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CHAPTER1
Introduction

Go back?. . .No good at all! Go sideways? Impossible! Go forward? Only thing

to do! On we go!
— Bilbo Baggins, The Hobbit

The last decade has seen the rise of challenging large-scale resource-

intensive scientific computations and the emergence of Cloud Computing

(CC) as a prominent computing system. Historically, CC revealed itself as

an excellent choice to run high-performance software at a competitive cost.

The explosion of applications ready to be run on the cloud has allowed end

users to break the wall of on premise computation, making their soutions

available without the need of expensive computing systems. Yet, its growth

didn’t come at the same speed as the increase of programming paradigms

and abstractions. Indeed, CC exploitation in high-performance applica-

tions still largely relies on programmers’ distributed/parallel programming

skills, which are prerogatives of a restricted set of experts. If, for instance,

serverless computing can be considered very convenient in terms of degree of

freedom for developers and in terms of price, it on the other hand presents

limitation for certain high-performance computing workloads (resource re-

strictions, harder debugging, etc). At the same time, new virtualization

(and containerization) techniques provide lightweight and fault-tolerant de-

ployments of applications while maintaining low prices for their execution.

1
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However, while CC is gaining access to flexibility in terms of hardware and

software capabilities, it is someway increasing the programmers’ oblivious-

ness of the underlying platform. Indeed, software abstractions represent a

clear tradeoff between programmability and performance, as the cost associ-

ated with the production of code handling the underlying platform is masked

by the provided easiness of the deployment on cloud clusters. Therefore,

it is necessary to provide a methodology accessible to the masses, which

is at the same time ensuring high performance standards. For this reason

academic communities are spending a lot of effort on it. As an example,

the Partitioned Global Address Space (PGAS, [Sti09]) programming model

gives developers the possibility to generate code that can be efficiently run

on top of parallel/distributed architectures, possibly made of VMs. How-

ever, while providing significant advantages, this solution fails at preventing

demand from coders high skills since it is based on particular programming

languages such as Unified Parallel C, Co-Array Fortran and Titanium.

As far as programmability is concerned, the increased complexity of

new (possibly heterogeneous) architectures has brought the IT industry and

research to develop efficient Domain-Specific Languages (DSL) to provide

ad-hoc primitives for certain areas of interest, typically scientific. Indeed,

a DSL targeting a specific field allows experts of the domain to focus only

on relevant aspects of the problem of interest rather than handling issues

related to the architecture the software needs to run on. While the approach

looks promising, unfortunately, in the context of more compute-intensive

domains, there is still a significant lack of well-accepted DSLs.

One of the main purposes of this thesis is to provide the reader with

solutions to deploy complex compute-intensive applications implemented

with simplified programming models on top of arbitrarily complex paral-

lel/distributed infrastructures. In fact, a core aspect tackled in this thesis
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is transparency, in the sense that tools and methodologies are provided to

the final developer with no (or slight) modifications to the original code,

allowing them to continue using the original (sequential) code on top of

multi-core or clusters of machines. By avoiding the need for fine-tuning the

code to cope with architecture-specific characteristics, the productivity of

programmers is enhanced, resulting in i) faster development, ii) reduced de-

bugging time, iii) no high skill requirements for problems to be run on top

of supercomputers, iv) increased testability. On the other hand, the results

of this thesis also provide solutions that require the end-user to intervene

concretely. In fact, there are situations in which having a high degree of

freedom in customizing runtime environments can provide much better per-

formance or more accurate results. Moreover, it is often the case that the

programmers are aware of some insight the system can be fed with to impact

the overall execution. Therefore, the results of this thesis are comprehen-

sive of the tradeoff between programmability and final performance level,

providing tools to abstract the low-level difficulties of parallel/distributed

computing platforms and, at the same time, the possibility to deliberately

tune computing environments to their needs.

The research context that has been chosen for the realization of the

goals mentioned earlier is simulation, and this choice has been made for

several reasons. First of all, this is a hot field in the scientific world since

many researchers demand timely production of simulated outputs in critical

scenarios of decision making, for example, in symbiotic systems or what-if

analysis ([ATCL09], and [AST07], respectively). Moreover, the last two

years have proven that the request for simulation of real-world scenarios

is really crucial: the COVID-19 pandemics had impacts on many fields,

spanning from supply chain to healthcare systems, and trying to predict

what the consequences of the adopted measures to stop the spreading of the
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disease could be is considered more and more a concern. This is confirmed by

the number of publications that moved at a fast pace towards this direction:

examples of such research results can be found in [Iva20], and [WCDC+20].

Secondly, the simulation field often deals with problems which domain

inherently requires a high amount of parallelism. This happens because

simulation runs need to process models that are constantly growing in their

size, in terms of parameters, actors playing in the environment, data to be

processed for statistics purposes, dimension of datasets to be analyzed, etc.

Finally, being a vast field involving many scientific areas, it is often the

case that scientists defining the models to be simulated are not computer

science specialists. Rather, they belong to a plethora of different areas, in-

cluding, for instance, meteorology, biology, economy, finance, neuroscience,

etc. Therefore, since their area of expertise does not necessarily involve

computer science concepts, taking care of concerns related to system archi-

tectures or performance is a requirement of the tools exploited to carry on

the simulations of interest. For all these reasons, simulation can be consid-

ered a well-suited context to implement the aforementioned transparent and

performance-oriented tools to reduce the burden of complex parallel pro-

gramming concerns to final developers (i.e., scientists writing their models).

The results presented in this thesis appear in the following publications:

1. Matteo Principe, Tommaso Tocci, Alessandro Pellegrini, Francesco

Quaglia: Porting Event & Cross-State Synchronization to the Cloud.

SIGSIM-PADS 2018: 177-188

2. Matteo Principe, Tommaso Tocci, Pierangelo di Sanzo, Francesco

Quaglia, Alessandro Pellegrini: A Distributed Shared Memory Mid-

dleware for Speculative Parallel Discrete Event Simulation. ACM

Trans. Model. Comput. Simul. 30(2): 11:1-11:26 (2020)
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3. Matteo Principe, Andrea Piccione, Alessandro Pellegrini, Francesco

Quaglia: Approximated Rollbacks. SIGSIM-PADS 2020: 23-33

4. Andrea Piccione, Matteo Principe, Alessandro Pellegrini, Francesco

Quaglia: An Agent-Based Simulation API for Speculative PDES Run-

time Environments. SIGSIM-PADS 2019: 83-94

As a last note, all the research spent in the years of my doctorate also

produced contributions to the scientific community of interest. Particularly,

review processes led to the publication of the following papers:

• Matteo Principe: Reproducibility Report for the Paper: Probing

the Performance of the Edinburgh Bike Sharing System using SSTL.

SIGSIM-PADS 2020: 153-155

• Emilio Incerto, Matteo Principe: Reproducibility Report for the Pa-

per: “Differentiable Agent-Based Simulation for Gradient-Guided

Simulation-Based Optimization”. SIGSIM-PADS 2021: 39-43



CHAPTER2
Research background and

attained results

All we have to decide is what to do with the time that is given us.

— Gandalf, The Lord Of The Rings

The area into which the results presented in this thesis reside is simula-

tion, a discipline that has been used since ancient times and that during the

computing era arose again as a promising technique to advance research in

different scientific fields. The term simulation refers to the act of mimicking

real-world scenarios in order to reproduce a physical (or even synthetic) sys-

tem. Such an operation is typically performed through abstractions aimed

at imitating what the natural system would have done. Specifying a set of

rules, requirements, and responses to actions in a model, we can provide a

reasonable estimation of what would have happened in the actual (i.e., the

modeled) situation. Note, however, that this could be very hard (sometimes

nearly impossible) to achieve in practice, as, for instance, physical systems

can involve an unbearable amount of computation, both in terms of time

and costs. Indeed, representing such a dynamic in a computer program can

be challenging, as the magnitude of variables involved in a physical phe-

nomenon and the interactions with other systems could be unpredictable

or unbearable to program. For this reason, starting from the late 70s, re-

6



Chapter 2. Research background and attained results 7

search in computer simulation began to grow increasingly and continues to

gain more and more appeal: the rising of new computing architectures has

unlocked new possibilities to tackle open issues in this field.

Two main aspects distinguish simulation systems from each other: time

and randomization. Therefore, the simulation taxonomy depends on how

critical they are to the considered system and how they are handled during

simulation. Indeed, there are situations in which time is not an interesting

quantity, for example, when the objective is to evaluate or approximate a

mathematical problem that is not easy to solve analytically and involves a

high number of variables. This is the case of numerical methods, used when

analytical or symbolic approaches to solving math problems are computa-

tionally complex (e.g., Stochastic Differential Equation solution evaluation).

Consider, for instance, the case of the approximation of the value of a finite

integral of a function. It is decisive to pick as many randomly distributed

points falling in the integration interval as possible in order to sum all the

values the function gets in those points and divide them by the total num-

ber of points. Monte Carlo simulations typically exploit this technique and

repeat the process multiple times in order to converge to a particular result

within the considered approximation window. On the other hand, there

are plenty of scenarios in which time is the essential variable to consider.

Physical systems are strictly related to time as things evolve according to

it, and depending on how time is modeled, we span from continuous to

discrete simulation. The first one best suits the case of a natural physical

system and the progress is guaranteed by the estimation of mathematical

functions that describe the behavior of the system itself. For instance, heat

diffusion in environments are ruled by a set of differential equations that

must be evaluated to reproduce the area’s state over time accurately. Al-

though this approach faithfully provides results comparable to real systems,
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Figure 2.1: Simulation taxonomy

the computation associated with it could become hard.

On the other hand, discrete simulation better handles the situation in

which the time interval between evolutions of the model can vary, spanning

seconds, hours, days, and so on. This is the situation, for instance, of

traffic jams or demographic growths, in which a single-step evolution of

the system can be seen as an event that discretely takes place. Figure

2.1 exposes a comprehensive scheme of the simulation taxonomy, where a

narrower distinction among discrete simulations is made. Discretization

could be carried out via either the advancement of fixed time steps, which

makes the execution progress depending on the rules based on that time

progression, or the execution of discrete events which define the evolution

of the system based on their own time of occurrence and rules associated

with their processing. The latter one is the one of interest of this theses

and will be thoroughly discussed in the following sections.

2.1 Discrete Event Simulation

Discrete event simulation (DES) maps the operation of a (physical) system

to a discrete sequence of subsequent events over time. Any of these events

happen at a precise instant in time and modify the state of the system.

Indeed, events are considered discrete if they mark a change in the sim-
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ulations’ state in an impulsive manner. The next-event time progression

ensures that no change in the system is assumed to occur between consec-

utive events. Therefore, the simulation time can directly shift to the time

of occurrence of the next event to be scheduled.

The entities carrying out the simulation are called Logical Processes

(LPs), which update their state by executing events and step forward in

their virtual simulation times. Moreover, logical processes bring on their

own simulation trajectory by interacting with other LPs via message ex-

change, producing events targeting either themselves or other entities, and

executing those events independently. Formally, according to the Discrete

Event Systems Specification (DEVS, [Zei19]), a discrete event simulation

model can be represented as the following tuple:

D =< Ei, Eo, S, fa, δe, δi, σ >, (2.1)

where:

• Ein ∈ E is the set of input events that the model can handle.

• Eout ∈ E is the set of output events that the model can handle.

• S ⊂ Q is the set of states the simulation can be at a specific instant of

time. Model writers usually enhance simulation state definitions with

many parameters, such as the maximum time spent when no external

events are received before triggering internal logic. S0 represents the

initial state of the simulation.

• fa is the time advance function, useful to describe how much time

to persist in a particular state, after which internal state transitions

might be triggered.

• δe is the external transition function defining the way an input event
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Ei ⊂ Ein marks a change in the state of the simulation. This function

can be defined as Q × Ein → S where Q = { (sj, te) : sj ∈ S, te ∈

[0, fa(sj)] }.

• δi represents the internal transition function, determining how the

simulation updates its state internally when no external event occurs

after the expiration of its lifetime.

• σ is the output function, which generates external output via the

production of "unrecognized" events, i.e., events belonging to the set

Eu = {(e ∈ E) : e /∈ Eout ∧ e /∈ Ein}.

Figure 2.2: DES basic kernel schema

To summarize, discrete event simulation is carried out by a set of N logi-

cal processes L0, . . . , LN−1, which represent the leading simulation entities,

evolving in time due to state transitions managed by model’s events, and

keeping a state Sk, k ∈ [0, N − 1].

When dealing with the software implementation of DES simulators, a

clear distinction between the simulation model and the simulation kernel

is usually enforced. A software simulation model mirrors a phenomenon
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by designing data structures, functions, and algorithms to recreate the in-

tended situation. The simulation kernel’s goal is to coherently and correctly

drive the execution of events spawned by the model on top of computing

platforms, ensuring consistency and possibly performance.

A classical implementation is based on the concepts of the event-driven

programming paradigm, which alternates execution between two phases: i)

event detection/scheduling and ii) event consuming. The first one consists

in capturing simulation events resembling hardware system behaviors upon

interrupts arrival. Practically, as depicted in Figure 2.2, the first point is

reflected in the process of fetching the next event (according to a predefined

rule, e.g., smallest timestamp first) and posting new events to the event

queue. The latter point deals with the actual execution of actions spec-

ified by the event, consequently modifying the simulation state. Indeed,

event consuming is represented by the tasks related to simulation time ad-

vancement, event execution, statistics update and termination condition

evaluation.

Briefly, a (single-threaded) discrete event simulator can be schematized

as in Figure 2.2, where:

• A global event-queue takes care of memorizing all the events that

are required to be executed in order to complete the simulation. This

queue is filled by logical processes that schedule events based on the

logic in the model carried out during the simulation.

• A shared virtual clock is maintained among all entities to coordi-

nate them throughout the whole simulation. Being discrete, this clock

keeps track of the simulation time by jumping from timestamp Te of

an event e to Te1 of a subsequent event e1.

• A state variables structure tracks the changes that every simula-
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tion object (namely, an LP) performs while executing events. Main-

taining this information could be critical as it impacts the execution of

new events and determines the final outcome of the whole simulation.

• The event processing submodule is taking care of executing the

instructions enclosed in an event’s logic, which can modify the simu-

lation state, trigger other events, or both of them.

Although these can be considered the building blocks of a discrete event

simulator, other relevant components turn out to be of genuine interest when

simulating a phenomenon. First off, Random-Number Generators play an

essential role as being real-world phenomena strictly dependable on random

incidents, simulators need to recreate this unpredictability.

Figure 2.3: DES flow chart

Also, it is usually the case that simulations are run to predict a specific

situation or perform a so-called what-if analysis. In such cases, Statistics
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Submodules are designed to collect and retrieve information about how the

system is evolving, both during execution and after completion, allowing

the modeler to understand the modeled phenomenon better or even achieve

better performance.

Finally, each simulator needs to have an Ending Condition which dic-

tates when a simulation run should end. Depending on the kind of phe-

nomenon being simulated, this condition can vary and be very model-

specific. Classical implementations rely on time constraints or on the num-

ber of processed events. The main phases of a simulation kernel are depicted

in Figure 2.3.

At first, the simulation kernel needs to initialize the resources which are

necessary to prepare the simulation. This not only includes, for instance,

memory allocation or data structure set-up, but it could also involve some

model-level callback required to generate a consistent initial state of sim-

ulation objects. As an elementary example, the reader can think of the

scenario of disease-spreading simulation, in which usually at the beginning

of the simulation, agents are randomly placed in topology, with a set of

parameters assigned to them.

After this initialization phase, the actual core of the simulation is fired.

Indeed, the actions to be performed by the simulator are repeatedly ex-

ecuted in a main loop serving i) event selection ii) event execution iii)

simulation clock update iv) statistics update v) termination condition eval-

uation. A high-level implementation of a basic DES kernel is shown in

Algorithm 2.1.
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Algorithm 2.1 DES kernel main loop
1: procedure init
2: endingCondition← false
3: initializeVirtualClock()
4: scheduleInitEvent()
5: end procedure
6: while endingCondition ̸= true do
7: nextEvent← fetchNextEvent()
8: clock ← nextEvent.timestamp
9: executeEvent(nextEvent)

10: updateStatistics()
11: end while

2.2 Parallel Discrete Event Simulation

While many studies in the literature have proven that discrete event sim-

ulation can represent the best choice for various scenarios to simulate, it

faces considerable limitations when dealing with contemporary computing

platforms. Indeed, even if what we presented in the previous section is a

very basic implementation of a DES kernel, it should have hinted to the

careful reader that the proposed solution inherently presents limitations.

Indeed, a serial implementation is by design under-utilizing the nowa-

days multi/many-core architectures it runs on top of: a single event is re-

trieved from the event queue at each simulation step while at the same time,

other logical processes, which could be ready to launch possibly unrelated

events, wait for this event to conclude its execution. Historically, this kind of

problem was addressed by the definition of distributed DES ([Sut13]), which

was trying to involve as much computing power as possible by spreading

the DES building blocks (event queues, global clocks, etc.) over different

CPU or cores. Naturally, splitting the work over several instances was not

enough, as synchronization points were needed to share the independently

computed data.
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While this would have been a viable solution when CPUs were growing

vertically (i.e., the increasing computational power of a single core, accord-

ing to Moore’s law [Moo06]), it eventually became unfeasible when physical

limitations, namely the clock-frequency wall, were approaching ([Sut13]).

In other words, the concepts introduced in the previous section do not take

into account parallelism.

Starting from 1979, research in parallel and distributed simulation be-

gan to become more and more of interest, finally yielding to the birth of

Parallel Discrete Event Simulation (PDES, [CM79]). At the basis of PDES

strategies, there is the concept of logical process, introduced in the previous

chapter. However, what differs from DES is that to exploit multiple com-

puting units, those LPs need to avoid sharing portions of the overall state

of the simulation model. Formally, this means that the whole simulation

state is the composition of the states of all the logical processes, i.e.,

S =
N⋃
k=1

Sk s.t SLPi
∩ SLPj

= ∅ ∀i ̸= j (2.2)

needs to hold. Furthermore, by eliminating the possibility to transfer data

by the use of shared variables, inter-LP communication can be performed

only via message passing.

Moreover, the other key concept related to PDES lies in the fact that

each LP controls its own virtual clock rather than being dependant on a

globally synchronized clock. These assumptions allow LPs to behave as au-

tonomous entities, each one taking care of its own simulation trajectory and

interacting with other LPs using time-stamped event messages between cor-

responding LPs. Having stated this concept, we can better delineate a more

technical picture of a possible PDES architecture. A classical architecture

is depicted in Figure 2.4.
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Figure 2.4: Classical PDES architecure

First of all, also PDES architectures are based on the idea of simulation

kernels, which are usually implemented as user-space processes running on

top of host operating systems. Simulation models drive the execution of

a simulation kernel through minimal programming interfaces, allowing the

modeler to specify which kind of events to generate, the ending condition,

the simulation state, etc. Furthermore, simulation kernel instances manage

a set of logical processes, which advance their execution independently ac-

cording to the rules defined in the model. Finally, simulation kernels (or

even LPs, transitively) can be either logically assigned to a specific com-

puting unit or managed by a set of them, thus effectively taking advantage

of the Symmetric Multi-Processing paradigm splitting up the whole load

among all available CPUs/cores.

However, more sophisticated techniques need to be put in place in this

case as differentiation between threads (e.g., workers vs. communicating)

is crucial to avoid bottlenecks. While this was a revolutionary technique

to speed up the processing of simulations, Moore mentioned above’s law

brought PDES to the usage of distributed clusters of machines intercon-



Chapter 2. Research background and attained results 17

nected with each other through a network. Thus, logical processes can inter-

act with each other either via the use of the host operating system facilities

(e.g., Inter-Process Communication) if they belong to kernel instances run-

ning on top of the same machine, or using message passing primitives (e.g.,

Message Passing Interface, MPI1) if they are based on remote simulation

kernel instances.

An essential characteristic of the latter organization is the fact that, in

general, LPs may or may not directly access other one’s state, even if they

lie on the same simulation kernel. Instead, again, this kind of operation is

only supported via message exchange, which is an important point to stress

since it will be discussed in the remainder of this thesis.

Communication network

Machine

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP

Kernel

LP
LP

LP

... ... CPU CPUCPUCPUCPUCPUCPU

Kernel

Machine...

Figure 2.5: SMT/distributed PDES architecure

2.2.1 Synchronization approaches

Parallel discrete event simulation has been historically realized to exploit the

growing multi-core/distributed architectures thoroughly. However, eventu-

ally, causal consistency became more and more the real bottleneck of such a
1https://www.mpi-forum.org/
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kind of implementation: speculative executions came to the rescue by mak-

ing simulation objects care "only when really necessary" about the consis-

tency of data shared with other LPs ([Jef85]).

LPx LPk

5 ex
5

 ex
7

 ex
9

ek
12

ek
15

straggler event: causality 
inconsistency triggered as 
ex

9 happens before ek
15  WCT WCT

7
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15

9

Event’s 
timestamp

Figure 2.6: An example of causality violation

In Figure 2.6, we show an example of a situation in which some kind of

technique must enforce a consistent situation. In particular, LPx is schedul-

ing an event with timestamp 9 towards LPk, which, on the other hand, is

logically ahead in time concerning LPx as it is executing an event at local

virtual time (LVT) 15. However, the latter logical process isn’t allowed to

simply discard the received event because the logic associated with it can

bring some modifications that should have been observed by events with

timestamp higher than it (event ek15, for instance).

In other words, ordering the timestamps between events matters as the

state of a logical process can possibly be modified by executing any of

them. These modifications would lead to incorrect outcomes if executed in a
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causal inconsistent way. As a general rule, a causality violation takes place

whenever an LPi receives an event Ej with timestamp Tj < LV Ti. This, of

course, entails the necessity of a methodology to enforce consistency, which

depending on the approach taken into account, spans over conservative,

optimistic and hybrid techniques.

Conservative synchronization

The first technique that can be adopted to avoid inconsistent situations is

called conservative synchronization ([Bry77], [CM79]), and its main objec-

tive is to force the system not to generate occurrences of time-inconsistent

conditions. The idea behind this approach is to use FIFO reliable links,

which are static by their definition and assign to each LP a predetermined

amount of FIFO channels, characterized by a timestamp value. This value

can be either set to the element’s timestamp at the top of the queue or the

time of the last processed event. Then, the scheduling procedure will select,

for a given LP, the next event from the queue with the smallest timestamp

among all possible queues. This ensures that the system is always choos-

ing the earliest among all possible events to be scheduled: no erroneous

situation can be generated in any way, as they are avoided by design.

Although this could be both easy to implement and safe to execute,

conservative synchronization comes with a number of drawbacks. First of

all, efficiency could be hampered by a situation in which, for instance, a

queue Qi marked with the smallest timestamp among all queues is empty.

Even if another list, say Qx, is not empty, events can’t be extracted from it

as this would lead to executing an event "in the future", eventually bringing

the system in an erroneous state whenever an event is inserted in Qi.

Moreover, this kind of solution needs to deal with deadlock occurrences.

Consider, for instance, the example shown in Figure 2.7. Here, three logical
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Figure 2.7: Example of deadlock in the conservative synchronization.

processes are maintaining events in two different lists, and all of them need

to select events from an empty queue (i.e., their current queue with the

lowest timestamp is the empty one, which is an empty box in the figure).

Definitely, this is a situation in which the advancement of the simulation

is stalled: the system can’t either pick a new event to schedule, neither will

insert new events in the empty queues of the LPs. This problem can be ad-

dressed by detecting this deadlock situation via the usage of dummy events

([CT92], [Fuj90]), which do not entail logic but are useful to notify receiv-

ing LPs that the sender will not send any event marked with timestamp

T < Tdummy. Thus, LPs are free to execute events belonging to different

queues, resolving the hanging situation and re-enabling execution.

Overall, conservative synchronization is an approach that presents pros

and cons: i) it is easy to program since the level of complexity is reduced

by the fact that out of timestamp-order is explicitly avoided, ii) it is said

to be riskless, in the sense that no incorrect data is produced at any instant



Chapter 2. Research background and attained results 21

of time, letting the observed results to be delivered without the need of any

inference, iii) it is not meant to effectively exploit parallel and distributed

architectures as, to provide consistency, execution needs to present many

serialization points, and processing is not meant to be really partitioned.

Optimistic synchronization

The second technique used to synchronize event execution is the optimistic

one, also known as the Time Warp technique. Time Warp is a paradigm

originally presented in [Jef85], which is based on the idea that every logical

process is free to execute events independently, regardless of the simulation

time of other entities. However, while processing events, a logical process

needs to be able to:

1. detect if an inconsistent situation is arising due to the delivery of a

straggler event

2. restore a consistent situation from which execution can be restarted

until the LVT of the straggler event is reached, and continue from

there.

. Therefore, this method is optimistic in the sense that every logical pro-

cess executes without any guarantee that the next event will be consistently

processed: any event is speculatively scheduled, and if a wrong situation is

generated, execution is rolled back at a consistent point in the LP’s simu-

lation trajectory, from which it is restarting regular events’ processing.

To better explain how such an approach works, we depict in Figure 2.8

a possible scenario in which consistency is optimistically enforced. In par-

ticular, LPx is scheduling an event with timestamp 9, which is smaller than

the timestamp of the last executed event at LPk (namely, 15). In fact,

LPk is free to go ahead independently in its trajectory, as opposed to the
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Figure 2.8: An example of optimistic synchronization approach.

previous conservative synchronization approach. However, LPk needs to

restore a consistent situation by bringing back the execution to the most

recent event with a timestamp lower than 9. Note, however, that rolling

back to a previous state could lead to inconsistencies at other logical pro-

cesses too. In fact, by restoring a state preceding event ex9 , LPk needs to

somehow "undo" the scheduling of event ej21 at LPj, notifying it that this

event has been canceled. In this case, LPj needs to roll back too since it

executed events bringing its execution to an inconsistent situation: LPj is

influenced by the changes event ej21 has generated, thus being it canceled at

LPk (which is going back to LVT 8), the first consistent event from which

to restart computation is ej13.

This is the reason why LPk is sending an antimessage to LPj. This kind
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of message is associated with a positive event that needs to be canceled. In

fact, its purpose is to annihilate the corresponding positive event both in

case it has been already executed or not. In the first case, a rollback would

be necessary, but in the latter, the event can be simply discarded from the

event list.

As far as the rollback operation is concerned, it is clear that it could

potentially cause a drop in performance. To restore a consistent situation,

we need to have a causal-consistent state to restart the execution from.

Moreover, in cases where a chain of many logical processes is involved in

event scheduling, a domino effect on a rollback at the root LP could trigger

a pathological situation in which a considerable number of cascade rollbacks

is generated.

This being considered, there are many works in the literature (e.g.,

[BCJL13], [BJCH09] and [GFS93]) proving that such a kind of approach

can effectively make use of multi-core/distributed architectures. Indeed, it

is not hard to understand that letting LP not synchronize with each other

on the next event to be scheduled and designing the data structures with the

highest possible degree of data separation would lead to speedups caused

by parallelization of the workload. Moreover, it is a common practice to

provide optimistic inconsistencies handling as a feature of runtime environ-

ments. Thus, the model designer doesn’t need to care about consistency,

and possibly dangerous situations are automatically detected and managed.

Finally, although rollback strategies will be thoroughly discussed later in

this thesis, it is essential to mention that most Time Warp strategies need

to deal with memory management while executing. In fact, when check-

point policies are put in place, it is crucial to make logical processes agree

on a moment in simulation time before which execution is considered com-

mitted, and thus memory dedicated to state saving can be safely released.
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This particular point in time is called Global Virtual Time (GVT), and the

calculation of such a value is required to be precisely evaluated. On the

one hand, if the computed value is too large, the runtime tends to lose the

benefits associated with optimistic synchronization, draining too many re-

sources from the underlying architecture. On the other hand, if it is too

small, the GVT calculation will be consequently triggered too often, falling

into a situation in which computational costs related to synchronization do

not represent an advantage with respect to conservative approaches.

Note that computing the GVT in a parallel environment, or even worse

in a distributed cluster, can be a really challenging task: this is the reason

why many works in the literature provide a solution both to speed up and

make this process more accessible to developers. The reader can find an

exhaustive discussion of GVT calculation in [Bel90], [LL90] and [TPQ+17].

Hybrid synchronization

The last methodology we introduce concerning LPs synchronization is a

mixture of the previously discussed ones. Indeed, although both the previ-

ously mentioned solutions provide techniques to overcome problems related

to causal consistency, they also introduce some limitations in terms of per-

formance or in terms of ease of use.

Therefore, the idea behind adopting a hybrid approach lies in the possi-

bility of mitigating the drawbacks of both approaches and trying to use this

revised version at runtime. A more in-depth description of this technique

is shown in [RAT93], and it mainly focuses on both tuning and mixing the

following features:

Constrained optimism: aimed at limiting, as far as possible, the in-

creased amount of memory usage typical of Time Warp systems, thus

finding a procedure to garbage-collect memory areas which are safe
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to be freed. As hinted before, this is related to the computation of a

committment horizon, namely a GVT, and let the optimistic execu-

tion run only in a time window spanning between two different (and

consecutive) GVT values.

Constrained conservativeness: which has the objective of avoiding

the system to be completely conservative. For instance, LPs can be al-

lowed to execute events speculatively only locally, not involving other

LPs with optimistic scheduling of events. This method could avoid the

generation of cascade rollbacks situations, reducing the aggressiveness

typical of speculative approaches.

2.2.2 State saving & restore

Simulations based on the Time Warp protocol are gaining interest in litera-

ture for their ability to exploit nowadays multi-core/distributed platforms.

However, to restore consistent situations, rollback management strategies

need to be put in place.

The most used approach to cope with rollbacks in time-warp simulations

is called state saving & restore and, as the name hints, basically consists

in taking a snapshot of LPs’ simulation states to be eventually restored if

violations are detected. The snapshot needs to include all the necessary

information to restart execution from the specific point in which they were

taken, thus they may involve timestamps, variables, data structures, and so

on. Depending on the frequency of snapshots and the amount of data saved

in them we move across three main different solutions: Copy State Saving,

Sparse State Saving and Incremental State Saving.
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Copy State Saving

The most trivial implementation of the State Saving & Restore technique

relies on taking a snapshot of the state of LPs involved in a simulation

run as soon as an event is about to be processed. The snapshot is marked

with the timestamp of the event which is going to be processed, in such

a way that if an event generating an inconsistency occurs, the simulation

platform only needs to come back to the consistent state matching the

highest timestamp among the ones strictly lower than the straggler event’s

one. In other words, denoting with Tstraggler the timestamp of the event

creating the inconsistency, and with Trollback the simulation time at which

the execution is restored, there will always be a state to be restored, marked

with timestamp Trestore, such that Trestore ≤ Trollback < Tstraggler. Obviously,

this is a technique that incurs a high overhead since the ease of this approach

is compensated by the fact that the number of events executed during a

simulation run can be huge, and logging a checkpoint before each of them

would entail a great demand in terms of computational resources and of

memory. In turn, this requires executing garbage collection much more often

to reduce the memory currently in use: although necessary, fossil collection

(and GVT computation) is known to be a costly operation. Figure 2.9

shows an example of such a kind of methodology.

Sparse State Saving

Sparse State Saving (SSS) is a technique that aims at overcoming the lim-

itations of the CSS methodology, mainly reducing the frequency at which

snapshots are taken in order to minimize both memory and CPU usage for

reconstruction and fossil collection. The idea behind SSS is that it could be

not necessary to save a snapshot before each event to be executed so that

periodically keeping a checkpoint (according to some heuristic) can reduce
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Figure 2.9: An example of the copy state saving technique

the costs mentioned above. Therefore, in this scenario, if a rollback occurs

at time Trollback, then either of the following two situations can arise:

1. A checkpoint of simulation state with timestamp Tsnapshot = Trollback

exists. In this case, Tsnapshot is simply restored. Note that this is an

edge case in which restoration is carried on exactly as in CSS.

2. No snapshot such that Tsnapshot = Trollback exists, and the state snap-

shot to be restored is the one associated with the higher LVT among

those having timestamp lower than Trollback.

If we define as rollback length the number of events which are undone by a

rollback procedure, we can consider the average of this value a good mea-

sure of the overall amount of wasted operations performed during an opti-
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mistic simulation run. Therefore, reducing the number of available snap-

shots would mean increasing the rollback length, as no guarantee is ensured

on the time at which a snapshot is taken. Indeed, it could be the case

that the last snapshot dates back to a very old timestamp with respect to

the time at which the inconsistency occurs. If the tradeoff between sav-

ing/restoring an older state and taking a reduced amount of snapshots is

acceptable, this represents a viable solution. Whenever the second of the

two situations listed above occurs, the simulation platform also needs to

re-execute some events in order to re-align the clock of the rolling back

LP to the state at Trollback. This operation is called coasting forward, and

needs to deal also with the processing of events scheduled for the execution

for other LPs. In particular, it is often the case that the coasting forward

re-processing entails a silent execution, a special kind of event execution

that avoids sending events to LPs if restoring the state due to a rollback.

Indeed, sending events to other LPs in this phase could lead to simulation

errors, as those events were already sent during forward processing before

the occurrence of the rollback.

To better understand the situation we described, let’s consider the ex-

ample depicted in Figure 2.10. Here, LPk receives a straggler message with

timestamp 19, being LV Tk = 24. Considering that the adopted policy is

taking snapshots every three events, LPk needs to roll back to the event

marked with Te = 8, as this is the event with a timestamp associated with

the latest state snapshot available. Thus, LPk needs to re-execute events

ek11 and ek17 before being able to handle the straggler event. Note that ek17

originally sent a message to LPx in order to make it execute an event with

timestamp 14, namely ex14. In this case, while executing in silent mode, LPk

won’t send this message again and will proceed with its standard coasting

forward.
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Figure 2.10: An example of the sparse periodic state saving technique

Periodic state saving suffers from the same performance issues of CSS, as

it can be thought of as an expanded version of saving states right before each

events’ execution. For this reason, many Adaptive State Saving techniques

were studied by literature, trying to fine-tune (at run-time) the value of the

checkpointing period. Naturally, smaller checkpoint periods lead to memory

inefficiency, while larger intervals would bring to performance decrease due

to costly coasting forward executions. An example of approach which aims

at computing the optimal value for the checkpointing interval is presented

in [PW93b]: if we assume that the execution of events is non-preemptive

and that the rollback length is independent of each other, then we can define
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the optimal checkpointing interval as

χ =

⌈√
2δs
δc

+ (
Nc

Nr

+ δr − 1)

⌉
(2.3)

being:

• δs the average time required to save the state of the simulation

• δc the average time required to peform a coasting forward execution

• Nc the overall total number of committed events

• Nr the overall number of processed rollbacks

• δr the average length in time of a rollback

Although those parameters need to be computed at run-time via statis-

tics evaluation, this technique can significantly increase performance related

to rollback handling. Indeed, dynamically tuning the value of χ while ex-

ecuting events would adapt the costs associated with restorations to the

requirements of the simulation, whether it is more prone to rollbacks or not

according to the logic of the model.

Incremental State Saving

The last technique we introduce about the state saving methodologies tries

to cope better with the problem of the state save that needs to be stored

upon a checkpoint. Indeed, even if the frequency of checkpoints is reduced,

the size of a state Sx to be saved/restored could impact performance, espe-

cially when only a small portion of this state is updated between a series

of events. In this specific case, a non-minimal amount of time and space

would be consumed for possibly redundant information.
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The idea behind Incremental State Saving (ISS) is that when an event

is executed, only the state variables it touches are eligible to be persisted

in a checkpoint. Therefore, only the delta between two states (namely, the

difference in modified variables/structures) is kept. Upon a rollback, the

simulation platform scans through all these (usually tiny) states to recon-

struct a more significant state where to restore normal execution from.

Depending on the transparency offered to the final user, we move from

less to more sophisticated techniques. To make an example, the solution in

[RLAM96] provides the possibility to modify the simulation kernels’ data

structures and to overload functions dedicated to event processing. This

way, leveraging Object-Oriented overloading, model developers can enhance

state variables to mark them as part of an incremental state. By invoking

overloaded functions, they are therefore allowed to use such a fine-grained

restoration of the overall state. The highest level of transparency is reached

when the user is not required to write any additional code and is not even

aware (at least by reading the application-level code) that such a policy

is running underneath. An example of such a more sophisticated imple-

mentation of ISS is presented in [WP96]. Here, transparent incremental

state saving is provided by using software instrumentation that automati-

cally detects instructions updating simulation state and performs a copy of

this cumulative data. Given that this operation is conducted at the level

of assembly instructions (although only targeting x86 architectures), no

user interaction is required at all. The very first work related to this topic

was presented in [BS93], while more innovative approaches can be found in

[PVQ15].
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2.2.3 Reverse computation

While the State Saving & Restore can be considered the most spread tech-

nique when dealing with Time Warp consistency issues, other methodologies

are tackling the same problem in a completely different way. One of them

is the so-called Reverse Computation, which is trying to eliminate, as far as

possible, the usage of state checkpoints. As the name hints, this method

is based on computing in a reverse way the computation associated with

events.

Given an event ei, Reverse Computation will try to revert all the changes

ei possibly made on the simulation state Si by performing, in reverse order,

all the actions involved in the execution of ei. If the considered rollback in-

volved multiple events, this "undo" operation needs to be performed on each

of these events, from the rollback restoration to the straggler’s timestamp.

1 if(condition > 0){

2 condition --;

3 counter ++;

4 }

Listing 2.1: Example of forward execution of an event

To make an example, let’s consider the code snippet presented in 2.1.

Here, a simple if branch is checking the current value of an integer variable,

then this value is decremented, and a counter is increased to remember some

sort of information of the variable itself. Computing these operations in re-

verse order would entail triggering an anti-event with the code presented in

2.2 as associated logic. As it can be noticed, undoing arithmetic operations

is quite straightforward, as we simply do the opposite operation that the

original event performed. However, when dealing with the branching condi-

tions, some issues arise since we need to check the old value of the involved

variable (hence the was keyword in 2.2). This information isn’t available
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while executing the anti-event, as we don’t remember the state of internal

variables in this scenario.

1 if(condition "was" 0){

2 counter --;

3 condition ++;

4 }

Listing 2.2: Example of reverse execution of an event

For this reason, the introduction of a bit variable turns out to be es-

sential to query the state of the variable checked in the branching condi-

tion. Note that this variable should be transparently added by the run-time

implementing the Reverse Computation technique, as it shouldn’t be the

programmers’ responsibility to take care of logic associated with rollback’s

restoration. Thus, the original code snippet would be transformed to the

one presented in 2.3, and when backward-executing the events involved in

a rollback, the anti-events will exploit the value of the inserted variable to

infer the actual branch condition outcome (as presented in 2.4).

1 if(condition > 0){

2 entered = 1; //bit variable: the branch was entered

3 condition --;

4 counter ++;

5 }

Listing 2.3: Example of instrumented code exploiting bit variables

1 if(entered){

2 counter --;

3 condition ++;

4 }

Listing 2.4: Example of reversed code exploiting instrumentation

While this solution completely avoids the procedure of storing and restor-

ing checkpoints, it comes with a series of issues that need to be faced. First

of all, the condition presented in the code listings above hints that LP’s
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state could increase in a non-negligible fashion depending on the operations

related to an event’s execution. For instance, if the number of branches

involved in the logic associated with an LP’s events is n, then the number

of loaded variables (namely, bit variables) would sum up to log2(n). The

same reasoning can be done for while statements (or loops, in general), as

we should maintain the number of iterations in order to re-execute them in

the opposite order while rolling back.

Secondly, note that not all operations can be voided while undoing por-

tions of code. Indeed, a particular class of instructions, called disruptive

operations must be handled via state saving techniques, as they produce

changes in the system which are not reversible. For instance, assignments

(=) or addition assignments (=+) can’t be simply reversed; they need to keep

a previous state. Moreover, concerning reversible code, a note on jump in-

structions has to be made. In fact, operations like goto, continue or break

could be non trivial to reverse, as the actual execution flow needs to be sup-

ported by a set of bit variables in order to remember the steps attempted

during forward execution. In this case, the reverse computation logic could

entail the usage of switch/case constructs in order to be able to reproduce

the same original flow, inverted. Unfortunately, the amount of generated

code could reach an important size for such a situation, ultimately enlarging

the overall LP’s state.

Finally, the Reverse Computation technique can represent a viable so-

lution when the checkpointing operation and the costs associated with it

are considered unfeasible for some simulation scenarios. However, the more

the number of disruptive operations, the more this technique falls back to

the state saving one. Thus, the tradeoff needs to be thoroughly analyzed.

Although Reverse Computation isn’t the technique adopted for the results

of this thesis, many works in the literature provide a complete explanation
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of this methodology (e.g., [CP99])

2.3 Agent-Based modeling

Agent-Based Modeling is considered a powerful simulation technique and

has recently been employed to cope with many real-world business applica-

tions.

An Agent-Based Modeling System (ABMS) is represented by a collec-

tion of autonomous decision-making entities, namely, the agents. At the

most superficial level, an agent is a physical and/or virtual actor that per-

ceives the surrounding environment and acts according to specific rules via

actuators. Defining an agent-based model consists of describing a system

from the perspective of the interaction between agents. Although agents

are considered independent entities, one of the most distinctive features of

ABMS is that they model interactions among agents and with the environ-

ment: changes of behaviour can influence the structure of the area they’re

currently traversing, or either effectively alter the behaviour of other enti-

ties.

Therefore, as will be analyzed in chapter 6, modelling interactions be-

tween agents entails the specification of i) the strategies used for communi-

cating between entities and ii) the definition of the linkage between agents in

terms of possibility to cooperate. The latter specification ultimately refers

to the definition of an environment that governs the possible movements of

the agents. On the other hand, strategies for communications control the

transmission of information between entities. Indeed, agents typically have

limited visibility of the whole system; hence, the exchange of information

between them takes place locally, allowing for a more realistic depiction of

complex real-world scenarios. Consequently, an ABMS environment is the
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area in which agents live and interact according to the topology and the

set of rules defined at the model level. Depending on the situation of inter-

est, ABMS can provide many advantages with respect to other simulation

paradigms, such as:

Flexibility: An agent-based model can be considered flexible from

many points of view. First of all, the simulation scale can be eas-

ily tuned by adding or shrinking the number of entities participating

in the run. Secondly, even the agents’ complexity can be modified

to customize their behaviours. Sophisticated models define precise

rules managing agents’ degree of rationality, ability to learn, dynam-

ically change interactions, etc. Moreover, ABMS provides flexibility

on a global scope concerning agents: not only their complexity can be

augmented, but also the aggregation of multiple entities can lead to

complex group-based actions.

Easier model design: For many real-world scenarios, ABM provides

a more natural way of describing the system in terms of defining rules

and evolutions of it. To make an example, it results to be more rea-

sonable to model how cars move inside a city area rather than define

complex equations governing the dynamics of the density of cars at a

specific place. Additionally, since the movements of vehicles depend

on drivers’ behaviour, ABM allows studying even aggregate properties

related to traffic jams. While traffic jam is just a typical example of

an ABM system, it is easy to understand that this level of simplicity

allows tackling critical real-world situations more easily, which is fa-

vorable when results need to be provided with strict time constraints,

as happened during the new coronavirus outbreak.

Capturing emergent behaviour: Emergent behaviours are phenom-
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ena resulting from the interaction between individual agents. Inter-

estingly, an emergent behaviour may present properties that are de-

coupled from independent single interaction specifications. In other

words, emergent behaviour isn’t simply the sum of the interactions

that lead to its birth. Considering the example of traffic jams, the

direction of movements of cars may be inverted due to interactions

between individual vehicle drivers. Therefore, emergent behaviours

are challenging to predict, as they can be counterintuitive for human

beings. However, agent-based modelling is, by definition, a viable

approach to understand emergent phenomena: by defining the set of

rules a unit can perform and the interactions it can produce, the cap-

turing of the emergent behaviour is a natural consequence of the whole

simulation run.

The applications of ABMS are multiple and cover many real-world and sci-

entific areas, such as evacuation strategies ([SRC09]), flow management (i.e.,

traffic simulation, [YEGL14]), disease spreading ([MSGNCG+15]), disaster

recovery ([Fie06]), market forecasts ([PAH+94]) and many others.

2.4 The technical context

In this section, we describe the technical context used to gather results

presented in this thesis. In particular, all the experiments discussed in

the remainder of the thesis have been carried on making use of an open-

source, multithreaded, distributed and general-purpose simulation kernel

called the ROme OpTimistic Simulator (ROOT-Sim). This platform was

introduced in 1987 by the High Performance and Dependable Computing

Systems (HPDCS) research group born in Sapienza, University of Rome,

which also expanded to Tor Vergata University of Rome. Basically, the
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codebase is written following the C/POSIX standards, targeting x86-64 ar-

chitectures, and supports the Time Warp protocol described in previous

sections. ROOT-Sim supports almost all of the aforementioned features

related to PDES, and its architecure is based on a series of building blocks:

Event scheduler: having a potentially high number of LPs, the run-

time needs to select at any point in time which of them is allowed to

execute next. Thus, an ordering among all the LPs is provided in the

simulation kernel, and many policies are actually available. The de-

fault one, which is the most common, is the Smallest Timestamp First

one, which activates the LP whose next event in its queue presents the

nearest timestamp with respect to the current time, among all (local)

LPs.

Committed and Consistent State Manager: while executing events,

the simulator needs to understand whether the run should be halted

or not. This is typically done by evaluating some conditions either de-

fined at user level, such as a certain situation reached in the simulated

phenomenon, or at simulation kernel level, e.g. reaching a specific vir-

tual time or a certain number of executed events.

GVT Manager: evaluating an instant in time before which computa-

tion is considered completed results to be a core operation for memory

release policies. The GVT manager takes care of periodically evalu-

ating this value, according to the supported implemented algorithm.

Memory Manager: dealing with memory allocations and releases and

the management of memory areas in rollback scenarios is considered

a core feature for a time-warp-based simulator. The memory allo-

cator that ROOT-Sim integrates is called Dynamic Memory Alloca-

tor (DyMeLoR), which basically wraps the well-known malloc/free
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standard C functions to perform operations aimed at dealing with

simulation-specific concerns. In particular, DyMeloR essentially as-

signs equally-sized amounts of memory whenever an allocation request

is issued, by rounding up the requested size to the nearest power of 2.

To keep track of which memory chunk an LP is currently using, a per-

LP meta-data structure is maintained. This data structure, named

malloc_area is fundamentally storing bitmasks memorizing the in-

formation about a block of chunks, namely, whether the chunk was

dirtied or whether it is currently delivered to the application for usage.

An example of a DyMeLoR’s memory area is depicted in Figure 2.11,

and for more details, we refer to [PVQ09].

Since ROOT-Sim supports multithreading, parallel, and distributed com-

puting, the paradigm this simulation platform relies on is the worker thread

one, in which every logical process is controlled by a worker thread and is

assigned two unique identifiers: the Local Identifier (LID), used to discrim-

inate a certain LP on the same machine it is currently residing, and the

Global Identifier (GID), which is instead determining the identity of an LP

on a distributed scale. Moreover, even threads are identified by a unique

identifier, namely Thread Identifier (TID). It is the responsibility of the

simulation kernel to manage their data structures and handle inter/intra

machine communications.

The interaction with application-level code is made possible by expos-

ing two callback functions, ProcessEvent and OnGVT and a function call,

ScheduleNewEvent. The logic associated with these entry points is de-

scribed in the following:

• ScheduleNewEvent(int receiver, time_type timestamp,

int event_type, void *event_content, int event_size):

this is the entry point for a model developer to inject an event within
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Figure 2.11: The ROOT-Sim memory_area structure details

the system. Indeed, a new event characterized by the passed timestamp,

event_type, event_content and event_size is generated and in-

serted into the event queue of the LP having the global identifier

matching receiver. Note that the invocation of this method doesn’t

trigger the immediate execution of this event. Still, it will be even-

tually scheduled for execution whenever the conditions will be met

(e.g., it is the next event with the smallest timestamp). At the same

time, the correctness of the whole execution is guaranteed since events

inserted in input queues are ordered according to their timestamp.

• ProcessEvent(int me, time_type now, int event_type,

void *event_content, void *state):

this callback allows processing of simulation events at application

level. The contract of this function is that all its content is executed

by the simulation platform speculatively, meaning that it could be

potentially undone, and even events generated inside this scope could

be annihilated. However, the programmer doesn’t need to cope with

issues related to this: everything will be handled, under the hood, by

the ROOT-Sim platform, and she only needs to implement state tran-

sitions according to the logic of the model. Although this represents
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an interesting feature, there are some non-rollbackable actions that

the model developer should be aware of. For instance, printing on

standard output (via standard calls like printf) is a non-cancelable

operation. Here, the passed parameters concern both the LP running

the event, identified by me, and having a state state, and the event to

be processed, with type event_type and enveloping event_content.

Also, the now variable can be used to read the current logical virtual

time of the LP.

• OnGVT(void *snapshot, int gid):

whenever a committment horizon is reached by the simulation plat-

form, this callback is invoked. This allows the model developer to in-

troduce custom logic over the committed snapshot of the simulation,

for example evaluating a termination condition (users can easily notify

the request of termination to the ROOT-Sim platform by returning

true). This, in turn, implies that the code executed within this scope

is not speculative. The final result is that this callback can also be

exploited to collect statistics, as I/O operations would be correctly

performed. Also, note that invocations of ScheduleNewEvent are not

allowed within the boundaries of this callback since they could involve

the generation of rollbacks of already committed events (i.e., before

the computed GVT value). As for the parameters, snapshot repre-

sents the portion Sx of the CCGS state S, while gid is the (global)

identifier of the current LP.

In Figure 2.12, we show a schematization of the building blocks of the

ROOT-Sim platform, describing the interconnections between multiple sub-

models and the available APIs enabling user interaction with underlying

facilities. For additional details about this open-source2 project, the reader
2https://root-sim.github.io/
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can refer to [PQ13].
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Figure 2.12: The ROOT-Sim platform building blocks scheme
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2.5 Attained results

This thesis explicitly targets PDES platforms in order to provide software

tools and methodologies aimed at

– reducing the complexity of programming on top of parallel and dis-

tributed clusters.

– allowing, through direct interventions, to tune the underlying system

to reach the required level of performance, yet with a high degree of

freedom in customization.

This reflects both in theoretical and practical solutions that allow the

scientists from any area to write simulation models since the provided ab-

stractions are already coping with the efficient exploitation of architectural

resources.

The solutions proposed in this thesis were built relying on the ANSI-C

programming language, primarily to enable the model writer to have the

maximum level of freedom in developing code and control of any portion

of memory. Note, however, that by any means this impacts the theoretical

reasoning associated with the provided software tools: they are applicable

to any programming language and could be re-implemented in different,

custom environments.

More in detail, Chapter 4 introduces an innovative memory manage-

ment subsystem that permits writing sequential style code while accessing

memory areas belonging to different LPs consistently while respecting the

PDES principles and exploiting parallelism and distribution on a cluster

architecture. In particular, such a solution allows accessing remote memory

portions with ease and provides optimizations that autonomically adapt to

the current memory access patterns that the environment is experiencing.
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Chapter 5 focuses on the cost reduction of critical operations in spec-

ulative PDES environments, namely rollbacks and state restorations. The

Time Warp protocol was selected in the implementation of the simulation

platform of interest, as it provides efficient usage of multi-many core (dis-

tributed) machines. However, this implies the generation of inconsistent

trajectories, which involve synchronization points and restoration of consis-

tent situations. The solution proposed in Chapter 5 proposes a shift with

respect to the traditional options offered by literature: giving the possibility

to the modeler to select the memory areas that are required to be restored

and the ones that can be discarded (for specific simulation time windows),

we proved that efficiency could be improved while increasing the level of

freedom of the final programmer.

Finally, Chapter 6 presents a set of semantically rich APIs allowing to

implement Agent-Based Models in a simple and effective way. What dis-

tinguishes these APIs from existing methodologies is that it enables the

possibility to benefit from more effective runtime paradigms, such as spec-

ulative PDES systems. The discussed experimental assessment shows how

our proposal allows implementing complicated interactions with reduced

complexity while delivering a non-negligible performance increase.



CHAPTER3
Literature overview

Look wide, and even when you think you are looking wide – look wider still.

— Robert Baden-Powell

In this Chapter, we will present a comprehensive argumentation about

the literature related to the solutions that are introduced in this thesis. For

all of them, a specific literature analysis will be carried on, in order to have

a broader understanding of the improvements that this dissertation brings

to the scientific area it belongs.

3.1 Cloud-based distributed simulation

In recent years, research in the field of PDES involved a lot of effort into

enabling simulation applications to fruitfully exploit cloud-based, or more

generally virtualization, technologies. Many works, such as [YP13], have

been carried out with the final scope of evaluating the effects of hyper-

visor configurations over the model-execution dynamics. These proposals

have taken into consideration the presented differentiated synchronization

schemes, namely conservative or optimistic ([DM14], [YP13], and [YP15]):

they now stand as baseline assessment of whether cloud platforms can be

considered beneficial for complex and large scale PDES applications.

Clearly, making a wise use of distributed/virtualized resources was a

45
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central target of the results presented in this thesis, and for this reason

a thorough discussion about these reference works has to be put in place.

Indeed, one of the main results that will be presented in the remainder of this

thesis is related to a novel run-time middleware enabling PDES applications

to be run on top of distributed (virtual) machines in the cloud, enabling in-

place accesses to the state of any LP by any event handler, rather than being

limited to a single shared-memory machine as in [PQ19]. This represents an

objective fully orthogonal to (and of similar relevance of) the one pursued

by the aforementioned literature works. We refer to this solution as the

distributed version of the Event & Cross-State protocol. As stated, the

main goals of this solution were: i) provide a fruitful exploitation of clusters

of distributed/virtualized resources in the context of PDES applications

ii) ensure ease of use by enforcing transparency to the model developers,

eliminating the burden of taking care of PDES-specific (or even distributed

computing) related issues.

The literature offers few solutions oriented to enabling some form of data

sharing across logical processes through the enrichment of programming fa-

cilities. To make an example, the proposal in [Bru95] discusses how state

sharing can be emulated by using a certain LP hosting the common data

and acting as a centralized server. By introducing the concept of version

records, multi-versioning is used for shared data maintenance in order to

handle read/write operations occurring at different logical times, and to

avoid, in case optimistic synchronization is adopted, unnecessary rollbacks

of the “centralized server” LP. A similar solution can be found in [MH95],

which provides a theoretical presentation of algorithms to implement a Dis-

tributed Shared Memory mechanism, having as main purpose keeping repli-

cated instances of a variable coherent. Again, one of these algorithms is

based on managing variables as multi-version lists, where write operations
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install new versions and read operations retrieve the most updated one. All

the cited literature proposals differ from the solution we present for two

main reasons:

• shared variables’ read/write operations are realized via message pass-

ing, namely, event schedule operations. Thus, they are taking place

at the application level, while we support in-place access to any (by

default shareable) buffer within the logical process’ state via standard

programming constructs, i.e., pointers. As a matter of facts, the re-

trieval of the actual memory portions towards which the accesses are

finally carried out is completely transparent to the application and is

demanded from the novel distributed ECS middleware.

• LP memory sharing is not limited to a portion of the state image of a

specific LP (like the centralized server mentioned above). Indeed, we

enable shared accesses to any memory buffer representing a portion

of the whole simulation model state. At the same time, the presented

solution supports distributed deployments of PDES systems, entailing

such sharing features and overcoming the limitations of the original

ECS run-time support [PQ19]. In other words, this enhancement

overtakes the original confinement to a single shared-memory machine.

Stressing the first of the these two points, [G91] integrates the support

for shared state in terms of global variables, basing the architecture on

[CS89]. Conversely, in [FD97], the notion of state query is introduced, ac-

cording to which a logical process requiring to access a portion of the state

belonging to a different LP can issue a query message to it and then waits

for a reply containing the proper payload. If this value is later detected

to be no longer valid, an anti-message is sent, which invalidates the query.

However, neither of the two proposals provides transparency: although the
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first supports in-place read/write operations as distributed ECS does, the

application-level code must explicitly register a logical process as a read-

er/writer on shared variables. On the other hand, the second one relies on

message passing, and the application programmer needs to embed the usage

of query messages within the application code. Also, [G91] does not scale to

distributed memory clusters. The proposal presented in this thesis avoids

all these limitations, by also allowing the sharing of dynamically-allocated

buffers within the object state, for which pre-declaration of the potential

need to access cannot be raised at startup—in fact our solution allows cop-

ing with scenarios where the actual accesses depend, in an unpredictable

way, on the specific model-execution trajectory.

The work in [CLY+11] proposes a framework targeted at multi-core ma-

chines and based on Time Warp synchronization ([Jef85]), where so called

Extended Logical Processes (Ex-LPs), which are essentially collections of

LPs, have public attributes associated with variables that other LPs, be-

longing to different Ex-LPs, are free to access. The accesses to shared

attributes is envisaged by relying on a specific Transactional Memory (TM)

implementation, where events are mapped to transactions and the imple-

mentation of the TM layer is based on [G91]. Once again, the proposal in

[CLY+11] requires a-priori knowledge of the attributes to be shared, which

need to be mapped to TM-managed memory locations manually. Rather,

our proposal allows for sharing any memory area from the heap, without

the need for a-priori knowledge of whether some sharing can (or will) occur

along model-execution; this increases the level of transparency. Further, as

a second core difference, the work in [CLY+11] does not support cross-LP

accesses on distributed memory systems, which is instead the primary target

of our work—according to the aim of enabling the exploitation of clusters

of resources.
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Considering the context of agent-based modeling and simulation,

RepastHPC, outlined in [GIOY16], shares a few low level architectural con-

cepts with the ECS middleware, since it includes the support for dynamic

data (in this case, agents) migration. However, in RepastHPC the objec-

tive of migration is essentially to increase locality in the access to data (by

agents), while our ECS middleware has the objective to transparently allow

in-place access to whatever data belonging to the simulation model state on

distributed memory platforms, while still enabling speculative processing of

simulation events.

Still in the area of ABM, similar considerations can be made for PDES-

MAS [LLT08]. It is based on sharing data across logical processes: specifi-

cally, LPs modeling agents—by relying on given objects hosting portions of

the shared data. This is different from what our ECS middleware enables

since in PDES-MAS in-place accesses are not supported. On the other hand,

PDES-MAS has orthogonal objectives with respect to our work, such as en-

abling scalable data sharing via optimized data partitioning/distribution

[STL13] and explicit query mechanisms, like range queries [ST13].

In [PPQV16], a programming approach and its run-time support are pre-

sented, where shared data in PDES applications are allowed to be accessed

by concurrent event handlers without the need to pre-declare the intention

to access them, e.g. via code annotations. This has been achieved via user-

transparent software instrumentation, in combination with a multi-version

scheme, either allowing the redirection of read operations to the correct

version of the target data—depending on the timestamp of the event being

processed—or forcing rollbacks of causally inconsistent reads. This solution

is targeted at the management of global variables. Instead, our proposal is

suited for data sharing of dynamically allocated memory chunks logically

incorporated within the state of each individual logical process, while still
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providing parallelism and synchronization transparency. Moreover, the pro-

posal in [PPQV16] is limited to shared memory machines, while our primary

focus is to port ECS to distributed memory clusters.

The distributed ECS middleware can also be compared to approaches

that bridge shared and distributed memory programming in more general

contexts. Among them, we can mention Partitioned Global Address Space

(PGAS) [Sti09], distributed shared memory systems [IS93], distributed file

systems [Blo15] and distributed transactional memory systems [HNP+13],

[RRCC10]. The uniqueness of the ECS protocol stands in the fact that

our solution is already specialized for speculative PDES, while others that

bridge shared and distributed memory programming would require the de-

velopment of additional modules and software layers in order to accom-

plish the same objective, possibly relying on the approach presented in this

thesis. Specifically, these solutions do not cope with virtual time-based

speculative synchronization, thus not enabling the local materialization of

remote data versions complying with timestamp-ordered accesses—in fact

these approaches are not able to directly support timestamp-based causality

relations across concurrent tasks touching data in read/write mode.

Although belonging to a different area, we can also mention a relation to

Massive Multi-Player On-line Gaming (MMPOG) architectures, especially

the ones based on data sharing via proxies [MGSF07]. More in details,

in our ECS middleware we enable migrating the state of a logical process

across multiple computing nodes, depending on the cross-state accesses that

occur. However, usually proxy-based MMPOGs are limited to the migration

of predetermined slices of information: we directly overcome this restriction

in our distributed protocol.

Generally speaking, it is to be noted that full state partitioning as in

traditional PDES, with the event handler only accessing the state of a single
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target LP, is a programming model whose run-time environments have been

shown to be capable of good scaling. Indeed, this approach presents the

capability of exploiting extreme scale distributed infrastructures and super-

computing oriented facilities, as stated in [BCJL13] and [CP10]. This can be

seen as a reflection of the fact that state partitioning can lead to increased

locality, a condition that as a consequence avoids bottlenecks related to the

employment of a single centralized memory system.

However, enabling ECS-style coded models to be run on distributed

memory systems allows to exploit differentiated classes of computing clus-

ters. Offering the possibility to merge higher-end and bare-metal ma-

chines, in conjunction with the flexibility in the exposed programming

model—which breaks disjointness in the accesses to the LP states by the

event handler—provides an additional degree of freedom to the end users.

As will be discussed in the following chapters, the distributed ECS mid-

dleware allows performance scalability trends (over the number of used ma-

chines) well matching those provided by traditional PDES run-times. This

is a core aspect enabling the effective exploitation of ECS on generic plat-

forms. At the same time, an improvement of the data access locality when

running with the ECS middleware could be achieved by adopting dynamic

LPs’ clustering schemes like, e.g., the one in [MNPQ16].

3.2 State saving optimization techniques

Traditionally, the problem of the cost reduction in managing state-rollback

operation has been an hot topic in the field of simulation, and has been long

studied in the literature.

To make a first example, a few solutions propose to exploit infrequent

state snapshots to reduce the CPU-cost and memory footprint for logging
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state information and to restore a missing snapshot by reloading a previous

one and reprocessing intermediate events.

All these solutions are based on the optimization of both the costs associ-

ated with taking snapshots and with the rollback operation itself, performed

via a temporary reprocessing phase. Many works, e.g. [PLM94], [Qua01],

propose several methods to determine the best-suited policy to undertake

when dealing with the frequency of the recording of the snapshots.

Other approaches, e.g. [RLAM96], [WP96], are based on taking incre-

mental checkpoints, namely logging only the portions of the LP state that

have been modified since the last checkpoint operation (i.e. delta changes).

As stated in the previous Chapter (2.2.2), this approach can drastically re-

duce the CPU-cycles and memory footprint to create the checkpoints along

the forward execution phase. However, the drawback of it stands in the

rollback phase: it requires to backward apply all the incrementally logged

checkpoints to enable the resume of the logical process execution from the

correct past state. Sometimes, the length of the sequence of backward steps

is unpredictably long, leading to negative performance effects.

To cope with this problem, some solutions [PVQ15], [SE98] have pro-

posed mixed schemes where incremental and non-incremental checkpoints

are taken in interleaved manner along the forward execution phase of a

logical process.

When the reduction of the memory footprint associated with state saving

is pushed to the limits, we find reverse computing approaches, which were

also extensively investigated [CP99]. With the only exception of irreversible

state changes (as discussed in section 2.2.3), with this kind of approach no

logs of state information is required. However, for (very) long rollbacks

the cost of backward reprocessing the events might be a dominating factor,

ultimately hampering performance.
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Again, mixing approaches came to the rescue: the work in [CPQ17] stud-

ied how to combine reverse computing with classical infrequent checkpoints,

so as to minimize the number of backward-processed events in a rollback

phase.

Furthermore, many works in the literature aim at optimizing the log/re-

store operations costs by exploiting some hybrid (combined) techniques or

based on some model-specific characteristics (see, e.g., [SR96], [PW93a],

[Qua99] and [Qua98]).

Anyway, all the aforementioned approaches share one main character-

istic, which is the “perfect” reconstruction of the past (i.e., to be restored)

state. In other words, this means that the restored state is an exact copy

of the corresponding state observed along the forward execution phase, be-

fore the occurrence of the causality error (i.e., the occurrence of a straggler

event).

What we will present in the following chapters proposes a different ap-

proach, in which reconstructing the state to be restored is performed in

an approximated manner, hence investigating a new dimension in terms of

the trade-off between the CPU-cost and the memory footprint to save state

information, and the latency to restore the last correct state upon rolling

back. We refer to such a solution with the name Approximated Rollbacks.

When dealing with transparency to the application programmer, we note

that a few of the above cited solutions do not provide the support for it

(or, at least, not completely, e.g. [PLM94], [Qua01], [RLAM96], [SE98]).

We remark that this is one of the main goals of the solutions described in

this dissertation, and this is the reason why we minimized the intervention

of the programmer to the minimum possible: the concept of rollbacks is

completely hidden, meaning that the programmer doesn’t need to know

even what a rollback is, thus not handling any associated logic at all. The
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only required action is to include in the application code specific calls to

an API that enables the approximated rollback scheme, implementing a

callback function to exploit the platform-level state-saving tasks in order to

approximately rebuild the state to be restored. Put differently, the model

designer only needs to be aware of how the state of a logical process can be

reconstructed starting from a minimal set of state information transparently

managed (i.e., logged and restored) by the underlying PDES platform.

Our proposal is also related to solutions based on the notion of uncer-

tainty in the occurrence of events [Fuj99], [QB04]. In these proposals, the

PDES platform can take decisions aimed at reducing the execution time of

the simulation by making use of a relaxed specification of either time or

space for the occurrence of events.

The natural effect of such a choice can be a bias in the evolution of

the simulation model trajectory, possibly leading to an approximation of

the collected statistics—compared to a scenario where no relaxation is used

and exploited by the run-time system. Although the innovative approach

we present shares this kind of concept, a core difference in our solution

is that the effects of the approximation can be somehow managed by the

application programmer, since the execution phases where the approximated

rollbacks can occur can be explicitly specified in the application logic.

Other proposals have studied the trade-off between relaxing strict causal-

ity of the events and its effects on performance in (speculative) PDES

[IPGCMW18], [RTRW98]. Basically, the idea behind them is to skip run-

ning some state rollbacks if the effects of processing events out of strict

timestamp order is considered acceptable in terms of the statistic outcome

computed by running the simulation. Our solution can be seen as fully or-

thogonal to these approaches, since we still comply with strict timestamp

ordering of the events at each individual LP. At the same time, we allow
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a given event to observe a subset (i.e., an approximation) of the state that

would have been observed in a rollback-free run of the same simulation

model.

3.3 Effective agent-based PDES frameworks

Along the years, ABMS and PDES have been extensively investigated. For

this reason, many attempts to support Agent-Based models into PDES

platforms have already been carried out, and a large number of frame-

works can be found in literature. Some of the most known ones are NetL-

ogo [TW04], Mason [LCRP+05], RepastHPC [CN13], Swarm [Iba13], and

JAMES II [HU09].

However, many of these solutions are not meant to wisely take advan-

tage of future exascale computing infrastructure. Thus, effort has been put

into devising new frameworks able to significantly scale up over the amount

of available resources like, e.g., [LLT07], and [STL13]. For a more com-

plete comparison of these (and many more) ABMS frameworks, we refer

the reader to the comprehensive work in [ATLO17].

However, it is worth mentioning some proposals which are of interest

with respect to the solution proposed in this thesis. Therefore, we pro-

vide in the following a somehow comprehensive list of similar frameworks,

describing common points and enhancements this thesis brings:

MASON [LCRP+05] pays special attention to the performance of sim-

ulation execution, addressing computing-intensive models (i.e., sce-

narios with many agents), along with portability and reproducibil-

ity of the results across different hardware architectures. A paral-

lel/distributed version (D-MASON) has been presented in [CDM+12],

which relies on time-stepped synchronization and on the master/slave
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paradigm. We similarly address the performance of agent-based sim-

ulation execution, yet we do this for the case of speculative asyn-

chronous (non-time-stepped) PDES. In particular, we benefit from

the performance improvement which can stem from the Time Warp

synchronization protocol, while allowing a simple implementation of

agent-based models via an expressive API.

Pandora [WRC12] is a C++-based simulation framework enabling exe-

cutions in parallel/distributed environments. It features several AI al-

gorithms for supporting agents’ decision making and provides python

bindings (which is a benefit for inexperienced programmers). At the

same time, Pandora does not hide its internal complexity by design,

allowing (and sometimes requiring) the model developer to extend its

fundamental classes, just to perform simple actions. Conversely, in

our proposal we offer the simulation model developer an API that is

specifically tailored for implementing agent-based models, and which

hides away all the idiosyncrasies of synchronization in a distributed

simulation. This allows for a simplified implementation of simulation

models, giving transparent access to highly optimized synchroniza-

tion facilities to support efficient computations on clusters of modern

parallel machines.

AnyLogic [BC18] is a commercial multi-method general-purpose simu-

lation modeling and execution framework which can run simulations

also in the cloud. AnyLogic allows users to spawn multiple simula-

tions in parallel thanks to cloud resource provisioning. Recent versions

of AnyLogic allow to deal with arbitrary topologies as we do, mak-

ing more evident the importance of this aspect for modern simulation

platforms. Anyhow, the ultimate goal of the AnyLogic framework is

to scale out simulations, while our proposal is intended particularly
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to increase the performance of single simulation runs.

FLAME [HCS06] is a simulation framework targeting large, complex

models with large agent populations to be run on HPC platforms us-

ing MPI and OpenMP. The counterpart FLAME GPU [RR08] targets

3D simulations of complex systems with a multi-massive number of

agents on GPU devices. We keep the ability to deal with large num-

ber of agents, yet we rely on traditional CPU-based execution of the

simulation model.

RepastHPC [CN13] and Swarm [Iba13] are two ABMS run-time en-

vironments which have been successfully used to deliver high perfor-

mance of agent-based models. These run-time environments support

different programming languages, and allow agents to interact through

the exchange of discrete events. Differently from our proposal, they

require high programming skills to be effectively used. Therefore, they

are commonly regarded as complex-to-use frameworks [ATLO17].

RAMSES [CPQ15] is an ABMS run-time environment, with a focus on

transparency. An ABMS API has been already proposed in [CPQ15],

with a goal similar in spirit to that of our proposal. The main dif-

ferences between the two works are that: i) in [CPQ15], the API is

based on the implementation of complex functions which are passed

via pointers to the API, making it difficult to create bindings in dif-

ferent languages; ii) RAMSES supports only reversible computation,

while the API which we propose can be implemented in both reverse

computation-based and state saving-based run-time environments; iii)

if an agent has to make decisions based on the state of the surrounding

environment, this has to be implemented via explicit message passing;

iv) dynamic topologies are not supported.
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OpenABL [CPJ+18] is a recent proposal of a domain-specific language

which allows to formulate agent-based models in a way which is in-

dependent of the actual hardware on which the simulations should be

run. While the benefit of relying on domain-specific languages is un-

doubted to simplify the development process of a simulation model,

we focus on run-time environments. In this sense, our proposal is

complementary to that of OpenABL

3.4 The Event & Cross State approach

Since one of the solutions presented in this dissertation strongly relies on

a previous work already present in literature, in this section we provide

a thorough explanation of how the Event & Cross State synchronization

scheme ([PQ19]) works, analyzing in depth the implementation choices and

the benefits of such an approach. This in depth analysis will be preparatory

for the explanation of the ECS enhancement, that will be outlined in details

in Chapter 4. Indeed, some of the concepts introduced later in this thesis

need to have a specific introduction to provide a complete comprehension

of the achieved result.

3.4.1 Introduction

Historically, Parallel Discrete Event Simulation was mainly built upon an

explicit partitioning of the whole simulation model into several Logical Pro-

cesses, which concurrently proceed in their simulation trajectory [PPQV16].

In this organization, LPs’ states are completely disjoint, and direct mem-

ory accesses are limited to the state of the LP which is currently in control

of the event. To support such disjoint-memory access, simulation objects

are required to communicate via message-exchange protocols. Nevertheless,
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the development of many/multi-core and heterogeneous platforms increased

the adoption of programming paradigms that could resemble the sequential

style approach became progressively desirable. Indeed, the shared mem-

ory standard way of programming is generally preferred by a wide spread

community of research experts which need to deal with simulation environ-

ments.

Given this context, the focus of this section is to introduce a highly

flexible synchronization protocol for PDES named Event and Cross-State

(ECS) Synchronization. With ECS, the developer is allowed to program

handlers that are able to access memory locations contained in the state of

any logical process through pointer dereferencing, thus being able to exploit

the aforementioned implicit communication paradigm thanks to the use of

a very spread methodology in modern programming languages.

The code portion shown in figure 3.1 presents an example of an event

handler in a PDES model implemented using cross-state events to provide

a better idea of the aforementioned solution. The input parameters to this

function are well-known in the context of PDES coding conventions:

• The identifier of the LP (obj) for which event processing is taking

place and the state base pointer (state)

• The address of the data structure starting from which the object can

access any other dynamically allocated buffer belonging to its state,

via pointers.

• The timestamp of the currently dispatched event.

• The event payload, containing all information necessary to perform

the logic associated with it and provided by the model.

This code snippet can trigger a cross-state event since in-place pointer-

based accesses happen both in write and read mode (lines 9 and 7, respec-
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tively). In particular, the target memory portions involved in the accesses

could belong to a simulation object that does not necessarily coincide with

the one actually running the event. In other words, the LP that initially

generated the event corresponding to the payload passed as a parameter

could be different from the one currently executing this code portion (obj,

in the snippet). Put more generally, a cross-state event ei is a simulation

event scheduled for a logical process LPi with a corresponding target LPj

accessing in read/write mode the state of LPi, with i ̸= j.

Figure 3.1: An example of cross-state event generation in the C program-
ming language

Hence, the ECS synchronization scheme provides i) a mechanism al-

lowing transparent runtime detection of remote accesses; the system can

automatically understand if cross-state access has taken place thanks to

operating system facilities entirely transparently for the final programmer

and ii) realignment of the state of the simulation object. Indeed, whenever

a cross-state event occurs, a causality inconsistency can take place as the

remote access may be at a different simulation time with respect to the

timestamp of the original LP (i.e., the memory owner). This concern is

addressed via the Time Warp synchronization protocol extension, which is

finally named ECS synchronization.

The introduced programming model results to be innovative with re-

spect to the solutions offered by the literature so far. Indeed, it offers the

possibility to the programmer to only rely on pointers to the simulation
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states in order to handle memory operations. Moreover, the code example

depicted before shows how this solution doesn’t require any further action

from the final programmer: most of the newest programming languages rely

on decorators (e.g., annotations) to enhance statements and mark them as

particular kind to easily perform optimizations over them. In this case, in-

stead, the programmer does not need to manually specify whether memory

accesses refer to the state of a local or remote logical process: she could

even don’t know anything about the location of the involved logical pro-

cesses (and, besides, this is most likely the case, as transparency is ensured

throughout the simulation run).

This solution relies on pure runtime tracking of the occurrence of such a

kind of accesses, while the PDES simulation is speculatively running. Again,

the correct causal-consistent handling of memory accesses is fully transpar-

ent and hidden to the application developer, masking away any burden

related to the possibility for two LPs targeted by a cross-state event to

be contemporarily scheduled on many different threads. Furthermore, this

implementation turns out to be inherently different from classical shared-

memory approaches in which potentially common memory areas need to be

manually defined. This is the case, for instance, of Transactional Memory

(TM), which are offered, e.g., by the GCC compiler. In this case, it is

easy to understand that the offered synchronized data access, which pro-

vides data consistency via isolation, is not enough to guarantee consistency

among threads running events optimistically. Indeed, a cross-state event

has the additional requirement to access simulation states according to the

timestamp of the cross-state event, namely, the LVT of the LP processing

the event. This clearly involves LPs state realignment operations related

explicitly to PDES environments, a capability that TMs cannot provide.
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3.4.2 The internals

Let us now discuss how the introduced synchronization scheme was imple-

mented in an actual use case scenario. As a premise, it needs to be consid-

ered that even if this solution specifically targets Linux systems running on

top of x86-64 architecture, the introduced concepts are general and can be

ported on any other processor supporting multi-level paging (which turns

out to be a very widely spread methodology in nowadays architectures).

In the ECS state management design, we define as a stock a bunch of

virtual memory reserved to the use of a logical process, which can be em-

ployed to allocate buffers dedicated to its internal state managing variables

useful to carry on the simulation. Specifically, whenever an LP demands

new memory areas, the ECS memory manager assigns a block of page-

aligned virtual memory addresses (thus, the name stock) through the use

of the standard POSIX API mmap. The final programmer is not required to

access any custom API: memory allocation is still offered via the standard

malloc function, which is transparently redirected at run-time to a custom

memory allocator able to manage PDES peculiarities (e.g.: memory causal

consistency issues).

To have a clear picture of the stock mechanism designed to follow mem-

ory accesses occurring upon cross-state events, the IA32e paging scheme

offered by x86-64 architectures needs to be taken into consideration. In-

deed, in such a system, when dealing with low-level memory management,

the virtual to physical address translation is achieved via a technique called

paging, being a page the smallest memory manageable unit. This organi-

zation is based on storing some data structures, called page tables, that

consistently keep track of saved mappings between virtual and physical

pages. This kind of architecture, in particular, supports (up to) 5 levels

of page tables, each one memorizing, in a single entry, the address of the
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Figure 3.2: The IA32e paging scheme with 4KB pages in x86-64 proces-
sors.

lower level one, until the last one, which is pointing to the physical address

of the actual 4 KB page. Figure 3.2 depicts the reference paging scheme,

in which for any 64-bit logical address, 48 bits are considered valid for the

memory mapping procedure. Indeed, they are used to handle addresses for

the 4-level paging scheme, ultimately supporting pages of 4 KB in size. The

top level page table is called PML4 (or also PGD—Page General Directory)

and keeps 512 entries. All the lower-level page tables are also able to store

512 entries each.

Whenever any virtual page needs to be accessed, it is essential to know

where this indirection starts. This is the reason why the Control Register

3 (CR3) maintains the physical address of the PML4, namely the first level

page table.

In the ECS paging scheme, a stock of virtual memory pages, which in

turn are related to memory buffers allocated for a certain LP, directly maps

to a collection of (contiguous) virtual pages. The translation of this set of

pages is associated with a single entry of the Page Directory Pointer table
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(PDP), which is the page table placed at the second level of the indirection.

An item of this table is commonly called PDP table entry (PDPTE). That said,

given that the lower-level table (Page Table Entry, PTE) stores 512 entries,

it follows that a single LP stock can store an overall total of 1 GB of virtual

memory.

With this organization, LP cross-state accesses detection and manage-

ment is ultimately supported via the use of ad-hoc operating system’s kernel

facilities, which are basically bundled into a custom Loadable Kernel Module

(LKM). Upon loading, the LKM generates a special single-access device file

that, at simulation startup, the simulation kernel opens in order to notify

the module that the worker threads spawned by it need to follow the logic

specified by the ECS protocol. Moreover, the simulation kernel reports the

LKM with the address range of virtual addresses destined to a specific LP:

an operation carried on using the SET_VM_RANGE ioctl command.

This command allows the driver to change its state, ultimately en-

hancing the kernel-level memory mapping scheme. Indeed, for each LP-

reserved memory stock, a unique identifier of this logical process is stored

in a constant-time accessible map which is memorizing the single PDP entry

reserved for only that specific LP.

In figure 3.3, we show an example where a given PDP table has its i-th

entry (hence the corresponding stock of virtual memory pages) reserved for

LPk, and its (i + 1)-st entry reserved for LPj. Taking advantage of this

orchestration, if a logical process LPi accesses any virtual address residing

in the stock dedicated to LPj ( i ̸= j ), the LKM is able to understand that

such access, whether is in read or write mode, is crossing the boundaries of

the local state of LPi, finally involving the simulation state of a "remote"

simulation object: this is the case of a cross-state event.

However, determining that such a cross-state memory reference occurs
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Figure 3.3: Mapping example of logical processes (simulation objects) to
stock of virtual memory pages

during event execution remains a technical problem to deal with. Indeed,

two classical approaches could be carried out:

1. Rely on OS’s memory protection mechanism: typical memory

protection APIs (e.g.: mprotect POSIX api) would prevent accesses

to stocks related to a thread Ti to any other thread, including itself.

While this theoretically could be a viable approach, in practice would

lead to degraded performance, as would produce unneeded memory

faults—by threads running objects other than current LPi—in situ-

ations where the LPi does not require any access to "remote" stocks

while processing the event.

2. Rely on code instrumentation: by instrumenting code, we could

hijack the actual behavior of memory writes, ultimately understanding

the final target of the operation. Again, this could be a possible solu-

tion but would produce an overall non-negligible amount of overhead
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related to additional code run upon each memory write operation,

including those not associated with cross-state accesses.

The ECS memory management scheme can overcome this issue in a

different way. Here, any worker thread Tj is associated with a sibling chain

of page tables, keeping the same number of entries of the original ones.

However, every entry of the sibling PML4 page table points to a NULL-

initialized sibling PDP entry, ultimately referring to Ti’s stock. Therefore,

whenever Ti "launches" LPx to process an event, the entries related to the

sibling PDP are "unlocked" to seamlessly allow the access to lower-level page

tables which in turn will contain the actual mapping to the physical required

data. This operation is possible by copying the corresponding entries of the

original (i.e.: non-sibling) PDP tables onto the destination entries of the

sibling PDP page tables. On the other hand, this sibling organization will

trigger a memory fault whenever LPx attempts to retrieve data residing

in PDP entries destined to a different LP (note that a memory fault could

occur even if LPx were accessing its own data, but the actual referred page

was not present due to, e.g., swapping. The distinction of such kinds of

situations is better explained in the remainder of this chapter). Figure 3.4

depicts such a scenario in which the stock related to LPi is linked to the

i-th entry of a given PDP page table.

At this point, a worker thread switches between two different execu-

tion modes according to the operation it needs to perform, via the ioctl

SCHEDULE_ON_PGD command:

• Simulation object mode: while in this mode, worker thread Ti is

only able to access stocks dedicated to the dispatched logical process

LPi, thus enabling the aforementioned sibling page table scheme. As

mentioned above, also the CR3 register needs to be modified in order

to make it store the address of the sibling PML4 and redirect virtual-
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Figure 3.4: ECS schedule example

to-physical address resolution to the ECS custom one.

• Platform mode: in which the standard page table scheme is re-

stored in order to both handle faults happening within the executing

LP’s stock and other faults related to concurrent processes currently

running on the host OS.

By maintaining multiple copies of the original PML4 (namely, multiple

sibling tables), ECS is able to run different LPs concurrently as each thread

managing them is granting access to the stocks associated with the currently

dispatched simulation object, and is aware of accesses that occur over the

boundaries of this LP. However, there are still technical issues to cope with

in order to provide such a kind of solution seamlessly.

First of all, the ECS management system needs to run alongside the

Linux kernel scheduler, which is not aware of the sibling PML4 organization.

Indeed, according to the Linux memory-context scheme, threads within a

certain process would share crucial information related to the memory area

they’re allowed to access, and this involves the address of the original PML4

too. This information is stored in the CR3 register upon a context-switch,
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which is giving back control to the actual thread. The Linux kernel is how-

ever not aware of the aforementioned modes a thread could be in the ECS

management, in which the content of that register needs to be customized

with the address of a sibling PML4. Here, the kprobe facility supported by

the Linux kernel allowed us to give dynamically control to a custom routine

(schedule_hook) right before the Linux scheduler completes its standard

execution. In particular, when the schedule_hook function takes control, a

custom CR3 management is put in place, which i) understands whether the

current thread is running in simulation object mode by checking some per-

thread meta-data previously marked via the SCHEDULE_ON_PGD command;

ii) loads the corresponding PML4 address into CR3, namely the sibling or

the original one, thus persisting the thread in its current mode; iii) gives

back the control to the Linux scheduler in order to perform actions related

to this thread’s scheduling (i.e.: realignment and return). Note that per-

forming those actions turns out to be a much more flexible solution with

respect to providing a recompiled version of the kernel implementing an ad-

hoc modified scheduler, which would have been a much more cumbersome

realization.

Another issue to cope with is related to the fact that memory faults

generated due to cross-state detection cannot be traced via the standard

segmentation-fault handling provided by Linux’s kernel. The reason behind

this lies in the fact that mmap facilities have already validated those memory

pages, so the Linux kernel would handle this situation by re-allocating the

complete chain of page table entries (PDPTEs, PTEs) in order to properly

map the accessed virtual page to the corresponding (present) physical one.

Clearly, in this case, we would have a clone of the whole chain of page

tables for specific virtual memory addresses. This situation is not only incor-

rect but also introduces an unneeded overhead. For this reason, upon LKM
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loading, the Interrupt Descriptor Table (IDT) is automatically modified to

replace the standard Linux page fault handler with our custom callback.

This custom handler enhances the standard one by being able to detect

whether the triggering page-fault is concerning cross-LP memory accesses,

by taking advantage of the sibling page table scheme explained before. If

this is not the case, then the control is given back to the original logic of

the standard page-fault handler, as to provide, e.g., correct physical page

materialization. Conversely, if cross-state access is detected, a synchroniza-

tion protocol is started by switching back the running thread to platform

mode in order to deal with the reconciliation of logical processes with re-

spect to their virtual times, an operation which is needed to ensure that

the memory portions to be accessed are consistent among the simulation

trajectory of both LPs. As this is crucial for correct PDES execution, it

will be thoroughly discussed in next sections.

Moreover, a worker thread can also manually come back to platform

mode by issuing the SCHEDULE_ON_PGD ioctl command provided by the

driver. This on-demand operation was designed to let the thread access

page tables of concurrently scheduled LPs. In figure 3.5 a state machine

describing this process is depicted.

3.4.3 The synchronization scheme

The features described in the previous section allow the simulation platform

to discriminate between memory accesses, taking place at some specific LPi,

having as the target areas belonging to a different LPj in a completely

transparent fashion. However, this is not enough to provide a correct and

consistent execution of an optimistic simulation run. Indeed, in speculative

execution, it is always the case that LPi needs to access memory areas

updated at logical virtual time LV Ti. At the same time, LPj could be at
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Figure 3.5: State machine describing the switch from platform to simula-
tion object mode.

a different time LV Tj either in the future or in the past. Thus, Event and

Cross State synchronization focuses on two main objectives:

• Allow logical processes to complete event execution in non-decreasing

timestamp order.

• Allow logical processes to observe, at any time T of occurrence of

cross-state memory access, the state that would have been observed

at the same time in a conservative run, i.e., have a consistent view of

the memory, no matter how much the local virtual times differ during

the whole run.

In order to fulfill these two goals, the simulation platform needs to be

able to i) temporarily block the execution of an event carried out by an

LP ii); notify LPs that a cross-state access is taking place by means of

enhanced control messages. The latter point was achieved in this solution

with the introduction of rendezvous events, which, as the name suggests, are

related to a "meeting point in time" between two logical processes. These

kinds of events are mapped to platform-level control messages, which do

not have any effect at the application level but at the same time bring with
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them crucial information about the state of the "meeting". Particularly,

they are exploited to temporarily disable an LP to perform updates on

its own state while continuing on its simulation trajectory. Rather, it lets

the LP access its memory to complete the action and unlocks it when it

is safe (w.r.t. simulation consistency) to restore normal event execution.

The same, naturally, happens at the other side, i.e., at the LP requesting

memory access.

With this in mind, let us now go deeper into details about how the

synchronization mechanism works. Let LPi be a generic logical process

managed by thread Tk. We indicate as CSDi the set of cross-state depen-

dencies containing the identifiers of the logical processes currently involved

in a cross-state memory access with LPi. This set is emptied every time an

event is dispatched for LPi. The protocol starts its execution whenever a

cross-state access is detected at LPi, thanks to the ad-hoc memory manager

explained in the previous section. Because of the enhanced memory-fault

handler we introduced, LPi is also aware of the identifier of the LP the

cross-state access is targeting. Let’s suppose this logical process is LPj.

With this information, the synchronization protocol can start and would

entail the following rounds:

• Protocol setup: the logical processes need to both stop their exe-

cution in order to allow memory sharing. This involves three main

steps:

– LPi, which generated the cross-state access, stops the process-

ing of the event ei and temporarily blocks the execution in its

simulation trajectory

– The event ei is uniquely marked with a rendezvous identifier,

RUID(ei)
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– A rendezvous event rej is generated targeting LPj and having the

same timestamp as the originating event ei. Also, it is assigned

the same rendezvous unique identifier as ei, thus Tei = Tej and

RUID(ei) = RUID(rej).

• Rendezvous processing: when a rendezvous event is received at

LPj and is scheduled for execution, the following steps are taken:

– Execution of events at LPj is preempted, and this logical process

enters a blocked phase.

– A rendezvous acknowledgement event reai is generated for LPj,

such that RUID(reai ) = RUID(rej).

• Synchronization phase: whenever the acknowledgment is received

at LPi, this logical process can resume its execution. However, it also

needs to insert the identifier of the targeted LPj into its CDSi. Indeed,

at this point, LPi is assured that LPj is blocked and that it is safe

to access its memory areas. In order to do so, the SCHEDULE_ON_PGD

ioctl is issued passing as a parameter the {CDSi ∪ i} set, required to

know which memory stocks need to be open at PGD level.

• Protocol finalization: when LPi completes the actions related to

memory accesses of LPj’s state, it needs to unblock the other LP and

let simulation proceed. In particular:

– A rendezvous unblock event reuj is generated towards LPj, bring-

ing as rendezvous identifier the exact same of the original event

that triggered the protocol, i.e. ei. Hence, RUID(reuj ) = RUID(ei).

– Upon receipt of this unblock event, LPj is allowed to continue

the event’s execution from the point where it was interrupted.
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Figure 3.6 shows an example of the instantiation of the protocol.

However, since ECS targets speculative PDES environments, there are

still a couple of edge cases to handle. In particular, the following causality

violations may take place while running the ECS protocol: either after the

generation of the rendezvous event rej, event ei is rolled back at LPi, or

while completing the protocol, LPj rolls back its execution to an event with

a timestamp lower than the time of rej. In both cases, LPj could restore

some old data in the memory buffers LPi requested to read/write through

the ECS synchronization.

The first scenario is the most trivial of the two: whenever ei is rolled

back, an anti-event for the rendezvous rej is issued to LPj. This kind of

event would effectively annihilate any action of the corresponding event,

possibly forcing LPj to roll back to a consistent situation. If LPj results to

be already in the blocked phase of the protocol, no "unblock" event (reuj )

is sent to this logical process, but it will simply be automatically unlocked

by the execution of the anti-event.

The latter scenario needs to be handled in a more sophisticated way. In

fact, if LPj is required to roll back to an event with a timestamp lower than

the time of protocol starting, then a new instance of it should be generated.

In fact, in this case, LPj issues a special rendezvous-restart event rrei,

carrying the original identifier (i.e., RUID(rrei) = RUID(rei)) in order to

allow LPi to match it with the rendezvous event which needs to be aborted,

or better, annihilated. Correctness is guaranteed by the fact that when LPi

reaches ei, which is going to generate rej, its rendezvous identifier will be

different from the previous one, evading any possible mismatch.
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Figure 3.6: An example of ECS synchronization protocol instance



CHAPTER4
A distributed shared-memory

PDES middleware

People are good at intuition, living our lives. What are computers good at?

Memory.
— Eric Schmidt

As mentioned earlier, over the last decades, the spreading of high per-

formance multi-core platforms was one of the main drives that brought the

research in PDES towards the exploitation of new programming paradigms,

meant to fruitfully exploit shared memory resources. However, the reduc-

tion of the costs related to put in place a distributed memory cluster on

cloud platforms introduced, at the same time, the necessity to bridge the

gap between shared-memory programming and seamless distributed execu-

tion. Taking into account what has been previously described regarding

the ECS synchronization protocol, in this Chapter we will present a dis-

tributed middleware that transparently allows a PDES application coded

for shared memory systems to run on clusters of (Cloud) resources. Being

an enhancement of the already discussed protocol, all the concepts related

to the ECS implementation internals also apply to this middleware, which

expands ECS’s original capabilities and unlocks the (distributed) develop-

ment of many types of PDES applications.

75
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4.1 Going Distributed

The solution presented in the previous Chapter has a significant limitation:

the synchronization between logical processes can only entail entities resid-

ing on the same machine. This is inherently related to the fact that it is

based on kernel-level facilities that are unaware that other simulation ker-

nels regarding the same instance of the simulation may be running in the

same cluster in which the machine is placed. Indeed, an excellent way to

scale performance over massive simulation runs is to split the work among

many CPUs/cores and different machines, each carrying out a slice of the

load.

For this reason, the ECS protocol was improved to support synchroniza-

tion between LPs hosted on the same or on different machines. In other

words, the synchronization was ported to distributed clusters. To provide

this, a series of enhancements to the protocol described previously has been

put in place. Schematically, the new features introduced in this version are:

1. The possibility to detect, again via standard programming language

facilities (i.e., pointer dereferencing) the materialization of a cross-

state memory access involving logical processes hosted on remote ma-

chines

2. The possibility, for a given logical process, to transparently gain a

temporary lease on the memory pages requested during the cross-state

event and remotely hosted.

3. The possibility to understand, at runtime, the type of the memory

access operation that triggered the cross-state event (namely, a read

or a write) in order to both prefetch pages and materialize them to

write-back (in case of a write operation) the content in the accessed
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LP’s memory state.

Each of these features require a thorough description. Thus, the follow-

ing sections will expand these concepts to make the reader better understand

how the solution was realized.

4.1.1 The distributed memory view

One of the main problems that arose when designing the ECS synchroniza-

tion protocol for distributed environments was to find an efficient way to

make LPs transparently understand whether they were accessing memory

related to another local or remote LP. While the protocol described in the

previous section could fulfill the first of the two scenarios, the latter can’t

be automatically solved by it as the sibling PML4 wasn’t enough to discrim-

inate the locality of simulation objects. Indeed, when a distributed cluster

is involved, there needs to be a sort of agreement on which memory areas

belong to which LP across all the simulation kernel instances that are car-

rying on the simulation (according to the architecture depicted in Figure

2.5). Maintaining a good performance level and an abstraction layer able

to hide complexity to the final modeler were the crucial points that were

taken into account when designing this solution.

The distributed ECS protocol addressed this by providing a determin-

istic memory map manager shared across every simulation kernel instance.

We recall that every logical process has a dedicated virtual memory stock

of size 1 GB. Thanks to this manager, the base address of the stock of every

LP is deterministically computed by all of the simulation kernel instances

taking part in the simulation run. Also, this base address results to be

unique among all LPs entailed in the simulation, finally producing a static

view of the memory to every machine. Hence, every simulation kernel sees

the memory view of all the instances and can act properly according to it.
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Indeed, every simulation kernel instance has a way to discriminate whether

an LP is touching pages related to a stock of another simulation object that

is residing on the same machine or not (although a discrimination algorithm

needs to run querying this kind of information to the deterministic memory

map manager). To better understand what this solution provided, let us

consider the example in figure 4.1.

LPa stock

LPb stock

stock base address

LPc stock

LPd stock

LPc stock

LPd stock

LPa stock

LPb stock

materialized

memory address space of 

SimK1 SimK2

non-materialized

memory address space of 

rem
ote m

em
ory access

Figure 4.1: Example of distributed deterministic memory map organiza-
tion

In this picture, for simplicity, only two simulation kernels are taking

care of the simulation run, and the total number of logical processes in

the whole simulation amounts to four. Namely, LPa and LPb belong to

simulation kernel SimK1, and their memory stocks are green in the address

space of the simulation kernel they reside in. Note that also stocks of LPc

and LPd are placed in this memory view. Still, they will not be used by

LPs belonging to SimK1: the benefit of this design lies in the fact that,

for a given local logical process, accessing a memory area falling inside one
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of them (graphically, going from a green stock to a red stock) would mean

that this access is related to a remote logical process. This is precisely what

ECS needed to achieve: have a the possibility to detect remote cross-state

memory accesses.

Overall, the delivery of memory buffers in this memory map organization

turns out to be non-anonymous. For example, suppose a logical process is

locally hosted on a simulation kernel. In that case, all the memory access

requests coming from another LP are guaranteed to ship memory pages

falling inside the boundaries of the stock related to that LP, which is known

a-priori. As far as remote LPs are concerned, memory stocks assigned to

them will be initialized even on "guest" simulation kernels. However, they

will never be used to serve memory requests.

4.1.2 The enhanced state machine

Given that the ECS solution can recognize whether memory accesses in-

volve local or remote logical processes, the next issue to cope with is the

modality in which these LPs synchronize. Indeed, the already explained

protocol is not enough as we not only need to stop the execution of an LP

on the same machine the cross-state event occurred, but also on a possibly

remote simulation kernel, and potentially both of the situations need to be

managed at the same time. It follows that the introduction of new control

messages (the so-called rendezvous events) and new synchronization states

are required to enhance the current picture of an LP.

The correctness of this improved version of the protocol is enforced by

two fundamental features. First, the execution of a simulation object can

be suspended at any time. This was already achieved in the first version of

ECS, thanks to already discussed techniques. For more details on how this

can be achieved, see [PQ17]. Secondly, every logical process is required to
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fall into one of the states of a well-defined state machine and can transit

from a state to another only via the rules bound to it. The updated version

of the state machine is depicted in figure 4.2. As the reader can notice,

there are three different types of state an LP can reside in at any time:

• Running: an LP in this type of state is currently running the logic

associated to an event. This is a "normal" situation in which no cross-

state interaction has occurred. They are highlighted in green in the

below picture.

• Blocked: an LP resides in such a kind of state if it was stopped

while executing an event due to the occurrence of a cross-state event.

Turning into this state is possible via the reception of control messages

related to the protocol, namely the rendezvous events. These events

only trigger an ephemeral state transition. Blocked states are colored

in gray in figure 4.2.

• Ready: an LP in this state is able to continue the execution of events

but is waiting for some other LP to complete actions related to the

continuation (or finalization) of the protocol.

As a final remark, the state transitions are triggered by certain actions

happening between LPs. Specifically, some of them are the same ones that

were already introduced in the first version of ECS (e.g., ECS ack or ECS

unblock). However, other actions were outlined to cope with new situations

that could happen in a distributed scenario. Briefly, the concepts of major

and minor (page) faults were introduced and will be discussed in the next

section.
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Figure 4.2: The distributed ECS state machine

4.1.3 The smarter Linux kernel module

To provide the reader with a comprehensive explanation of the functioning

of the whole solution, in this section, we outline a detailed description of the

LKM devised to trigger the (distributed) ECS synchronization protocol. In

order to understand whether a memory access involves different LPs, the

LKM intercepts memory faults (namely, page faults), which are generated

whenever a memory page cannot be found in the current memory view of

the thread accessing it. We therefore enhanced the standard mechanism

used to manage the materialization of memory pages to make it aware of

the sibling page tables scheme, and to allow it to invoke our custom logic

to synchronize, at the application level, the involved logical processes.

In algorithm 4.1, we provide the pseudo-code of the page fault handler

able to tackle cross-state memory accesses, augmenting the already existent

do_page_fault function of the Linux kernel.

First of all, there are three cases in which this standard page fault han-

dler needs to be invoked without any custom intervention of the ECS han-
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Algorithm 4.1 ECS page fault kernel handler
1: procedure FaultHandler(pt_regs *regs)
2: if current→ mm = NULL then ▷ F1
3: DoPageFault( )
4: return
5: end if
6: if current→ pid is not registered then ▷ F2
7: DoPageFault( )
8: return
9: end if

10: target← ReadCR2( )
11: if PML4(target) not in LP range then ▷ F3
12: DoPageFault( )
13: return
14: else
15: if PDP(target) = NULL then ▷ F4
16: fault_type←Major
17: else
18: if GetPteStickyBit(target) then ▷ F5
19: fault_type←Minor
20: SetPresenceBit(target)
21: else
22: if ¬GetPresenceBit(target) then ▷ F6
23: DoPageFault( )
24: if GetPdeStickyBit(target) then
25: fault_type←Minor ▷ F7
26: SetPageStickyFlag(target)
27: else
28: return
29: end if
30: else ▷ F8
31: fault_type← AccessChange
32: SetPagePrivilege(target, WRITE)
33: end if
34: end if
35: end if
36: end if
37: Switch to the original Page Table ▷ F9
38: Copy to userspace fault information
39: Push on userspace stack regs→ ip
40: regs→ ip← EcsHandler ▷ F10
41: end procedure
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dler:

• a fault at Linux kernel level arrived (thus, not regarding the specific

simulation run). Line F1 handles this.

• the fault was generated by a process that is not recognized to be

simulation-related (line F2).

• the address targeted by the memory fault resides outside the bound-

aries of the memory stocks dedicated to LPs (i.e., it falls inside a PML4

entry not dedicated to this simulation run). This is managed at line

F3.

If none of these three cases arise, then the algorithm inspects what kind

of fault occurred. More specifically, we distinguished between ECS Ma-

jor Faults and ECS Minor Faults, regarding the first ECS page fault and

the subsequent (artificial) ones, respectively. The first scenario takes place

whenever a memory fault occurs on a page ultimately linked to an entry

of the sibling PML4, which has not been initialized, as they are manually

zeroed (i.e., set to NULL) when the original PML4 is copied. In this case,

the standard page fault handler is interrupted because the logical processes

involved in this cross-state access need to stop and wait for each other in or-

der to have a consistent memory view. This is the reason why at this point

(F10) the user-level callback ECS_HANDLER is invoked, by restoring the orig-

inal value of CR3 (thus reinstalling the old page tables) and copying into a

per-memory buffer the information related to this memory fault (whether

it was related a read or a write, the involved address, etc.). The behavior

of this handler will be analyzed later as it requires an ad-hoc discussion.

In order to make LPs "return" to this code and execute further inspec-

tion about the fault, artificial page faults are forced by exploiting some

available bits in the Page Table Entry (PTE), the structure maintaining in-



Chapter 4. A distributed shared-memory PDES middleware 84

Figure 4.3: The Page Table Entry (PTE) structure

formation about actual memory pages. As hinted, the PTE and PDE entries

offer the possibility to developers to use some of the unused bit to im-

plement a custom behavior. Figure 4.3 depicts the composition of such a

structure. In particular, according to the standard kernel behavior, all PTE

entries which have been materialized keep their presence bit set to discrim-

inate them from the ones that still need to be allocated. The ECS page

fault handler loops through all available PTEs (related to a given LP) and

explicitly sets this bit to 0, thus provoking an artificial page fault the next

time they will be accessed. Naturally, we needed a way to distinguish syn-

thetic and standard memory faults, a condition achieved by setting one of

the PTE available bits (namely the one at position 9, which we called sticky

bit). Moreover, to distinguish between memory stocks dedicated to remote

or local LPs, we exploited an available bit of the PDE entry, namely the one

at position 11.

Eventually, the logical process generating ECS synchronization will be

rescheduled and will execute the custom page fault handler again since an

artificial page fault has taken place due to the custom modification dis-

cussed above. By checking the value of the sticky bit, the algorithm then

understands whether the accessing page was already materialized, a condi-

tion that can happen if a precedent execution of an ECS synchronization

is issued. If the check succeeds, it means that the scenario the execution
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is falling into is the ECS Minor Fault one; thus, the control is given back

to the user-space handler as the retrieval of the required pages needs to be

put in place. We also reset the old value of the presence bit to restore a

consistent situation. On the other hand, if the sticky bit results to be un-

set, further checks are required. Indeed, if the presence bit is unset as well,

then the page needs to be actually brought to main memory: the standard

DO_PAGE_FAULT would take care of this, as specified at line F6. After that,

the algorithm needs to understand whether the inspected page belongs to

the stock of a local or a remote LPs. As outlined, the bit at position 11

of its relative PDE was used to mark this: if this check succeeds (F7), this

is notified to the userland synchronization protocol by triggering an ECS

Minor Fault and setting all the sticky bits of the page table entries linked

to the just-checked PDE entry.

So far, the algorithm did not care about the mode with which the pages

causing faults were accessed. Line F6 deals with this aspect: when a page

is accessed in read mode, we explicitly inhibit successive accesses in write

mode by setting the read/write bit (at position 1 in figure 4.3) using a

custom IOCTL_SET_PAGE_PRIVILEGE ioctl command. Modifying this bit

would generate an (artificial) page fault whenever an LP tries to access

this page in write mode. The purpose of this new page fault is to let the

user-space handler know that an ECS Access Change Fault is taking place,

meaning that a logical process requires to have write access on a (possibly

remote) page it already retrieved (access is granted by resetting this bit at

line F8). This is crucial for optimizations of the protocol, which will be

discussed in the remainder of this Chapter.

As a final note, we remark that the proposed algorithm supports both

the page sizes that the standard Linux kernel can handle, namely 4KB and

2MB. For simplicity, we only described the first of the two cases, and the
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outlined algorithm is related to this kind of configuration.

4.1.4 Synchronizing remote entities

Let us now discuss how the user-space ECS handler, triggered with informa-

tion provided by the LKM about the occurred cross-state accesses, works.

The main logic is presented in the pseudocode fo algorithm 4.1.

When two or more logical processes are involved in a cross-state access

request (namely, an ECS Major Fault occurred, H1), they need to synchro-

nize as their respective Wall Clock Times need to be aligned to avoid causal

inconsistencies. The distributed version of the ECS protocol resembles the

one described in section 3.4.3, enhancing the states and messages that LPs

can manage. Thus, considering two remote logical processes LPx and LPy,

the synchronization procedure relies on the following steps (having in mind

Figure 3.6):

1. LPx sends a rendezvous start control message directed to LPy and

associated to a system-wide unique rendezvous mark.

2. LPx execution is suspended, and its state is switched to the Wait For

Synch one.

3. LPy will eventually receive the rendezvous start event and generate a

rendezvous ack towards the originating logical process. LPy switches

its state to Wait For Unblock until a notification from LPx is received.

4. When the acknowledgment of the synchronization is received by LPx,

its state switches to Ready For Synch, an operation which in turn

allows the logical process to restore its execution. Given that LPy

is inserted into CSDx, memory stocks relative to the target LP are

opened and are now accessible. Indeed, LPx and LPy are now syn-

chronized, and it is safe to access each one’s memory. Since LPy is
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remote, though, if LPx needs to access additional pages, new kinds of

messages are triggered to notify this request. As depicted in Figure

4.2, if LPx needs to access a remote page, it means an ECS Minor

Fault has occurred at this point: the logic associated with the kernel

module will provide the correct information to transmit into the event

to be sent to LPy. In particular, algorithm 4.2 at line H3 takes ad-

vantage of an in-place dynamic disassembler ([Pel13]), which is able to

provide information related to the faulting instruction generating the

cross-state access. Specifically, it can understand whether the fault

was generated due to a read or a write operation and the amount of

memory involved. The crucial point is that this is done without any

user interaction: all of the required information is transparently re-

trieved by this tool. The latter LP will then access the requested page

and include its data into the payload of the response control message,

namely the page ack.

5. Whenever LPx concludes the actions requiring remote data, the syn-

chronization protocol is finalized by sending a rendezvous unblock

event.

Moreover, it is worth mentioning that this protocol can synchronize

multiple logical processes simultaneously, scattered across all simulation

kernels related to a single simulation run. This means that LPs are able

to cross-access states of both LPs running on the same machine or even

placed on a different one, entailing possible synchronization abortions due

to rollbacks or causal inconsistencies occurring at any of the involved LPs.

Furthermore, one additional optimization of the protocol needs to be

discussed. In fact, thanks to the aforementioned disassembler, the algorithm

has the possibility to infer the base address of the first (remote) page and

the amount of pages to be transferred among LPs. Thus, the accessing LP
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is someway acquiring a lease on the cross-state accessed pages for a certain

time window. This means that it temporarily owns a master copy of the

data stored in the leased pages, which represent a portion of the state. Being

the memory stocks organized in a non overlapping fashion (as depicted in

Figure 4.1), this data can be safely installed in the receiver LP’s memory

address space.

Algorithm 4.2 Userspace ECS handler
1: procedure EcsHandler(type, info)
2: if type = Major then ▷ H1
3: ECS_mark ← generate_mark( )
4: Send(RENDEZVOUS, info.targetLP , currentLV T )
5: LP_state← WAIT_FOR_SYNCH
6: CSD ← CSD ∪ {info.targetLP}
7: Deschedule( )
8: else if type = Minor then ▷ H2
9: disasm← Disassemble(info.rip) ▷ H3

10: write_mode← disasm.write
11: page_addr ← BaseAddr(info.target)
12: pages← PgCount(info.target, disasm.span)
13: if write_mode then
14: AddToWriteList(page_addr, pages)
15: else
16: AddToReadList(page_addr, pages)
17: end if
18: Send(PAGE_LEASE, info.targetLP , currentLV T )
19: LP_state← WAIT_FOR_PAGE
20: Deschedule( )
21: else if type = AccessChange then ▷ H4
22: page_addr ← BaseAddr(info.target)
23: AddToWriteList(page_addr, 1)
24: end if
25: end procedure

However, while executing an instance of the ECS protocol, the number

of pages requested by an LP and their mode of access may vary multiple

times before finalization. Clearly, it would be very inefficient to start a new

instance of the protocol every time such a situation occurs. Instead, the

algorithm keeps track of two so-called touch lists: one is devoted to store a

reference to the pages accessed in read mode and the other dedicated to the

pages accessed in write mode (read-list and write-list, respectively). An en-

try of those lists also contains the address of the currently owning LP, as the



Chapter 4. A distributed shared-memory PDES middleware 89

synchronization may involve any number of logical processes, so the own-

ership must be respected throughout the execution of the synchronization

protocol. While on the one hand, accessing a page in read mode would result

for an LP to automatically gain a "read lease" on that page by installing it

in the local address space and having the corresponding entry in the read-

list, accessing a page in write mode would generate an additional artificial

page fault and the ECS handler will perform the switch of the entry from

the read to the write-list (H4). In order to bring back the updated pages to

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address>
Read

List

Write

List

Figure 4.4: The read/write touch lists

the original owner LP, thus ultimately reflecting changes into the memory

address space of the LP that received the cross-state access, the rendezvous

unblock event was augmented. In this case, it needs to piggyback all the

pages for which a lease in write mode was acquired during synchronization.

On the recipient side, this payload is settled immediately before restarting

the normal execution of the LP. Hence, upon restart, the simulation object

will see a reconciliated state due to the state updates brought back by the

protocol.

4.1.5 Pages prefetch

The scheme we introduced in the previous section supports cross-state

events making remote logical processes communicate in a causal-consistent

way. When accessing remote pages, it even provides a way to buffer the

accessed pages by allowing the gaining of leases on them. However, even if

this reduces the number of multiple ECS instances by tracking subsequent
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Figure 4.5: Example of a memory allocator with chunks of same size
placed in specific buckets

memory accesses (during a synchronization process), the overall number

of memory faults could be optimized if some speculative fetch of pages is

put in place. This section presents an approach to determine at run-time

whether the prefetching of remote memory areas could be convenient, ac-

cording to multiple prefetching policies, which pick those pages according

to their rules.

The idea behind this optimization is to reduce the number of ECS Minor

Faults that happen within a cross-state window by loading memory pages

beforehand, upon an ECS Major Fault (i.e., upon sending the very first

rendezvous control message to start the synchronization). Nevertheless,

the objective is to optimize the tradeoff between the cost of multiple ECS

Minor Faults and the overhead associated with a wrong memory pre-fetch,

i.e., pre-load of pages that will eventually never be used.

We devised two different prefetching policies to better adapt to different

types of memory accesses. The first alternative, Clustered prefetching (CP ),

better suits situations in which a cross-state event refers to memory areas

lying in an LP’s state in a contiguous way. For instance, this is the case

of simulation models using data structures that are inherently based on

contiguous memory, such as huge structs or arrays or even a combination of
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them. When this policy is enabled, the ECS middleware requests a number

N of contiguous pages to the target LP: the first of the series initially

generated the cross-state event, while the other N−1 will be the pre-fetched

ones. If a number N ′ < N of memory pages are dedicated to the target

LP at the recipients’ side, then the maximum available pre-fetch number of

pages is returned, namely, N ′.

The other prefetching policy, called Scattered Prefetching (SP ), selects

the N pages to pre-fetch in a random fashion, although this randomness is

somehow biased on the density of memory chunks currently in use by the LP,

placed on a range of contiguous pages. As opposed to the previous policy,

this approach is suited for cases in which a memory allocator, exposed at

model level to facilitate developers over memory allocation, uses sequences

of chunks of contiguous memory pages residing in buckets assigned to chunks

of a specific size (resembling, e.g., buddy systems). Hence, depending on

the size of the memory requests coming from a specific logical process, this

policy picks chunks from different zones of contiguous pages scattered over

buckets of adjacent memory. To make this clearer, figure 4.5 depicts such

a kind of allocator in which the right portion organizes the retrieval of

chunks of size 2s while on the left, chunks of half the size are managed.

Dymelor, [PVQ09], is the memory allocator based on this concept used in

the simulator where we carried out experiments.

A typical situation in which a bias on the chunk bucket is evident is how

linear data structures are used. As an example, considering a linked list, it

is very likely that memory allocation happens within the boundaries of a

certain bucket as the list contains elements of the same type that tend to be

similar in size. For this reason, concerning SP , we assigned to each bucket

bi a weight wi, in such a way to pick a random number of pages residing into

bucket bi proportional to its weight wi. Therefore, if the number of pages
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to pre-fetch is N , then the number of pages Ni randomly selected from the

bucket of contiguous pages bi amounts to N ×wi. This weight is calculated

as the normalized occupancy percentage of every single bucket, a quantity

that depends on:

• the number of chunks that are on average allocated from that zone

• the bucket (and thus chunk) size

Again, suppose less than N × wi pages are currently related to chunks

residing into a specific bucket bi. In that case, we pre-fetch only the pages

that store chunks related to buffers used by the LPs, i.e., belonging to its

state. The autonomic policy driving the transition between these two pre-

fetch policies follows the states dictated by the state machine depicted in

figure 4.6. Here, the starting state is the No-Prefetch (NP ) one, in which

the platform is not performing any pre-fetch. Then, the transition between

policies happens automatically based on two different events: i) a certain

period of time has passed ii) a specific threshold α computed via inequality

4.1 is reached.

minorFaultsX ≤ α×minorFaultsNP X ∈ [CP, SP ] (4.1)

The above inequality compares the estimated average number of ECS

Minor Faults (i.e., additional faults occurring after a cross-state event,

which can be thought of as "inner" cross-state events) that are taking place

while being in one of the available modes (minorFaultsX) and the num-

ber of faults that was observed while running in the no-prefetch mode,

(minorFaultsNP ). In other words, this means that the transition is based

on the computed effectiveness of the policy the platform is currently adopt-

ing: if it results that, for a specific time window, a model concentrates on

contiguous memory areas, then the platform will be prone to switch to the
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CP policy, while if for some reason, in a simulation trajectory, the model

switches to allocation scattered over chunks of different sizes, then the SP

will be preferred, and the run-time environment will automatically switch

to this policy. Of course, it could be the case that neither of the two pre-

fetch approaches suits the current scenario the simulation is falling in. In

this case, the NP policy will be selected as the overhead of this optimiza-

tion would be too high with respect to the speedup earned by the page-

in-advance retrieval. This kind of cyclic retry can be helpful in scenarios

in which the execution continuously changes the page access scheme. Con-

versely, it could be effective even in situations in which the access pattern

remains stable throughout the run.

NP

CPSP

Figure 4.6: The state machine driving pre-fetch mode transitions

In inequality 4.1 there are still two parameters that need to be discussed.

First of all, the number N of selected pages pre-fetched while being either

in CP or SP is extracted at run-time as the average number of remote page



Chapter 4. A distributed shared-memory PDES middleware 94

accesses occurring during a NP phase. The rationale behind this is to obtain

in advance roughly the same number of pages that cross-state events would

access to be as close as possible to the actual data that (probably) would

have been needed to retrieve from a remote machine. This also explains

why, as it could be noticed in figure 4.6, there are additional transitions from

CP to NP and from SP to NP . Indeed, the evaluation of N represents a

core aspect for the functioning of the autonomic policy, and a mechanism to

estimate this value while executing the protocol is required. Although those

are marked as a infrequent transitions, they were explicitly designed to re-

compute the goodness of the pre-fetch policies along the model execution

lifetime.

Moreover, the parameter α is dynamically tunable while running this

autonomic policy. Based on experimental results, we suggest values falling

into the interval [0.1, 0.2]. Indeed, small values of α would lead the policy

to avoid the switch to any pre-fetch policy, ultimately fixing the state to the

NP one. On the other hand, higher values of α would bring the approach

to consider a pre-fetch policy consistently better than the NP one, even if

the amount of non-required fetched pages is relevant.

4.2 Performance evaluation

This section provides experimental results of the solution presented in this

Chapter and discusses a performance evaluation of the features proposed

in the ECS middleware. Moreover, this section concentrates on results

dedicated to the distributed protocol (the standard and the optimized ones,

presented in sections 4.1 and 4.1.5), as it is one of the main focuses of

this thesis. We remind the reader that all of the proposed solutions were

carried on within the ROOT-Sim simulation platform, presented in section
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2.4. The reference testbed platform is composed of two different computing

architectures. The first is based on an HP ProLiant server equipped with 8

AMD Opteron 6367 CPUs, running at a speed of 2.6GHz and mounting 100

GB of RAM. Every CPU includes four cores each, amounting to a total of

32 physical cores. To provide a distributed environment, simulations were

carried out over a cluster of 16 Virtual Machines (VMs) running on top

of the architecture mentioned above. VMWare Workstation (version 10.0.4

build-224991) is the selected hypervisor orchestrating the VM instances,

whose virtualized operative system is Debian 6.0.7 with Linux kernel 3.10.

Moreover, some of the simulations were run on top of single-vCPU and

dual-vCPU configurations of the VMs. The second computing platform

relies on a cluster of VMs rented from Amazon Web Services. Specifically,

16 t2.large VMs equipped with Intel Xeon 2.4GHz vCPUs processors and

8GB of RAM each were selected. This configuration was only used for

the NoSQL experimental assessment, whereas the software configuration

chosen for the whole experimental evaluation is the ROOT-Sim (version 2)

simulation platform. Before going into the performance evaluation details,

n exhaustive analysis of the models used as benchmark running on top of

the simulation platform is required.

4.2.1 Multi-Robot Explore Model

The first model to introduce is a multi-robot exploration and mapping

model, coded according to the results given in [FKK+06]. Here, the main

entities are robots whose objective is to explore the unknown area they lie

in, using sensors they are equipped with. In our implementation, the area

to explore is a square grid divided into hexagonal cells. Each robot inde-

pendently moves into this region, building its map of the currently known

world around itself. Indeed, each robot defines its own exploration fron-
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tier establishing the closest unexplored site it can reach from its current

position.

This concept turns out to be crucial when the next movement has to

be computed, since every entity relies on its exploration frontier in order to

calculate the shortest path to reach it and thus continue the exploration. In

the beginning, no information about other entities is shared across robots:

they don’t know the position of other buddies (besides, they don’t assume

that other robots are even present). However, the cooperation of robots is

supported, and if they manage to meet in a so-called proximity area, they

start interacting by:

1. retrieving each others’ sensors information in order to estimate their

mutual position, as they may not be placed exactly inside adjacent

cells

2. agree on a meeting point where to meet again

3. share the partial map they currently own and merge it with their

respective view of the area

4. determine their next exploration targets, basing on the evaluation of

cost and utility functions (for more details please refer to [FKK+06])

5. start cooperating constituting a cluster and try to predict the position

of other robots not included in their group. If the guessed position

turns out to be verified, meaning the demanded robot reaches a prox-

imity area related to a previously unknown entity, the steps mentioned

above are repeated, and cooperation goes on.

This type of model is well suited to replicate, for instance, natural dis-

aster scenarios in which robots are required to perform risky and unsafe

rescue operations. Each robot is represented via a single logical process,
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and also every single hexagonal region is modeled via a dedicated LP. In

order to properly assess the goodness of the ECS protocol, we provided two

different implementations of the robot explore model:

• no-ECS-based: the communication between robots and the regis-

tration of a robot into a hexagonal cell are implemented with stan-

dard message passing techniques. For instance, whenever two robots

(namely, two different LPs) need to share their current portion of the

explored world, the data to be passed is enveloped into the payload of

the event modeling this action. This operation needs to be manually

coded by the model developer.

• ECS-based: all the interactions between LPs, which means the com-

munications between robots and between robots and cells, can be done

via dereferencing pointers related to the state of the entity of inter-

est. This means, for instance, that whenever a robot wants to access

the memory area of another component of its cluster, it only needs to

explore the content of the pointer of the state of it.

In Figure 4.7, we report the execution time in seconds of both the solu-

tion while varying the number of involved VMs and having a fixed amount

of logical processes. From the data, we can understand that the ECS so-

lution can provide a slight performance increase below a certain amount

of computing nodes. This is mainly related to the fact that LPs are more

likely to reside on the same node when a reduced number of machines is

involved. Therefore, the likelihood that memory accesses can be realized

without transferring them over the network is high. By increasing the num-

ber of distributed computing nodes, the overhead introduced by the ECS

solution raises up to 30%. Nevertheless, increasing the number of nodes

while keeping a fixed amount of LPs results in a higher degree of par-

allelism. Indeed, not only the probability that logical processes generate
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remote cross-state accesses is higher but also the chance that LPs trigger

rollbacks to the synchronizing entities raises. In fact, on the one hand, log-

ical processes are forced to synchronize their local clocks, transfer accessed

memory pages and write back the accessed data, an operation that clearly

comes at some costs both in terms of time and resources. On the other

hand, different logical processes may require to interact with entities that

are currently synchronizing. Still, considering the optimistic nature of the

simulation, they can deliver straggler messages forcing the synchronization

protocol abortion. As it may be spotted, this represents a worst-case sce-

nario for the ECS protocol. However, despite the adverse situation, ECS

can provide a reduced amount of overhead while at the same time providing

the modeler an easy to use programming paradigm, speeding up the process

of development, avoiding bugs in implementations, and letting the focus of

the study concentrate on the model itself, not on the actual implementation.

In figure 4.7, we also show the speedup of the execution with respect to

the utterly sequential execution of the same model, relying on an efficient

Calendar Queue data structure (for more details, please refer to [Bro88]).

Although the fixed amount of LPs is limiting the ECS-based execution, from

the results, we can notice that the overall speedup is non-minimal, with the

final outcome that the communication-intensive widely-distributed scenario

can overtake the no-ECS execution case. However, when increasing the

VM count, the no-ECS solution scales slightly better. Again, this is a

phenomenon related to the higher degree of parallelism discussed before:

the tradeoff stands in the fact that the increased scalability comes at the

cost of coding the event-handler in pure data separation across the LPs,

which imposes the use of specific APIs for making the LPs interact with

each other explicitly.

As far as the enhanced pre-fetch version of the ECS middleware is con-
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cerned, further considerations on the ECS-based implementation need to be

done. In this configuration, each LP dedicated to the modeling of a region

keeps in its private state a presence bitmap and an array of LP state point-

ers. The purpose of these data structures is to memorize whether a robot,

i.e., a logical process, is currently residing in a region or not. Indeed, every

bit of the presence bitmap is assigned to a specific LP, and by relying on

fast bitmap scans, every robot has the possibility to be aware of the robots

the region is currently hosting. After that, by accessing the corresponding

entry within the array of state pointers, each robot can directly refer to the

state of the LPs modeling the hosted robot. These are the reference data

structures for cross-state accesses. Considering that the amount of LPs used

to carry on experiments amount to 484, it follows that those per-LP data

structures results to be small in size, ultimately fitting one OS page. More-

over, even the state of a robot involves data that can be contained in one

OS page: this definitely represents the worst-case scenario for this version

of the ECS middleware as the prefetching of pages is essentially irrelevant

for the run-time dynamics of the model. Formally, according to inequality

4.1, the following pathological situation will always stand:

minorFaultsCP = minorFaultsSP = minorFaultsNP (4.2)

In other words, this means that this model is not inclined to actuate pre-

fetch optimizations, being the NP the leading state of the machine driving

the transition of the optimization modes.

4.2.2 NoSQL Data-Store Model

The second model to discuss for the experimental assessment mimics a vari-

ation of the NoSQL data-store simulation presented in [DSQC+15]. In par-
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ticular, this model targets two types of entities:

• cache servers, which manage copies of complete or partial data sets

• clients, which request transactional data accesses, possibly updating

data through cache servers

The cache servers can be configured to implement different distributed pro-

tocols that guarantee consistency and isolation during transactional data

processing: in our design, the chosen protocol is the 2 Phase Commit (2PC).

Mainly, the kind of events that can be generated at any cache server are

the following:

Begin: to simulate the initiation of a transaction requested by a client.

Write: to simulate a write operation concerning the running transaction

Read: to simulate a read operation concerning the running transaction

Prepare request: to simulate the beginning of the 2 Phase Commit

distributed coordination protocol

Commit: to simulate the end of the current instance of the 2PC pro-

tocol, meaning a transaction has been successfully executed.

Each cache server maintains a set of N data objects, represented by

a ⟨key, value⟩ tuple. This information is stored in a bucket-based data

structure indexed by key values, and buckets are modeled as a list of arrays.

The modeling of a cache server is assigned to a single LP. Hence, a logical

process is required to simulate resource usage of a cache server, along with

the state of the keys the server manages.

Whenever the 2PC protocol is started, every cache server needs to com-

municate to the transaction coordinator the data that needs to be updated,

namely the content of the write sets to be reflected as the transaction result.



Chapter 4. A distributed shared-memory PDES middleware 102

Those sets may entail hundreds of data objects populated by the transac-

tion coordinator while simulating the execution of a batch of transactions.

Therefore, the instantiation of those keys is arranged by the LP modeling

the current transaction coordinator, and this is done within its local state.

To have a thorough assessment of how the ECS protocol would behave in

this situation, we again rely on two different implementations of the model

based on how the prepare request event is constructed:

• no-ECS: in this implementation the modeler is explicitly required

to program the marshaling/unmarshaling of write-sets. Thus, the

prepare request payload consists of the actual data to be written during

transaction execution.

• ECS: in this implementation, the payload of the prepare request only

contains the pointers to the memory areas referring to the write-set

of the data objects to be written during transaction execution.

We present, for this model, data related to the pre-fetch optimization

of the ECS middleware. In particular, this model is extremely different in

nature with respect to the one discussed in the previous section. Indeed, in

this case, the state of a logical process is large, as the write-set of the batch

of the currently executed transactions are saved in the state of an LP. The

keys contained into each write-set are then kept into memory buffers which

ultimately span several OS-pages: as opposed to the premises of the other

benchmark model, this scenario results to be interesting to evaluate whether

the prefetching autonomic enhancement can represent a viable solution to

actually gain in terms of performance.

Furthermore, the performance scale can be assessed even further with

this model as the CPU and memory resources requirements become higher

for this situation. More in detail, the state of a logical process is formed by a



Chapter 4. A distributed shared-memory PDES middleware 103

unique memory-contiguous table, which is storing, along with some possibly

transaction-unrelated metadata, the array used to keep track of the write

sets of transactions. The size of this array is predefined and sums up to the

maximum number of write operations that a group of transactions can exe-

cute. Being the number of touched keys by a transaction non-deterministic,

it follows that only a part of this array can be fruitfully exploited at any

time: the array will be sequentially filled with the correct amount of entries

needed to fulfill the write sets of the transaction being processed. This

means that the number of involved OS pages related to a cross-state event

accessing this array is non-deterministic too. The simulated environment

consists of 64 cache servers in which the number of active concurrent clients

issuing transactions is 64, and the amount of keys touched in write mode

by a bundle of transactions is distributed between 1000 and 2000.

The results in figure 4.8 refer to our private cloud computing platform,

with different configurations of the α parameter (namely, 0.2 and 0.4) and

with time intervals between the automatic switch back to the NP state set

to 103 and 104 simulation time units, respectively. Note that in the results

that we collected, we included our non-optimized solution presented in sec-

tion 4.1. From the plots, we can understand how the pre-fetch enhanced

ECS succeeds in achieving scaled-up resources of the underlying platform.

Indeed, while increasing the number of VMs, execution time scales down

close to linearly. Moreover, when compared to the non-optimized version

of ECS, the improved version of ECS even shows better execution times,

a noticeable indication of this solution’s ability to amortize costs of keep-

ing track of memory accesses spanning multiple (possibly unrelated) OS

memory pages involved in cross-state events.

Furthermore, the pre-fetch ECS is proven to provide better performance

in the case of more probable cross-state events, as this happens when the
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number of distributed nodes increases, a scenario in which, from the third

chart in figure 4.8, such a performance increase is even more evident. Also,

it is to be noticed that the value of the α parameter could be relevant to the

overall performance of the optimized ECS. Indeed, we empirically observed

that lower values of α tend to reduce the ratio between overhead generated

by wrong OS-pages gathering and overall speedup caused by fetching pages

in advance.

Overall, we can understand that the optimized ECS version provides

similar scalability trends with respect to the no-ECS one, but an increased

performance, even with an increased number of VMs. As hinted previously,

this is related to the fact that the middleware inherently inserts some over-

head to reduce the cost of marshaling/unmarshaling of data packets (i.e.,

events) between the involved simulation objects. Additionally, consider-

ing the approach used to implement this specific model, the computational

cost of marshaling/unmarshaling of data to be shared during a cross-state

event is someway lightweight, as, for instance, it doesn’t involve complex

data structure traversals, which puts our optimized solution in an adverse

scenario.

In the first plot of figure 4.8, we also report the data regarding the per-

centage of residence time in each of the three possible prefetching modes

(namely, Clustered Prefetching, Scattered Prefetching, and No-Prefetching).

This histogram shows that the autonomic policy well captures the single

array layout of the LPs’ state, as the most chosen policy for the automatic

transition is CP . However, interestingly, the SP one reveals to be a promi-

nent candidate fallback as its residence time is significantly higher than the

one in the NP state. To explain this, we need to consider the probability of

prefetching pages related to a portion of the LPs’ state array not involved

in the cross-state event. Recall that SP selects the memory pages to pre-
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fetch randomly among those containing memory chunks belonging to an LP

state. Thus, that probability depends on the distance between the number

of cache server keys included in the 2PC instance of interest and the size

of the array itself. In other words, relevant errors in this policy may occur

when the write-sets of the currently simulated transaction have a cardinal-

ity closer to the minimum size, which will, in turn, leave the array empty

for most of its space, thus leading to pre-fetch useless OS-pages.

As a final note on these single vCPU results, the second chart in Figure

4.8 reports the efficiency (i.e., the ratio between correctly processed events

and re-processed ones) for the case of α = 0.2. The data shows how the

optimized ECS provides a slightly worse efficiency, indicating that the roll-

backs’ incidence is a more relevant factor. However, this is an expected

behavior if we consider that the ECS middleware is based on synchroniza-

tion points that ultimately provoke event execution suspension, which favors

the execution of events with higher timestamps. This clearly leads to more

aggressive speculation and even more rollbacks over the whole virtual time.

When increasing the number of vCPUs, the results follow a similar trend

with respect to the already observed ones: the interesting note is that the

increased computing capability is well exploited from our solution, which

for example, further scales and reduces execution time while increasing the

number of VMs (in this scenario we’re exploiting a total of 32 vCPUs).

Still, lower values of α provide a better performance, and the CP policy is

preferred. Data related to this configuration is shown in figure 4.9.

More interestingly, in figures 4.10 and 4.11, we show the execution times

and efficiencies for the AWS deployment, both in cases of single and dual

vCPU, respectively. We recall that the AWS platform doesn’t give any

guarantee on the mutual location of the requested VMs, as they could be

placed on different physical machines. This is an entirely different scenario
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concerning the private cloud infrastructure, discussed for all the previous

results. Thus, latencies related to communication between computing nodes

become a crucial factor, possibly generating shifts in the dynamics of the

simulation runs. For instance, higher latencies could lead to an increased

rollback probability, hampering the overall performance. Interestingly, the

optimized ECS middleware presents a better performance in this setting

compared to the no-ECS, which generally behaves better even with higher

VM counts. The reason behind this is twofold.

First, we experience an overall comparable efficiency between ECS and

no-ECS solutions because the increased communication latency across nodes

is somehow predominant compared to the increasing aggressiveness of the

speculation level mentioned above.

Secondly, the total cost of operations in the no-ECS case, such as roll-

back management, turns out to be more costly when compared to cross-state

access processing. Indeed, the enhanced ECS solution reveals to be efficient

in optimizing communication between nodes by reducing the overall number

of exchanges between logical processes.
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CHAPTER5
Approximated state

reconstruction

Although this may seem a paradox, all exact science is dominated by the idea of

approximation. When a man tells you that he knows the exact truth about

anything, you are safe in inferring that he is an inexact man
— Bertrand Russell

Traditionally, the most common technique to cope with the rollback

operation in speculative PDES is to generate a complete copy of the state

of LPs at specific times in their simulation trajectory, to be used to restore

a consistent state (i.e., the previously checkpointed state that is as close

as possible to the inconsistency occurrence) whenever a straggler event is

received. Of course, the cost associated with enabling this rollback operation

is to be taken into account, along with the overhead introduced with the

re-processing to bring the rolled-back LP to the timestamp of the straggler

event.

The approximated rollbacks strategy targets an orthogonal approach to

reduce the cost of both the state save and restore phases of a rollback. The

primary rationale behind this is that, at least for some portions of a simu-

lation run of certain models, it may be redundant for an LP to completely

reconstruct a previous simulation state. In other words, there may be situa-

111
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tions in which it could be acceptable to reconstruct a subset of the data that

would have been restored upon a rollback, thanks to relaxed constraints on

the accuracy of simulation results. To make an example, specific classes

of stochastic simulations fall into this kind of situation, as they typically

extract properties of the simulated system via statistical procedures.

More practically, as depicted in Figure 5.1, approximated rollbacks relies

on the idea that the state of a logical process can be split up into two

different portions:

core: this is the part of the simulation object’s state which is guaranteed

to be completely restored upon rollback execution;

non-core: this is the part of the state that is not ensured to be restored.

The modeler can even determine how this portion should be restored

in case reconstruction is required.

As for this last point, the possibility of partitioning the state into core

and non-core portions is naturally dependent on the model of interest; thus,

the interaction of the modeler is someway required. However, to minimize

it, our solution provides transparent state-machine handling that seamlessly

takes care of saving and restoring core/non-core state portions and exposes

a user-level callback to be programmed in any way the modeler believes

would be the best for the specific application, whose aim is to provide a

custom restoration of the non-core portion.

Furthermore, we also allow the user to mark particular portions of mem-

ory as core or non-core at run-time, thus enabling dynamic changes of the

amount of the state to be perfectly reconstructed and increasing the de-

gree of freedom in implementing sophisticated models. To support such a

kind of feature, the run-time environment can alternate between traditional

rollback phases and approximated ones, allowing the simulation model to
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Figure 5.1: The design of core and non-core portion of an LP’s state

decide whether to switch from one phase to another (and vice versa) on

demand. This decision could be driven by the observation, at run time,

of the current condition of a logical process along its simulation trajectory.

By defining a set of predicates, the modeler may choose to trigger/disable

an approximation phase whenever they stop or restart holding. In the fol-

lowing sections, the technical details of the approximated rollbacks solution

will be examined in depth.

5.1 The Approximated Rollbacks strategy

Let’s suppose that a logical process LPx maintaining a local state Sx, during

its normal execution, is required to roll back to an event ej marked with

timestamp Tj. Then, the approximated rollbacks allows restoring a state

S
′
x which contains a subset of the information originally kept by LPx at

timestamp Tj, Sx. More formally, given the following definitions:

• LV T (x) the virtual time of a state x

• I(x) the information currently stored in a state x

• S
′ ← S a relation between two states S ′ and S regulating the restora-

tion of the state S after a rollback
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we can describe the approximated rollbacks technique via the expression:

S ′ ← S ⇒ [LV T (S ′) = LV T (S)] ∧ [I(S ′) ⊆ I(S)] (5.1)

. In other words, what equation 5.1 is stating is that when a state S ′ is

restored due to a rollback, the corresponding complete state S, which would

have been observed in a perfect reconstruction, contains strictly a super-set

of the information stored in S
′ : no state-variable that wasn’t originally in

the state S is inserted in S
′ . This is an essential point as model developers

need to be aware that they don’t need to deal with new (thus unknown)

variables during forward execution after an approximated rollback.

On the other hand, the subset relation between state information, namely

I(S
′
) ⊆ I(S), also implies that whenever a state checkpoint is needed, the

platform may be required to persist (much) less data on the available stor-

age. Indeed, the majority of the techniques used to optimize state saving

are based on the reduction of the size of this data, but this kind of ap-

proaches need to relate somehow the write operations performed during

forward execution to the optimized state checkpoints. Instead, the approx-

imated rollbacks technique tries to achieve this with a completely different

approach: to restore S ′ , we simply need to discard all the unneeded (namely,

the non-core) part of the state S. Therefore, no tracing or backward execu-

tion mechanisms (as discussed in section 2.2.1) are required to implement

it. Still, we only rely on the restoration of the state information I(S
′
) rather

than I(S), the non-core and core portions of the LP’s state.

However, the restoration of a state S
′ containing a subset of the full

information may lead to inconsistent situations, and its feasibility needs to

be evaluated. To make this clearer, we provide an example of possible incor-

rect situation of a simulation trajectory caused by an approximated state

reconstruction. This situation is depicted in Figure 5.2. Here, two equiva-
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Figure 5.2: Direct and indirect generation of an event e′

lent (although different) possibilities to schedule an event e′ at time T (e′)

in the future with respect to the event e are presented. In the first one, LPx

generates e′ further on its timeline via the execution of e, while the second

one relies on the generation of such an event via a chain of events scheduled

at different LPs, which are ultimately spawning e′ at LPx. Suppose, then,

that event e′ entails logic that expects to access state information related

to the state initially observed by the event e, namely S. An example of

such a behavior in simulation model could be represented by a model logic

in which event e′ needs to remove from LPx’s state a previously installed

key K, as it could happen in the NoSQL model presented in the previous

chapter.

If an approximated rollback occurs at time T > T (e) (which besides

does not undo the execution of e), such that the state S
′ rather than S is

restored, then executing event e′ after the restoration phase would lead to an

exception, as the information required for its execution, which was contained

in S, is lacking in the memory view observed by this event. That is to say

that the approximated rollbacks technique needs to deal with the problem
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Figure 5.3: Example of exception in retrieving a missing field in an ap-
proximately restored state S

′

of execution of events that expects the disappeared (i.e., non restored) non-

core portion of the state of an LP. A graphical example of such a kind of

exception situation is depicted in Figure 5.3. Therefore, the approximated

rollbacks scheme provides two different solutions coping with the above

discussion.

First of all, the trivial approach would be to mark the information lead-

ing to an exception, namely the key K, as part of the core portion of the

state LPx. The system would, in this case, guarantee that the exact value of

K will be persisted in subsequent state restorations. The other approach,

which is more sophisticated, is related to the ability of this technique to

dynamically switch between approximated and non-approximated (namely,

precise) rollback phases. Considering the example of Figure 5.2, whenever

event e schedules (or is willing to schedule) e′ requiring to access the full

copy of S the system is able to switch to a non-approximated rollbacks

phase and then switch back at run-time to an approximated phase at time
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T (e′). As a matter of fact, it is safe to execute in this mode outside the

boundaries of this time interval.

Before discussing about the technical support of such a solution, a final

point needs to be addressed. Indeed we, outlined how this technique can

manage the correctness of the execution in terms of crashes related to an

inherently inconsistent situation generated by the solution itself. However,

when dealing with the statistical correctness of the simulation run, a modeler

should take into account that the approximated rollbacks scheme can affect

the final outcome of a stochastic simulation, as the recorded data by LPs

in their own simulation trajectory is strictly dependent on the definitions of

the core and non-core portions of their state.

This aspect is clearly related not only to the selection of the parts of

a state to reconstruct perfectly but also to the way in which this recon-

struction is carried on. In particular, the approximated rollbacks technique

complements the restoration of the state S with the execution of a user-

defined callback taking S
′ as a parameter and modifying it to minimize the

actual distance with S, namely the difference I(S) \ I(S ′). If we consider

stochastic simulation, the implementation of such a function can somehow

be exhaustive in performing a guess on the missing information between the

restored states. Of course, the implementation of this function, which we

will refer to as RestoreApproximated (RA) in the remainder of this chapter,

can introduce an overhead to the state reconstruction procedure embedded

in the runtime. However, while rebuilding a state S ≈ RA(S
′
) includes this

cost, the dependence of the number of rollbacks to this cost is still avoided.

As it could be expected, effective implementations of the RA callback

carefully consider the selected information to be restored in terms of rele-

vance concerning the simulated stochastic process. Being this intrinsically

related to the model of interest, it is left to the application programmer to
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determine what information is suited for the approximated reconstruction.

Overall, dealing with large state sizes and coarse-grain events (possibly

updating large portions of the state) in a speculative PDES application is no

longer a concern when employing approximated rollbacks, especially when

I(S
′
) is a very reduced subset of I(S). On the other hand, large state sizes

and coarse-grain (write-intensive) events represent a challenging scenario

for all the other techniques, including reverse-computing based ones.

5.2 The technical support

Let us now discuss how the approximated rollbacks solution has been imple-

mented in the ROOT-Sim PDES platform, although all the aforementioned

concepts are general and can be ported to any custom run-time environment.

As hinted in previous chapters, this simulator relies on a chunk-based mem-

ory allocator (DyMeLoR, [PVQ09]) which maintains tiny metadata to keep

track of allocated, dirty, or uncommitted (i.e., that can be rolled back due

to non completed speculative operations) memory areas. This is done by

intercepting calls to standard functions dedicated to memory management,

namely malloc and free. Thus, ROOT-Sim offers the possibility to the

final user to thoroughly control the memory layout of any logical process

by means of calls to conventional functions of the standard C library.

As for rollback/restore operations, in such an architecture, the check-

pointing procedure would mean to copy the currently allocated chunks into

log buffers, while the restore procedure would perform the opposite, that

is, moving back the logged chunks into their original memory locations. In

particular, given a state S observed by a logical process during event pro-

cessing, the corresponding information set I(S) is composed of two sections:

i) the set of the addresses related to the LP’s state active memory chunks
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and ii) the actual content of the memory chunks relative to the LP’s state.

When dealing with the approximated restoration of a state S, the newly

generated S
′ might miss either one of these two portions, according to the

implementation choice taken. We devised our simulator to opt for the ap-

proximation of the memory chunks rather than the memory addresses of

active chunks. This means that S
′ results to be an approximation of S in

the sense that it misses some memory chunks that were kept in the memory

view of S at the time when S was available while processing events during

its forward-execution. From this assumption, it follows that:

1. A memory chunk cannot be restored into S
′ without restoring its

content as well;

2. Given two memory chunks belonging to the core portion of the S

state, any pointer between them is guaranteed to be meaningful, i.e.,

is pointing to a non-approximated memory area.

In particular, we define the second of the two points as the strong core-

memory connectivity property, and it is explicitly making the whole imple-

mentation dangling-pointers free. Note, however, that this only stands in

an inter-chunk fashion: the strong core-connectivity does not apply to an

individual memory chunk. That is, there could be a situation in which a

chunk belonging to S
′ points to a memory address not mapped to any chunk

in S
′ , while this cannot happen with pointers falling within the boundaries

of a chunk. To have a broader picture of these concepts, we describe such

a kind of situation in Figure 5.4.

Here, we show the memory layout of the two states S and S
′ , being the

first the state where an LP passed through during forward execution and

the latter the corresponding restored state after an approximated rollback.

The memory areas colored in red represent chunks of S which are no longer
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Figure 5.4: A possible post-approximated-rollback dangling pointer situ-
ation

present in S
′ . However, all the memory chunks found in S

′ have identi-

cal content of the corresponding entries of S (depicted in blue), namely

satisfying I(S
′
) ⊆ I(S). In the picture, the pointer p0 refers to the state

information at the beginning of S’s memory layout, namely, chunk A; such

a pointer is the one returned in the event handler routine whenever an event

has to be processed. Thus, strong core connectivity is respected even though

chunk E presents a dangling pointer pk which has no destination, as well as

ph belonging to chunk A.

Therefore, considering the property mentioned above, a chunk B can

belong to the core portion of state S if and only if the chunk A keeping the

pointer to it, i.e., satisfying the relation A
p−→ B, belongs to the core mem-

ory portion of S too—the only exception, of course, is the initial pointer

p0, which cannot be dangling as we need to reach the very beginning of the

state. This, in turn, implies that the state S
′ is fully reachable starting

from the initial pointer p0, which is a crucial property when considering the

feature, offered by the approximated rollbacks scheme, of manually trans-

forming portions of S ′ via the RA callback function. Indeed, full reachability
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is a central aspect as the model developer may be interested in reconstruct-

ing the whole original state stochastically to better approximate the overall

original state S. In our design, in the body of the RA function, it is de-

terministically possible to recognize dangling pointers since, as depicted in

Figure 5.4, developers are aware whether an accessed memory chunk belongs

or not to the core section of the state.

To unburden programmers from the cost of determining whether the

pointer is dangling or not, we devised a custom type of data structure,

named discriminable_pointer, such that the associated virtual address,

used to point to memory chunks of a state Sx, is coupled to a bitmask dis-

criminating whether the pointed chunk is residing into the core or in the

non-core portion of Sx. In this way, while implementing RA, all buffers

belonging to the passed state Sx can be safely scanned in order to either

inspect relevant information if they belong to the core portion or fill them

with stochastically meaningful values if they need to be rebuilt otherwise.

Moreover, the APIs (or macros) offered to the final user provide the possi-

bility to:

• Map the discriminable_pointer structure to a more readable ob-

ject, namely a pair of <address, type> where type is an abstraction

built by parsing the discriminable_pointer bitmap and hence cor-

responds to either core or non-core depending on the nature of the

address.

• Read the pointer value and its state, namely dereferencing it and

understanding whether it is dangling or not

• Assign a new value to the pointer, ultimately updating the address

field.

• Switch the state of an address from core to non-core and vice-versa,
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API Macros
void set_pointer(struct discriminable_pointer, void *address, int type)
void set_pointer_type(struct discriminable_pointer, int type)
void set_pointer_address(struct discriminable_pointer, void *address, int type)
int get_pointer_type(struct discriminable_pointer)
void *get_pointer_address(struct discriminable_pointer)

Table 5.1: Approximated rollbacks API macros

API Functions
int core_memory(void *address, int command)

void start_approximated(void)

void end_approximated(void)

Table 5.2: Approximated rollbacks API functions

namely modifying the type field.

More technically, all the mentioned features were implemented in the DyMeLoR

memory manager, which has been enhanced with specific API functions and

macros, listed in tables 5.2 and 5.1 respectively.

In particular, we provide in the following an in-depth description of their

functioning:

core_memory: this is the entry point to be used in order to set a given

memory chunk as core or non-core. Specifically, the arguments that

can be passed to this API are the memory address of interest and

the command flag which can assume either the INCLUDE or REMOVE

values. These are the flags specifying whether this address needs to

be included or removed from the core memory portion of the state

it belongs to. Note that this API can be called at any time during

the execution of events at user level, so that model developers can

dynamically set specific areas to the preferred value. Moreover, all

the invocations of this function are rollbackable in the sense that the

memory manager can transparently revoke their effect. This entails
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that at any simulation time T , both the simulation platform and the

application logic observe the same core memory chunks, independently

of the changes made after time T but before the rollback brings back

execution to time T . Thus, the model developer can focus only on

the forward execution of the events, and concentrate on a sequential

style programming model rather than dealing with ambiguities about

core/non-core memory areas.

start_approximated: this API allows the application coder to start an

approximated rollbacks phase, in which some portions of the state may

be discarded during post-rollback restorations. This API is, under

the hood, marking as non-core the specified parts of the state by

modifying the metadata related to them.

end_approximated: this is the counterpart of the previous API, thus

restoring the mode of checkpoint/restoration to precise. This API

was also designed to cope with the scenario bringing to exceptions,

depicted in Figure 5.3. If the model developer is aware of the fact

that some event e′ needs to access a portion of the state that could be

discarded via an approximated restoration, this API can be invoked

so as to manage such a kind of inconsistency.

Another important aspect regarding these APIs is related to the acti-

vation point of the RA function. This callback is, in fact, invoked right

after the state S
′ is restored due to an approximated rollback and before

the execution of any subsequent event. Therefore, at the moment of its in-

vocation, RA needs to find a correct view of the discriminable_pointer

variables lying in the restored state. Hence, we only demand the final pro-

grammer to mark these pointers correctly before starting an approximated

phase (via the core_memory and start_approximated APIs, respectively)
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Figure 5.5: A possible execution timeline of approximated/precise roll-
backs phases

and throughout the approximated phase itself.

Moreover, it is worth mentioning that the programmer is free in the usage

of the discriminable_pointers in the sense that the run-time can still rely

on classical pointers to carry on state restorations. Indeed, this could be the

case in situations in which the state S keeps pointers to disjoint collections

of data, a subset of which needs to be maintained in the core portion of

the state. In this situation, the run-time could implicitly assume that the

non-core collections need to be stochastically rebuilt (or repopulated) after

the occurrence of an approximated rollback.

In Figure 5.5, we show a possible simulation timeline involving the us-

age of those APIs. In the picture, event e is scheduled at time T (e) and,

while being processed, application-level code marks some memory areas as

core via the usage of core_memory, after which an approximated phase is

started via the start_approximated callback. Now, a complete checkpoint

is automatically logged by the run-time, and only memory chunk previously

marked as core shall be perfectly reconstructed during a rollback, hence-

forth. Furthermore, whenever T (e) is reached, a call to end_approximated



Chapter 5. Approximated state reconstruction 125

LPx WCT

e1 en

Can be correctly reprocessed in an 
approximated coasting forward execution

S

S’

Figure 5.6: An example of a scenario in which approximated coasting
forward can be safely executed

is issued, effectively eliminating any difference between marked and un-

marked (i.e., core and non-core) memory chunks. At this point, the simu-

lation platform switches back to the standard checkpointing based on com-

plete reconstruction of the state, i.e., it starts a precise rollbacks phase.

Finally, a last optimization of the overall scheme needs to be discussed.

Indeed, until now we discussed how the approximated rollbacks strategy can

leverage from the reduction of costs in storing/restoring states by handling

only core information of a state originally passed through at some simulation

time. Nevertheless, this idea can be extended considering the possibility

that events processed by a logical process can lie in a simulation window

in which they can be correctly handled by means of only approximated

rollbacks.

To better explain this, let us consider the simulation trajectory portion

of LPx described in Figure 5.6. Assume that the sequence of events e1 . . . en

can be handled by approximated rollbacks, i.e., an approximated rollbacks

phase has started at e1 and has not finished yet after execution of en. In

this case, we can state that no run-time anomaly could take place when-

ever the sequence of the very same events needs to be reprocessed after an

approximated rollback occurs. Then, if this is the case, it means that the
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reprocessing of these events would result in a simple series of state updates,

an operation that in a precise rollback phase we would refer to as coasting

forward. Thus, during the simulation time window between the timestamps

T (e1) and T (e) we can adopt the approximated coasting forward optimiza-

tion, since it is starting from an approximately reconstructed state. For the

same reasons explained in this section, this kind of coasting forward will

produce better performance with respect to the standard one.

5.3 Benchmark applications and results

To start describing the results obtained in the approximated rollbacks evalu-

ation, we should first analyze the test-bed environment and the applications

chosen to carry on experiments. First of all, we ran our experiments on top

of two different computing platforms:

1. A bare metal platform, based on 4 AMD OpteronTM 6168 multicore

processor with 12 cores each for a total of 48 cores and equipped with

128GB of RAM.

2. A virtualized cluster, based on three virtual machines rented on Ama-

zon Web Services, each of them being an m5.8xlarge instance equipped

with 32 vCPUs and 128GB of RAM. The selected AWS region for all

of them is the same, along with the availability zone to reduce com-

munication latency. We recall that such kinds of AWS instances are

run on top of Intel Xeon® Platinum 8175 CPUs, running at a speed

of 3.1GHz.

As for the benchmark applications, we based our experiments on a real-

world and a synthetic model. We discuss the details of these implementa-

tions in the following sections.
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5.3.1 PHOLD benchmark

The first application we selected to carry on experiments is an artificial one,

in the sense that its purpose is not to model a real-world scenario instead

to test the PDES platform features directly. Initially, the HOLD algorithm

was designed to evaluate sequential discrete event simulations; therefore,

the enhanced Paralled HOLD (PHOLD, ([M.90])) precisely targets parallel

executions of discrete event simulations.

The key functioning of the model can be summarized in the following:

an algorithm schedules events uniformly randomly across all the logical

processes, which while executing one of those events could either generate

a new one targeting themselves or schedule an event to a different LP.

Further, the targeting LP is still chosen uniformly randomly, and each event

is scheduled at a time equal to the LP’s logical virtual time plus a value

drawn by an exponential distribution.

In our reshuffling of this model, every logical process at simulation

startup generates multiple linked data structures in its own state. The

content of each entry of these structures is not really of interest, as they

only keep their size and a buffer filled with random data. Rather, what

is important are the actions included in an event associated with the lists:

every logical process, while executing an event, loops through its data struc-

tures, updates them by writing random data and, with a certain probability,

removes one of them from its state, sending a copy of it to a randomly cho-

sen target LP. On the other hand, the receiver LP chains a copy of the

delivered data structures into its state and keeps it updated following the

logic described. Therefore, during the whole simulation run, the overall size

of the data is kept constant across all LPs.

Even though this is a non-real application, PHOLD somehow resem-

bles some widespread situations in a PDES environment. First, the data
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structures exchanged between logical processes replicate a traditional PDES

situation where entities communicate (as in the robot explore model, de-

scribed in the previous chapter). Secondly, being the state of a logical

process very likely to be completely different from the state of others, the

model is putting in place a situation in which real-world entities are inter-

acting with reciprocal unknown data (again, the robot explore model is an

example of this).

As far as the approximated rollbacks scheme is concerned, our PHOLD

implementation relies on two recurrent phases. The first one is the stan-

dard precise rollback phase , in which checkpoints are taken in the tra-

ditional manner (according to the implemented policy, e.g., full or incre-

mental checkpointing). After persisting for a certain amount of time, the

model switches (via the invocation of API functions described above) to an

approximated rollbacks phase. While in this condition, only the metadata

regarding the number of buffers within a simulation state is marked as core

memory. Moreover, the amount of state to be reconstructed when invoking

the RA function to approximately restore it was parametrized. This fea-

ture was specifically designed to better analyze the impact of the overhead

introduced by the user-defined state reconstruction callback function.

As far as the configuration of this model is concerned, simulation runs

were launched with 100 logical processes. Thus, given that we launched

multiple runs with different amounts of involved thread/cores, we were able

to test scenarios in which the number of LPs per thread/core was spanning

from 2 to 100 for the private deploy and from 1 to 50 in the AWS cluster.

This results in an interesting situation since it is incrementing the probabil-

ity of rollbacks as the divergence of local virtual times increases, ultimately

provoking a non-minimal rollback incidence.

In Figure 5.7, we first analyze the single-node deploy running our vari-
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ation of PHOLD, entailing a 10K buffer migrations long busy loop. In our

resembling, we diversified the amount of reconstructed state by the RA

function to span over 25%, 75%, and 100% of the whole state size. The

results show that the approximated rollbacks solution can provide better

levels of performance in situations in which the amount of rollback is dra-

matically increased, i.e., when the number of core counts gets higher. This

is a sign that the solution is able to optimize the costs related to check-

pointing the state, which turns out to be a critical operation when the level

of concurrency on a core/thread is growing, as this entails more frequent

rollbacks.

Although all state reconstruction configurations can provide better per-

formance, we can notice from the plots that the total reconstruction brings

the highest level of increase in terms of overall execution time. On the other

hand, in the worst-case scenario, coinciding with small core counts, the pre-

cise reconstruction presents an execution time that is better than the 75%

reconstruction by a factor of 1.2. This can be explained by the fact that the

approximated rollbacks scheme is introducing noise into the sequence of op-

erations on the critical path of the runtime, ultimately generating a slightly

higher number of rollbacks. With a small number of threads, though, the

costs associated with the RA function could fail in paying off the ones of

precise rollback restorations.

In Figure 5.8, we show the data related to the AWS deployment for a

25% approximated reconstruction of the state. Here, the incidence of roll-

backs is even raised by network latency which is skewing event interaction

between remote LPs. We show the measured execution times, the latencies

of checkpoint restoration, and the overall memory usages. Nevertheless,

even in such a distributed scenario, the approximated rollbacks scheme can

reduce execution times from 25% to 50% (first plot of Figure 5.8), a straight-
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Figure 5.7: PHOLD execution times varying the amount of approximately
reconstructed state, in the private deployment.

forward consequence of the checkpoint restore cost decrease (second plot of

Figure 5.8).

Furthermore, as the degree of parallelism increases (thus, the probability

of rollback), the approximated rollbacks scheme presents even better per-

formance: this is a sign of the fact that this solution scales well, and that

could allow more significant and complex problems to become tractable, yet

with a high level of programmability.
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5.3.2 The Susceptible-Infected-Recovery benchmark

The second benchmark application which was chosen to provide experimen-

tal results is a real-world one, mimicking an epidemiological Susceptible-

Infected-Recovery (SIR) scenario. This kind of model was designed to inves-

tigate the spreading of diseases in medium/large demographic areas, specif-

ically targeting tuberculosis infections. The implementation of this model

took as inspiration a first implementation provided by the Barcelona Super-

computing Center (BSC), whose details can be found in [MSGNCG+15].

Similarly to the one described in 4.2.1, this is an agent-based model in

which each entity moves around a delimited area and interacts with other

humans according to a specific logic. Also here, logical processes repre-

sent regions of the area, and the state of a logical process is composed

as follows: an individual has a current health status, which at a certain

time can be only one among healthy, under-treatment, infected (i.e., incu-

bating the disease but still not ill), sick, and recovered. Moreover, other

individual-specific parameters are stored, as they could drive their infection

behavior. Those parameters include age, gender, native-immigrant origin,

possible risk factors (e.g., smoking, addictions), and possible immunode-

pression (i.e., AIDS). Also, once a person is infected, the presence (or not)

of pulmonary cavitation is taken into account. Additionally, an LP model-

ing a region keeps in its state a counter of the agents currently residing in

it, one for each of the mentioned possible infection statuses of agents and

their characteristics. To easily distinguish them, agents belonging to differ-

ent states are mapped in various data structures, namely hash tables, and

not all of them are marked as core memory. In fact, the agents we consid-

ered as core are the ones belonging to the healthy and recovered statuses.

In contrast, all the other agents are restored in an approximated way upon

rollbacks; hence the platform will not record any additional information but
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the actual overall number of them, restoring in a stochastic way the per-

sonal parameters like age, gender, etc. This last point, however, is a crucial

aspect as stochastically recomputing those parameters when the RA func-

tion is invoked inevitably leads to a shift in the features of the population

concerning the default parameters fixed at simulation startup, and this can

generate, for a specific run, slight or considerable changes in the outcomes

related to the spreading of the disease. In other words, being this a real-

world application modeling a phenomenon driven by accurate parameters,

modifying them at run-time could bring to different conclusions and predict

disease spreading situations in various manners.

The tuberculosis model was configured as follows: 1,600 logical processes

move into square regions of 0.06km2, for a total of 96km2. The overall num-

ber of agents involved in the simulation amounts to 1.6 million, and agents

move according to a random walk in the available areas. Hence, each LP

modeling a region handles, on average, 1,000 individuals (16,000 people per

square kilometer is the actual population density). Indeed, to comply with

this model’s original resorting, this configuration maps a medium metropoli-

tan city, namely Barcelona, in 2019. As for the default parameters, at sim-

ulation startup, 95.59% of the population is marked as healthy, while 4.28%

is instead infected. Only 0.12% of the individuals start as recovered, and the

remaining 0.01% is either sick or under-treatment. Even if the number of ill

individuals could appear to be significantly reduced, agents are frequently

moving over the areas, and the dynamics of the movements are fast, thus

bringing the simulation scenario into a pandemic environment quite quickly

during the run. Finally, the simulated time taken into consideration sums

up to 10 days.

To understand how we carried on experiments, we recall that we called

χ the state saving interval, which represents the amount of time between
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Figure 5.9: TBC execution times for precise and approximated rollbacks
schemes, in the private deployment

two consecutive checkpointing operations. This is a tunable parameter in

the ROOT-Sim simulator, and we modified it to span over 1, 10, 20, and

40: using different configurations of this parameter can provide a broader

picture of how exploiting infrequent checkpointing of core memory portions

can impact overall performance.

As a preliminary result, we show in Figure 5.9 the execution times of

precise vs. approximated runs performed on the private single-node ar-

chitecture, having set χ to 10 (the default parameter for our simulation

platform). Even though the resulting trends are very similar between the

two solutions, the primary purpose of this plot is to prove that the approxi-

mated rollbacks scheme can scale in performance when increasing computing

power. Indeed, this is the starting point to a more in-depth analysis of the

overall log/restore approximated support. The rest of this assessment is on

simulation runs relying on the same sequence of pseudo-random numbers,

meaning that the seed from which random numbers to be possibly rolled



Chapter 5. Approximated state reconstruction 135

back has been consistently and specifically set. All the trends refer to re-

sults averaged over five different runs, and we denote with the letter A runs

relative to the approximated rollbacks solution and with P the precise coun-

terpart scheme. Numbers after each letter express the selected checkpoint

interval.

In Figures 5.10a, 5.10b and 5.10c, we show the performance compari-

son between precise and approximated rollbacks schemes while varying the

checkpoint interval value and the number of involved CPU cores. We ex-

plicitly decided to plot the results from all configurations in the same chart

to visualize the differences better. More in detail, the relative performance

is measured by subtracting the overall precise and approximated rollbacks

execution times, and dividing the result by the total execution time of the

precise run. Observing the trends, we can understand that most of the

time, the approximated rollbacks scheme can benefit from increased perfor-

mance, except for the runs associated with the checkpoint interval set to

40 for the approximated approach and lower values for the precise solution.

Indeed, these situations present a negative speedup, and we explain this

phenomenon by the fact that with these configurations, the simulation runs

present an increased amount of rollbacks, characterized by a relatively short

length in simulation time. This, in turn, means that the approximated so-

lution is forced to re-execute a non-negligible number of events with respect

to the precise rollback scheme. All the advantages related to the reduction

of checkpoint or restore operations are therefore dramatically degraded.

Another aspect of investigations of the experiments we carried on con-

cerns the effect of state size in this model, compared to the dynamics of the

approximated rollbacks solution. Indeed, from what we discussed in this

chapter, shrinking the state size of a logical process should result in a less

evident impact of the approximated rollbacks solution as the cost of log and
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Figure 5.10: TBC epidemic model - relative performance of the approxi-
mated vs precise rollbacks.
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Figure 5.11: TBC model’s relative performance of the approximated (χ =
10) vs precise rollbacks with scaled down workload

restore operations of core and non-core portions becomes negligible: if the

state is composed by a tiny amount of data, we won’t get any significant

improvement by splitting up a fraction of that already small amount of in-

formation into reconstructable/non-reconstructable data. In particular, we

significantly reduced the load at each LP to make them manage an average

of 20 agents rather than 1000 of previous results. As a matter of fact, we

proved this behavior by running the approximated scheme with χ = 10, the

results of which are plotted in Figure 5.11. From the chart, it is evident

that the resulting relative speedup is less favorable compared to the one

depicted in Figures 5.10a - 5.10c.

As a final experiment, we also chose to measure the accuracy of simu-

lation outcomes in runs enabling the approximated rollbacks scheme. We

recall that the simulation results could be affected by the logic introduced

in the RA callback as it could bring to significant shifts in the population’s

characteristics, ultimately affecting the spreading of the virus. In Figure

5.12, a plot of the percentage of agents in each state for each simulated day
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Figure 5.12: TBC model’s results accuracy of the approximated (lighter)
vs precise (darker) rollbacks.

is presented. We recall that the state of an agent can be either healthy,

infected, sick, under-treatment, or recovered and that the core portion of

the state of an LP contains the counter of the currently present agents be-

longing to each class and their characteristics. Also, we show the simulation

results for runs configured with χ = 10.

Analyzing the depicted results, we can observe that the stochastic di-

vergence introduced by the approximated scheme is reduced. In fact, the

difference in the number of agents belonging to the different states is com-

parable between the two checkpointing approaches. This can be considered

a proof of the fact that the approximated rollbacks technique is a viable

solution to provide meaningful simulation results if we accept a reasonable

error range in the produced outcomes. Furthermore, combining these re-

sults with the relative performance increase we outlined in previous charts,

we can confirm that if the final modeler is mainly interested in trends of the

overall simulated study, the approximated rollbacks approach is viable.



CHAPTER6
Enhanced Agent-based modeling

Never send a human to do a machine’s job.

— Agent Smith, The Matrix

Generally speaking, when dealing with simulation, modelers usually have

to face the description of complex systems and complex interactions between

entities residing into them. Indeed, evaluating or deriving aggregated sys-

tem dynamics equations could represent an onerous task when working with

a computer system. In relation to these issues, the Agent-Based Modeling

System (ABMS) paradigm includes system-wide features into the agents’

abstractions and interactions and represents a more viable technique to

simulate behaviors or emergences of higher-order patterns, such as traffic

congestions, network compositions, terroristic organizations, etc. Overall,

there are several reasons for which ABMS is considered a powerful approach

in the simulation area. First off, the specification of the agents can be decou-

pled from the environment in which they will operate, resulting in a more

straightforward way of developing a model (and possibly re-using agents’

specifications). Also, agents’ interaction can provide complex behavioral

patterns, with the result that even emergent behaviors can be exploited and

analyzed. The ABMS approach is also suited for adoption in several areas:

many works in the literature provide advanced models dealing with neu-

ral networks, evolutionary algorithms, etc.([GT00], [MHH07]): this proves

139



Chapter 6. Enhanced Agent-based modeling 140

that the agent-based modeling can be even more powerful and realistic than

classical model definition approaches.

When designing an ABM system to simulate real-world scenarios, three

main issues need to be taken into account:

Topology specification: in order to provide flexibility in terms of

movement of the agents, an ABMS description should offer many dif-

ferent and possibly complex topologies. Complex graph-based envi-

ronments also enable more interesting interactions between agents to

be described or to emerge. Moreover, the topology definition should

not be limited to real-world environments since virtual scenarios in-

volving many layers of information might be necessary to model syn-

thetic situations. Finally, the topology specification’s flexibility should

also reside in the capability of agents to dynamically modify the topol-

ogy itself.

Agent specification: the most common description of an agent is pro-

vided through simulation states. Specifically, this involves the set of

variables and structures that maintain their interaction with the envi-

ronment and other agents, along with their own evolution over time.

The state of an agent results to be crucial not only because it allows

to identify it among the whole system uniquely, but also because it

drives the behavior of it throughout the simulation.

Interaction specification: agents need to communicate with each

other in order to perform basic actions related to the evolution of

the simulation. Their interaction could depend on their current state,

the status of the environment they’re settled in, and the presence or

absence of certain classes of agents in the surrounding areas.

Thanks to its easiness in development and its capability of modeling
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complex systems in a more natural way, ABMS is gaining interest at a higher

and higher pace. However, when dealing with the actual materialization of

such systems on top of a computing platform, many concerns (possibly

experienced at the same time) may arise, such as:

• Non-linear and dynamic behaviors in the system of interest, presenting

high uncertainty and a conspicuous amount of stochasticity. This is

a specific context in which a single run of a simulation model is not

enough to extract statistically meaningful results, and only averaging

results on a repeated number of runs can lead to better estimations.

Although this kind of scenario can take place, in general, in many

stochastic models, unfortunately, while a single ABMS run could be

feasible, a large number of ABMS simulations might be not.

• Enhanced policies driving the interaction and decision-making of the

agents, based, e.g., on cognitive or psychological processes. This kind

of requirement, typical of micro-simulations, may entail higher com-

putation demands.

• Enlarged set of explanatory variables in the state of single agents. This

situation, again typical of micro-simulations, can lead to an increased

amount of data to maintain, becoming unfeasible when the overall

number of agents increments.

• Large number of involved agents or incredibly vast environments. For

instance, a larger model could disclose emergent behavior linked to

the number of interactions between agents. It could be the case that

smaller models can’t produce such a result because of interactions’

magnitude. These cases can either generate unfeasibilities related to

insufficient memory capacity of computing nodes or to extended (po-

tentially indefinite) execution times of simulation runs.
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Therefore, even if, on the one hand, the ABMS formalism can cope with

the handling of complex systems, on the other hand, what-if analysis can

experience performance penalties preventing researchers from finding the

needed insights. Additionally, concerning speculative PDES, modelers may

be required to manage an increased amount of implementation details. In

fact, although speculative discrete event simulation models turn out to be

very well suited for the requirements of an ABM system (e.g., the impul-

siveness of events can be embraced in the mode in which agents should

interact), some critical operations such as the handling of rollbacks can rep-

resent an unviable burden for developers. Considering a high number of

domains relying on ABMS and parallel/distributed computing platforms, it

is required not to demand the final programmer to tackle implementation-

related details, as the ABMS framework should hide this complexity, letting

the developer concentrate only on model-specific dynamics.

For these reasons, this chapter describes a semantically-rich API that

allows a simple and effective implementation of ABMS models on top of

PDES platforms. In particular, it has been devised to address i) the pe-

culiarities of massively parallel/distributed architectures ii) the aforemen-

tioned requirements of ABMS, and iii) bridge the gap between the users of

ABMS run-time environments and the architectural capabilities of modern

computing infrastructures.

6.1 The enriched ABMS APIs

The APIs that will be presented in this section were devised, as mentioned,

to transparently provide ABM features on top of PDES platforms, taking

into account both programmability and efficiency. A core characteristic of

these APIs is represented by the fact that they are stateful by design: the
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run-time environment must keep track of a set of data structures to main-

tain the evolution of the simulation. To provide a comprehensive set of

functionalities, the problems mentioned above related to ABM were specif-

ically tackled. Therefore, the APIs were split in three different areas of

concern, namely agents’ modeling, agents’ interaction, and topology defi-

nition. The three different subsets of APIs will be discussed separately in

the following subsections. Note that the APIs definitions are presented as

signatures of a possible C implementation, but by no means this means that

they are limited to this specific programming language.

6.1.1 Modeling agents

The fundamental aspect to be introduced before discussing the provided

APIs regarding agents definition lies in the way in which agents are han-

dled by the run-time environment. Taking inspiration from [CPQ15] and

[PQMSCG16], in our ABM system, each logical process models a single re-

gion of the environment, while agents are represented by either data struc-

tures or objects, depending on the programming language the APIs are

implemented with. This choice was specifically made in order to simplify

the implementation of agents’ interactions dramatically: an agent is han-

dled via variables which is a concept that even a non-experienced developer

can quickly master.

With this premise in mind, the process of uniquely identifying an agent

becomes straightforward. Indeed, we introduced the agent_t type, which

can be considered a system-wide unique identifier (UID). A variable of this

type needs to be associated with an agent’s data structure, and its globally

unique value can be computed relying on the fact that the simulation kernel

instances involved in a simulation run are already commonly identified in

the system itself (e.g., via an MPI rank in a parallel/distributed scenario).
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Hence, a viable value can be computed basing on a per-instance monotonic

counter, such as the Cantor pairing function

(K + c)× (K + c+ 1)

2
+ c (6.1)

Here, K is the simulation kernel instance ID, and c is the current value

of the monotonic counter. Even if this is only an example, this approach can

be suitable as it relies only on integer arithmetic, and can be optimized in

multithreaded environment via atomic facilities (e.g., read-modify-write in-

structions). Since the lifecycle of an agent can be shorter than the duration

of the whole simulation, it is necessary to handle the agent_t type in an

efficient manner. In fact, as will be later discussed, agents can be dynam-

ically added or dismissed, involving possibly costly operations regarding

data structures managing them. Therefore, a straightforward suggestion

would be to use hash maps to reduce the latency of retrieving metadata

representing an agent.

On the other hand, the final user can exploit any kind of arbitrarily

complex data structure to store agents’ state, provided that they maintain

all the explanatory variables allowing the agents to make decisions or change

their behavior. Depending on the size of different families of agents the

model of interest involves, the developer is allowed to define as many data

structures as needed in order to fulfill the requirements of each agent (e.g., in

the limit case, each agent might be described by its dedicated data structure

type).

The description of the APIs related to agents’ management are provided

in the following:

AddAgent(unsigned user_data_size): Provides the creation of a new

agent in the system. The return value is an agent_t variable, identi-
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fying the newly created agent (resembling return values of databases’

CRUD operations). The parameter user_data_size specifies the size

of a buffer that the run-time environment is required to dedicate to

store data associated with the new agent. Note that, since this API

targets speculative environments, the creation of a new agent can be

subject to rollbacks. Therefore, the run-time platform needs to bind

the buffers associated with the new agent’s representation to the event

causing this agent’s creation and the LP which originally executed

this event. A viable implementation of such a rollback handling can

be achieved making use of dynamically allocated memory. In fact, if

the allocation of an agent is redirected to the memory dedicated to

an LP (i.e., a region), then rolling back the state of the LP would

entail restoring a consistent situation concerning the creation of an

agent as well. Clearly, this will imply that for a limited period, the

agent "belongs" to the simulation state of the region within which it

is residing. However, this turns out to be a desirable situation since

all the agents residing in the same region (i.e., LP) will observe a con-

sistent simulation snapshot while simulating events accessing and/or

modifying their structures. Moreover, given that agents are identified

by a UID, if the generation rule is similar to the one presented in 6.1,

then it is not required to handle the roll back of the UIDs. Indeed,

the UID related to the rolled back agent won’t be associated with any

agent in the restored (i.e., corrected) simulation track.

RemoveAgent(agent_t agent): This is the counterpart of the previous

API. If the model logic at some point determines that an agent is no

longer needed to be part of the simulation, this function is the entry

point to delete it. The function accepts as parameter the agent_t

which uniquely identifies the target agent. After the completion of
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this API, the semantic is that all subsequent API calls referring to

the deleted agent_t should fail. Again, we denote the fact that even

the deletion of an agent is an operation subject to rollbacks. With

respect to the buffers keeping the state of the agent, the same con-

sideration made for the AddAgent() API can be applied. However, a

deeper discussion is required for the correct handling of the identifier

of the agent. Regardless on how the agents’ identifiers are main-

tained (e.g., via fast hash-maps), the run-time environment needs to

provide the following behavior on deleted agents: i) every action in-

volving a deleted agent should fail and ii) if a call to RemoveAgent()

is rolled back, then the UID associated with the deleted agent must

become valid again. A possible solution to the second point can be

provided by putting in place a sort of cache of deleted agents. When-

ever a call to RemoveAgent() is issued, a flag determining whether

an agent is retracted can be set. The UIDs of the agents retracted

during the execution of an event can be maintained into a dedicated

buffer kept into the event’s structure. In this way, whenever a roll-

back occurs, all the retracted agents can be safely reintroduced in the

system by simply clearing their retraction flag, and as a consequence,

their agent_t identifier will be safely recycled too. Retracted agents

can be permanently deleted upon a GVT round computation: along

with the garbage collection operations performed after computing the

committment horizon (we recall that this is a. standard operation in

traditional Time Warp systems), the simulation platform can inspect

and safely free the retracted agents’ buffers.

GetAgentData(agent_t agent): Given the UID of an agent, this API

function returns (the pointer to) the memory buffers dedicated to this

agent’s state. Obviously, the size of such a memory buffer should be
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Figure 6.1: Example of agents’ management timeline

at least user_data_size, as specified in the AddAgent() function.

This API results can be useful as the state of an agent can have a

structure defined by the simulation model developer. We remark that

the memory buffers retrieved with this API need to be managed by

the simulation platform from its creation (i.e., upon an AddAgent()

call) to their dismissal (that is, after a successful GVT computation

round).

An example of the lifecycle of an agent is presented in figure 6.1.

6.1.2 Modeling agents’ interactions

We split the APIs describing interactions into two subsets: the first one is

dedicated to the functions offering the possibility to make agents interact

within the same (or neighbouring) portion of the environment (i.e., the same

LP), and the second one refers to function dealing with agents’ mobility.

Supporting agents’ decisions

The APIs governing the interaction of an agent with the current residing

region are described in the following:

CountAgents(): A foundational operation that can be of interest for an

agent is knowing the number of agents which are close to it. Since an

LP manages a single region of the overall environment in our design,

the number of agents can be easily retrieved by querying the LP state
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via operations on fast per-LP hash tables storing the UIDs of currently

residing agents. This API can be beneficial to study agents’ emergent

behaviours.

IterAgents(agent_t *agent_p): This API function supports the op-

eration of scanning through all the agents which are registered into a

certain region. Specifically, subsequent calls to this API will fill the

agent_p parameter with the id of the "next" agent residing in the re-

gion (resembling the implementation of an iterator). Note that there

is no strict requirement on the ordering according to which the UIDs

of the agents are returned while scanning: it is left to the custom im-

plementation of the run-time system to devise how agents are stored

in the region. In our case, since the hash table data structure guaran-

tees no ordering, the order in which UIDs are returned coincides with

scanning the whole table.

RegisterNeighborInfo(void *neighbor_data): As anticipated, the

interactions between agents become essential to study emergent be-

haviors. When an agent, other than the region in which it resides,

becomes aware of the surrounding environment, it can compute even

more complex interactions. While, on the one hand, traditional se-

quential or time-stepped simulators could allow accessing data resid-

ing in different portions of the environment immediately, PDES runs

impose additional challenges. Indeed, given the speculative nature of

the advancement, LPs modelling regions might have reached at any

given moment different simulation time instants, and handling such

a kind of shift can be cumbersome for the system. As an example,

consider an agent A residing in a region associated with LPk, which is

in the process of deciding whether to move to either a region mapped

to LPx or LPy. If the rationale that A uses to select the destination
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region is the crowdedness of the target, then it will need to access

updated and consistent data from all of the possibilities. To make

this informed decision, A needs first to collect the number of agents

registered in LPx and LPy, a logic that in order to be implemented

in traditional PDES needs to be split into multiple events target-

ing the different LPs. Therefore, due to the optimistic processing

of events, LPx and/or LPy might be forced to roll back, which will

insert an additional burden to the run-time environment (and this be-

comes even more problematic if the events are simultaneous). Hence,

RegisterNeighborInfo() addresses these problems by implementing

a sort of publish/subscribe protocol between the involved LPs. Pro-

vided that the model developer can define, at simulation startup, the

portion of the state of an LP that can be broadcast to other LPs,

this function allows to subscribe to it and retrieve a local copy of that

data, which needs to be superseded every time a new version of data is

installed. In this way, an event that needs to access data from a neigh-

bour can inspect a local copy of its state portion. Regarding updates

toward this local copy, two additional points need to be stressed:

1. The run-time system needs to understand whether the accessing

event will modify the observed memory area or not. Depending

on the actual implementation of the platform, this can result in a

costly operation. In our implementation, modification detection

is carried out via a fast hash function comparison of memory

buffers associated with the accessed data. Different solutions

may entail the usage of OS facilities such as mprotect, which are

inherently more costly.

2. The run-time system needs to handle consistency of the values

observed by neighbours. Indeed, updates to the subscribed mem-



Chapter 6. Enhanced Agent-based modeling 150

ory portions must be transparently sent to the subscribers, and

if the actual event triggering state transitions is rolled back, also

the updates towards the subscribed memory should be undone.

This is a crucial aspect since if the event executed by a subscriber

LP reads a retired value, the execution of this event needs to be

annihilated too, according to the traditional Time Warp proto-

col. In our implementation, we cope with this situation with the

usage of control messages, which are events exchanged at the level

of the run-time system, which are included in the receiving LP’s

event queue but never delivered to simulation models’ handlers.

The logic associated with these events is precisely that of updat-

ing the local copy of remote portions of the simulation state once

the timestamp associated with them is reached in the simulation.

Thus, annihilating such control messages via anti events cancels

updates that have not yet been processed, while relying on the

rollback operation allows restoring previous consistent snapshots

in case remote state updates are retracted.

GetRegionData(direction_t direction, unsigned int

*region_id, void **data_p): After subscribing to some specific re-

gion’s data, this API allows to retrieve the data from the registered

LP. The data_p pointer makes the data of this neighbouring LP ac-

cessible. In order to select the region of interest, the direciton_t

parameter can be used to navigate the selected topology. Finally,

in the region_id pointer, the run-time should store the id of the

LP currently handling the portion of the environment targeted by

direction_p.
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Supporting agents’ movements

In many classical agent-based models, updates in agents and the environ-

ment happen globally (e.g., [Rey87], [Gar70]). This entails that it is simply

impossible to produce definitive inferences by observing only a subregion of

the model. Clearly, this kind of approach is incompatible by design with

speculative PDES data partition-oriented systems, which are the ones in

which the Time Warp protocol best fits. To support such a programming

model without placing a high burden on the final model designer, the con-

cept of visit needs to be introduced. An agent maintains a set of regions

to be visited, which can be modified at any time, creating a visit list which

allows defining the order in which regions belonging to the topology of in-

terest will be reached during the agent’s lifetime. Whenever an agent takes

a decision, it is free to modify this list arbitrarily. If an agent does not have

a large lookahead, then the visit list is simply reduced to the next region

to visit. Note that the visit list can even be used to build a set of pending

logical tasks at run-time, which are considered interactions too. Therefore,

any agent has a versatile way to describe how to explore and interact with

the surrounding environment, and this can be easily adapted to many real-

world problems. From an implementation point of view, the visit list can

be realized either by relying on linked lists or on resizable arrays. While

the first is a viable solution, in our implementation, we opted for the latter,

as it can provide significant performance improvements thanks to memory

locality (and, moreover, can be easily migrated around in a distributed en-

vironment). This being said, the following APIs describe how agents can

act with and react to the environment via the usage of visit lists :

EnqueueVisit(agent_t agent, unsigned region, unsigned

event_type): Inserts at the end of the visit list of an agent the region

to be reached. Whenever this visit is triggered, the LP identified by
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agent_t

region: 1
event: A

region: 11
event: A

region: 21
event: A

region: 2
event: A

region: 12
event: A

region: 13
event: A

EnqueueVisit()

CountVisits()CountPastVisits()

AddVisit()

Figure 6.2: Example visit management with respect to current region

region is hit by the specified event of type event_type

CountVisits(const agent_t agent): Retrieves the size of the visit

list. Note that past visits, namely regions that have already been vis-

ited, are not included in this return value: the function

CountPastVisits(const agent_t agent) was specifically devised for

this purpose. An example of visit management is presented in figure

6.2.

GetVisit(const agent_t agent, unsigned *region_p, unsigned

*event_type_p, unsigned i): While executing the logic associated

with the model, it could be of interest to inspect an agent’s future

visits list to, e.g., understand whether the choice of moving to a specific

region is still valid or not. Therefore, this API will inspect the i-

th entry of agent’s future list and store into the region_p pointer

the id of the LP associated with the visit entry, along with the type

of event which will be scheduled when this visit is triggered, into

event_type_p.

GetPastVisit(const agent_t agent, unsigned *region_p,

unsigned *event_type_p, simtime_t *time_p, unsigned i):

This is the counterpart of the previous API. Suppose a user is inter-

ested in getting information about past visits to a region. In that case,

this function will behave as the previously described API returning the

information referring to the passed simtime_t time. However, with
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respect to the run-time system implementation, we emphasize that

this API function could generate a non-minimal memory footprint.

In fact, if agents move quickly around the available environment, the

past visit list may grow indefinitely. Since the semantic of this API al-

lows to retrieve any past visit, also those associated with a timestamp

falling before the committed portion of the simulation (namely, before

the last GVT round) are eligible. Therefore, the system may not be

allowed to prune last visits even when garbage collection operations

are put in place. We leave to the implementation of the simulation

platform this concern, as different decisions can be honoured in order

to cope with specific scenarios: if inspection of all past visits from the

beginning of the simulation is required, then no memory associated

with visit lists can be reclaimed; on the other hand, if past visits are

interesting to some fixed degree than some more sophisticated logic

can be undertaken to recycle resources.

AddVisit(agent_t agent, unsigned region, unsigned

event_type, unsigned i): Allows to insert a new visit right before

the i-th entry in the visit list of the agent.

SetVisit(const agent_t agent, unsigned region,

unsigned event_type, unsigned i): Allows to perform modifica-

tions on the i-th entry of the agent’s visit list.

RemoveVisit(agent_t agent, unsigned i): Deletes the i-th entry of

agent’s visit list, thus the agent won’t move in that direction anymore.

ScheduleNewLeaveEvent(simtime_t time, unsigned int

event_type, agent_t agent): This API function allows to tell the

run-time system the intent of an agent to move towards the next area

(according to its visit list) according to the passed time simulation
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time. Due to the speculative nature of the run-time these functions

are to be ported, this function delivers a "guess" for the simulation

time at which the next hop of the agent will occur: this is because it

is not guaranteed that the simulation trajectory will continue in the

expected direction. Indeed, the semantic of this function is that it

tries to make the agent move: if, for instance, the agent is removed

from the simulation employing a call to RemoveAgent(), the firing of

the leave event will never take place. Note that subsequent calls to

this API can be issued for an agent before the execution of the event.

If subsequent calls take place, new invocations will override previous

move guesses. The only constraint related to this function is that the

specified time needs to be in the future with respect to the current

simulation time at which the call takes place (traditional Time Warp

systems enforce this). Again, in our implementation, we support such

a kind of API, making use of control messages, which are placed in

the event queue of the LP calling ScheduleNewLeaveEvent() so that

when its clock reaches the passed time, then an event is sent to the

targeting LP, namely the one associated with the next region to be

visited. This event will piggyback as payload the data related to the

current agent. Similar to the other APIs described so far, this func-

tion call should be rollbackable or, more precisely, the leave event can

be rolled back. For the sake of efficiency, we implemented the roll-

back support via the usage of the retraction flags mentioned earlier,

which are memorizing whether an agent should be kept or removed

into a specific region and allowing to free its related memory upon

a successful GVT round. However, an additional point needs to be

stressed regarding the rollback operations related to this API. In-

deed, since we allow the possibility to issue multiple times calls to
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API function Description

AddAgent Create a new agent
RemoveAgent Delete an agent
GetAgentData Retrieve an agent’s information
CountAgents Retrieve the number of agents in the neighbor-

hood
IterAgents Return an iterator on the agents in the current

region
AddVisit Add entry at specific location in the visit list
RemoveVisit Delete entry at specific location in the visit list
SetVisit Modify a specific entry of the visit list
RegisterNeighborInfo Subscribe to a region information
GetRegionData Retrieve information of a specific region
EnqueueVisit Add a region to an agent’s visit list
CountVisits Return the number of entries in the pending visit

list of an agent
GetVisit Get an entry from an agent’s visit list
ScheduleNewLeaveEvent Initiate the movement of an agent towards the

next entry in its visit list

Table 6.1: A summary of the agents’ interactions APIs

ScheduleNewLeaveEvent(), the same UID entry in the hash table

keeping the retraction flags should be associated with various incar-

nations of the same agent. To provide so, this data structure can be

expanded with a stack: agents are placed in descending timestamp

order into the stack, allowing the simulation events to find on top of

the stack the newest incarnation of the agent. In case of a rollback

occurrence, the agent’s incarnations that have been rolled back can

be popped and freed. Therefore, the top of the stack will point to the

last consistent snapshot of the agent representation.

Table 6.1 summarizes all the APIs dedicated to agents’ interactions.
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6.1.3 Modeling topologies

As previously hinted, a comprehensive topology description must provide,

along with extreme simplicity, two main features:

a) High degree of expressiveness, as ABMS paradigms should be ex-

haustive in abstracting real-world and synthetic scenarios in all their

means.

b) The capability of arbitrarily and dynamically change their structure.

This can be a fundamental feature as the physical environment can

be modified either by agents or by changes related to the evolution

of agents, for example, in disaster recovery scenarios. However, sup-

porting this possibility in a speculative run-time environment is a

challenging task.

Regarding the second point, we rely on an initial topology specification to

be issued at simulation startup. This means that model developers are free

in the generation complex environment, for example, in terms of the shape

of regions, number of corners, number of neighbourhoods and so on. In the

following enumeration, we list the fundamental topologies that should be

supported by the APIs we envisage:

• Square: A classical grid in which each LP models a square cell. De-

pending on the specification, either four or eight neighbours can be

reached from each cell (except, obviously, from the boundaries). The

overall environment can therefore be either a square or a rectangle.

• Hexagon: Similar in spirit to the previous one, with the main differ-

ence that six neighbours can be reached from each cell (not placed on

the borders).
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• Ring: Every LP is mapped to a region that can only be reached by

the adjacent one, resembling a mono-directional ring. There is only

one movement direction.

• Bid-Ring: This is an extension of the Ring topology in which agents

can move back and forth from a region, having two possibilities in

their movement directions.

• Torus: This topology is a further extension of the Bid-Ring one.

In particular, this is a 3D ring in which agents can move horizontally,

vertically or a combination of them, for a total of four or eight possible

directions.

• Star: Here, a central LP is connected to all other LPs. If an agent

desires to move from one cell to another, it must pass through the

central LP.

• Fully Connected Mesh: This is an expansion of the Star topology

in which every LP is connected to any other LP. Even if this can be

considered a complete environment in terms of possible movements,

at the same time, it introduces the highest burden on the run-time

environment due to high costs in communications between LPs.

• Graph: Resembling the well-known data structure, this is a generic

weighted and directed graph. Each region is connected to a portion

of all the LPs, being each connection (i.e., an edge) characterized by

either a weight or a probability. In this case, the initial configura-

tion of the topology should define the set of reachable nodes and the

associated weight or probability.

Figure 6.3 presents a graphical representation of the topologies mentioned

above.
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Figure 6.3: Graphical representation of fundamental topologies.

Note that the last described topology is the most well suited for changes

that the model can issue at run-time. In particular, a graph topology could

have forbidden connections (for example, obstacles in rescue scenarios) rep-

resented by an edge presenting an infinite weight or a zero probability. In

this way, by relying on the APIs of the topology, modellers can modify

these weights or probabilities at run-time to alter the connections across

environmental regions. Changes to the topology, however, require to be

rollbackable. Indeed, it may be the case that events scheduled at specific

LPs observe a no-longer consistent topology after an inconsistent situation is

restored. Hence, the run-time environment must associate the event reshap-

ing the topology with the topology’s incarnation at that specific simulation

virtual time. In his way, changes can be undone via a procedure similar

to the one explained for the agents’ interactions APIs. The specifications

of the APIs managing the topologies manipulations are presented in the

following:

NeighborsCount(unsigned int region_id): Given the UID of a re-

gion (LP), returns the number of cells that can be reached from it.

This can be especially useful on boundary regions, which could present

limitations in terms of agents’ movements. In other words, this API
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allows retrieving the reachability degree of a region.

RegionCount(): Returns the total number of active cells. This API

can be useful in situations in which agents are required to respond to

observation and sense of the surrounding environment.

SetValueTopology(unsigned int from, unsigned int to,

double value): This API is specifically designed for graph-based

topologies. In particular it allows to update the value associated

with the edge connecting from and to regions. Therefore, this is the

entry point for dynamic topology modifications and, as hinted, could

be rolled back at any time. Our implementation relies on control

messages, using a solution similar to the one presented in the previous

section.

GetReceiver(unsigned int from, direction_t direction):

Returns the id of the neighbour which would be reached by moving

in the specified direction, being from the source region. This is

the API that allows model developers to code movements of agents.

Movements, of course, are governed by the topology itself and from

the possibilities exposed by the API definition. For instance, a region

can lead to up to eight neighbours in a square grid environment, as in

the Moore neighbourhood topology.

FindReceiver(): Given the stochastic nature of some topologies, we

provide this API which picks a random neighbour. In a grid-based en-

vironment, the probability distribution to be considered should be uni-

form. In contrast, in graph-based topologies, the distribution should

consider the probabilities (or weights) associated with edges.

FindReceiverToward(unsigned int to): Allows to return the next
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API function Description

NeighborsCount Return the number of currently reachable re-
gions

RegionsCount Return the total number of regions
SetValueTopology Update the value associated with an edge
GetValueTopology Return the value associated with an edge
FindReceiver Pick a random neighbor region
FindReceiverToward Return the next region to visit in the path to the

destination
ComputeMinTour Return the shortest path from source to desti-

nation as an array of LPs to visit

Table 6.2: A summary of the topology API

region towards which a agent should move in order to reach the spec-

ified to destination. This API should account for the minimum-cost

path, being this cost either the number of moves or the sum of the

weights of the encountered edges. In our implementation, we relied on

Dijkstra’s pathfinding algorithm, with a small enhancement related to

the caching of the computed Minimum Spanning Tree. Caching takes

place in a per-LP data structure, which is flushed upon a change in

the topology.

ComputeMinTour(unsigned int source, unsigned int dest,

unsigned int result[RegionsCount()]): Returns a collection (or

an array) maintaining a list of LPs to visit in order to reach dest from

source. This is an enhancement of the previous API and allows to

prepare a tentative schedule for the actions of an agent in the imminent

future, a mechanism similar to the visit list described in the previous

section.

Table 6.2 depicts a summary of the exposed topology APIs.
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6.2 A performance assessment

In order to provide a complete evaluation of the viability of the proposed

APIs, we considered a total of six models to be used for testing the behaviour

of our implementation: three of them are synthetic, while the other half

mimic real-world applications. The models of interest are the following:

• Stupid Model : A number of insects (also called bugs) are placed in a

toroidal topology, and they are allowed to move freely inside it. Each

region of this area produces food with a particular production rate,

and each bug (i.e., agent) that enters a region eats the food inside

it, and grows in size accordingly. A bug can only move to a non-

occupied cell, and it selects as destination region the cell with the

highest food amount. Moreover, with a certain probability, a bug can

either die or reproduce. If it reproduces, then five new agents are

spawned in the surrounding cells (provided they’re empty; otherwise,

fewer amounts are created). The termination condition is triggered

when a bug reaches a specific maximum size. More information can

be found in [RLG05].

• Segregation: This model recreates a social situation to show how seg-

regation among people happens, despite the agents (i.e., people) are

not characterized by racism inclinations. Therefore, an agent is iden-

tified by some information such as race, ethnicity, economic status,

etc. Multiple populations (that is, possibly heterogeneous groups of

agents) are placed at random positions within the environment at

simulation startup. Depending on the percentage of similar agents

surrounding him, an agent can be satisfied with his current position

or not. Therefore, agents are free to move to the location they prefer

within topology’s boundaries. For further details, we refer to [Sch78].
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• Sugarscape: This is a model similar in spirit to the Stupid Model.

In a grid environment, every region contains a different amount of

sugar. Agents move around the grid targeting the nearest cell with

the highest amount of sugar in it. Whenever an agent eats, the sugar

is metabolized, and they produce pollution. As in Stupid Model, an

agent can either reproduce or die, according to a determined probabil-

ity. Moreover, agents can both trade or borrow sugar from companion

agents, and they can either transmit diseases or generate immunity to

them. The work in [JME97] describes the model in more details.

• Terrain-Covering Ant Robots (TCAR): This model tries to recreate

a (natural) disaster situation in which rescue robots are employed to

map the area and provide first aid ([KL01]). The agents’ first action

when an accident occurs is to explore the whole region they’re part

of. The terrain is modelled as an undirected graph, which is helpful to

account for obstacles generated by the disaster itself, and ant robots

are allowed to move in any direction. While exploring, each ant re-

leases pheromones, which is a sign of the fact that it passed through a

particular region. This is implemented via a node counting algorithm,

which increments the number of visits for every cell whenever an agent

moves into it. Therefore, each ant moves to the next cell by selecting

the region encountering the smallest visit counter value.

• Robot Explore: A set of agents are required to explore a topology.

This is the model which was explained in section 4.2.1.

• Tuberculosis : Models the spread of tuberculosis infections. As this

was already discussed in section 5.3.2, we will not provide here further

details.
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6.2.1 Experimental analysis

As far as performance data is performed, we carried on experiments on a

subset of the models above. In particular, we report data for the Stupid

Model and Segregation for the synthetic cases and for Tuberculosis and

TCAR for the real-world scenarios. The test-bed platform we selected for

the evaluation is made by a cluster of three medium-size heterogeneous

servers interconnected via 1GB dedicated ethernet links. All of the nodes

are running Linux 4.9.0 on top of an OpteronTM processor: two of the three

nodes are, however, equipped with 32 cores and 64 GB of RAM, while the

remaining one mounts 48 cores and 128 GB of RAM. Also, OpenMPI 3.1.3

has been selected as the communication framework between nodes. We also

varied the number of threads from 3 to 112, and that the MPI assignment

policy has been set so as to ensure that threads were distributed on the

cluster in a round-robin fashion: this is a worst-case scenario for the selected

environment since we always incur in communication cost, especially when

the number of threads is low, even though a single machine could support

communication by relying on shared memory.

Table 6.3 shows the configurations of the models that we selected to

carry on experiments. Moreover, the performance evaluation focuses on the

speedup of the parallel/distributed runs over a sequential simulation. Note

that sequential runs are extremely optimized, as they rely on a fast O(1)

Model # LPs Involved Agents

Stupid Model 4,096 1 1

Segregation 10,000 5,000
TCAR 3600 48

Tuberculosis 1024 400,000

Table 6.3: Configurations of the models for ABMS APIs benchmarking
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scheduler based on calendar queues (as described in [Bro88]). Figure 6.4

reports the performance result for the real-world simulation models, namely

TBC and TCAR. For the latter one, from the data, we can understand that

performance experiences a drop when exploiting a number of concurrent

threads overcoming a specific threshold (namely, around 40). This is an

expected result as, considering the configuration shown in table 6.3, there is

a high imbalance between the overall amount of agents and the number of

regions composing the topology. Therefore, given the distributed nature of

the runs, the probability that LPs observe skews in simulation time is high

and, in turn, affects the final efficiency of the simulation with approximately

a 15% drop. Note, however, that this phenomenon is not dependant on the

API used to implement the model; rather, it would have appeared even

without using the proposed structure. Therefore, we can note that the

proposed API implementation is resilient to this unfavourable scenario, up

to a significant quantity of distributed threads.
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Figure 6.4: ABMS API Results with the real-world models

For the TBC model, we stress the fact that two factors increase the roll-
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back probability: i) this is the model with the highest degree of parallelism

because every thread controls a reduced amount of LPs (the minimum case

is 9 LP per thread) and ii) the overall number of agents in the simulation,

compared to the size of the environment, is quite large.

Despite the escalation of rollbacks, the proposed API is, in this case,

able to provide a speedup, although minimal. We recall that this is a case

in which resorting to our proposal allows making hard problems feasible

due to the possibility to, e.g., overcome the memory wall thanks to the

distribution of the load among all possible nodes in the cluster. For instance,

the sequential run of this model has shown a memory footprint of 16 GB,

which couldn’t be bearable when using off-the-shelf commodity hardware.

As far as the synthetic models are concerned, we show in figure 6.5

the performance data regarding Stupid Model and Segregation. Interest-

ingly, both models deliver a linear speedup, even though event granularity

is relatively small while the amount of events exchanged between LP is

non-negligible. Indeed, due to the RegisterNeighbourInfo() API, control

messages to neighbouring LPs are transparently sent upon any update of a

region, and the number of agents receiving those updates is quite high (es-

pecially in the Segregation case, according to table 6.3). The reason behind

the experienced linear speedup is that the number of explanatory variables

used to describe an agent is reduced, thus the simulation states are mini-

mal. Therefore, the scale of the model can be significantly increased (up

to 5 thousand in the Segregation case), with the result of better handling

events when the number of cores/threads increases. These results suggest

that if these models, which are very simple by their definition, are used as

a skeleton to build a more complicated logic, then the benefits gathered

from distributed PDES exploiting an increased computing power can be

non-minimal. As a last note, in figure 6.6, we show the performance eval-
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uation of runs performed on the largest node of the cluster regarding the

real-world models. Considering that we do not pay communication costs

in this case, the trends of the curves are perfectly in line with the ones of

figure 6.4, involving a distributed scenario. Therefore, the proposed API

and its reference implementation are also resilient to network delays.
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Figure 6.5: ABMS API Results with the synthetic models

Effects on programmability

Since the final scope of the ABM layer (and, overall, of this thesis) was to

provide an efficient and easy to use set of APIs, a final note about the ef-

fects on programmability that this solution provides is to be discussed. We

remind that assessing those effects is not easy, especially in contexts involv-

ing multiple domains models. For this reason, we compared the classical

implementations with ones relying on the proposed API. To give an idea of

how our ABMS solution can be viable to reduce the burden of model de-

velopment, for each of the models described above, we compared the Lines

Of Code (LOCs) of the original implementation with the LOCs of the new
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Figure 6.6: ABMS API Results with a single node, in the real-world
models scenario

implementation exploiting the presented APIs. From table 6.4 we can un-

derstand that, except for the Segregation case, the line count is constantly

smaller in the case of the new implementation, even for models which are

not mimicking real-world scenarios (that is, very simple models). This is

an indication of the fact that the API is somehow effective at capturing the

requirements of ABMS, reducing the cost on model developers, with the

final result that they can concentrate on model dynamics and, at the same

time, benefit from the performance speedup offered by distributed PDES.
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Model Original Implementation Using our API

Stupid Model 189 138
Segregation 83 110
Sugarscape 1072 152

TCAR 228 2 103
Robot Explore 500 332

Tuberculosis 1,115 654

Table 6.4: LOCs for the different ABMS model Implementations



CHAPTER7
Conclusions

In this thesis, we faced the issues related to the ease of use and enhanced

exploitation of CC resources, particularly in the scientific area of simulation.

The interest in literature and the challenges the entire world needed to

tackle in the last two years proved the crucial role simulation can play in

forecasting real-world scenarios. Therefore, easier and wiser employment

of the nowadays parallel and distributed (cloud) resources turns out to be

essential to reach the expected performance targets. After this dissertation,

experts from many scientific areas can leverage i) a transparent mechanism

that makes distributed memory accesses, taking place along speculative

PDES trajectories, occurring as "invisible" to the final developer, with the

result that the burden of exploiting distributed clusters is reduced; ii) a

semantically rich API to let the speculative PDES features be effectively

used to execute Agent-Based Modeling scenarios, with the primary purpose

of providing an easy-to-use interface to modelers and let them focus on

model-specific peculiarities rather than PDES intrinsics; iii) a methodology

that allows modelers to have a higher degree of freedom in determining

portions of the simulation state to be saved/restored whenever a causality

inconsistency occurs, in order to properly tune speculative simulation runs

performance basing on the evolution of the data at run-time.

In Chapter 4 we have presented a synchronization protocol and a ref-
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erence distributed middleware implementation to support the deployment

of PDES simulation models implemented for shared memory on clusters of

(Cloud) resources. The middleware transparently intercepts memory ac-

cesses to the state of different simulation objects by models’ event handlers.

Suppose the simulation objects are running on a remote node. In that

case, the middleware enforces a synchronization protocol that transparently

transfers causally-consistent memory pages, therefore implementing a form

of transparent speculative distributed shared memory. A decision model

determines, at run-time, the best-suited amount of pages that should be

prefetched upon the first remote memory access to reduce the likelihood that

additional synchronization is required to enhance the overall performance.

Our experimental evaluation has shown that this strategy is effective un-

der differentiated workloads and memory-access patterns. Therefore, this

proposal can be a viable solution to support the transparent deployment of

PDES models on clusters of (Cloud) resources, without a significant burden

on the model developer to explicitly code a large number of memory-based

interactions across the simulation models.

In Chapter 6, we have introduced an API specification for ABMS in

Time Warp run-time environments. This API has been shown to be ef-

fective at implementing very different agent-based models compactly and

expressively. Furthermore, an implementation of our API has also shown

that it is possible to obtain non-minimal speedup also in straightforward

(toy) models. Therefore, we consider this an important step ahead at dis-

closing the power of PDES to domain experts, which should not be exposed

to the complexity of speculative synchronization.

Finally, the presented approximated rollbacks technique, described in

Chapter 5, allows saving/restoring only a subset of the state of a simulation

object, relying on a user-defined state-reconstruction function to possibly
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guess the non-restored (missing) portions of the state. Our experimental

assessment has shown that this approach can provide non-negligible per-

formance improvements in local and distributed simulation environments.

We have also assessed the impact of the approximated rollback technique

on the statistical goodness of the outcome of the simulation, in particular

for the case of an epidemic phenomenon of the tuberculosis disease. These

results further show the viability of our proposal.

All of the proposed innovations were implemented on top of the ROOT-

Sim parallel/distributed general-purpose simulation engine and are entirely

open-source to be shared both for improvements and utilization by experts

in the field. Some of the produced papers were also awarded the repro-

ducibility ACM badges1, proving that the introduced results are accurate

and permanently available, replicable, reusable, and available for repurpos-

ing in any further researches.

1https://www.acm.org/publications/policies/artifact-review-badging
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