A chain � 2 M(C

i;x

; P

k

) is a minimum element if there does not exist any chain �

0

2

M(C

i;x

; P

k

) such that �

0

� �.

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 75

C

i;x

P

k

P

i

C

k;y

�

� 2 min(M(C

i;x

; P

k

))

�

0

62 min(M(C

i;x

; P

k

))

receive(�:last)

receive(�

0

:last)

Figure 6.5: the Structure of an EZC and of a PZC.

Proof

Let us consider EZC(C

i;x

; �

k;y

� �) such that � = m (i.e., j�j = 1). We have two

alternatives:

1 if � 2 min(M(C

i;x

; P

k

)) then let consider �

0

= �. By De�nition 6.2.2

we get PZC(C

i;x

; �

0

k;y

� �) and the claim follows;

2 if � 62 min(M(C

i;x

; P

k

)) then let us consider �

0

2 min(M(C

i;x

; P

k

))

(note that �

0

exists as M(C

i;x

; P

k

) is not empty since it contains �).

There are two cases:

2.1 receive(�

0

:last)

e

!send(m) (see Figure 6.6.a).

This is impossible as it would lead to a cycle in the happened-before

relation (i.e., send(m)

e

!receive(�

0

:last)) which is acyclic [33];

2.2 send(m)

e

!receive(�

0

:last) (see Figure 6.6.b).

Thus, by De�nition 6.2.2 we get PZC(C

i;x

; �

0

k;y

� �) and the claim

follows.

Q:E:D:

Previous lemma says that if a checkpoint is involved in an Elementary Z-

cycle whose chain � has size one, then there exists a PZC involving the same

checkpoint. The following lemma extends the previous result to a chain � of

any size:

Lemma 6.2.3

If there exists EZC(C

i;x

; �

k;y

� �)

then there exists PZC(C

i;x

; �

0

l;z

� �

0

) with j�

0

j � j�j.

Proof

Let us consider EZC(C

i;x

; �

k;y

� �). We have two alternatives:

76CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

C

i;x

(b)

P

k

P

i

m

C

k;y

�

0 �

C

k;y

�

�

0

C

i;x

m

P

k

P

i

(a)

Figure 6.6: Proof of Lemma 6.2.2.

1 if j�j = 1 then the claim follows from Lemma 6.2.2;

2 if j�j > 1 then if �

0

= � 2 min(M(C

i;x

; P

k

)) then the claim trivially

follows. Otherwise let us consider �

0

2 min(M(C

i;x

; P

k

)) (note that �

0

exists as M(C

i;x

; P

k

) is not empty since it contains �). There are two

cases:

2.1 send(�:first)

e

!receive(�

0

:last) (see Figure 6.7.a).

In this case we get PZC(C

i;x

; �

0

I

k;y

� �) and the claim follows;

2.2 receive(�

0

:last)

e

!send(�:first) (see Figure 6.7.b).

In this case, by construction, we get ZC(C

i;x

; [�

0

� �

00

]

h;w

� �

0

) where

� = �

00

h;w

� �

0

(note that j�

00

j � 1) and j�

0

j < j�j (see Figure 6.7.c).

From Lemma 6.2.1, there exists an elementary Z-cycle EZC(C

i;x

; [�

0

�

�

00

]

h;w

� �

�

) with j�

�

j � j�

0

j < j�j.

If we fall in case 2.2, the previous construction can be repeated on the

elementary Z-cycle EZC(C

i;x

; [�

0

��

00

]

h;w

� �

�

) and after a �nite number of steps

either we fall in case 2.1 or we get EZC(C

i;x

;

b

�

l;z

�

b

�) with j

b

�j = 1 thus the claim

follows from Lemma 6.2.2.

Q:E:D:

6.2.3 Core Z-Cycles

This section introduces the notion of Core Z-Cycle (CZC). It is interesting

because of the result in Lemma 6.2.5 stating that if there is a PZC involving a

checkpoint then there exists a CZC that involves a checkpoint (not necessarily

the same checkpoint involved in the PZC). Before introducing the notion of

CZC, let us introduce a precedence relation on checkpoint intervals:

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 77

C

i;x

P

i

P

k

C

k;y

�

0

P

h

C

h;w

�

�

00

(c)

�

0

C

i;x

P

k

P

i

C

k;y

�

0

(a)

�

C

i;x

P

i

P

k

C

k;y

�

�

0

��

(b)

Figure 6.7: Proof of Lemma 6.2.3.

De�nition 6.2.3

A checkpoint interval I

i;x

precedes a checkpoint interval I

j;y

, denoted I

i;x

I

!I

j;y

,

i�:

9e

i;x

0

2 I

i;x

;9e

j;y

0

2 I

j;y

: e

i;x

0

e

!e

j;y

0

A CZC is actually a PZC with a restriction on its structure. This restriction

derives from the sequence of checkpoint intervals related to its message chain

� as it can be seen from the following de�nition:

De�nition 6.2.4

Let consider PZC(C

i;x

; �

k;y

� �) and let S(�) be the sequence of checkpoint in-

tervals associated to �. That PZC is a Core Z-Cycle, denoted CZC(C

i;x

; �

k;y

� �)

i�:

8I

j

i

;z

i

2 S(�)) :(I

j

i

;z

i

+1

I

!I

k;y

)

Figure 6.8 shows an example of a CZC involving C

i;x

and an example of a PZC

which is not a CZC as it contradicts the restriction in De�nition 6.2.4 (i.e.,

I

j;z+1

I

!I

k;y

due to the presence of the causal message chain �

0

). Note that, in

the latter case, PZC(C

i;x

; �

k;y

� �) embeds a Z-cycle ZC(C

j;z+1

; �

0

k;y

� (���:last))

78CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

P

i

P

j

C

j;z

C

j;z+1

�

0

P

k

�

�:last

C

k;y

C

k;y+1

(b)

P

k

P

i

P

j

C

j;z

C

k;y

�

C

i;x

�:last

� 2 min(M(C

i;x

; P

k

))

(a)

C

i;x

� 2 min(M(C

i;x

; P

k

))

Figure 6.8: a Core Z-Cycle Involving C

i;x

(a); an Example of non-Core Z-cycle

(b).

as shown in Figure 6.8.b. This recursive behavior will be exploited in the proof

of Lemma 6.2.5.

Let us now prove that if there exists a PZC in a distributed computation,

then there exists a CZC in that computation, assuming the size of the non-

causal message chain of the PZC equal to one and then we generalize the result

to a chain of any size:

Lemma 6.2.4

If there exists PZC(C

i;x

; �

k;y

� �) such that j�j = 1

then there exists CZC(C

i;x

; �

k;y

� �).

Proof (By Contradiction)

Let us consider PZC(C

i;x

; �

k;y

� �) with � = m and suppose that CZC(C

i;x

; �

k;y

� �)

does not exists. As m�C

i;x

��

k;y

� m, send(m) 2 I

k;y

and � 2 min(M(C

i;x

; P

k

)),

there must exist C

k;y+1

such that:

I

k;y+1

I

!I

k;y

In this case, by De�nition 6.2.3, there exist an event e

0

2 I

k;y+1

and an event

e

00

2 I

k;y

such that e

0

e

! e

00

which is not possible due to the fact that the

e

!

relation is acyclic.

Q:E:D:

Lemma 6.2.5

If there exists PZC(C

i;x

; �

k;y

� �)

then there exists a CZC.

Proof

Let us consider PZC(C

i;x

; �

k;y

� �). We have two alternatives:

6.2. A CHARACTERIZATION OF THE NO-Z-CYCLE PROPERTY 79

1 if j�j = 1 then the claim follows from Lemma 6.2.4

2 if j�j > 1 then let consider the sequence of checkpoint intervals S(�).

There are two cases:

2.A 8I

j

i

;z

i

2 S(�)) :(I

j

i

;z

i

+1

I

!I

k;y

).

By de�nition 6.2.4, we get CZC(C

i;x

; �

k;y

� �) and the claim follows;

2.B 9I

j

i

;z

i

2 S(�) : I

j

i

;z

i

+1

I

!I

k;y

.

Let I

j;z+1

be the �rst checkpoint interval in S(�) satisfying the

condition of Case 2.B. There exists at least one causal message chain

starting after C

j;z+1

and ending in I

k;y

or in a previous checkpoint

interval of P

k

. Therefore, the set M(C

j;z+1

; P

k

) is not empty. Let

us consider �

0

2 min(M(C

j;z+1

; P

k

)); we have two cases:

2.B.1 send(�:first)

e

!receive(�

0

:last) (see Figure 6.9.a).

We get ZC(C

j;z+1

; �

0

k;y

� �

�

) where �

�

= ��

b

� and send(

b

�:first) 2

I

j;z

. From the successive application of Lemma 6.2.1 and Lemma

6.2.3, there exists PZC(C

j;z+1

; ��

l;t

�

�

�) with j

�

�j � j�

�

j < j�j;

2.B.2 receive(�

0

:last)

e

!send(�:first) (see Figure 6.9.b).

We get ZC(C

j;z+1

; [�

0

� �

00

]

b;s

� �

0

) where �

00

I

b;s

� �

0

= � �

b

� and

send(

b

�:first) 2 I

j;z

, hence j�

0

j < j�j (see Figure 6.9.c). By

Lemma 6.2.1 and Lemma 6.2.3 there exists PZC(C

j;z+1

; ��

l;t

�

�

�)

with j

�

�j � j�

0

j. So we have j

�

�j < j�j;

In both cases we obtain a PZC with j

�

�j < j�j.

If we fall in case 2.B, the previous construction can be applied on the

obtained PZC. After a �nite number of steps, either we fall in case 2.A or

j

�

�j = 1 thus, by Lemma 6.2.4, we get a CZC.

Q:E:D:

6.2.4 A Characterization Theorem

Let us formally introduce the No-Core-Z-Cycle property NCZC:

De�nition 6.2.5 A checkpoint and communication pattern (

b

H; C

b

H

) of a dis-

tributed computation satis�es the No-Core-Z-Cycle (NCZC) property i� no

CZC exists in (

b

H; C

b

H

)

The following characterization theorem is straightforwardly derived from

lemmas introduced in previous section:

80CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

C

i;x

P

i

P

i

C

i;x

P

j

P

k

�

0

�

00
C

k;y

�

0

(c)

C

j;z+1

P

b

C

b;s

�

^

�

C

j;z

P

j

P

k

C

k;y

�

0

�

(a)

P

j

P

k

C

k;y

(b)

C

j;z+1

�

�

0

C

j;z

^

�

�

� �

^

�

^

�

P

i

C

i;x

C

j;z+1

C

j;z

�

�

Figure 6.9: Proof of Lemma 6.2.5.

Theorem 6.2.6

A checkpoint and communication pattern (

b

H; C

b

H

) of a distributed computation

satis�es the NZC property i� (

b

H; C

b

H

) satis�es the NCZC property.

Proof

If part. By Lemma 6.2.1 if a ZC exists then an EZC exists in (

b

H; C

b

H

). By

Lemma 6.2.3 if an EZC exists then a PZC exists in (

b

H; C

b

H

). By lemma

6.2.5 if a PZC exists then a CZC exists in (

b

H; C

b

H

). Thus, in terms of

properties, :(NZC)) :(NCZC). Hence NCZC) NZC.

Only if part. If the computation satis�es NZC then no CZC exists as CZCs

are Z-cycles. So the computation satis�es NCZC.

Q:E:D:

6.3 Deriving VP-Accordant Protocols

6.3.1 Suspect Core Z-Cycles

From Theorem 6.2.6, a checkpoint and communication pattern (

b

H; C

b

H

) of a dis-

tributed computation satis�es the NZC property if, and only if, no CZC exists

6.3. DERIVING VP-ACCORDANT PROTOCOLS 81

in (

b

H; C

b

H

). Given CZC(C

i;x

; �

k;y

� �), it can be broken by placing an additional

local checkpoint taken between the send of �:first and the receive of �:last

at process P

k

as shown in Figure 6.10.a. So for any communication-induced

checkpointing protocol, the instant of time before the event receive(�:last)

represents \the last opportunity" for taking an additional (forced) checkpoint

in order to remove that CZC from the checkpoint and communication pattern

of the computation.

Like a Z-cycle, a core Z-cycle is generally non-trackable on-the-
y at the

last opportunity time by a communication-induced checkpointing protocol.

This is due to a key factor: the message chain � could contain at least one

non-causal concatenation (for example the message chain � shown in Figure

6.10.a contains two non-causal concatenations). In other words a CZC is

trackable on-the-
y at the last opportunity time only if its chain � is causal.

The previous argument shows that the best a communication-induced pro-

tocol can do to prevent the formation of core Z-cycles is to remove from

(

b

H; C

b

H

) those checkpoint and communication patterns whose structure rep-

resents the common causal part of any core Z-cycle which is detectable by

a process at the last opportunity time. Those considerations lead to the in-

troduction of a checkpoint and communication pattern, namely Suspect Core

Z-Cycle (SCZC), which is trackable by a communication-induced checkpoint-

ing protocol. Such pattern is structured as follows:

De�nition 6.3.1

A Suspect Core Z-Cycle (SCZC) is a checkpoint and communication pattern

SCZC(I

j;z

; C

i;x

; �; I

k;y

) such that:

9m;m

0

: C

j;z

�m � C

i;x

� �

k;y

� m

0

with

8

>

<

>

:

(i) send(m) 2 I

j;z

(ii) � 2 min(M(C

i;x

; P

k

))

(iii) 6 9e 2 I

j;z+1

: e

e

!receive(�:last)

As an example SCZC(I

j;z

; C

i;x

; �; I

k;y

) is shown in Figure 6.10.b while

Figure 6.10.c shows a checkpoint and communication pattern which is not an

SCZC as it violates the constraint (iii) of previous de�nition (due to the causal

message chain �

0

). Trivially, the presence of a CZC implies the existence of

an SCZC (the converse being not true) so, if no SCZC exists in a checkpoint

and communication pattern of a distributed computation then no CZC exists

and, then, according to Theorem 6.2.6, the execution satis�es the NZC prop-

erty. Let us now state a theorem, actually a su�cient condition for the NZC

property, that will be used to design communication-induced protocols shown

in the following sections:

82CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

P

k

P

i

C

i;x

P

j

C

k;y

C

j;z

�

�:last

�:first

�

P

l

(a)

forced checkpoint at

last opportunity time

P

k

P

i

P

j

C

k;y

P

l

C

i;x

C

j;z

�

SCZC

(b)

P

k

P

i

P

j

C

k;y

C

j;z

P

l

�

C

j;z+1

C

i;x

(c)

m

m

0

�

0

Figure 6.10: an Example of CZC non-Trackable on-the-Fly by a

Communication-Induced Checkpointing Protocol (a); an Example of SCZC

Pattern (b); an Example of non SCZC Pattern (c).

Theorem 6.3.1

If a checkpoint and communication pattern of a distributed computation (

b

H; C

b

H

)

does not include any SCZC (i.e., it satis�es the No-Suspect-Core-Z-Cycle

property NSCZC) then (

b

H; C

b

H

) satis�es the NZC property.

Proof

From the structure of the CZC and of the SCZC, it trivially follows, in terms of

properties, NSCZC) NCZC. From Theorem 6.2.6 we have NCZC) NZC.

Hence we get NSCZC) NZC. Q:E:D:

The reader could now wonder if the SCZC is the right pattern to prevent

in order to remove CZCs. In particular, why the SCZC structure includes

only the last checkpoint interval passed through by � (i.e., I

j;z

) and not all

the checkpoint intervals associated to the �nal causal part of the non-causal

message chain � associated to a CZC. This causal part would represent the

larger part of � visible by P

k

at the last opportunity time.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 83

C

i;x

C

k;y

P

i

P

k

P

j

� 2 min(M(C

i;x

; P

k

))

last opportunity time

�

0

C

j;z

C

j;z+1

m

2

m

1

m

3

Figure 6.11: A set of PZCs Involving C

i;x

.

Let MC be the set of message chains � of minimal length starting af-

ter C

k;y

, terminating before C

i;x

and sharing the last message �:last. This

de�nes a set of PZCs X one for each distinct � in MC. If we consider Z-

cycles involving C

i;x

in Figure 6.11 we have MC� f[m

1

;m

2

]; [m

3

;m

2

]g and

X� fPZC(C

i;x

; �

k;y

� [m

1

;m

2

]); PZC(C

i;x

;

k;y

� [m

3

;m

2

])g.

Let us assume the causal message chain �

0

, depicted by a dotted line

in Figure 6.11, does exist. As a consequence we have 9e 2 I

j;z+1

: e !

deliver(�:last), which implies I

j;z+1

I

!I

k;y

. Hence, each PZC in X is not a

CZC (see De�nition 6.2.4).

Let us assume the causal message chain �

0

in Figure 6.11 does not exist.

In such a case, at the last opportunity time P

k

cannot safely conclude that no

CZC can be formed due to a message chain � 2 MC which relies on a non-

causal concatenation in I

j;z

. For example, the non-causal concatenation form-

ing the message chain [m

3

;m

2

] is out of the usable knowledge of P

k

. This chain

gives rise to CZC(C

i;x

; �

k;y

� [m

3

;m

2

]). Hence, a communication-induced proto-

col is obliged to direct a forced checkpoint before executing receive(�:last) if

no information concerning the de�nite delimitation of the checkpoint interval

I

j;z

has been noti�ed to P

k

by means of a causal message chain.

In conclusion, it is not possible for a communication-induced protocol

to prevent checkpoint and communication patterns less constrained than the

SCZC pattern in order to do a safe removal of CZCs.

6.3.2 A Remark on Characterizations Stronger than NCZC

Imposing additional constraints on the structure of a CZC can lead to charac-

terizations stronger than NCZC. As an example, let consider the subset X of

84CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

CZC such that (i) the length of � is minimal, and (ii) � is a member of a set

of message chains that establish the �rst Z-path between C

k;y

and C

i;x

(this

set contains message chains sharing the last message)

5

. The existence of any

CZCs in the execution implies the existence of a Z-cycle in X, thus, if X is

empty, then CZC is empty.

Although the latter characterization could be interesting from a theoreti-

cal point of view, from a practical one, it does not add information, suitable

for communication-induced protocols, in order to reduce the number of forced

checkpoints compared to the one provided by CZC. In other words, this charac-

terization does not help to �nd checkpoint and communication patterns more

re�ned than SCZC and detectable on-the-
y. More speci�cally, the informa-

tion concerning the \time" in which the chain � is established does not help as

� is, generally, non-causal and, thus, it cannot be tracked at the last opportu-

nity time by a protocol as shown in the previous section. The information on

the length of � does not help to save forced checkpoints as the concept of min

is related to a set of causal message chains which includes the one of minimal

length, thus, preventing a non-causal concatenation (e.g. � �m) due to either

any chain of the set min(M(C

i;x

; P

k

)) or the one with minimal length has the

same e�ect in terms of forced checkpoints.

6.3.3 A Checkpointing Protocol (P1) Preventing SCZCs

The protocol presented in this section, namely P1, tracks on-the-
y all the

SCZC patterns, and breaks them by introducing a forced checkpoint before

the receipt of message �:last (i.e., it breaks them at last opportunity time).

This is done by exploiting the control information piggybacked on application

messages, that encodes the causal past of the execution with respect to the

event of the receive of a message, and the local history of a process (i.e., it

fully exploits the usable knowledge at that event). The protocol uses a vector

clock and a matrix of integers as control information.

Tracking SCZC Patterns

In order to track the formation of SCZC(I

j;z

; C

i;x

; �; I

k;y

), upon the arrival of

a message �:last, process P

k

has to verify whether conditions for the existence

of that checkpoint and communication pattern are satis�ed. In the following

paragraphs the data structures to accomplish this task are introduced.

Tracking � 2 min(M(C

i;x

; P

k

)).

To detect if � 2 min(M(C

i;x

; P

k

)), a vector clock mechanism is used consider-

ing checkpoints of processes as relevant events of the computation [38]. Each

5

In such a case we have a \temporal" and a \spatial" constraint both on � and on �.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 85

process P

k

maintains a vector clock V C

k

whose size corresponds to the number

of processes n. V C

k

[i] stores the maximum checkpoint rank of P

i

seen by P

k

and V C

k

[k] stores the rank of the last checkpoint taken by P

k

. V C

k

is initial-

ized to zero except the k-th entry which is initialized to one. Each application

message m sent by P

k

piggybacks the current value of V C

k

(denoted m:V C).

Following the classical updating rule of a vector clock, upon the receipt of a

message m, V C

k

is updated from m:V C by taking a component-wise maximum.

A causal message chain � including message m as �:last is prime (i.e., �

belongs to some min(M(C

i;�

; P

k

)), if, upon the receipt of m at process P

k

, the

following predicate holds:

9i : (m:V C[i] > V C

k

[i])

Tracking �

k;y

� m

0

.

To detect if there exists a non-causal concatenation between a prime causal

message chain � and a message m

0

in the interval I

k;y

, process P

k

maintains

a boolean variable after first send

k

. This variable is set to TRUE when a

send event occurs. It is set to FALSE each time a local checkpoint is taken.

Hence, upon the receipt of a message m (with m = �:last), P

k

detects that

�

k;y

� m

0

if the following predicate hold:

after first send

k

^ (9i : (m:V C[i] > V C

k

[i]))

Tracking C

j;z

�m � C

i;x

.

Each process P

k

maintains a vector of integers Imm Pred

k

of size n and a

matrix of integers Pred

k

, of size n�n. Imm Pred

k

[`] represents the maximum

rank of the checkpoint interval from which process P

`

sent a message m which

has been received by P

k

in its current checkpoint interval I

k;y�1

(in other

words C

`;Imm Pred[`]

precedes checkpoint C

k;y

due to the �

ckpt

relation). Each

entry of this vector is set to -1 every time a checkpoint is taken by P

k

.

Pred

k

[i; j] represents, to the knowledge of P

k

, the maximum rank of the

checkpoint interval from which process P

j

sent a message m which has been

received by P

i

in a checkpoint interval I

i;x�1

with x � V C

k

[i]. Each entry

of the matrix Pred

k

is initialized to -1. Its content is piggybacked on each

message m sent by P

k

(m:P red) and the rules to update its entries are the

following:

1. Whenever a checkpoint is taken by P

k

, Pred

k

[k;�] is updated according

to the following rule:

8j Pred

k

[k; j] = max(Pred

k

[k; j]; Imm Pred

k

[j])

86CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

j

i �

C

i;x

P

i

P

k

P

j

C

j;�

C

j;�+1

m:Pred =

Figure 6.12: Example of Values Stored in m:Pred.

2. Upon the arrival of a message m at P

k

:

8`; t P red

k

[`; t] = max(Pred

k

[`; t]; m:P red[`; t])

Figure 6.12 shows an example of a checkpoint and communication pattern

and the content of m:Pred[i; j] associated to that pattern.

Tracking 6 9e 2 I

j;z+1

: e

e

!receive(�:last).

Upon the arrival of a message m included in a prime causal chain (recall that

m ends a prime causal chain if 9i : (m:V C[i] > V C

k

[i])), in order to track the

above condition, we need to know if there exists a j such that m:P red[i; j] + 1

does not belong to the causal past of the receipt of m. This knowledge is

encoded in m:V C[j] and V C

k

[j]. Hence, the predicate becomes:

(9j : m:P red[i; j] + 1 > max(m:V C[j]; V C

k

[j]))

Preventing SCZC Patterns

Upon the arrival of a message m at process P

k

in I

k;y

, if the following predicate

holds:

P

1

� after first send

k

^

(9i : (m:V C[i] > V C

k

[i]) ^

(9j : m:P red[i; j] + 1 > max(m:V C[j]; V C

k

[j])))

then, process P

k

detects that at least one SCZC(I

j;Pred

k

[i;j]

; C

i;x

; �; I

k;y

) is

going to be formed with m = �:last and V C

k

[i] < x � m:V C[i]. In this case

P

k

directs a forced checkpoint C

k;y+1

before the receipt of m.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 87

init P

k

:

take a checkpoint;

after first send

k

:= FALSE;

8i : i 6= k V C

k

[i] := 0; V C

k

[k] := 1;

8i; 8j Pred

k

[i; j] := �1; 8h Imm Pred

k

[h] := �1;

when m arrives at P

k

from P

l

:

if after first send

k

^ (9i : (m:V C[i] > V C

k

[i])^

(9j : m:P red[i; j] + 1 > max(m:V C[j]; V C

k

[j])))

then take ckpt(); % forced checkpoint %

8i V C

k

[i] := max(V C

k

[i]; m:V C[i]); % component-wise maximum %

8i; 8j Pred

k

[i; j] := max(m:P red[i; j]; P red

k

[i; j]);

Imm Pred

k

[l] := max(Imm Pred

k

[l]; m:V C[l]);

procedure send(m; P

j

):

m:content = data; m:V C := V C

k

; m:P red := Pred

k

; % packet the message %

send m to P

j

;

after first send

k

:= TRUE;

when a basic checkpoint is scheduled from P

k

:

take ckpt();

procedure take ckpt():

take a checkpoint;

8h Pred

k

[k; h] := max(Pred

k

[k; h]; Imm Pred

k

[h]); % component-wise maximum %

8h Imm Pred

k

[h] := �1;

V C

k

[k] := V C

k

[k] + 1;

after first send

k

:= FALSE;

Figure 6.13: Protocol P1

The behavior of process P

k

is shown in Figure 6.13 (all the procedures and

the message handler are executed in atomic fashion).

From an operational point of view, the elements of the diagonal of the

matrix Pred are never used by the protocol. Hence, when implementing the

protocol, the vector clock V C can be embedded in that diagonal. Thus, the

resulting control information piggybacked on application messages boils down

to a matrix of n� n integers.

6.3.4 A Comparison with Previous VP-Accordant Protocols

As protocol P1 is, to our knowledge, the �rst VP-accordant protocol that

ensures NZC but not RDT , it is expected that it generates less overhead, in

terms of forced checkpoints, compared to other VP-accordant protocols since

they ensure a stronger property.

88CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

Before comparing P1 to previous VP-accordant protocols, a technical de-

scription of such protocols is sketched by using the introduced concatenation

relations. The VP-accordant protocols selected for the comparison are the

Russell's protocol [50], the FDAS protocol [64] and the protocol by Baldoni

et al. [4]. The other VP-accordant protocols (i.e., CAS, CBR, CASBR, FDI),

being derivations of the FDAS protocol, are not considered in the comparison.

Russell's Protocol [50].

This protocol accepts only causal message chains in a computation. It actually

prevents the formation of hsend � receivei (i.e., m �m

0

) patterns in any check-

point interval by means of forced checkpoints, so no non-causal concatenation

of messages can ever occur, preventing the formation of Z-cycles.

FDAS Protocol [64].

FDAS avoids the formation of checkpoint and communication patterns with

the following structure:

C

i;x

� �

k;y

� m

0

with � 2 min(M(C

i;x

; P

k

)). As the previous pattern is a part of the structure

of a PZC, the prevention of all those patterns guarantees no prime Z-cycle

in the checkpoint and communication pattern of the distributed computation

and thus the NZC property.

Baldoni et al. Protocol [4] (BHMR).

This protocol prevents the formation of dependences between two checkpoints

due to non-causal message chains composed by two causal message chains (i.e.,

� = �

k;y

� �

0

) if they are not doubled, in a visible way, by a causal message

chain. In terms of concatenation relations, we get that a non-causal message

chain � = �

k;y

� �

0

is doubled by a causal one �

00

if the pair of checkpoints

related by � is also related by �

00

(i.e., if C

i;x

� � � C

j;y

then C

i;x

� �

00

� C

j;y

).

The doubling is visible by P

k

(the only process able to break �) if there exists

a causal message chain �

000

such that �

00

� �

000

belongs to min(M(C

i;x

; P

k

)).

This protocol prevents the formation of any CZC(C

i;x

; �

k;y

� �). In partic-

ular there are two cases:

� � = �

0

i.e., � is a causal message chain. CZC(C

i;x

; �

I

k;y

� �

0

) is a par-

ticular dependence between C

i;x

and itself that cannot be doubled, so

the BHMR protocol prevents it by taking a forced checkpoint before the

receipt of �:last;

6.3. DERIVING VP-ACCORDANT PROTOCOLS 89

� � = �

1

��

2

�: : :��

`

with ` > 1 where each pair of successive causal message

chains establishes a dependence between two distinct checkpoints that

it is not doubled. Note that, that composition of � must exist, otherwise

we fall in the previous case. Then the protocol prevents this pattern by

taking ` forced checkpoints. `�1 forced checkpoints are taken to prevent

each non-causal concatenation of two successive causal message chains

composing �. The last forced checkpoint is taken by P

k

to prevent the

pattern �

k;y

� �:first.

The Comparison

It follows trivially that the Russell's pattern, m�m

0

, and the FDAS's pattern,

C

i;x

��

k;y

� m

0

are a part of an SCZC. When considering the same usable knowl-

edge (i.e., the protocol decides to take a forced checkpoint based on the same

past checkpoint and communication pattern), each time the proposed proto-

col P1 takes a forced checkpoint, Russell's protocol takes a forced checkpoint

and each time P1 takes a forced checkpoint, FDAS protocol takes a forced

checkpoint.

As far as BHMR is concerned, only a qualitative comparison can be done

between patterns prevented by the protocols. Figure 6.14.a shows a checkpoint

and communication pattern in which BHMR protocol takes a forced checkpoint

while the proposed protocol P1 does not take it. Whereas Figure 6.14.b shows

a scenario in which the proposed protocol takes a forced checkpoint while

BHMR protocol does not take it. Note that the probability that checkpoint

and communication patterns, like the one proposed in Figure 6.14.a, occur in

a computation is extremely higher than that of the pattern depicted in Figure

6.14.b. For a quantitative comparison between the two protocols realized

through a simulation study the reader can refer to Section 6.5 of this chapter.

6.3.5 Reducing the Size of the Control Information of P1: Pro-

tocol P2

In this section a communication-induced checkpointing protocol, namely P2,

is presented. The protocol, compared to P1, has control information with

reduced size (the space-complexity decreases form O(n

2

) to O(n)). In P2

a forced checkpoint is taken upon the receipt of a message m whenever a

predicate P

2

is evaluated to true. The following relation holds between the

predicate P

1

proper of protocol P1 and the predicate P

2

:

P

1

) P

2

Such an inclusion between predicates guarantees that also under P2 no

90CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

C

i;1

C

k;1

P

k

P

i

C

k;3

C

i;2

P

l

C

l;2

C

l;1

(a)

C

k;2

C

i;1

C

k;1

P

k

P

i

C

i;2

P

l

C

l;1

P

m

C

m;3

C

m;2

C

m;1

C

l;2

C

l;3

(b)

C

k;2

Figure 6.14: Two Checkpoint and Communication Patterns for a Comparison

between BHMR and the Proposed Protocol P1.

SCZC is ever formed. Thus also P2 guarantees that the resulting checkpoint

and communication pattern of the distributed computation satis�es NZC

The advantage of P

2

is that it can be tracked on-the-
y by using two

vectors of n integers. The disadvantage is that, due to the inclusion between

predicates, P2 potentially

6

induces processes to take more forced checkpoints

compared to P1.

The predicate P

2

is structured as follows:

P

2

� after first send

k

^

(9i : (m:V C[i] > V C

k

[i]) ^

(9j : max

1�h�n

m:P red[h; j] + 1 > max(m:V C[j]; V C

k

[j])))

While P

1

considers only the entry with index (i; j) of the matrix m:P red,

P

2

takes into account the maximum over all the rows of the matrix. This

di�erence allows P

2

to be tracked by using a vector of n entries instead of a

matrix. More technically, process P

k

is endowed with all the data structures

used in protocol P1 except the matrix Pred

k

. Instead, P

k

owns a vector

Max Pred

k

of n integers. Max Pred

k

[j] represents, to the knowledge of P

k

,

the maximum rank of the checkpoint interval from which process P

j

sent a

message m which has been received by whichever process P

i

in a checkpoint

6

As already discussed in Section 3.1 of Chapter 3, the inclusion between predicates means

that P1 takes a forced checkpoint whenever P2 does it only under the same causal past.

As there is no guaranty that the computation evolves at the same way under di�erent

checkpointing protocols, performance of P1, in terms of forced checkpoints, is not guaranteed

to be better than that of P2. This is why the term \potentially" is used.

6.3. DERIVING VP-ACCORDANT PROTOCOLS 91

interval I

i;x�1

with x � V C

k

[i]. All the entries ofMax Pred

k

are initialized to

-1, and its content is piggybacked on each message m sent by P

k

(m:Max Pred).

The rules to update its entries are the following:

1. Whenever a checkpoint is taken by P

k

:

8j Max Pred

k

[j] = max(Max Pred

k

[j]; Imm Pred

k

[j])

2. Upon the arrival of a message m at P

k

:

8j Max Pred

k

[j] = max(Max Pred

k

[j]; m:Max Pred[j])

By using Max Pred

k

, P

2

can be expressed as:

P

2

� after first send

k

^

(9i : (m:V C[i] > V C

k

[i]) ^

(9j : m:Max Pred[j] + 1 > max(m:V C[j]; V C

k

[j])))

The resulting checkpointing protocol P2 is shown in Figure 6.3.5.

6.3.6 A Comparison with VP-Enforced Protocols

This section presents a performance comparison between the proposed check-

pointing protocols (P1 and P2) and VP-enforced ones. As VP-enforced pro-

tocols are not based on the prevention of a particular type of sub-patterns,

the comparison is not realized at a theoretical level (i.e., by �nding inclusions

between predicates triggering forced checkpoints at the receipt of a message),

but through simulation results.

The VP-enforced protocol considered here is the one by Briatico et al.

[12], hereafter BCS (note that all the protocols BCS, P1 and P2 ensure the

same property, i.e., NZC). Among the set of checkpointing protocols, we

chose BCS, �rst, for its simplicity of implementation, and, second, because

simulation studies ([6]) have shown that, in the class of VP-enforced protocols,

BCS exibiths good performance, in terms of reduction of forced checkpoints

7

.

7

As shown in Chapter 5 the total number of checkpoints can be reduced in the case of

periodic basic checkpoints by adopting the skipping technique [36]. However, in this section

we consider also the case in which checkpoints are not triggered on a periodic basis; this is

why the BCS protocol has been selected.

92CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

init P

k

:

take a checkpoint;

after first send

k

:= FALSE;

8i : i 6= k V C

k

[i] := 0; V C

k

[k] := 1;

8i Max Pred

k

[i] := �1; 8h Imm Pred

k

[h] := �1;

when m arrives at P

k

from P

l

:

if after first send

k

^ (9i : (m:V C[i] > V C

k

[i])^

(9j : m:Max Pred[j] + 1 > max(m:V C[j]; V C

k

[j])))

then take ckpt(); % forced checkpoint %

8i V C

k

[i] := max(V C

k

[i]; m:V C[i]); % component-wise maximum %

8i Max Pred

k

[i] := max(m:Max Pred[i];Max Pred

k

[i]);

Imm Pred

k

[l] := max(Imm Pred

k

[l]; m:V C[l]);

procedure send(m; P

j

):

m:content = data; m:V C := V C

k

; m:Max Pred := Max Pred

k

; % packet the message %

send m to P

j

;

after first send

k

:= TRUE;

when a basic checkpoint is scheduled from P

k

:

take ckpt();

procedure take ckpt():

take a checkpoint;

V C

k

[k] := V C

k

[k] + 1;

8h Max Pred

k

[h] := max(Max Pred

k

[h]; Imm Pred

k

[h]); % component-wise maximum %

8h Imm Pred

k

[h] := �1;

after first send

k

:= FALSE

Figure 6.15: Protocol P2.

Simulation Model and Results

The performance comparison studies, for each protocol, the number of forced

checkpoints per message receive (R) as a function of the average checkpoint

interval size (for example, R equal to 0.2 means a forced checkpoint is taken,

on the average, each 5 message receives) under two distinct strategies adopted

by the processes for taking basic checkpoints:

S1 : each process schedules N basic checkpoints periodically and the period

between two succesive basic checkpoints is the same at all processes;

S2 : each process schedules N basic checkpoints randomly distributed in

the whole computation (the scheduling of checkpoints follows a distinct

distribution at each process).

6.3. DERIVING VP-ACCORDANT PROTOCOLS 93

We simulate an uniform point-to-point environment in which each process

can send a message to any other and the destination of each message is an

uniformly distributed random variable. We assume a system with n = 8

processes; each process executes internal, send and receive operations with

probability p

i

= 0:9, p

s

= 0:05 and p

r

= 0:05, respectively. The time to execute

an operation in a process and the message propagation time are exponentially

distributed with mean value equal to 1 and 5 time units respectively.

Let Average Checkpoint Interval (ACI) be the average distance, in terms of

events, between two basic checkpoints. Experiments were conducted varying

ACI from 100 to 10000 events and measuring the value of R. Each simula-

tion run consists of one million of events and for each value of ACI several

simulation runs were executed with di�erent seeds and the result were within

�ve percent of each other, thus, variance is not reported in the plots. As we

are interested only in counting how many local states are recorded as forced

checkpoints by the protocols, the overhead due to the taking of checkpoints is

not considered (i.e., in the simulation model the taking of a checkpoint is an

istantaneous action). However, we observed that no relevant impact on the

obtained measures is noted when considering the time to take a checkpoint

longer than zero.

Results of the simulation study are reported in Figure 6.16. We would like

to remark that strategy S1 is the most favourable to BCS as the timestamps

(i.e., the sequence numbers) increase on average at the same speed at all

processes. As an extreme, if all processes would take basic checkpoints at the

same physical time, no forced checkpoint will be ever taken. The behaviors of

P1 and P2 are
at around 0.01.

Strategy S2 represents a bad scenario for BCS as the distributions of the

basic checkpoints at distinct processes are non-correlated. So timestamps

increase at di�erent speeds at distinct processes and, then, BCS performance

depends on ACI as depicted in Figure 6.16. The behaviors of P1 and P2 are,

also in this case,
at and quite close to those under strategy S1. Furthermore,

no relevant di�erence is noted for the value of R of P1 and P2 under both

strategies.

From previous plots, a main observation comes out. Performance of both

P1 and P2 is more stable compared to the one of BCS with respect to ACI

and the basic checkpointing strategy used. This comes from the fact that a

VP-accordant protocol is not in
uenced by the speed a timestamp increases

in a process. Its performance depends only on the particular checkpoint and

communication subpatterns are going to be formed, which are not directly

related to ACI and the strategy used. This makes a VP-accordant protocol

particularly appealing to be implemented in a checkpointing layer on a general-

purpose system.

94CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

1000 10000
Average Checkpoint Interval (Events)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R

P1 (S1)
P2 (S1)
BCS (S1)
P1 (S2)
P2 (S2)
BCS (S2)

Figure 6.16: R vs. ACI.

6.4 Consistent Global Checkpoints that Contain a

Given Local Checkpoint

In this section a distributed protocol for collecting a consistent global check-

point that contains a speci�c checkpoint C

k;x

of process P

k

is introduced (such

process is the initiator of the distributed protocol). The assumption under-

lying the protocol is that the checkpoint and communication pattern of the

distributed computation satis�es NZC. Before describing the protocol, recall

that an ordered pair of checkpoints (C

j;y

; C

k;x

) is consistent if, and only if,

there does not exist any message m such that C

j;y

�

ckpt

C

k;x

.

By using the notion of consistency of a pair of local checkpoints, the no-

tion of consistent global checkpoint can be reformulated as follows. A global

checkpoint GC is consistent if, and only if, every ordered pair of checkpoints

in GC is consistent. As an example, in Figure 6.17.b the global check-

point GC = fC

1;3

; C

2;2

; C

3;2

g is consistent, whereas the global checkpoint

GC = fC

1;2

; C

2;2

; C

3;2

g is not consistent due to the ordered pair (C

1;2

; C

3;2

).

6.4.1 Consistent Global Checkpoint Collection

We suppose that, when a checkpoint C

k;x

is taken by P

k

, a Tentative-Global-

Checkpoint vector TGC

k;x

of n integers is recorded on stable storage together

with C

k;x

. The j-th entry of TGC

k;x

records the rank associated to a check-

6.4. CONSISTENT GLOBAL CHECKPOINTS THAT CONTAIN A

GIVEN LOCAL CHECKPOINT 95

2

2

2

C

1;1

C

1;2

C

1;3

C

2;1

C

2;2

C

3;1

C

3;2

P

1

P

2

m

(a)

P

3

TGC

2;2

=

C

1;1

C

1;2

C

1;3

C

2;1

C

3;1

C

3;2

P

1

P

2

m

(b)

P

3

TGC

2;2

C

2;2

Figure 6.17: Examples of Tentative Global Checkpoints.

point of process P

j

. The value of TGC

k;x

[j] is such that all the ordered pairs

of checkpoints (C

j;l

; C

k;x

) with l � TGC

k;x

[j] are consistent. The k-th entry

records the rank of C

k;x

(that is x). Note that this does not imply TGC

k;x

identi�es a consistent global checkpoint as pairs of checkpoints whose ranks

are stored in TGC

k;x

might be non-consistent. As an example, in Figure 6.17.a

TGC

2;2

= [2; 2; 2] identi�es a global checkpoint which is not consistent as the

ordered pair (C

1;2

; C

3;2

) is not consistent.

In order to maintain this information, a local vector V

k

of n integers is kept

by P

k

. All the entries are initialized to -1. When P

k

receives a message m

from P

j

then V

k

is updated as follows: V

k

[j] := max(V

k

[j];m:V C[j]). Hence,

V

k

[j] represents the maximum rank of a checkpoint interval of P

j

from which

a message received by P

k

has been sent. Whenever a checkpoint C

k;x

is taken,

the vector TGC

k;x

is generated according to the following rules:

(1) 8j 6= k TGC

k;x

[j] := V

k

[j] + 1;

(2) TGC

k;x

[k] := x.

When a process P

k

has to collect a consistent global checkpoint containing

C

k;x

, it sends to all the other processes a checkpoint collection(GC

k

) message,

where GC

k

is a copy of TGC

k;x

. The content of GC

k

represents P

k

's proposal

for the consistent global checkpoint containing C

k;x

. In other words, P

k

re-

quests to include in the consistent global checkpoint the checkpoint of P

j

with

rank equal to GC

k

[j].

Upon the receipt of the checkpoint collection(GC

k

) message, process P

j

becomes aware that P

k

started a collection which must include C

k;GC

k

[k]

and

should include C

j;GC

k

[j]

. There are two possible cases:

(1) 8h) GC

k

[h] � TGC

j;GC

k

[j]

[h].

96CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

procedure collection containing(C

k;x

):

1.� := fP

1

; : : : ; P

n

g � fP

k

g;

2.GC

k

:= TGC

k;x

;

3.while � 6= ;

4. send checkpoint collection(GC

k

) to each P

j

2 �;

5. wait for reply(GC

j

) from all P

j

2 �;

6. � := fP

j

j 9l : GC

l

[j] > GC

k

[j]g;

7. 8t GC

k

[t] := max

1�l�n

(GC

k

[t]; GC

l

[t]);

8.endwhile

when checkpoint collection(GC

j

) arrives at P

k

from P

j

:

9.8l GC

k

[l] := max(GC

k

[l]; TGC

k;GC

j

[k]

[l]);

10.send reply(GC

k

) to P

j

;

Figure 6.18: The Collection Protocol.

In this case, for each h 6= j the ordered pair (C

h;GC

k

[h]

; C

j;GC

k

[j]

) is

consistent;

(2) 9h 6= j : GC

k

[h] < TGC

j;GC

k

[j]

[h] (i.e., 9m : C

h;GC

k

[h]

�

ckpt

C

j;GC

k

[j]

).

In this case, there exists at least one checkpoint C

h;GC

k

[h]

requested by

P

k

such that the ordered pair (C

h;GC

k

[h]

; C

j;GC

k

[j]

) is not consistent.

If case (1) is veri�ed for each P

j

, then fC

1;GC

k

[1]

; : : : ; C

n;GC

k

[n]

g is consis-

tent. If there exists a process P

j

which falls in case (2), the global checkpoint

fC

1;GC

k

[1]

; : : : ; C

n;GC

k

[n]

g is not consistent, hence the original proposal by P

k

has to be modi�ed. As an example, considering the execution shown on Fig-

ure 6.17.a the proposal GC

2

= TGC

2;2

= [2; 2; 2], corresponding to a global

checkpoint which is not consistent (due to the ordered pair (C

1;2

; C

3;2

)), has

to be modi�ed by P

3

in order to include checkpoint C

1;3

of process P

1

(see

Figure 6.17.b). The complete structure of the collection protocol is described

in Figure 6.4.1. The protocol executes a sequence of rounds. In each round,

the initiator sends its proposal and waits for possible updates. If the proposal

was updated, then a new round is started, otherwise the proposal identi�es a

consistent global checkpoint containing C

k;x

.

As a �rst action process P

k

sends its proposalGC

k

to all processes in the set

� (line 4) which initially contains all the processes except P

k

(line 1). Then it

waits for the reply message, one from each process (line 5). Each reply contains

either GC

k

or a new proposal formulated by the sender P

j

. The new proposal

contains local checkpoints that could form a consistent global checkpoint in-

cluding C

k;x

and C

j;GC

k

[j]

. As an example, considering the computation shown

in Figure 6.17.b if process P

3

receives a checkpoint collection(GC

2

) message

6.5. APPLICATIONS OF THE PRESENTED PROTOCOLS 97

with GC

2

= TGC

2;2

, then it sends back a reply message with GC

3

= [3; 2; 2].

Once collected all the replies, P

k

computes (i) the new proposal as the

component-wise maximum among all the proposals (line 7) and (ii) the set of

processes that changed their checkpoints with respect to the previous proposal

done by P

k

(line 6). The set and the new proposal correspond to � and GC

k

of the next iteration. The procedure ends when all processes agree on the

proposal done by P

k

(i.e., � = ; - line 3).

Actually the proposed protocol is a distributed version of the collection

protocols presented in [29], therefore, for termination guarantee and correct-

ness the reader can refer to latter paper. The collection protocol in [29] relies

on the presence of a checker process. Each time a checkpoint A is taken, the

dependency vector associated to that checkpoint is sent to the checker process.

Then the checker process examines an n�n matrix formed by the vector asso-

ciated to A and vectors received from other processes and computes the global

checkpoint which, at the time the matrix is analyzed, contains A and is the

closest one to the end of the computation. The major di�erence between such

protocol and the presented one is that the latter does not require exchange

of information whenever a checkpoint is taken. On the other hand, is has the

disadvantage that the consistent global checkpoint identi�ed is the minimum

one containing a given checkpoint.

6.5 Applications of the Presented Protocols

In this section a discussion on two applications of the proposed protocols is

presented, posing attention on advantages and disadvantages of the protocols

compared to previous solutions.

6.5.1 Recovery from Transient Failures in Long Running Sci-

enti�c Applications

For long running scienti�c applications checkpointing is used to reduce the

total execution time in the presence of transient failures. As already out-

lined in Chapter 5, in this context, the goodness of a checkpointing protocol

is usually measured in terms of overhead imposed during failure free periods

and e�ciency of recovery. This latter parameter depends on the amount of

information which must be exchanged among processes for determining a con-

sistent global checkpoint from which the application must be restarted after

the failure. The selected consistent global checkpoint should be as close as

possible to the end of the computation in order to minimize the extent of

rollback (i.e., the amount of lost work).

The protocol by Briatico et al. [12] (and also all the existing VP-enforced

protocols associating a timestamp to each checkpoint) guarantees that check-

98CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

points timestamped with the same value are members of a consistent global

checkpoint. As already discussed in Chapter 3, this feature allows the design

of simple and e�cient schemes for identifying a consistent global checkpoint

containing C

k;x

for resuming the application [36] which do not need exchange

of dependency information. However, unless dependency information is ex-

changed between the processes, the identi�ed global checkpoint is neither the

maximum nor the minimum consistent global checkpoint including C

k;x

.

The checkpointing protocols P1 and P2 presented in this chapter, com-

pared to any VP-enforced protocol, allow smaller checkpointing overhead

whenever basic checkpointing strategies at distinct processes are not corre-

lated. From the point of view of recovery, the proposed scheme for identify-

ing a consistent global checkpoint containing a given checkpoint C

k;x

requires

processes to exchange dependency information, furthermore, it identi�es the

minimum consistent global checkpoint associated to that checkpoint. There-

fore, there is no guarantee that the extent of rollback obtained by resuming

the execution from that global checkpoint is minimal.

However, as failures are usually rare events, a scheme which reduces the

failure free overhead at the expense of the e�ciency during recovery is always

the best choice. Therefore, it can be concluded that the proposed protocols

are well suited in any case there is no a priori knowledge about correlation of

basic checkpointing strategies adopted at distinct processes.

6.5.2 The Output Commit Problem

One of the major problems in service-providing application is the output com-

mit. In case of rollback of one of these applications, the maximum extent

of rollback is such that no output must be revoked. For example, a printer

cannot rollback the e�ects of printing a character; an automatic machine can-

not recover the money it dispensed to a customer; a deleted �le cannot be

recovered (unless its state is included as part of the checkpoint [53, 66]).

The output commit problem has been tackled in the past assuming piece-

wise deterministic (PWD) execution model [20, 54]. Under the PWD assump-

tion the execution of a process is seen as a sequence of state intervals. A new

state interval starts whenever a non-deterministic event occurs (for example

the receive of a message). All non-deterministic events are logged so that the

process can always reply its execution from its last taken checkpoint.

An output is recorded in a checkpoint C

k;x

of P

k

if the output message is

sent in a checkpoint interval I

k;x��

with � > 0. Recently, Wang has shown [64]

that the output commit problem can be translated into the problem of deter-

mining the minimum consistent global checkpoint recording all the outputs.

This problem can be easily solved through RDT as this property allows a pro-

cess P

k

to associate on-the-
y to a checkpoint C

k;x

the minimum consistent

6.5. APPLICATIONS OF THE PRESENTED PROTOCOLS 99

global checkpoint containing it.

More technically, as already outlined in Chapter 3, if RDT is satis�ed,

then the minimum consistent global checkpoint associated to a given local

checkpoint C

k;x

is easily computed on-the-
y at the time C

k;x

is taken by

piggybacking on each message a transitive dependency vector. As shown by

Mattern [38], the union of consistent global checkpoints generates a consistent

global checkpoint (such a result has been shown by Mattern to hold for the

set of consistent global states of a computation; as the set of consistent global

checkpoints is a subset of the set of consistent global states, then the result also

holds for consistent global checkpoints). Therefore, the minimum consistent

global checkpoint recording all the outputs can be computed by:

(i) collecting vectors identifying the consistent global checkpoint associated

to the earliest checkpoint recording an output at each process, and

(ii) performing a component-wise maximum among all collected vectors.

But, which is the cost incurred to ensure the RDT property? If (

b

H; C

b

H

)

satis�es the RDT property, then it also satis�es the NZC property. As al-

ready discussed, this implication between properties usually implies that pro-

tocols which ensure theRDT induce processes to take more forced checkpoints

compared to protocols ensuring NZC. As a quantitative example of the per-

formance distance in terms of forced checkpoints we report in Figure 6.19 the

ratio R (i.e., forced checkpoints by a message receive), measured in the same

simulation environment described in Section 6.3.6 of this chapter, for the case

of the protocol presented by Baldoni et al. in [4] (BHMR), which has been

demonstrated through previous performance studies to be the one inducing

less forced checkpoints to guarantee RDT (results are reported for both basic

checkpointing strategies S1 and S2 described in section 6.3.6). The obtained

data are compared to those obtained with the proposed protocol P1.

There is a distance of an order of magnitude between values of R obtained

with the protocol P1 and those obtained by BHMR (values of R for the pro-

tocol P2, being very similar to those of P1, are not reported in Figure 6.19).

Plots demonstrate that the usage of system resources spent for checkpoint-

ing can be reduced by using one of the two checkpointing protocols presented

in this chapter. The drawback incurred is that to a local checkpoint cannot

be associated on-the-
y the minimum consistent global checkpoint containing

it. However, the acceptability of this drawback is justi�ed by the following

observation: the minimum consistent global checkpoint containing C

k;x

has to

be identi�ed only if C

k;x

is the earliest checkpoints recording the last output

produced by P

k

. RDT guarantees such identi�cation on-the-
y for any check-

point but at the expense of sometimes unacceptable checkpointing overhead.

In order to avoid such an overhead one of the checkpointing protocols (P1

100CHAPTER 6. VIRTUAL PRECEDENCE ACCORDANT PROTOCOLS

1000 10000
Average Checkpoint Interval (Events)

0.00

0.10

0.20

0.30

0.40

0.50

R

P1 (S1)
BHMR (S1)
P1 (S2)
BHMR (S2)

Figure 6.19: R vs. ACI.

or P2) here proposed can be adopted and, periodically the consistent global

checkpoint collection protocol presented can be run in order to associate to

the earliest checkpoint C

k;x

recording an output a consistent global checkpoint

including it. The ranks of checkpoints identi�ed during the collection can be

recorded onto stable storage in a vector GC

k;x

associated to C

k;x

. This vector

is then used whenever the minimum consistent global checkpoints recording

all the outputs is reclaimed.

Chapter 7

Consistent Checkpointing in

Distributed Databases

Checkpointing the state of a database is important for audit or recovery pur-

poses. When compared to its counterpart in distributed computations, the

database checkpointing problem has additionally to take into account the seri-

alization order of the transactions that manipulates the data objects forming

the database. Actually, transactions create dependences among data objects

which makes harder the problem of de�ning consistent global checkpoints in

database systems.

Of course, it is always possible, in a database environment, to design a

special transaction, that reads all data objects and saves their current values.

The underlying concurrency control mechanism ensures that this transaction

gets a consistent state of the data objects. However, this strategy is ine�cient,

intrusive (from the concurrency control point of view [52]) and not practical

since, a read only transaction may take a very long time to execute and may

cause intolerable delays for other transactions [41]. Moreover, as pointed out

in [51], this strategy may drastically increase the cost of rerunning aborted

transactions. So, it is preferable to base global checkpointing:

(1) on local checkpoints of data objects taken by their managers, and

(2) on a mechanism ensuring mutual consistency of local checkpoints (this

will ensure that it will always be possible to get consistent global check-

points by piecing together local checkpoints).

In this chapter, latter approach to checkpointing is explored. The consid-

ered database is such that each data object can be individually checkpointed

(note that a data object could include, practically, a set of physical data items).

If these checkpoints are taken in an independent way, there is the risk that

101

102

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

no consistent global checkpoint can ever be formed, similarly to what happens

in distributed computations. So, some kind of coordination is necessary when

local checkpoints are taken in order to ensure their mutual consistency.

This chapter introduces a characterization of mutual consistency of local

checkpoints. More precisely, the two following issues are considered:

� let us consider the question

�

Q(S): \Given an arbitrary set S of check-

points of data objects, can this set be extended to get a global checkpoint

(i.e., a set including exactly one checkpoint from each data object) that

is consistent?". The answer to this question is well known when the set

S includes exactly one checkpoint per data object [41], it becomes far

from being trivial, when the set S is incomplete, i.e., when it includes

checkpoints from only a subset of data objects. When S includes a single

data checkpoint, the previous question is equivalent to \Can this local

checkpoint belong to a consistent global checkpoint?".

� let us consider the property P(C): \Local checkpoint C belongs to a

consistent global checkpoint". Two non-intrusive checkpointing proto-

cols are introduced, the �rst one ensures the previous property P when

C is any local checkpoint of a data object. The second one ensures P

when C belongs to a prede�ned set of local checkpoints of a data object.

�

Q(S) is analogous to question Q(S) stated in Chapter 2, to which the

answer has been provided by Netzer and Xu. To provide an answer to ques-

tion

�

Q(S), this chapter presents a study on the kind of dependences both the

transactions and their serialization order create among checkpoints of distinct

data objects. Therefore, the direction pointed out in [11], where it is said

that \Although the problems of concurrency control and recoverability are

frequently discussed separately, they are actually closely related" is investi-

gated. More speci�cally, in this chapter it is shown that, while some data

checkpoint dependences are causal, and consequently can be captured on-the-

y, some others are \hidden", in the sense that, they cannot be revealed by

causality (analogously to what happens for dependences between checkpoints

of processes of a distributed computation due to the presence of non-causal

Z-paths). It is the existence of those hidden dependencies that actually makes

non-trivial the answer to the previous question. Such an answer is here pro-

vided by exploiting concepts of the Netzer-Xu theory properly rede�ned and

enriched for the context of databases.

Starting from the obtained theoretical results, Section 7.5 of this chapter is

devoted to the design of \transaction-induced" data checkpointing protocols

ensuring the property P (namely, \Local checkpoint C belongs to a consis-

tent global checkpoint"). These protocols allow managers of data objects to

7.1. DATABASE MODEL 103

take checkpoints independently on each other

1

(these checkpoints are called

basic as in the context of communication-induced checkpointing protocols for

distributed computations), and use transactions as a means to di�use infor-

mation, among data managers, encoding dependences on the previous states

of data objects. When a transaction that accessed a data object is commit-

ted, the data manager of this object may be directed to take a checkpoint

to guarantee that previously taken checkpoints belong to consistent global

checkpoints (as in the context of communication-induced checkpointing, such

a checkpoint is called forced checkpoint). This is done by the data manager

which exploits both its local control data and the information exchanged at

the transaction commit point. The presented protocols are actually adapta-

tions to the context of distributed databases of the protocols by Briatico et

al. [12] and the protocol by Wang and Fuchs [61].

7.1 Database Model

We consider a classical distributed database model. The system consists of

a �nite set of data objects, a set of transactions and a concurrency control

mechanism [10, 26].

7.1.1 Data Objects

Each data object is managed by a data manager DM . A set of data objects

can be managed by the same data manager DM . For the sake of clarity, we

suppose that the set of data managed by the same DM constitutes a single

logical data. So, there is a data manager DM

x

per data x (

2

).

7.1.2 Transactions

A transaction is de�ned as a partial order on read and write operations on data

objects and terminates with a commit or an abort operation. R

i

(x) (resp.

W

i

(x)) denotes a read (resp. write) operation issued by transaction T

i

on

data object x. Each transaction is managed by an instance of the transaction

manager (TM) that forwards its operations to the scheduler which runs a

speci�c concurrency control protocol. The write set of a transaction is the set

of all the data objects it wrote.

1

They can be taken, for example, during CPU idle time.

2

Notations adopted in this chapter slightly di�er from those of previous chapters. As an

example, x, y and z denote here data objects instead of ranks of checkpoints. Furthermore,

as it will be clear later, checkpoints of data objects are identi�ed by a subscript and a

superscript, instead of a subscript only.

104

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.1.3 Concurrency control

A concurrency control protocol schedules read and write operations issued by

transactions in such a way that any execution of transactions is strict and

serializable. This is not a restriction as concurrency control mechanisms used

in practice (e.g., two-phase locking 2PL and timestamp ordering) generate

schedules ensuring both properties [11]. The strictness property states that

no data object may be read or written until the transaction that currently

writes it either commits or aborts. So, a transaction actually writes a data

object at its commit point. Hence, at some abstract level, which is the one

considered by our checkpointing mechanisms, transactions execute atomically

at their commit points. If a transaction is aborted, strictness ensures no

cascading aborts and the possibility to use before images for implementing

abort operations which restore the value of an object before the transaction

access. For example, a 2PL mechanism, that requires transactions to keep

their write locks until they commit (or abort), generates such a behavior [11].

7.2 Distributed Database

A distributed database consists of a �nite set of sites, each site containing

one or several (logical) data objects. So, each site contains one or more data

managers, and possibly an instance of the TM . TMs and DMs exchange

messages on a communication network which is asynchronous (message trans-

mission delays are unpredictable but �nite) and reliable (each message will

eventually be received).

7.2.1 Execution

Let T = fT

1

; : : : ; T

n

g be a set of transactions accessing a set O = fo

1

; : : : ; o

m

g

of data objects (to simplify notations, data object o

i

is identi�ed by its index

i). An execution E over T is a partial order on all read and write operations of

the transactions belonging to T ; this partial order respects the order de�ned

in each transaction. Moreover, let <

x

be the partial order de�ned on all

operations accessing a data object x, i.e., <

x

orders all pairs of con
icting

operations (two operations are con
icting if they access the same object and

one of them is a write operation).

Given an execution E de�ned over T , T is structured as a partial order

b

T = (T;<

T

) where <

T

is the following (classical) relation de�ned on T :

T

i

<

T

T

j

() (i 6= j) ^ (9x) (R

i

(x) <

x

W

j

(x)) _

(W

i

(x) <

x

W

j

(x)) _ (W

i

(x) <

x

R

j

(x)))

7.3. CONSISTENT GLOBAL CHECKPOINTS 105

7.3 Consistent Global Checkpoints

This section is devoted to the introduction of the notion of consistent global

checkpoints of the distributed database. This is done by recalling the notion

of dependence between states of data objects.

7.3.1 Local States and Their Relations

Each write on a data object x issued by a transaction de�nes a new version

of x. Let �

i

x

denote the i-th version of x; �

i

x

is called a local state (�

1

x

is

the initial local state of x). Transactions establish dependences between local

states. This can be formalized in the following way. When T

k

issues a write

operation W

k

(x), it changes the state of x from �

i

x

to �

i+1

x

. More precisely,

�

i

x

and �

i+1

x

are the local states of x, just before and just after the execution

3

of T

k

, respectively. This can be expressed in the following way by extending

the relation <

T

to include local states:

T

k

changes x from �

i

x

to �

i+1

x

() (�

i

x

<

T

T

k

) ^ (T

k

<

T

�

i+1

x

)

Let <

+

T

be the transitive closure of the extended relation <

T

. When we con-

sider only local states, we get the following happened-before relation denoted

<

LS

(which is similar to Lamport's happened-relation de�ned on events [33]

in a distributed computation):

De�nition 7.3.1 (Precedence on local states, denoted <

LS

)

�

i

x

<

LS

�

j

y

() �

i

x

<

+

T

�

j

y

�

i

x

x

�

i

y

y

�

i

z

z

�

i

y

+1

y

�

i

x

+1

x

�

i

z

+1

z

T

2

<

T

T

1

T

1

(T

2

)

z

y

x�

i

x

x

�

i

y

y

�

i

z

z

�

i

y

+1

y

�

i

x

+1

x

�

i

z

+1

z

T

1

(T

2

) T

1

<

T

T

2

x

y

z

(b) T

2

precedes T

1

(a) T

1

precedes T

2

Figure 7.1: Partial Order on Local States.

As the relation <

T

de�ned on transactions is a partial order, it is easy to

see that the relation <

LS

de�ned on local states is also a partial order. Figure

3

Remind that, as we consider strict and serializable executions, \Just before and just

after the execution of T

k

" means \Just before and just after T

k

is committed".

106

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.1 shows examples of relation <

LS

. It considers three data objects x, y, and z,

and two transactions T

1

and T

2

. Transactions are de�ned in the following way:

T

1

: R

1

(x); W

1

(y); W

1

(z); commit

1

T

2

: R

2

(y); W

2

(x); commit

2

As there is a read-write con
ict on x, two serialization orders are possible.

Figure 7.1.a shows the case T

1

<

T

T

2

while Figure 7.1.b shows the case T

2

<

T

T

1

. Each horizontal axis depicts the evolution of the state of a data object.

For example, the second axis is devoted to the evolution of y: �

i

y

y

and �

i

y

+1

y

are the states of y before and after T

1

, respectively.

Let us consider Figure 7.1.a. It shows thatW

1

(y) andW

1

(z) add four pairs

of local states to the relation <

LS

, namely:

�

i

y

y

<

LS

�

i

y

+1

y

; �

i

z

z

<

LS

�

i

z

+1

z

; �

i

y

y

<

LS

�

i

z

+1

z

; �

i

z

z

<

LS

�

i

y

+1

y

The relation <

T

adds two pairs of local states to <

LS

:

�

i

y

y

<

LS

�

i

x

+1

x

; �

i

z

z

<

LS

�

i

x

+1

x

The latter two dependences are due to the serialization order.

Precedence on local states, due to write operations of transactions T

1

and

T

2

, are indicated with continuous arrows, while the ones due to the serialization

order are indicated with dashed arrows. Figure 7.1.b shows precedences on

local states when the serialization order is reversed.

7.3.2 Consistent Global States

A global state of the database is a set of local states, one from each data object.

A global state G = f�

i

1

1

; �

i

2

2

; : : : ; �

i

m

m

g is consistent if it does not contain two

dependent local states, i.e., if:

8x; y 2 [1; : : : ;m]) :(�

i

x

x

<

LS

�

i

y

y

)

Let us consider again Figure 7.1.a. The three global states (�

i

x

x

; �

i

y

y

; �

i

z

z

),

(�

i

x

x

; �

i

y

+1

y

; �

i

z

+1

z

) and (�

i

x

+1

x

; �

i

y

+1

y

; �

i

z

+1

z

) are consistent. The global state

(�

i

x

+1

x

; �

i

y

y

; �

i

z

+1

z

) is not consistent either because �

i

y

y

<

LS

�

i

x

+1

x

(due to the

fact T

1

<

T

T

2

) or because �

i

y

y

<

LS

�

i

z

+1

z

(due to the fact T

1

writes both y and

z). Intuitively, a non-consistent global state of the database is a global state

that could not be seen by any omniscient observer of the database.

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED

DATABASES 107

7.3.3 Consistent Global Checkpoints

A local checkpoint (or equivalently a data checkpoint) of a data object x is a

local state of x that has been saved in a safe place

4

by the data manager of

x. So, all the local checkpoints are local states, but only a subset of local

states are de�ned as local checkpoints. Let C

i

x

(i � 1) denote the i-th local

checkpoint of x; i is called the rank of C

i

x

(

5

). Note that C

i

x

corresponds to

some �

j

x

with i � j. A global checkpoint is a set of local checkpoints one for

each data object. It is consistent if it is a consistent global state.

We assume that all initial local states are checkpointed. Moreover, we also

assume that, when we consider any point of an execution E, each data object

will eventually be checkpointed.

7.4 Extension of Netzer-Xu Theory to Distributed

Databases

This section extends the Netzer-Xu theory to distributed databases. This

is done by introducing the notion of Dependence Path on data checkpoints,

which is analogous to the Z-path on checkpoints of process states in distributed

computations. Then the theorem stating the necessary and su�cient condition

for mutual consistency is proved. The structure of the proof of the theorem

is similar to the one of a theorem presented in [2] which proves an analogous

result for the case of shared memory.

7.4.1 Dependence on Data Checkpoints

As indicated in the previous section, due to write operations of each transac-

tion, or due to the serialization order, transactions create dependences among

local states of data objects. Let us consider the following 7 transactions ac-

cessing data objects x, y, z and u:

T

1

: R

1

(u); W

1

(u); commit

1

T

2

: R

2

(z); W

2

(z); commit

2

T

3

: R

3

(z); W

3

(z); W

3

(x); commit

3

T

4

: R

4

(z); R

4

(u); W

4

(z); commit

4

T

5

: R

5

(z); W

5

(y); W

5

(z); commit

5

T

6

: R

6

(y); W

6

(y); commit

6

T

7

: R

7

(x); W

7

(x); commit

7

4

For example, if x is stored on a disk, a copy is saved on another disk.

5

Checkpoints of data objects are denoted by a subscript and a superscript in order to

distinguish them from checkpoints of process states.

108

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

T

1

T

2

T

7

T

4

T

5

T

6

T

3

Figure 7.2: A Serialization Order.

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

������������
������������
������������
������������

������
������
������

������
������
������

T

1

z

u

y

x

T

2

T

3

T

3

T

5

T

5

T

4

T

6

T

7

�

5

x

�

6

x

�

4

y

�

7

z

�

8

z

�

9

z

�

8

u

�

7

x

� C

�

x

�

10

z

� C

�+1

z

�

7

u

� C

�

u

�

6

z

� C

�

z

�

5

y

�

6

y

� C

y

Figure 7.3: Data Checkpoint Dependences.

Figure 7.2 depicts the serialization imposed by the concurrency control

mechanism. Figure 7.3 describes dependences between local states generated

by this execution. Five local states are de�ned as data checkpoints (they

are indicated by dark rectangles). We study dependences between those data

checkpoints. Let us �rst consider C

�

u

and C

y

. C

�

u

is the (checkpointed) state

of u before T

1

wrote it, while C

y

is the (checkpointed) state of y after T

6

wrote

it (i.e., just after T

6

is committed). The serialization order (see Figure 7.2)

shows that T

1

<

T

T

6

, and consequently C

�

u

<

LS

C

y

, i.e., the data checkpoint

C

y

is causally dependent [33] on the data checkpoint C

�

u

(Figure 7.3 shows that

there is a directed path from C

�

u

to C

y

). Now let us consider the pair of data

checkpoints consisting of C

�

u

and C

�

x

. Figure 7.3 shows that C

�

u

precedes T

1

,

and that C

�

x

follows T

7

. Figure 7.2 indicates that T

1

and T

7

are not connected

in the serialization graph. So, there is no causal dependence between C

�

u

and

C

�

x

(Figure 7.3 shows that there is no directed path from C

�

u

to C

�

x

). But there

is no consistent global checkpoint including both C

�

u

and C

�

x

. In particular,

adding C

y

and C

�

z

to C

�

u

and C

�

x

cannot produce a consistent global state as

C

�

z

<

LS

C

�

x

; adding C

�+1

z

instead of C

�

z

has the same e�ect as C

�

u

<

LS

C

�+1

z

.

So there is a hidden dependence between C

�

u

and C

�

x

which prevents them to

belong to the same consistent global checkpoint.

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED

DATABASES 109

7.4.2 Dependence Path

In this section an uni�ed de�nition of dependence is provided which takes into

account both causal and hidden dependences.

De�nition 7.4.1 (Interval)

A checkpoint interval I

i

x

is associated with data checkpoint C

i

x

. It consists of

all the local states �

k

x

such that:

(�

k

x

= C

i

x

) _ (C

i

x

<

LS

�

k

x

<

LS

C

i+1

x

)

As an example, Figure 7.3 shows that I

�

z

includes 4 consecutive local states

of z. Note that, due to the assumptions on data checkpoints stated in Section

7.3.3, any local state belongs to exactly one interval. Let us call an edge of

the partial order on local states (<

LS

) a dependence edge.

De�nition 7.4.2 (Dependence Path)

6

There is a dependence path (DP) from a data checkpoint C

i

x

to C

j

y

(denoted

C

i

x

DP

! C

j

y

) i�:

(i) x = y and i < j; or

(ii) there is a sequence (d

1

; d

2

; : : : ; d

r

) of dependence edges, such that:

(1) d

1

starts after C

i

x

;

(2) 8d

q

: 1 � q < r: let I

k

z

be the interval in which d

q

arrives; then d

q+1

starts in the same or in a later interval (i.e., an interval I

h

z

such that

k � h)

7

;

(3) d

n

arrives before C

j

y

.

In the example depicted in Figure 7.3, the hidden dependence between C

�

u

and C

�

x

can be now denoted C

�

u

DP

! C

�

x

as C

�

u

= �

7

u

<

LS

�

9

z

(due to relation

<

T

), �

7

z

<

LS

�

6

x

and �

6

x

<

LS

�

7

x

= C

�

x

. Note that �

9

z

and �

7

z

belong to the

same checkpoint interval I

�

z

.

6

This de�nition generalizes the Z-path notion introduced in [40]. Recall that a Z-path is

a sequence of messages establishing a relation between two checkpoints of distinct processes.

While a message is a \concrete entity", a dependence edge is an \abstract entity". So, as

it will be shown by the theorem in next section, the dependence edge abstraction allows to

extend results of [40] to data checkpoints.

7

Note that d

q+1

can \start" before d

q

\arrives". This is where the dependence is \hidden".

If 8q d

q+1

\starts" after d

q

\arrives", then, the dependence path (d

1

; d

2

; : : : ; d

r

) is purely

causal.

110

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.4.3 Necessary and Su�cient Condition

Theorem 7.4.1

Let I � f1; : : : ;mg and S = fC

i

x

x

g

x2I

be a set of data checkpoints. Then S is

a part of a consistent global checkpoint if and only if:

R � 8x; y 2 I) :(C

i

x

x

DP

! C

i

y

y

)

Proof

If Part. It is proved that ifR is satis�ed then S can be included in a consistent

global checkpoint. Let us consider the global checkpoint de�ned as follows:

� if x 2 I, we take C

i

x

x

;

� if x 62 I, for each y 2 I we consider the integer m

x

(y) = minfi j :(C

i

x

DP

!

C

i

y

y

)g (with m

x

(y) = 1 if i

y

= 1 or if this set is empty). Then we take

C

i

x

x

with i

x

= max

y2I

(m

x

(y)). Let us note that, from that de�nition, it

is possible that i

x

= 1 (in that case, C

i

x

x

is an initial data checkpoint).

By construction, this global checkpoint satis�es the two following properties :

8x 62 I; 8y 2 I) :(C

i

x

x

DP

! C

i

y

y

) (7.1)

8x 62 I such that i

x

> 1; 9z 2 I : (i

z

> 1) ^ (C

i

x

�1

x

DP

! C

i

z

z

) (7.2)

We show that fC

i

1

1

; C

i

2

2

; : : : ; C

i

m

m

g is consistent. Assume the contrary. So,

there exists x and y and a dependence edge d that starts after C

i

x

x

and arrives

before C

i

y

y

. So, it follows that:

(i

y

> 1) ^ (C

i

x

x

DP

! C

i

y

y

) (7.3)

Four cases have to be considered:

1. x 2 I, y 2 I. (7.3) is contradicted by assumption R.

2. x 2 I, y 62 I. Since i

y

> 1, from (7.2) we have: 9z 2 I : (i

z

>

1) ^ (C

i

y

�1

j

DP

! C

i

z

z

).

As, at data x both the dependence edge ending the path C

i

x

x

DP

! C

i

y

y

, and

the dependence edge starting the path C

i

y

�1

y

DP

! C

i

z

z

belong to the same

interval, we conclude from (7.2) that 9z 2 I : (i

z

> 1) ^ (C

i

x

x

DP

! C

i

z

z

)

which contradicts the assumption R.

3. x 62 I, y 2 I. (7.3) contradicts (7.1).

7.4. EXTENSION OF NETZER-XU THEORY TO DISTRIBUTED

DATABASES 111

4. x 62 I, y 62 I. Since i

y

> 0, from (7.2) we have: 9z 2 I : (i

z

>

1) ^ (C

i

y

�1

y

DP

! C

i

z

z

).

As in case 2, we can conclude that 9z 2 I : (i

z

> 1) ^ (C

i

x

x

DP

! C

i

z

z

)

which contradicts (7.1).

Only If Part. It is proved that, if there is a consistent global checkpoint

fC

i

1

1

; C

i

2

2

; : : : ; C

i

n

n

g including S, then R holds for any I � f1; : : : ;mg. Assume

the contrary. So, there exist x 2 I and y 2 I such that (C

i

x

x

DP

! C

i

y

y

). From

the de�nition of

DP

! , there exists a sequence of dependence edges d

1

; d

2

; : : : ; d

p

such that:

d

1

starts in I

i

x

x

,

d

1

arrives after I

i

1

x

1

, d

2

starts in I

j

1

x

1

with i

1

� j

1

: : :

d

p�1

arrives in I

i

p�1

x

p�1

, d

p

starts in I

j

p�1

x

p�1

with j

p�1

� i

p�1

d

p

arrives in I

i

y

�1

y

We show by induction on p that, 8t � i

y

, C

i

x

x

and C

t

y

cannot belong to the

same consistent global checkpoint.

Base step. p = 1. In this case, d

1

starts after C

i

x

x

and arrives before C

i

y

y

, and

consequently the pair (C

i

x

x

; C

i

y

y

) cannot belong to a consistent global check-

point.

Induction step. We suppose the result true for some p � 1 and show that it

holds for p+ 1. We have:

d

1

starts in I

i

x

x

,

: : :

d

p

arrives in I

i

p

x

p

, d

p+1

starts in I

j

p

x

p

with i

p

� j

p

d

p+1

arrives in I

i

y

�1

y

From the assumption induction applied to the path of dependence edges

d

1

; : : : ; d

p

, we have: for any t � i

p

+ 1, C

i

x

x

and C

t

x

p

cannot belong to the

same consistent global checkpoint. Moreover, d

p+1

starts in I

j

p

x

p

and arrives in

I

i

y

�1

y

imply that, for any h � j

p

and for any t � i

y

, C

h

x

p

and C

t

y

cannot belong

to the same consistent checkpoint. Since i

p

� j

p

, it follows that no checkpoint

of x

p

can be included with C

i

x

x

and C

i

y

y

to form a consistent global checkpoint.

Q:E:D:

112

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

7.5 Deriving \Transaction-Induced" Checkpointing

Protocols

This section shows how previous theoretical results can be exploited to derive

checkpointing protocols for distributed databases.

Supposing that the set S includes only a checkpoint C of a data object,

the previous theorem leads to an interesting corollary:

Corollary 7.5.1

C belongs to a consistent global checkpoint i� :(C

DP

! C).

Hence, providing checkpointing protocols ensuring that :(C

DP

! C), guar-

antees the property P(C) de�ned at the beginning of this chapter. These type

of protocols are interesting for two reasons:

1. They avoid wasting time in taking a data checkpoint that will never be

used in any consistent global checkpoint, and

2. In case checkpointing is used for recovery purposes, no domino e�ect

can ever take place as any data checkpoint belongs to a consistent global

checkpoint.

To this purpose, let us assume that to each checkpoint C

i

x

is associated

a sequence number, denoted C

i

x

:sn, and that that each data manager DM

x

has a variable sn

x

, which stores the sequence number of the last checkpoint

of x (it is initialized to zero); furthermore, let i

x

denotes the rank of the last

checkpoint of x.

Consider the following property T S: \Let S

n

be the set formed by data

checkpoints with sequence number n. If S

n

includes a checkpoint per data

object, then it constitutes a consistent global checkpoint". In what follows

two checkpointing protocols are provided:

� the �rst protocol (A) guarantees P for all local checkpoints, and guar-

antees T S for any value of n.

� The second protocol (B) ensures P only for a subset of local checkpoints,

and T S for some particular values of n.

As already mentioned, actually those protocols can be seen as adaptations (to

the data-object/transaction model) of protocols in [12, 61].

In the proposed protocols, data managers can take checkpoints indepen-

dently of each other (basic checkpoints), for example, by using a periodic al-

gorithm which could be implemented by associating a timer with each data

7.5. DERIVING \TRANSACTION-INDUCED" CHECKPOINTING

PROTOCOLS 113

manager (a local timer is set whenever a checkpoint is taken; and a basic

checkpoint is taken by the data manager when its timer expires). Data man-

agers are directed to take additional data checkpoints (forced checkpoints) in

order to ensure P or T S. The decision to take forced checkpoints is based on

the control information piggybacked by commit messages of transactions.

The protocols consist of two interacting parts. The �rst part, shared by

both protocols, speci�es the checkpointing-related actions of transaction man-

agers. The second part de�nes the rules data managers have to follow to take

data checkpoints.

7.5.1 Protocols A and B: Behavior of a Transaction Manager

Let W

T

i

be the write set of a transaction T

i

managed by a transaction man-

ager TM

i

. We assume each time an operation of T

i

is issued by TM

i

to a data

manager DM

x

, it returns the value of x plus the value of its current sequence

number sn

x

. TM

i

stores in MAX SN

T

i

the maximum value among the se-

quence numbers of the data objects read or written by T

i

. When transaction

T

i

is committed, the transaction manager TM

i

sends a commit message to

each data manager DM

x

involved in W

T

i

. Such commit messages piggyback

MAX SN

T

i

.

7.5.2 Protocol A: Behavior of a Data Manager

As far as checkpointing is concerned, the behavior of a data manager DM

x

is de�ned by the two following procedures namely take-basic-ckpt and

take-forced-ckpt. They de�ne the rules associated with checkpointing.

take-basic-ckpt(A) :

When the timer expires:

(AB1) i

x

 i

x

+ 1; sn

x

 sn

x

+ 1;

(AB2) Take checkpoint C

i

x

x

; C

i

x

x

:sn sn

x

;

(AB3) Reset the local timer.

take-forced-ckpt(A) :

When DM

x

receives commit(MAX SN

T

i

) from TM

i

:

if sn

x

< MAX SN

T

i

then

(A1) i

x

 i

x

+ 1; sn

x

 MAX SN

T

i

;

(A2) Take a (forced) checkpoint C

i

x

x

;

C

i

x

x

:sn sn

x

;

(A3) Reset the local timer.

endif;

(A4) process the commit message.

114

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

From the increase of the timestamp variable sn

x

of a data object x, and

from the rule associated with the taking of forced checkpoints (which forces a

data checkpoint whenever sn

x

< MAX SN

T

i

), the condition :(C

i

x

x

DP

! C

i

x

x

)

follows for any data checkpoint C

i

x

x

. Actually, this simple protocol ensures

that, if C

i

x

x

DP

! C

i

y

y

, then C

i

x

x

:sn < C

i

y

y

:sn (analogously to the protocols in

[12, 36, 28] discussed in Chapter 3).

It follows from the previous observation that if two data checkpoints have

the same sequence number, then they cannot be related by

DP

! . So, all the

sets S

n

that exist are consistent. Note that the take-forced-ckpt(A) rule

may produce gaps in the sequence of timestamps assigned to data checkpoints

of a data object x. When no data checkpoint of a data object x has sequence

number n, then the �rst data checkpoint of x with sequence number greater

than n can be included in a set containing data checkpoints with sequence

number n, to form a consistent global checkpoint (analogously to what happens

in checkpoint and communication patterns of distributed computations when

considering the protocol by Briatico et al. [12]).

7.5.3 Protocol B: Behavior of a Data Manager

This protocol introduces a system parameter Z � 1 known by all the data

managers [61]. When considering a data object x, this protocol ensures

:(C

x

DP

! C

x

) only for a subset of data checkpoints, namely, those whose

sequence numbers are equal to a� Z (where a � 0 is an integer). Moreover,

when there is a data checkpoint with sequence number a � Z for each data

object x, then the global checkpoint S

aZ

exists and is consistent.

The rule take-basic-ckpt(B) is the same as the one of the protocol A.

In addition to the previous control variables, each data manager DM

x

has an

additional variable V

x

, which is incremented by Z each time a data checkpoint

with sequence number aZ is taken. The rule take-forced-ckpt(B) is the

following:

take-forced-ckpt(B) :

When DM

x

receives commit(MAX SN

T

i

) from TM

i

:

if V

x

< MAX SN

T

i

then

(B1) i

x

 i

x

+ 1; sn

x

 bMAX SN

T

i

=Zc � Z;

(B2) Take a (forced) checkpoint C

i

x

x

;

C

i

x

x

:sn sn

x

;

(B3) Reset the local timer;

(B4) V

x

 V

x

+ Z.

endif;

(B5) Process the commit message.

7.5. DERIVING \TRANSACTION-INDUCED" CHECKPOINTING

PROTOCOLS 115

7.5.4 Short Comparison with Previous Protocols

This section presents three checkpointing protocols proposed in the context

of distributed databases [41, 43, 52]. Then the main di�erences among these

protocols and the solutions proposed in this chapter are discussed.

The protocol in [52] determines a consistent global checkpoint by means of

a two phase protocol using a checkpoint coordinator process that exchanges

messages with its checkpoint subordinates processes one for each site. Each

site maintains an independent local timestamp (like Lamport scalar clocks

[33]) and a timestamp is associated with each transaction

8

. The �rst phase

is used to agree on a common timestamp value among all sites. This value,

say n, actually slits database's transactions into two groups the one that has

a timestamp less or equal to n and the ones with timestamp greater than

n. In the second phase, the checkpoint process in each site is delayed till all

transactions whose timestamp is less than or equal to n are committed. Once

the checkpoint process dumped the database state in a safe place, transactions

whose timestamp is greater than n are executed. Note that during the �rst

phase, the transactions are not stopped, however their updates are stored in

a private area that can be read by the checkpointing process to execute a

transaction-consistent dump. A similar approach using control messages to

split transactions in two groups in order to get globally transaction consistent

checkpoints has been proposed by Kim and Park in [30].

The protocol in [43] assumes each data object has a colour either black or

white. Before the checkpointing process starts all data objects are white. The

black colour indicates that the data object has been read by the checkpointing

process. The checkpointing process continues till all data objects are black.

Transactions takes a colour from the data objects they access. A transaction

is white (resp. black) if all data object it accessed were white (resp. black). A

transaction is grey if it accessed at least one black and one white data object.

In a �rst version of the protocol, written by Pu ([42]), the protocol aborted each

grey transaction in order to ensure serializability and to determine transaction-

consistent global checkpoints. The protocol in [43] is a more re�ned version of

[42], namely save some, which avoids to abort grey transactions by saving the

before values of the data objects updated by each grey or white transaction

in a private memory area accessible to the checkpointing process. This allows

to execute a transaction consistent dump of the database. Compared to [52],

the protocol in [43] splits transaction into two groups in a lazy way (by means

of an \infection" from data objects) without exchanging control messages.

However this approach increases the transaction response time and requires an

unbounded memory capacity (the private memory required for saving before

8

As it uses timestamps, this protocol is well suited to concurrency control based on

timestamp.

116

CHAPTER 7. CONSISTENT CHECKPOINTING IN DISTRIBUTED

DATABASES

values could be larger than the size of the database itself) as it is expected

that grey transactions will be a wider majority of all transactions.

The protocol in [41] modi�es [43] in order to bound the size of the required

private memory. The checkpoint process is implemented as a set of read-only

transactions one for each data object. Each data object has a colour white,

grey or black. Initially each data object is white. Transactions can be black or

white. Initially checkpointing transactions are black and normal transactions

can be either black or white. A normal transaction turns black after either

overwriting a gray data object or accessing a black data object. A data object

changes from white to gray (resp. black) when a �nally black transaction (i.e.,

a transaction which is black at the commit time) reads (resp. overwrites) it.

A data object changes from grey to black when written by any transaction.

A consistent global checkpoint of the database is formed by the �nal non-

black state of each data object. The introduction of the grey colour actually

delays the time of reading of the data object by the checkpoint transaction,

this reduces the size of the required private memory compared to [43]. On

the other hand, transaction response time is increased by the previous delay

and by the fact that the concurrency control has to manage the checkpointing

transactions.

Compared to [52], the checkpointing protocols presented in this chapter

employ a lazy coordination among data managers (neither control messages

or a checkpoint coordinator is required). As opposed to [43] and [41], the pro-

posed protocols do not overload the concurrency control with special purpose

checkpointing transactions and do not need to manage colours. Moreover,

they do not need private memory to be read by the checkpointing process to

store partial transaction updates. On the negative side, the safe memory area

where storing a copy of the checkpointed data objects can be larger than the

size of the entire database (many checkpoints with distinct sequence numbers

of a data object can be stored in the safe area at the same time). However,

this size can be kept as small as possible by running frequently a garbage

collection procedure.

Bibliography

[1] R. Baldoni, G. Cio�, J.M. H�elary and M. Raynal, Direct Dependency-

Based Determination of Consistent Global Checkpoints, Tech. Rep. 12-

98, Dipartimento di Informatica e Sistemistica, Universita' di Roma \La

Sapienza", 1998.

[2] R. Baldoni, J.M. H�elary and M. Raynal, Consistent Records in Asyn-

chronous Computations, Acta Informatica 35:441-455, 1998.

[3] R. Baldoni, J.M. H�elary and M. Raynal, Rollback Dependency Trackabil-

ity: Visible Characterizations, Proc. ACM Symposium on the Principles

on Distributed Computing, 1999.

[4] R. Baldoni, J.M. H�elary, A. Mostefaoui and M. Raynal, A

Communication-Induced Checkpointing Protocol that Ensures Rollback-

Dependency Trackability, Proc. IEEE Int. Symposium on Fault Tolerant

Computing, 1997, pp. 68-77.

[5] R. Baldoni, J.M. H�elary, A. Mostefaoui and M. Raynal, Adaptive Check-

pointing in Message Passing Distributed Systems, International Journal

of Systems Science, 28(11):1145-1161, 1997.

[6] R. Baldoni, F. Quaglia and P. Fornara, An Index-Based Checkpointing

Algorithm for Autonomous Distributed Systems, Proc. IEEE Int. Sym-

posium on Reliable Distributed Systems, 1997, pp. 27-34 (an expanded

version appeared on IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 10, no.2, February 1999).

[7] R. Baldoni, F. Quaglia and B. Ciciani, A VP-Accordant Checkpointing

Protocol Preventing Useless Checkpoints, Proc. IEEE Int. Symposium on

Reliable Distributed Systems, 1998, pp. 61-67.

[8] G. Barigazzi and L. Strigini, Application-Transparent Setting of Recovery

Points, Proc. IEEE Fault Tolerant Computing Symposium, 1983, pp. 48-

55.

117

118 BIBLIOGRAPHY

[9] B. Bhargava and S.R. Lian, Independent Checkpointing and Concur-

rent Rollback for Recovery, Proc. IEEE Int. Symposium on Reliable Dis-

tributed Systems, 1988, pp. 3-12.

[10] P.A. Bernstein, V. Hadzilacos and Goodman, Concurrency Control and

Recovery in Database systems, Addison Wesley Publishing Co., Reading,

MA, 1987.

[11] Y. Breitbart, D. Georgakopoulos, M. Rusinkiewicz and A. Silberschatz,

On Rigorous Transaction Scheduling, IEEE Transactions on Software En-

gineering, 17(9):954-960, 1991.

[12] D. Briatico, A. Ciu�oletti and L. Simoncini, A Distributed Domino-E�ect

Free Recovery Algorithm, in Proc. IEEE Int. Symposium on Reliability

Distributed Software and Database, pp. 207-215, 1984.

[13] J. Cao and K.C. Wang, An Abstract Model for Rollback Recovery Control

in Distributed Systems, ACM Operating Systems Review, 1992, pp. 62-76.

[14] K.M. Chandy and L. Lamport, Distributed Snapshots: Determining

Global States of Distributed Systems, ACM Transactions on Computer

Systems, 3(1):63-75, 1985.

[15] B. Ciciani and G. Cantone, An Approach to an Optimal Strategy of Re-

covery Point Insertion in Distributed Fault Tolerant Computing Systems,

Proc. 24th Allerton Conference on Communication, Control and Com-

puting, 1986, pp. 964-972.

[16] R. Cooper and K. Marzullo, Consistent Detection of Global Predicates,

Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, 1991,

pp. 163-173.

[17] F. Cristian and F. Jahanian, A Timestamp-Based Checkpointing Protocol

for Long-Lived Distributed Computations, Proc. IEEE Int. Symposium

on Reliable Distributed Systems, 1991, pp. 12-20.

[18] C. Critchlow and K. Taylor, The Inhibition Spectrum and the Achieve-

ment of Causal Consistency, Tech. Rep. TR 90-1101, Cornell University,

1990.

[19] E.N. Elnozahy, D.B. Johnson and Y.M. Wang, A Survey of Rollback-

Recovery Protocols in Message-Passing Systems, Technical Report

No.CMU-CS-96-181, School of Computer Science, Carnegie Mellon Uni-

versity, 1996.

BIBLIOGRAPHY 119

[20] E.N. Enolzahy and W. Zwaenepoel, Manetho: Transparent Rollback-

Recovery with Low Overhead, IEEE Transactions on Computers,

41(5):526-531, 1992.

[21] C. Fidge, Logical Time in Distributed Computing Systems, IEEE Com-

puter, pp. 28-33, August 1991.

[22] J. Fowler and W. Zwaenepoel, Causal Distributed Breakpoints, Proc.

IEEE Int. Conference on Distributed Computing Systems, 1990, pp. 134-

141.

[23] E. Fromentin, N. Plouzeau and M. Raynal, An Introduction to the Anal-

ysis and Debug of Distributed Computations, Proc. IEEE International

Conference on Algorithms and Architectures for Parallel Processing, 1995,

pp. 545-554.

[24] E. Fromentin and M. Raynal, Shared Global States in Distributed Com-

putations, Journal of Computer and System Sciences, vol. 55, no. 3, 1997.

[25] K. Geihs and M. Seifert, Automated Validation of a Co-operation Proto-

col for Distributed Systems, Proc. IEEE Int. Conference on Distributed

Computing Systems, 1986, pp. 436-443.

[26] J.N. Gray and A. Reuter, Transaction Processing: Concepts and Tech-

niques, Morgan Kaufmann, 1070 pages, 1993.

[27] J.M. H�elary, A. Most�efaoui and M. Raynal, Virtual Precedence in Asyn-

chronous Distributed Systems: Concept and Applications. Proc. 11th Int.

Workshop on Distributed Algorithms, Springer-Verlag LNCS 13220, 1997,

pp. 170-184.

[28] J.M. H�elary, A. Most�efaoui, R.H.B. Netzer and M. Raynal, Preventing

Useless Checkpoints in Distributed Computations. Proc. 16th IEEE Sym-

posium on Reliable Distributed Systems, 1997, pp. 183-190.

[29] D.B. Johnson andW. Zwaenepoel, Recovery in Distributed Systems Using

Optimistic Message Logging and Checkpointing, Journal of Algorithms,

11(3):462-491, 1990.

[30] J.L. Kim and T. Park, An E�cient Recovery Scheme for Locking-Based

Distributed Database Systems, Proc. 13th IEEE Symposium on Reliable

Distributed Systems, 1997, pp. 183-190.

[31] R. Koo and S. Toueg, Checkpointing and Rollback-Recovery for Dis-

tributed Systems, IEEE Transactions on Software Engineering, 13(1):23-

31, 1987.

120 BIBLIOGRAPHY

[32] T.H. Lay and T.H. Yang, On Distributed Snapshots, Information Pro-

cessing Letters, 25:153-158, 1987.

[33] L. Lamport, Time, Clocks and The Ordering of Events in a Distributed

System, Communications of the ACM, 21(7):558-565, 1978.

[34] K. Marzullo and G. Neiger, Detection of Global State Predicates, Proc.

Int. Workshop on Distributed Algorithms, 1991.

[35] D. Manivannan, R.H.B. Netzer and M. Singhal, Finding Consistent

Global Checkpoints in a Distributed Computation, IEEE Transactions

on Parallel and Distributed Systems, 8(6):623-627, 1997.

[36] D. Manivannan and M. Singhal, A Low-Overhead Recovery Technique

Using Quasi Synchronous Checkpointing, Proc. IEEE Int. Conference on

Distributed Computing Systems, 1996, pp. 100-107.

[37] D. Manivannan and M. Singhal, Quasi-Synchronous Checkpointing: Mod-

els, Characterization, and Classi�cation, TR No. OSU-CISRC-5/96-

TR33, Dept. of Computer and Information Science, The Ohio State Uni-

versity, 1996.

[38] F. Mattern, Virtual Time and Global States of Distributed Systems, In

Proc. of the International Workshop on Parallel and Distributed Algo-

rithms, 1989, pp. 215-226.

[39] B. Miller and J. Choi, Breakpoints and Halting in Distributed Programs,

Proc. IEEE International Conference on Distributed Computing Systems,

1988, pp. 316-323.

[40] R.H.B. Netzer and J. Xu, Necessary and Su�cient Conditions for Con-

sistent Global Snapshots, IEEE Transactions on Parallel and Distributed

Systems, 6(2):165-169, 1995.

[41] S. Pilarski and T. Kameda, Checkpointing for Distributed Databases:

Starting from the Basics, IEEE Transactions on Parallel and Distributed

Systems, 3(5):602-610, 1992.

[42] C. Pu, On-the-
y, Incremental, Consistent Reading of Entire Databases,

Algorithmica, 1(3):271-287, 1986.

[43] C. Pu, H. Hong and J.M. Wha, Performance Evaluation of Global Read-

ing of Entire Databases, Proc. International Symposium on Databases in

Parallel and Distributed Systems, 1988, pp. 167-176.

BIBLIOGRAPHY 121

[44] F. Quaglia, R. Baldoni and B. Ciciani, A Low-Overhead Z-Cycle-Free

Checkpointing Algorithm for Distributed Systems, Proc. European Re-

search Seminar on Advances in Distributed Systems, 1997, pp. 198-203.

[45] F. Quaglia, B. Ciciani and R. Baldoni, A Checkpointing-Recovery Scheme

for Distributed Systems, in Dimiter R. Avresky, David R. Kaeli, editors,

"Fault Tolerant Parallel and Distributed Systems" (Chapter 5), Kluwer

Academic Publishers, 1998.

[46] F. Quaglia, R. Baldoni and B. Ciciani, On the No-Z-Cycle Porperty in

Distributed Executions, Tech. Rep. 01-99, Dipartimento di Informatica e

Sistemistica, Universita' di Roma \La Sapienza", January 1999.

[47] F. Quaglia, B. Ciciani and R. Baldoni, Checkpointing Protocols in Dis-

tributed Systems with Mobile Hosts: a Performance Analysis, Proc. 3rd

Workshop on Fault Tolerant Parallel and Distributed Systems, LNCS

1388, 1998, pp.742-755.

[48] P. Ramanathan and K.G. Shin, Use of Common Time Base for Check-

pointing and Rollback Recovery in Distributed Systems, IEEE Transac-

tions on Software Engineering, 19(6):571-583, 1993.

[49] B. Randell, System Structure for Software Fault Tolerance, IEEE Trans-

actions on Software Engineering, SE1(2):220-232, 1975.

[50] D.L. Russell, State Restoration in Systems of Communicating Processes,

IEEE Transactions on Software Engineering, SE6(2): 183-194, 1980.

[51] K. Salem and H. Garcia-Molina, Checkpointing Memory Resident

Databases, Tech. Rep. CS-TR-126-87, Department of Computer Science,

Princeton University, December 1987.

[52] S.H. Son and A.K. Agrawala, Distributed Checkpointing for Globally

Consistent States of Databases, IEEE Transactions on Software Engi-

neering, 15(10):1157-1166, 1989.

[53] R.E. Strom, S.A. Yemini and D.F. Bacon, A Recoverable Object Store,

Proc. Hawaii Int. Conference on Sistem Science, 1998, pp. II-215-II-221.

[54] R.E. Strom, D.F. Bacon and S.A. Yemini, Volatile Logging in n-Fault-

Tolerant Distributed Systems, Proc. IEEE Int. Symposium on Fault Tol-

erant Computing, 1988, pp. 44-49.

[55] Y. Tamir and C.H Sequin, Error Recovery in Multicomputers Using

Global Checkpoints, Proc. Int. Conference on Parallel Processing, 1984,

pp. 32-41.

122 BIBLIOGRAPHY

[56] Z. Tong, R.Y. Kain and T. Tsai, Rollback Recovery in Distributed Sys-

tems Using Loosely Synchronized Clocks, IEEE Transactions on Parallel

and Distributed Systems, 3(2):246-251, 1992.

[57] K.Tusuoka, A. Kaneko and Y. Nishihara, Dynamic Recovery Schemes

for Distributed Processes, Proc. IEEE Int. Symposium on Reliability in

Distributed Software and Databases, 1981, pp.124-130.

[58] K. Vankatesh, T. Radakrishanan, and H.L. Li. Optimal Checkpointing

and Local Recording for Domino-Free Rollback-Recovery, Information

Processing Letters, 25:295-303, 1987.

[59] Y.M. Wang, A. Lowry and W.K. Fuchs, Consistent Global Checkpoints

Based on Direct Dependency Traking, Information Processing Letters,

50(4): 223-230, 1994.

[60] Y.M. Wang and W.K. Fuchs, Optimistic Message Logging for Indepen-

dent Checkpointing in Message Passing Systems, in Proc. IEEE Int. Sym-

posium on Reliable Distributed Systems, pp. 147-154, 1992.

[61] Y.M. Wang and W.K. Fuchs, Lazy Checkpoint Coordination for Bound-

ing Rollback Propagation, in Proc. IEEE Int. Symposium on Reliable

Distributed Systems, pp. 78-85, 1993.

[62] Y.M. Wang, Space Reclamation for Uncordinated Checkpointing in

Message-Passing Systems, PhD Thesis, Department of Electrical and

Computer Engineering, University of Illinois at Urbana Champaign, 1993.

[63] Y.M. Wang, Maximum and Minimum Consistent Global Checkpoints and

Their Applications, Proc. IEEE Int. Symposium on Reliable Distributed

Systems, 1995, pp. 86-95.

[64] Y.M. Wang, Consistent Global Checkpoints That Contain a Given Set

of Local Checkpoints. IEEE Transactions on Computers, 46(4):456-468,

1997.

[65] Y.M. Wang, Y. Huang, W.K. Fuchs, C. Kintala and G. Suri, Progres-

sive Retry for Software Failure Recovery in Message-Passing Applications.

IEEE Transactions on Computers, 46(10):1137-1141, 1997.

[66] Y.M. Wang, Y. Huang, K.P. Vo, P.Y. Chung and C. Kintala, Check-

pointing and its Applications. IEEE Int. Symposium on Fault Tolerant

Computing, 1995, pp. 22-31.

[67] J. Xu and R. Netzer, Adaptive Independent Checkpointing for Reduc-

ing Rollback Propagation, Proc. IEEE Symposium on Parallel and Dis-

tributed Processing, 1993, pp. 154-161.

Glossary

List of abbreviations

CAS : Checkpoint-After-Send

CASBR : Checkpoint-After-Send-Before-Receive

CBR : Checkpoint-Before-Receive

CZC : Core Z-Cycle

DP : Dependence Path

PESCM : Prime-Elementary-Simple-Causal-Message

EZC : Elementary Z-Cycle

FDAS : First Dependency-After-Send

FDI : Fixed Dependency Interval

MRS : Mark Receive Send

PWD : Piecewise-Deterministic

NZC : No-Z-Cycle property

PZC : Prime Z-Cycle

RDT : Rollback-Dependency-Trackability property

SCZC : Suspect Core Z-Cycle

SZpF : Strictly Z-path Free

VP : Virtual Precedence property

ZpF : Z-path Free

Notations

m : message

[m

1

; : : : ;m

q

] : sequence of q messages constituting a Z-path

send(m) : send event of message m

receive(m) : receive event of message m

� : message chain

� : causal message chain

j�j : number of messages of the chain �

123

124 BIBLIOGRAPHY

S(�) : sequence of checkpoint intervals associated to �

P : set of all processes

P

i

: process of identity i

e

i;x

: x-th event of P

i

C

i;x

: x-th checkpoint of P

i

I

i;x

: x-th checkpoint interval of P

i

�

P

: precedence on events in a process

�

m

: precedence on events due to message exchange

e

! : Happened-Before relation on events

I

! : precedence relation on checkpoint intervals

� : causal concatenation

� : non-causal concatenation

�

ckpt

: precedence relation on checkpoints

M(C

i;x

; P

k

) : set of causal message chains from C

i;x

to P

k

min(M(C

i;x

; P

k

)) : set of minimum elements in M(C

i;x

; P

k

)

sn

i

: sequence number of P

i

en

i

: equivalence number of process P

i

H : set of all events

b

H : partially ordered set (H;

e

!)

C

b

H

: set of all local checkpoints

T : set of all transactions

T

i

: transaction of identity i

<

T

: precedence relation on transactions

�

i

x

: i-th version of data object x

<

LS

: precedence on local states of data objects

C

i

x

: i-th checkpoint of data object x

DP

! : precedence relation due to a Dependence Path

Universit�a La Sapienza

Dottorato di Ricerca in Ingegneria Informatica

Collana delle tesi

Collection of Theses

V-93-1 Marco Cadoli. Two Methods for Tractable Reasoning in Arti�cial

Intelligence: Language Restriction and Theory Approximation. June

1993.

V-93-2 Fabrizio d'Amore. Algorithms and Data Structures for Partitioning

and Management of Sets of Hyperrectangles. June 1993.

V-93-3 Miriam Di Ianni. On the complexity of
ow control problems in Store-

and-Forward networks. June 1993.

V-93-4 Carla Limongelli. The Integration of Symbolic and Numeric Compu-

tation by p-adic Construction Methods. June 1993.

V-93-5 Annalisa Massini. High e�ciency self-routing interconnection net-

works. June 1993.

V-93-6 Paola Vocca. Space-time trade-o�s in directed graphs reachability

problem. June 1993.

VI-94-1 Roberto Baldoni. Mutual Exclusion in Distributed Systems. June

1994.

VI-94-2 Andrea Clementi. On the Complexity of Cellular Automata. June

1994.

VI-94-3 Paolo Giulio Franciosa. Adaptive Spatial Data Handling. June 1994.

VI-94-4 Andrea Schaerf. Query Answering in Concept-Based Knowledge

Representation Systems: Algorithms, Complexity, and Semantic Issues.

June 1994.

VI-94-5 Andrea Sterbini. 2-Thresholdness and its Implications: from the

Synchronization with PVchunk to the Ibaraki-Peled Conjecture. June

1994.

VII-95-1 Piera Barcaccia. On the Complexity of Some Time Slot Assignment

Problems in Switching Systems. June 1995.

VII-95-2 Michele Boreale. Process Algebraic Theories for Mobile Systems.

June 1995.

VII-95-3 Antonella Cresti. Unconditionally Secure Key Distribution Proto-

cols.

June 1995.

VII-95-4 Vincenzo Ferrucci. Dimension-Independent Solid Modeling. June

1995.

VII-95-5 Esteban Feuerstein. On-line Paging of Structured Data and Multi-

threaded Paging. June 1995.

VII-95-6 Michele Flammini. Compact Routing Models: Some Complexity

Results and Extensions. June 1995.

VII-95-7 Giuseppe Liotta. Computing Proximity Drawings of Graphs. June

1995.

VIII-96-1 Luca Cabibbo. Querying and Updating Complex-Object Databases.

May 1996.

VIII-96-2 Diego Calvanese. Unrestricted and Finite Model Reasoning in

Class-Based Representation Formalisms. May 1996.

VIII-96-3 Marco Cesati. Structural Aspects of Parameterized Complexity.

May 1996.

VIII-96-4 Flavio Corradini. Space, Time and Nondeterminism in Process

Algebras. May 1996.

VIII-96-5 Stefano Leonardi. On-line Resource Management with Application

to Routing and Scheduling. May 1996.

VIII-96-6 Rosario Pugliese. Semantic Theories for Asynchronous Languages.

May 1996.

IX-97-1 Paola Alimonti. Local search and approximability of MAX SNP

problems. May 1997.

IX-97-2 Tiziana Calamoneri. Does Cubicity Help to Solve Problems?. May

1997.

IX-97-3 Paolo Di Blasio. A Calculus for Concurrent Objects: Design and

Control Flow Analysis. May 1997.

IX-97-4 Bruno Errico. Intelligent Agents and User Modelling. May 1997.

IX-97-5 Roberta Mancini. Modelling Interactive Computing by exploiting the

Undo. May 1997.

IX-97-6 Riccardo Rosati. Autoepistemic Description Logics. May 1997.

IX-97-7 Luca Trevisan. Reductions and (Non-)Approximability. May 1997.

X-98-1 Gianluca Battaglini. Analysis of Manufacturing Yield Evaluation of

VLSI/WSI Systems: Methods and Methodologies. April 1998.

X-98-2 Piergiorgio Bertoli. Using OMRS in practice: a case study with Acl-2.

April 1998.

X-98-3 Chiara Ghidini. A semantics for contextual reasoning: theory and

two relevant applications. April 1998.

X-98-4 Roberto Giaccio. Visiting complex structures. April 1998.

X-98-5 Giampaolo Greco. Dimension and structure in Combinatorics. April

1998.

X-98-6 Paolo Liberatore. Compilation of intractable problems and its appli-

cation to arti�cial intelligence. April 1998.

X-98-7 Fabio Massacci. E�cient approximate tableaux and an application to

computer security. April 1998.

X-98-8 Chiara Petrioli. Energy-Conserving Protocols for Wireless Communi-

cations. April 1998.

X-98-9 Giulio Balestreri. Algebraic Semantics of Shared Spaces Coordination

Languages. April 1999.

XI-99-1 Luca Becchetti. E�cient Resource Management in High Bandwidth

Networks. April 1999.

XI-99-2 Nicola Cancedda. Text Generation from Message Understanding

Conference Templates. April 1999.

XI-99-3 Luca Iocchi. Design and Development of Cognitive Robots. April

1999.

XI-99-4 Francesco Quaglia. Consistent checkpointing in distributed computa-

tions: theoretical results and protocols. April 1999.

XI-99-5 Milton Romero. Disparity/Motion Estimation For Stereoscopic Video

Processing. April 1999.

