
An Agent-Based Simulation API for
Speculative PDES Runtime Environments

Facoltà di Ingegneria
Corso di Laurea Magistrale in Engineering in Computer Science

Candidate
Andrea Piccione
ID number 1422045

Thesis Advisor
Prof. Alessandro Pellegrini

Co-Advisor
Prof. Roberto Beraldi

Academic Year 2018/2019

Thesis defended on 22 October 2019
in front of a Board of Examiners composed by:
Prof. Giuseppe De Giacomo (chairman)
Prof. Aris Anagnostopoulos
Dr. Silvia Bonomi
Dr. Daniele Cono D’Elia
Prof. Domenico Lembo
Prof. Luca Iocchi
Dr. Alessandro Pellegrini
Prof. Aurelio Uncini

An Agent-Based Simulation API for Speculative PDES Runtime Envi-
ronments
Master’s thesis. Sapienza – University of Rome

© 2019 Andrea Piccione. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: October 9, 2019
Author’s email: piccione.1422045@studenti.uniroma1.it

mailto:piccione.1422045@studenti.uniroma1.it

Dedicated to

Tania

iii

Abstract

Agent-Based Modeling and Simulation is an effective paradigm to model

systems which exhibit complex interactions. The goal is studying them in

the hope of devising their emergent behavior, if it exists. Applications of this

methodology range from modeling agent decisions in the stock market, supply

chains, and consumer markets, to predicting the spread of epidemics, the threat

of bio-warfare, and the factors responsible for the fall of ancient civilizations.

While Agent-Based Modeling and Simulation has been effectively used in

many disciplines, most successful models are still run only sequentially, causing

a potential waste of the computing resources offered by modern multi-core

architectures. The high reliance of the model developers community on simple

and easy-to-use languages such as NetLogo places a limit on the possibility

to benefit from more effective runtime paradigms, such as Parallel Discrete

Event Simulation (PDES). This is a significant problem since the required

size of Agent-Based Models simulations is increasing everyday: traditional

implementations are not up to the challenge.

The aim of this thesis is to somewhat bridge the gap between efficient

simulation runtime paradigms, in particular Speculative PDES, and Agent-

Based Modeling and Simulation. For this purpose we propose a semantically-

rich API which allows to implement Agent-Based Models in a simple and

effective way.

We also describe the critical points which should be taken into account

when implementing this API in a speculative Parallel Discrete Event Simulation

environment, in order to scale up simulations on distributed massively-parallel

clusters. We include in this thesis a description of the implementation we

developed, with a focus on the various optimizations we devised.

Our experimental assessment, carried on our reference implementation,

shows that our API allows to implement complex interactions between agents

and the surrounding environment with a reduced complexity, while delivering

iv

a non-negligible performance increase. This is a first important step in finally

making powerful simulation tools accessible to the practitioners, independently

of their computer science knowledge.

v

Acknowledgments

Throughout the writing of this thesis I have received a great deal of support

and assistance. I would first like to thank my thesis advisor, Dr. Alessandro

Pellegrini, whose expertise was invaluable in formulating the thesis topic and

methodology. I also want to thank my co-advisor, Prof. Roberto Beraldi for

the useful feedback and for his patience with me.

I would like to acknowledge my colleagues in Lockless for the wonderful work-

ing experience they provide me with everyday. You supported me greatly and

were always willing to help me. I want to thank you for all of the opportunities

I was given.

In addition, I would like to thank my parents for their wise counsel and

sympathetic ear. You are always there for me.

Finally, I want to thank my friends, who were of fundamental support in

providing a happy distraction to rest my mind outside of my work.

vi

Contents

1 Introduction 1

1.1 Related Work . 8

2 The ABM API 12

2.1 Reference System Model . 12

2.2 Modeling Agents and their Interactions 14

2.2.1 Basic Agent Management 16

2.2.2 Supporting Agent Interactions and Decisions 19

2.2.3 Moving Agents Around 23

2.3 Describing the Topology . 28

3 Implementation 33

3.1 ROOT-Sim overview . 34

3.1.1 ROOT-Sim high level interface 35

3.1.2 Interfacing with ROOT-Sim 35

3.2 Topology implementation details 36

3.2.1 Cost-based topologies 37

3.2.2 Probability-based topologies 38

3.3 Agent-Based Modeling runtime 40

3.3.1 The agents data structure 42

4 Assessment 44

4.1 Test-Bed Models and Environment 44

Contents vii

4.2 Effects on Programmability 47

4.3 Performance Assessment . 48

5 Conclusions and Future Work 52

1

Chapter 1

Introduction

A simulation is the imitation of the behavior of a real-world or hypothetical

system, computed over time. The process of developing and studying a

simulation can be roughly described in two steps:

1. Devise and develop a simulation model, the set of assumptions that

captures the relations between the entities in the system of interest.

This step requires expertise in the system domain in order to formulate

meaningful and reasonable assertions.

2. Evaluate the model on an appropriate time span; for very simple models

this evaluation may be conducted computing a closed form mathematical

solution. More often, computer-based simulation are used to run the

model. This way, data over time is produced as if we were observing the

real system.

Usually in the process, those two steps are reiterated multiple times, until the

model has been satisfyingly tuned for the required accuracy and efficiency.

Historically, the first example of “manual” simulation is the Buffon needle

experiment in 1777 [21]. The experiment consists in throwing needles onto a

plane with equally spaced parallel lines in order to estimate the value of π.

We have to wait for the spread of general purpose computer in the 50s to see

2

the first actual computer simulations. This shows that this field is relatively

recent, research in the area is interesting and active.

Some advantages and applications of simulation practices are:

• Test new policies, operating procedures, decision rules, information flows,

but also physical layouts, hardware designs, transportation systems and

so on without impacting the real system we are supposedly trying to

improve.

• Study aforementioned systems without real world time constraints: simu-

lations can be sped up or slowed down allowing respectively a reduction of

the human effort and time needed to examine a process or the possibility

of taking precise measures which could be otherwise impossible to take

on real world systems.

• Answer what if questions regardless of the real feasibility of tested

changes. This is helpful, for example, in devising new strategies for

disaster recovery.

• Improve the understanding of complex systems, for example by studying

system’s sensibility to initial conditions or by observing the relations

between variables throughout simulation runs.

An interesting and problematic aspect of simulation is that it’s an intrinsically

multidisciplinary field. Knowledge of the targeted system domain is necessary

in order to formulate meaningful and appropriate models, but also computer

science know-how is required since simulations need to run on computers.

Domain experts are often unable to code their models from scratch, either

for a lack of IT knowledge or for convenience reasons. Therefore they usually

rely on well known modeling paradigms for which simulation frameworks are

available . Such software suites often provide the developers with a easy to use

custom computer language, or a graphical development tool. The model can

3

then be run leveraging the runtime environment included in the framework.

This thesis focuses at first on one popular simulation paradigm in particular:

Agent-Based Modeling.

Agent-Based Modeling (ABM) is a powerful simulation modeling paradigm

in which the system is represented by a collection of autonomous decision-

making entities (the agents) which are set out in an environment [3, 32]. Each

agent individually assesses the surrounding environment, also taking into

account the presence of other agents, and makes decisions on the basis of a

certain set of rules which implement their behavior. During its lifetime, an

agent can decide to change its behavior, also depending on the environment

state and interactions with other agents. The actions that agents take might

also have effects on other agents and/or on the surrounding environment—for

example, an agent can produce, consume, or exchange items.

ABM is considered incredibly powerful for multiple applications and real-

world business problems for a number of reasons. First of all, the model

developer can concentrate on the design of the behavior of different agents

independently of where the agents will act. This significantly simplifies the

development of complex simulation models, allowing to reach results which

could be difficult to reach relying on more traditional mathematical meth-

ods [15, 11]. Second, the interaction of multiple agents in a system can exhibit

complex behavioral patterns [44], able also to show (or even anticipate) what is

commonly referred to as emergent behavior. Even a simple agent-based model,

executed on a large enough scale, can exhibit complex behavior patterns [44]

and provide valuable information about the dynamics of the real-world system

that it emulates. Several approaches have also coupled sophisticated models

with neural networks [20], evolutionary algorithms [31], or other learning tech-

niques in order to provide the agents with behavioral adaptation, making ABM

even more powerful and realistic.

In general, agent-based models require three common aspects to be dealt

4

with to be effectively used to find a solution for real-world problems:

• Agent specification: each agent is described in terms of its simulation

state, namely the set of explanatory variables which keep track of its

evolution and interaction with the environment/other agents; this state

might drive the behavior of the agent during the simulation. Each agent

must be identified uniquely in the whole system.

• Interaction definition: agents interact with the environment and with

other agents. The decisions which agents make might depend also on

the state of portions of the environment which are nearby the current

position of the agent, or on the presence/absence of other specific agents

in the (surrounding) environment.

• Topology specification: ABM is extremely versatile, therefore requiring

to model complex topologies. While many approaches rely on grid-based

environments, more complex (graph-based) topologies can enable more

interesting interactions to be described or to emerge. Modern ABM

requires to overcome the traditional definition of a physical environment,

because it might be defined by several layers of (also virtual) information,

and might therefore be also modified by the agents themselves.

The size of problems tackled through ABM is growing in size at an unprece-

dented pace. The intrinsic dynamic nature of real-world phenomena commonly

modeled through the ABM formalism can easily lead to a significantly increased

complexity due to the following reasons (also in combination):

1. A very large number of agents are involved, or the environment is ex-

tremely large. Here, unfeasibility can materialize either in too long

execution times, or in non-sufficient memory capacity on single nodes

(the so-called memory wall [33]). This is a fundamental aspect especially

when large ABMs are necessary to disclose an emergent behavior which

5

a small-scale variant of the model is not able to show, e.g. when the

emergent property is linked to the amount of interactions between the

agents [34, 46].

2. Increased amount of data which enable the implementation of micro-level

simulation models [36], based on the inclusion of an always larger set of

explanatory variables in the state of single agents.

3. Enriched decision-making policies in the agents, such as rational behavior

or cognitive and psychological processes. These aspects (mostly related

to micro-simulations) can require higher computing demands.

4. Interest in systems which exhibit a non-linear, dynamic behavior, with

high uncertainty and notable degree of stochasticity. In this context, a

single run of the simulation model is not sufficient: to obtain statistically-

significant results, a calibration based on multiple repeated simulations is

the only solution to deal with parameter sweep. While a single simulation

could be feasible, a large number of simulations might be not.

While the ABM formalism allows to easily deal with this increased com-

plexity, traditional frameworks used to run ABM-based simulations might

experience performance penalties which make finding solutions to these what-

if analysis problems unfeasible, preventing researchers to find the needed

insights [2]. As an example, in contexts such as demography [36], ABM appli-

cations are developed mostly relying on sequentially-executed languages such

as NetLogo [49]. This choice is driven by the fact that developing sequential

models is easy, especially for experts coming from domains not related to

computer science. This is a problem so hot that researchers are investigat-

ing multiple approaches to speedup the execution of agent-based models on

extremely parallel architectures [56].

Before introducing our solution to this problem, we shortly describe another

simulation paradigm: Discrete-Event Simulation (DES). This paradigm aims

6

at describing the behavior of a system as a sequence of discrete events in time.

In DES models, the values of variables between two events are not relevant for

system dynamics or they result trivial to be computed in case of necessity. In

simulation jargon, the acting entities are named Logical Processes (LPs) and

they interact by processing and sending events to each other. The standard

implementation of a DES runtime keeps the events ordered in a queue by their

timestamp and processes those in a serial fashion.

DES has seen wide applications in health care systems, for example to

model the processes in a hospital with the aim of optimizing them. It also

has been used in economy to model potential investments or to model the

stock market in an attempt to predict them. Probably though, computer

network simulation has been DES most successful application, and justifiably

so: routers and computers fit well under the LP concept and the data packets

they exchange are perfectly modeled by discrete events.

From an architectural point of view, Discrete-Event Simulation (DES) is the

paradigm which best fits the runtime requirements of ABM, since the impulsive

nature of the events proper of DES perfectly embraces the way agent-based

models should be executed. To meet the current scale of these models, the

literature on Parallel DES (PDES) [17] has identified in the speculative Time

Warp synchronization protocol [25] a viable solution to cope with large-scale

parallelism.

In speculative PDES, LPs concurrently execute their events without waiting

to synchronize their virtual time with each other. This maximizes computing

power utilization but corrective actions are necessary in order to preserve

correctness. Time Warp enforces consistency by means of the rollback operation.

Any time that it is determined that the execution has reached an inconsistent

portion of the simulation, e.g. due to the reception of an out-of-order event, a

previous consistent snapshot is identified and restored, allowing the trajectory

to deviate and resolve the causality violation. Logical time synchronization is

7

Figure 1.1. LP1 sends a straggler message to LP2, the events crossed in red need

to be retracted

enforced only periodically in order to detect termination, diminish frequency

of rollbacks and to free up the memory used to store the snapshots. The

rollback operation has been traditionally implemented either by means of state

saving and restore (since the seminal paper in [25]), or by means of reverse

computation [5]. In the former case, the simulation model developer is often

exposed to the state saving operation, either in terms of the invocation of

explicit services exposed by the runtime environment to take a checkpoint, or

by the need to annotate or notify the runtime environment of the organization

in memory of the simulation state. In the latter case, the modeler is often

asked to implement by hand reverse events, which at least doubles the time

and cost of model development, although some proposals in the literature have

tried to automatize this process (see, e.g., [54, 29, 8]).

Anyhow, when dealing with speculative PDES, the modeler might be

exposed to many details which should not be mastered by domain experts. In

particular when dealing with the large number of domains which benefit from

ABM, it is simply not possible to demand from the developers to explicitly tackle

all the aforementioned technical aspects. We propose a solution to this problem:

1.1 Related Work 8

this thesis describes an API explicitly targeting the development of agent-based

models, which has been devised keeping in mind the three aforementioned needs

of ABMs (namely, agent specification, interaction definition, and topology

specification). This API is meant to be semantically-rich, thus allowing domain

experts to benefit from it in the process of defining an agent-based model. At

the same time, it has been designed also keeping in mind the peculiarities of

speculative PDES run on distributed clusters of massively-parallel machines,

hiding away from the modeler its complexity. Indications to implement this API

in speculative runtime environments are described in this work in an attempt

at bridging the gap between the users of ABM runtime environments, and the

architectural capabilities of modern computing infrastructures. We evaluate

both the effects on programmability, and the performance of an implementation

of the API, to show the viability and effectiveness of our proposal.

The remainder of this thesis is organized as follows. In Section 1.1 we

discuss related work. Section 2 presents the API which we have devised to

simplify the implementation of ABMs on top of last-generation PDES runtime

environments. In Section 3 we discuss the salient details of our reference

implementation. An assessment of our proposal, both in terms of effects on

programmability and performance of an implementation of the API is discussed

in Section 4.

1.1 Related Work

ABM and PDES are two topics which have been extensively studied in the

literature, and there have already been attempts to bridge the gap between

the two worlds. In particular, we can find a large number of frameworks to

support agent-based simulation in the literature. For a thorough comparison

of different ABM frameworks, we refer the reader to the comprehensive work

in [1]. Here, we discuss only proposals which have the closest relation to our

1.1 Related Work 9

work.

The MASON framework [30] pays special attention to the performance of

simulation execution, addressing computing-intensive models (i.e., scenarios

with many agents), along with portability and reproducibility of the results

across different hardware architectures. A parallel/distributed version (D-

MASON) has been presented in [12], which relies on time-stepped synchroniza-

tion and on the master/slave paradigm. We similarly address the performance

of agent-based simulation execution, yet we do this for the case of speculative

asynchronous (non-time-stepped) PDES. In particular, we benefit from the

performance improvement which can stem from the Time Warp synchronization

protocol, while allowing a simple implementation of agent-based models via an

expressive API.

Pandora [55] is a C++-based simulation framework enabling executions

in parallel/distributed environments. It features several AI algorithms for

supporting agents’ decision making and provides python bindings (which is

a benefit for inexperienced programmers). At the same time, Pandora does

not hide its internal complexity by design, allowing (and sometimes requiring)

the model developer to extend its fundamental classes, just to perform simple

actions. Conversely, in our proposal we offer the simulation model developer

an API that is specifically tailored for implementing agent-based models, and

which hides away all the idiosyncrasies of synchronization in a distributed

simulation. This allows for a simplified implementation of simulation models,

giving transparently access to highly optimized synchronization facilities to

support efficient computations on clusters of modern parallel machines.

AnyLogic [27] is a commercial multi-method general-purpose simulation

modeling and execution framework, offering at the same time the possibil-

ity to support discrete-event, system dynamics, and agent-based simulation.

The simulation model developer can rely on graphical modeling languages

to implement the simulation models, along with Java code. Differently from

1.1 Related Work 10

this framework, we target the simplicity of agent-based model development

by means of an API which can be effectively exploited by multiple domain

experts, while delivering high-performance simulations thanks to an effective

synchronization protocol in its underlying runtime support. Moreover, the

possibility to transparently deal with an arbitrary topology which can change

at runtime is an aspect which makes our proposal different from the work

in [27] and mostly unique, to the best of our knowledge.

FLAME [23] is a simulation framework targeting large, complex models with

large agent populations to be run on HPC platforms using MPI and OpenMP.

The counterpart FLAME GPU [45] targets 3D simulations of complex systems

with a multi-massive number of agents on GPU devices. We keep the ability

to deal with large amount of agents, yet we rely on traditional CPU-based

execution of the simulation model.

RepastHPC [10] and Swarm [24] are two ABM-oriented runtime envi-

ronments which have been successfully used to deliver high performance of

agent-based models. These runtime environments support different program-

ming languages, and allow agents to interact through the exchange of discrete

events. Differently from our proposal, anyhow, they require high program-

ming skills to be effectively used. Therefore, they are commonly regarded as

complex-to-use frameworks [1].

RAMSES [7] is a runtime environment explicitly targeting ABM, with a

focus on transparency. An ABM-oriented API has already been proposed

in [7], with a goal similar in spirit with that of our proposal. The main

differences between the two works are that: i) in [7], the API is based on the

implementation of complex functions which are passed via pointers to the API,

making it difficult to create bindings in different languages; ii) RAMSES has

been implemented only with reverse computation supports, while the API

which we propose can be implemented in both reverse computation-based and

state saving-based runtime environments; iii) if an agent has to take decisions

1.1 Related Work 11

based on the state of the surrounding environment, this has to be implemented

via explicit message passing; iv) dynamic topologies are not supported.

12

Chapter 2

The ABM API

As mentioned earlier, we propose an API for ABM which is semantically-rich for

the developers and which, at the same time, targets a runtime implementation

to transparently bridge the gap towards efficient speculative PDES runs. To

this end, before discussing the API, we introduce the reference system model

of runtime environments which could support our API.

2.1 Reference System Model

The reference system architecture which we target in our proposal is the Sym-

metric Multi-Threaded optimistic simulation kernel, which was introduced

in [53] for distributed massively multi-core architectures. This system archi-

tecture is depicted in Figure 2.1, and is basically a multi-layer organization.

On top of everything we find Logical Processes (LPs), which are handled by a

simulation kernel instance. LPs are identified with a unique ID in the range

[0, numLPs− 1], where numLPs is the total number of active LPs. In case

LPs should be identified with other (unique) attributes (e.g., literal names), a

mapping function to the range of integers could always be applied.

The simulation kernel instance is devised according to the multi-threaded

programming paradigm, and at simulation startup it takes control up to all

2.1 Reference System Model 13

Communication Network

Machine

CPU

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP LP
LP

LP

...

...

CPU CPU CPU

Machine

CPU

Kernel

...CPU CPU CPU

Kernel

Figure 2.1. System Architecture: Symmetric Multi-Threaded Simulation Kernel.

the available CPU cores available on the host machine, by spawning a worker

thread for each used core.

Multiple machines could be involved in the simulation, thus supporting

distributed and parallel discrete event simulations. The same per-machine

organization, with one multi-threaded simulation kernel instance taking control

up multiple CPU cores, is actuated on every node, which are then connected

via a message passing-based communication network (e.g., by relying on an

MPI library [37]). Every worker thread selects the LP to schedule according

to a smallest-timestamp first (STF) policy, across a subset of (temporarily)

bound LPs

Each LP has a couple of queues, similarly to the original Time Warp

proposal in [25]. Namely, every LP has an input queue, to store in timestamp

order all the events which are received. Executed events are not discarded, but

a reference to the last-correctly executed event (the bound) is kept. Therefore,

the input queue is (logically) both a future-event list, and a past-event list.

No specific implementation of the queue is required by the symmetric multi-

threaded organization, therefore the input queue can be organized as a linked

2.2 Modeling Agents and their Interactions 14

list, a skip list [42], a calendar queue [4], a splay tree [48], a ladder queue [13], or

any other data structure tailored for high-performance management of events.

A similar organization regards the output queue, which is again a per-LP data

structure, which is used to record the sending of a message. This information

is used, in case of a rollback operation, to send antimessages, if needed.

Similarly to the original Time Warp proposal in [25], the symmetric multi-

threaded organization requires that rollbacks are executed lazily. In particular,

whenever a LP receives a straggler message, the information that it has to

rollback is stored somewhere (e.g., in its execution context), so that the actual

rollback operation takes place only when the STF scheduler detects that the

LP to be executed is the one that has to rollback. This can significantly reduce

the rollback frequency.

There is no specific requirement on the Global Virtual Time (GVT) algo-

rithm to be selected for the commitment of events in the symmetric multi-

threaded organization. Specifically, either blocking [18], non-blocking [39], or

asynchronous [51] algorithms can be used. The only requirement is that the

GVT reduction is executed at least periodically, and that when a new GVT

value is adopted, additional housekeeping operations can be hooked.

2.2 Modeling Agents and their Interactions

We describe here all the functions exposed by the API, also describing what

are the aspects that an implementation within any (speculative) runtime envi-

ronment should take into account to ensure performance and consistency of the

simulation. The API is presented as signatures of a possible C implementation,

but by no means it is limited to this programming language. As a preliminary

note, this is a stateful API: therefore, the runtime environment must maintain

a set of data structures to keep track of the evolution of the simulation. For

the sake of performance, we suggest that these data structures are setup lazily,

2.2 Modeling Agents and their Interactions 15

i.e. when a first call to the API requiring them is issued.

Taking inspiration from [7, 40], and taking also into account the way agent-

based models are commonly implemented, in our programming model we map

environmental regions to LPs, while agents are mapped to data structures (or

objects, in runtime environments supporting object-oriented programming).

Agents are therefore handled as program variable, a simple concept which is

mastered also by non-experience programmers from a multitude of domains.

Additionally, this is a fundamental choice, because it can significantly simplify

the implementation of multiple agents’ interactions in a neighboring region.

Moreover, although in ABM we talk of the environment, by no means ABM is

limited to physical environments. Therefore, it is possible that the “regions”

of the environment represent logical entities, and this aspect must be taken

into account by the runtime environment—this is exactly why we do not force

developers to be stuck, e.g., to grid-based environments, but we support also

generic (graph-based) environments—for the sake of simplicity of style, we will

talk of regions in the remainder of this thesis, also when referring to a node in

an abstract graph topology.

The first aspect to take into account is how to identify an agent. To this end,

we introduce the agent_t type, which can be regarded as a unique identifier

(UID) describing a single agent system-wide. The runtime environment should

be able, also in a distributed setting, to generate agent_ts uniquely. This is

mostly a trivial aspect in our system model. Indeed, each simulation kernel

instance is already identified uniquely in the system (e.g., thanks to its MPI

rank). Therefore, it is sufficient to rely on a per-instance monotonic counter

and generate UIDs by computing the Cantor pairing function:
(K + c)(K + c+ 1)

2 + c (2.1)

where K is the id of the simulation kernel instance (e.g., it’s MPI rank) and c is

the current value of the per-instance monotonic counter. This approach is quite

effective—the pairing function is fast, as it relies only on integer arithmetic—

2.2 Modeling Agents and their Interactions 16

and can work mostly out of the box in a multithreaded environment thanks to

hardware synchronization facilities such as the fetch and add read-modify-write

instruction1, which allows all threads to consistently read and increment c also

in concurrent execution2.

An efficient management of the agent_t type is fundamental, because

agents are dynamic entities. As we will show, agents can have a lifetime

shorter than that of the whole simulation, as we explicitly allow new agents

to be spawned or removed from the simulation at any time. Therefore, any

time that the model developer wants to interact with agents, they must be

provided with API functions which allow to manage dynamically handled

agent_ts. Therefore, we suggest to organize agent_ts hosted within a certain

portion of the environment (an LP) into a hash map, so as to reduce the

latency of retrieving the data structures used to represent an agent. It is

important to note that, as mentioned, the state of an agent must keep all the

explanatory variables that allow the agent’s logic to take decisions or change

its own behavior. To this end, the simulation model developer can rely on

any arbitrarily-complex data structure, and associate that at runtime with

an agent_t. Since in an agent-based model there could be different families

of agents—in the limit case, each agent might be described by a different

simulation state—the simulation model developer must be allowed to easily

define a per-agent data structure.

2.2.1 Basic Agent Management

After these considerations, we can now start to describe the part of the API

which allows to manage the agents in the model. The following API functions

are supported.
1This is a hardware facility which is available on all commodity CPU implementations.
2This approach can of course return two equal values when the counter overflows, but

relying on 64-bit integers will significantly reduce this probability.

2.2 Modeling Agents and their Interactions 17

SpawnAgent(unsigned user_data_size) This is the API call which allows,

at runtime, to create a new agent in the system. It returns an agent_t

uniquely identifying the new agent system-wide. user_data_size tells the

size (in bytes) of the space which should be allocated and associated with

the returned agent_t, so as to allow the model developer to store and carry

around data. Given the speculative nature of the simulation support which

we envisage, the creation of an agent should be rollbackable. In particular,

this creation should be rolled back if the event during whose execution the

invocation to SpawnAgent() took place is undone. Therefore, the runtime

environment must associate the (dynamically-allocated) buffers to keep the

agent representation with the event which caused its allocation and the LP at

which this event has been executed.

The literature already offers multiple solutions which can be used to solve

this problem (see, e.g., [50, 41]). In particular, if the runtime environment

allows the simulation model to rely on dynamic memory (e.g., by supporting

calls to malloc()/free() which are transparently rolled back), then it is

sufficient to redirect the allocation of the agent data structure to per-LP

memory. This means that, for a limited time span, the agent belongs to the

simulation state of the LP modeling the region win which the agent is residing.

This is clearly desirable, since all the interactions between agents which happen

within one region of the environment (mapped to an LP) will belong (for a

period of simulated time) to the same simulation state. In this way, all the

agents will observe a consistent simulation snapshot while simulation events

access/modify their data structures.

In this way, if the event which created a new agent is rolled back, the

policies taken to restore a previous consistent simulation state will release the

memory associated with that agent too. Given that agents are identified by a

UID, if the UID-generating module applies a rule similar to Equation (2.1),

there is no need to rollback the state of that generator—simply, the UID

2.2 Modeling Agents and their Interactions 18

associated with the rolled back agent will not be associated with any agent

in the corrected simulation trajectory. An exception to this consideration

happens if the simulation runtime uses silent events execution to restore a state

from a previous checkpoint. In this case the rollback of the UID generator

is necessary in order to keep consistency with possible events sent by agents

spawned during the silently executed events.

KillAgent(agent_t agent) Similarly to the creation of an agent, the simu-

lation model might determine at a certain point in simulation that an agent

no longer has to be part of the agent. The KillAgent() API serves this

purpose. This API function accepts an agent_t generated by a previous call

to SpawnAgent(). The semantic associated with this API is such that, from

that point in simulation on, any attempt to interact by API calls with the

agent identified by the UID stored in agent should fail.

Regarding the release of the memory buffers used to keep track of that

agent, we note that the event issuing a call to KillAgent() can be also rolled

back. Therefore, the invocation to this API function is subject to rollbacks as

well. With respect to the buffers used to keep the agent data structure, the

same considerations made for the SpawnAgent() API function apply. On the

other hand, the situation is different with respect to the UID kept in agent_t.

Indeed, any subsequent interaction with that agent (even in the same event)

should fail. Yet, if the call to KillAgent() is rolled back, that UID must

become valid again.

As mentioned, we suggest to organize all UIDs in a fast hash table. The

hash table can be augmented with a per-agent flag, telling whether some UID

has been retracted from the simulation or not. A call to KillAgent() will

therefore simply flag an agent as retracted. The UIDs which are retracted

during the execution of the event can be stored in an ad-hoc buffer (e.g., a

resizable array) kept in the data structure describing the event. Upon a rollback

2.2 Modeling Agents and their Interactions 19

WCT

SpawnAgent()

UID1

Hash Table
Agent
Bu�er

SpawnAgent()

UID1

Hash Table
Agent
Bu�er

UID2

Agent
Bu�er

DataAgent(UID1)

KillAgent(UID2)

UID1

Hash Table
Agent
Bu�er

UID2

Agent
Bu�er

Figure 2.2. Agents management timeline.

operation, the message buffer of the undone event is inspected, and all agents

which were retracted can be “reintroduced” in the system by simply clearing

their retraction flag. An agent is definitely (and consistently) removed from

the simulation upon the GVT computation. In particular, when a committed

event is removed from the LP queue (as in traditional Time Warp simulations),

its retracted agents’ buffer can be inspected so as to remove from the hash

map the associated UIDs, and free memory buffers.

DataAgent(agent_t agent) Since the state of an agent, composed of its ex-

planatory variables, can be freely organized by the simulation model developer,

we have devised a simple API to manage agents’ states. This API function,

given the UID of one agent, returns a pointer to a memory buffer which can

be used to store the agent’s state. The size of this memory buffer should be

at least of user_data_size bytes, i.e. the amount specified when creating an

agent via SpawnAgent(). This memory buffer must be handled by the runtime

environment from its allocation, via a call to SpawnAgent(), to its dismissal,

after the computation of the GVT.

An overall timeline of the lifetime of an agent in one region (LP) of the

simulation is depicted in Figure 2.2.

2.2.2 Supporting Agent Interactions and Decisions

We now move to describing the part of the API which allows multiple agents

to interact when they are in the same portion of the environment (i.e., the

same LP), or in proximity.

2.2 Modeling Agents and their Interactions 20

CountAgents(void) As mentioned, ABM can be particularly useful to study

emergent behaviors. One fundamental aspect, when implementing agent-based

models, is to know the number of agent which are close to each other. Since

in our system model each LP manages a portion of the environment, we can

easily retrieve the number of agents which are currently in the LP running a

simulation event by calling this API function.

The implementation of this API function should be quite simple, provided

that there is a fast per-LP hash table, telling what are the UIDs of the agents

currently registered at one LP.

IterAgents(agent_t *agent_p) In order to let the simulation model devel-

oper to easily scan through all the agents which are registered at a certain LP,

this API function allows to implement an iterator. In particular, by repeatedly

calling this function, the model will find stored in agent_p the id of the “next”

agent registered in the region. Once the UID of the “next” agent is retrieved,

the simulation model can interact with it in the desired way, by relying on any

other API function. There is no strict requirement on the order according to

which agents’ UIDs are returned to the simulation model developer, therefore

the most efficient implementation can be picked for the runtime environment—

this strongly depends on the way agents are registered within one region: if

a per-LP hash table is used, then the “most efficient order” could be that of

scanning through the table.

TrackNeighbourInfo(void *neighbour_data) More complex decisions can

be taken by the agents if they knew about the state of the environment in

proximity, not only of the portion of the environment in which they currently

reside. While an agent-based model run in a sequential or time-stepped

environment can immediately access this information, speculative PDES poses

an additional challenge. Indeed, in our system model, different regions are

mapped to different LPs, which might have reached different simulation time

2.2 Modeling Agents and their Interactions 21

instants due to the speculative nature of the simulation. Supporting this

decision-making capability can be burdensome for the system. Consider, as

an example, an agent registered in a region mapped to LPx which has to

decide whether to reach either LPy or LPz depending on the “crowdiness” of

the destination regions. To make an informed decision, the agent has first to

collect the number of agents currently residing at LPy and LPz. To implement

this logic in traditional PDES, the model developer has to split this logic into

multiple events to acquire the agent count in both LPs and then determine

what is the correct destination. Given the speculative nature of the simulation,

LPy and/or LPz might be forced to rollback. Additionally, since these “support

events” could likely be simultaneous events, this might place an additional

burden to the runtime environment, due to the need for some sort of tie-breaking

function.

TrackNeighbourInfo() is an API function which tries to solve these prob-

lems. The idea behind this API function is to implement a sort of publish/

subscribe protocol between connected LPs. The model developer, at simulation

startup, can define a portion of its simulation state which should be broadcast

to all neighbor LPs, according to the current topology of the simulation—we

will describe how the topology is supposed to evolve later in this paper. In

this way, the runtime environment is requested to make a local copy of the

data of interest across neighboring LPs. This copy, which can be broadcast

via traditional message passing, is superseded every time that a new version of

the data is installed. Therefore, any time that an event needs to access data

from a neighbor, a local copy can be inspected.

Two points deserve a discussion about an efficient implementation of this

API function. First, not all events might update the portion of the state

which is watched by the TrackNeighbourInfo() API. Therefore, to reduce

the number of messages which are silently exchanged to support this API, the

runtime environment must detect whether the watched memory area has been

2.2 Modeling Agents and their Interactions 22

updated by an event or not. To this end, depending on the actual organization

of the runtime environment, we envisage two possible baseline implementations.

One implementation, which is the one which we have used in the experimental

assessment presented in this paper, relies on a fast hash function to compute a

hash of this memory buffer3 in order to detect whether the last-executed event

modified the buffer. An additional option, which is more costly, is to rely on

memory protection mechanisms provided by, e.g., mprotect().

The second point is associated with consistency of the values observed

by the neighbors. Since updates must be transparently sent to neighbor LPs

upon a state update, if the original event which caused the state transition is

rolled back, also the updates towards the neighbor LPs should be annihilated.

This is especially important because if an event executed at a neighbor LP

read the retired value, also its execution must be rolled back, according to

the global synchronization mechanism proper of Time Warp simulations. To

this end, we suggest to rely on control messages, namely messages which are

exchanged at the level of the runtime environment, destined to a certain LP,

that are included in the event queue but are never delivered to simulation

model handlers. These control messages allow to record that at a certain

point in the simulation trajectory some relevant event happened, which must

be subject to rollback operations, or which can be subject to the delivery

of antimessages. The logic associated with these events is exactly that of

updating the local copy of remote portions of the simulation state, once the

timestamp associated with them is reached in the simulation. Annihilating

such control messages via anti events cancels copy updates which have not

yet been processed, while relying on the rollback operation allows to restore

previous consistent snapshots in case that remote state updates are retracted.
3We suggest using xxHash [9], an extremely-fast general-purpose hashing function working

closely to the speed of RAM, and faster than memcpy(). Implementations for multiple

programming languages are available.

2.2 Modeling Agents and their Interactions 23

Of course, the buffers to store these copies must be rollbackable, so the same

considerations for the buffers to keep agents explanatory variables apply.

GetNeighbourInfo(direction_t direction, unsigned int *region_id, void

**data_p) This API function is a simple entry point to the transparent local

copies made by the runtime environment thanks to the TrackNeighbourInfo()

API function described above. The goal of this API is to retrieve the data of

a neighboring LP, which is made accessible by the runtime environment via

the data_p pointer. To select what is the region which the used is interested

in, the direction_t data type can be used. This allows to “navigate” the

selected current environment topology, as we shall discuss later. In region_id,

the runtime environment stores the id of the LP currently handling the portion

of the environment which we target with direction.

2.2.3 Moving Agents Around

We now discuss the portion of the API which supports agents’ mobility. To

fully understand the functions which we have devised in our API, we shall

make a discussion on why usually time-stepped simulation is considered easy-

to-use in agent based simulations. In many classical example agent-based

models from the literature (e.g., flocks [44], or game of life [19]), updates in the

agents and/or the environment happen “globally”. This means that it is not

possible to take a definitive decision observing a subregion of the model. This

approach, although simple, significantly clashes with the speculative PDES

data partition-oriented approach, which is one of the reasons why the Time

Warp synchronization protocol is so effective. To bridge the gap between these

two approaches, we model agents’ mobility in a “best-effort” manner. This

means that, once the simulation model logic decides that an agent should

move from one region to another, this is the “best educated guess” that the

model can make at that point of the simulation. This guess can be proven

2.2 Modeling Agents and their Interactions 24

wrong later on by the model itself, and therefore the runtime engine should be

informed of a modified decision—this also means that the mobility decision

can be retracted completely.

To support this programming model without placing a high burden on

the developer, we adopt a twofold strategy. On the one hand, we introduce

the concept of visits: an agent has a set of regions to be visited, which can

be modified at any time. These create a visit list which allows to describe

the “ordering of places” in the topology which the agent will reach during

the lifetime of the simulation—we emphasize again that the topology can be

“virtual”, meaning that the visit list can be also used to construct at runtime

a set of pending logical tasks for the agent or a combination of physical and

logical actions. Every time that the agent takes a decision, it can modify this

list arbitrarily. Two different agents have always a different visit list, but of

course two agents can reach the same regions in the same order, depending on

the logic that the simulation model is implementing. This is a versatile way to

describe the way an agent explores and interacts in the environment, which

can be easily adapted to many real-world problems.

EnqueueVisit(agent_t agent, unsigned region, unsigned event_type)

This API function allows to store at the end of the current visit list a new

region to be reached. Once this visit is fired—we will discuss later how and

when this happens—the destination LP identified by the id region is hit by

the event_type event.

CountVisits(const agent_t agent) This API function allows to return

the number of regions which are stored in the visit list which can be reached

by the agent in its future moves. Past visits, namely regions which have already

been visited, are not accounted for in this number. The CountPastVisits(const

agent_t agent) API function can be used to this end.

2.2 Modeling Agents and their Interactions 25

GetVisit(const agent_t agent, unsigned *region_p, unsigned *event_type_p,

unsigned i) During the lifetime of the model, it might be of interest to

inspect the future visit list. To this end, with respect to the i-th future visit,

a call to this API will store into region_p the id of the LP to which the

visit is associated, and into event_type_p the event which will be sched-

uled when this visit is fired. If a user is interested in getting informa-

tion about past visits, the GetPastVisit(const agent_t agent, unsigned

*region_p, unsigned *event_type_p, simtime_t *time_p, unsigned i)

API function can be used.

With respect to the runtime environment supporting this API, we emphasize

that the GetPastVisit() API function can produce a non-negligible memory

footprint to be supported. Indeed, if the agents have a high mobility, especially

in very long simulations, this past visit list might become very long. Since the

semantic of this API is to allow to retrieve any past visit, also those associated

with the committed portion of the simulation trajectory, we are not allowed

to prune the past visit list even when a new GVT value is computed. Due

to this consideration, we leave to the implementation the choice to always

maintain the list of past visits, or start keeping them once the first invocation

to GetPastVisit() is issued—in this latter case, of course, the model might

not be able to observe the whole past visit list.

The last API functions to manage visit lists should allow to modify

the current list. AddVisit(agent_t agent, unsigned region, unsigned

event_type, unsigned i) allows to insert a new visit just before the i-

th element in the future visit list, while SetVisit(const agent_t agent,

unsigned region, unsigned event_type, unsigned i) allows to modify

an already inserted visit (e.g., to modify the event associated with the firing of

that visit). If a visit is to be removed from the future list, RemoveVisit(agent_t

agent, unsigned i) can be used.

In Figure 2.3 we provide a graphical representation of the visit list and

2.2 Modeling Agents and their Interactions 26

agent_t

region: 1
event: A

region: 11
event: A

region: 21
event: A

region: 2
event: A

region: 12
event: A

region: 13
event: A

EnqueueVisit()

CountVisits()CountPastVisits()

AddVisit()

Figure 2.3. Visit management with respect to current region.

the management operations supported by our API. From an implementation

point of view, the visit list can be realized either by relying on resizable arrays,

or by using actual linked lists. While the latter implementation is easier, we

encourage to pick the former, because it can provide a significant performance

improvement (thanks to memory locality). Moreover, such a compact data

structure might be easily migrated around, e.g. across different NUMA nodes,

thus being highly manageable by environments which enforce memory-oriented

optimizations at runtime.

ScheduleNewLeaveEvent(simtime_t time, unsigned int event_type, agent_t

agent) A visit list by itself does not identify at what simulation time the

agent will reach the next region. To this end, the ScheduleNewLeaveEvent()

API function allows to tell the runtime environment what is the current guess

for the simulation time at which the “next hop” in the visit list will be taken.

The simulation model is allowed to call this API function multiple times,

therefore allowing to override the previous guess, provided that this call is

issued by an event executed by the LP which is currently hosting the agent

and before the visit event is fired—conversely, it will fail. We note that if this

call fails, it should not produce any runtime error, as the model developer

might want to rely on this simple semantic (namely, “try” to make an agent

leave) to keep the implementation simpler. If an agent is removed from the

simulation by means of a call to

KillAgent(), the firing of the leave event will never take place.

The only constraint in this API function which should be enforced is that

2.2 Modeling Agents and their Interactions 27

time is in the future of the current simulation time at which the call takes

place—this is in compliance with the traditional Time Warp synchronization

protocol. To support this API function, we suggest the runtime environment

to rely once again on control messages. These should be placed in the event

queue of the LP which has called the ScheduleNewLeaveEvent() so that when

its clock reaches the point in the simulation execution identified by time, then

an event is sent to the LP associated with the next region to be visited. The

payload of this event is the data structure (also with the user-defined payload)

associated with the agent whose UID is agent.

We note that this leave event can be rolled back as any other event. For

the sake of efficiency, we suggest not to remove the data structure associated

with agent from the sender LP, but rather to use the retraction flag which we

have discussed before. These buffers will be released upong the computation

of the GVT. While this might overall consume more memory, especially if an

agent moves a lot, it can significantly reduce the overhead to support rollback

operations. We envisage memory recollections policies, similar in spirit to the

cancelback protocol [26], such that if free available memory falls below a certain

threshold, buffers keeping older incarnations of agents which have left an LP

can be released.

As a last note, we have to reconcile the just discussed optimization with the

possibility that an agent visits the same region multiple times. In this case, it

could be that in the speculative portion of the simulation trajectory, the same

UID entry in the hash table should be associated with multiple incarnations

of the same agent. In this case, it is sufficient to extend the hash table with

a multiversion list of agents. In this list, the agents could be organized in

descending timestamp order, thus allowing simulation events to always find

at the head of the multiversion list the newest incarnation of the agent. If

a rollback operation occurs, then the no-longer consistent nodes—these are

the agents incarnations which have been rolled back—can be unchained and

2.3 Describing the Topology 28

freed. In this way, again, the head of the multiversion list will point to the last

consistent snapshot of the agent representation.

2.3 Describing the Topology

As mentioned, the topology definition in an ABM-oriented API must guarantee

two fundamental aspects, along with extreme simplicity: i) high expressiveness,

due to the fact that the ABM paradigm allows to represent very different aspects

of the world; ii) the possibility to arbitrarily change the topology at runtime.

As for the second point, this is fundamental due to the fact that physical

environments can be modified by the agents, or can be subject to changes

related to the evolution of the agents (e.g., in disaster or rescue scenarios).

Supporting a changing topology in a speculative runtime environment is a

challenging aspect.

An initial topology must be specified at simulation startup. This aspect is

trivial and well studied in the literature, we therefore comply with traditional

file-based startup configurations—in our implementation, we rely on a JSON

file4. The following is the set of topologies which we consider fundamental for

ABM and which should be supported by the runtime environment, by means

of the proposed API:

• Square: Each LP models a square cell. The overall environment can be

either a square or a rectangle (this poses a limitation on the number of

LPs that can be used in a simulation run). Four or eight neighbors can

be reached from each cell, except from the boundaries.

• Hexagon: Each LP models a hexagonal cell. This topology is similar in

spirit with the Square topology, but 6 neighboring cells can be reached
4For the lack of space, we cannot provide the full specification of the JSON file which

we have envisaged. Anyhow, several complete configuration files are available at the online

repository.

2.3 Describing the Topology 29

from every cell not lying on the border.

• Ring: LPs are organized in a mono-directional ring. Agents can move

from one LP to only one adjacent LP, in a single direction.

• Bid-Ring: A bidirectional ring is similar in spirit to a Ring topology,

except for the fact that agents can move in two directions.

• Torus: A torus is similar in spirit to a Bid-Ring topology, except for

the fact that this is a 3D topology in which from each LP there are 4

possible neighbors to reach.

• Star : A single LP is connected to all LPs. If an agent wants to move to

any other LP, it has to pass through the central LP.

• Fully Connected Mesh: Every LP is connected to any other LP. This

topology can create the highest burden on the runtime environment, due

to the high level of communication that can exist across the network.

• Graph: This is a generic weighted graph. Each LP is connected to a

subset of all the LPs, and each connection (an edge) is associated either

with a weight or with a probability. The agents can stochastically move

around, taking into accounts the weights or the probabilities on each

edge. In this case, for each node, the startup configuration file should

provide a list of reachable nodes, with the associated weight/probability.

The latter topology is exactly the one which allows to model changing

environments at runtime. In particular, the graph topology can be implemented

as a weighted fully-connected mesh, in which forbidden connections have an

infinite weight or a zero probability. In this way, by relying on the topology

API, it is possible to change at runtime these weights/probabilities, in order

to modify the connections across the environmental regions. We note that

changes in the topology must be again rollbackable. Therefore, the runtime

2.3 Describing the Topology 30

Figure 2.4. Graphical representation of the topologies

environment must associate the event which altered the topology with the

new incarnation of the topology, and in case of a rollback, the change must

be undone. We note that this is not a trivial aspect, given that other events

scheduled at other LPs might depend on a no-longer consistent topology. These

events must be also rolled back, thus possibly generating cascading rollbacks.

Moreover, changes in the topology might target LPs hosted at a remote kernel

instance in a distributed environment, which must be notified of these changes

via message passing. Again, we suggest to split the variables describing the

overall topology at each LP in a scattered way, relying on control messages to

mark updates in it. Provided that these control messages are incorporated in

the event queue of each LP, traditional rollback mechanisms allow to keep the

overall topology consistent.

To let the model developer alter the environment and fruitfully navigate

it, we have devised the following API functions. NeighboursCount(unsigned

int region_id) and RegionsCount(void) allow to retrieve from the current

organization of the topology, respectively, the number of regions which can be

reached from the one which is executing the event performing the call, and

the total number of active cells (the total number of LPs). This is useful,

e.g., to determine the reachability degree of a region, or to implement actions

2.3 Describing the Topology 31

to observe and sense the surrounding environment. NeighboursCount() is

especially useful on boundary regions, which might not be able to let agents

navigate in all directions provided for the current topology (e.g., in a square

topology, central regions can move in four directions, but edge cells have fewer

legal moves).

In case of a graph-based topology, the weights or the probabilities can be

modified by relying on the SetValueTopology(unsigned int from, unsigned

int to, double value) API function. This function updates the value as-

sociated with the edge between the from and to LPs. We emphasize again

that both these LPs can be different from the one running the event causing

the invocation of this function. Therefore, control messages should be used to

enforce a causally consistent update at the from LP. The counterpart API func-

tion is GetValueTopology(unsigned int from, unsigned int to), which

allows to query the current value for the topology.

To allow the model developer to simply code the movements of the agent,

it is fundamental to offer API functions which allow to cleverly query the

current topology. In case of traditional topologies (i.e., different from graph-

based), the concept of direction is intrinsic: in a grid-like environment the

agent has a limited set of possible moves. GetReceiver(unsigned int from,

direction_t direction) returns the id of the neighbor which would be

reached by moving direction-bound. As an example, in the case of a square

topology, valid values for direction are north, south, east, west.

At the same time, since ABM is commonly a stochastic simulation, we

also envisage the FindReceiver(void) API function which, depending on

the current topology, picks a random neighbor. In grid-based topologies, the

probability distribution should be considered uniform. On the other hand, for

graph-based topologies, the distribution should account for the probabilities or

weights associated with the edges.

The last two API functions associated with the topology deal with a

2.3 Describing the Topology 32

more long-termed planning. FindReceiverToward(unsigned int to) re-

turns the id of the next LP to visit in order to reach the LP identified

by to. This API should consider the minimum-cost path, either consider-

ing the number of moves, or the weights in case of a graph-based topology.

In our reference implementation we have relied on Dijkstra’s pathfinding

algorithm [14]. To extract the complete tour with all visits, the modeler

can rely on ComputeMinTour(unsigned int source, unsigned int dest,

unsigned int result[RegionsCount()]), which returns an array keeping a

list of LPs to visit. In this latter case, the model developer must take into

account the fact that this list might change in the future of the simulation,

because other concurrent LPs might alter the topology, as we have discussed.

Nevertheless, this API function (used in conjunction with the concept of visit

lists which we have described before) allows to prepare a tentative schedule for

the actions of an agent in the immediate future—it can be modified at any

time with all the API functions which we have described so far.

The FindReceiver() function interprets topology weights as proportional

values to traversal probabilities while ComputeMinTour() and FindReceiverToward()

consider weights as traversal costs. We expect that developers aren’t inter-

ested in mixing within the same model those two incompatible interpretations.

We therefore distinguish between cost-based topologies and probability-based

topologies.

33

Chapter 3

Implementation

We have implemented the API and its associated runtime support in the

ROOT-Sim runtime environment [38]. This choice has been made for various

reasons:

• ROOT-Sim adheres with the requirements in Section 2.1

• ROOT-Sim already deals with the synchronization problems arising in

massively parallel architectures; this aided us in substantially reducing

the work needed with respect to implementing a solution from scratch.

• ROOT-Sim is a stable and well written software since it has been around

for three decades. Comprehensive documentation of the internals is also

available.

• ROOT-Sim is open source. This is important so that this thesis can be

a useful work for others. The source code of ROOT-Sim and this API

implementation is freely available on Github at

https://github.com/HPDCS/ROOT-Sim.

We briefly describe ROOT-Sim main characteristics before illustrating our

API implementation details.

https://github.com/HPDCS/ROOT-Sim

3.1 ROOT-Sim overview 34

Figure 3.1. An overview of ROOT-Sim architecture

3.1 ROOT-Sim overview

ROOT-Sim is a PDES runtime environment developed in C/Posix and supports

a transparent deploy on distributed clusters of massively-parallel compute

nodes by relying on the MPI protocol, the HPC industry standard.

From the user point of view, ROOT-Sim presents itself as a wrapper for

the gcc compiler, which links the model code with the ROOT-Sim runtime

libraries as per user supplied options. The resulting executable can then run

on a single node as well as on a parallel cluster.

ROOT-Sim architecture, depicted in Figure 3.1, has evolved in more than

thirty years of development. It is quite involved, therefore this section describes

only the high level interface. For a thorough description of the internals, we

refer the reader to the project wiki at

https://github.com/HPDCS/ROOT-Sim/wiki

and the developer documentation at

https://hpdcs.github.io/ROOT-Sim//docs/master/index.html

https://github.com/HPDCS/ROOT-Sim/wiki
https://hpdcs.github.io/ROOT-Sim//docs/master/index.html

3.1 ROOT-Sim overview 35

3.1.1 ROOT-Sim high level interface

ROOT-Sim allows the model developer to use a simple application-callback

function as the simulation event handler:

ProcessEvent(unsigned int lp_id, simtime_t now, unsigned int event_type,

void *event_payload, unsigned int size, void *state)

Its parameters determine when during the simulation time and which simula-

tion object is currently taking control for processing its next event, and where

the state of this object is located in memory.

The simulation model can generate a new event and inject it into the

system, destined at any LP (even itself), by using:

ScheduleNewEvent(unsigned int receiver, simtime_t timestamp, unsigned

int event, void *event_payload, unsigned int size)

Its parameters specify which LP is the intended receiver of the event, and

when in the future it has to process it. Clearly the supplied timestamp can’t

be smaller than the value of now passed to ProcessEvent(), as this would

make the future affect the past, which is impossible.

The runtime environment enforces a (distributed) termination detection

procedure by using the callback:

OnGVT(unsigned int lp_id, void *snapshot)

When the GVT is reduced, all LPs are asked whether the simulation (at that

particular LP) can be considered as completed. In case that all LPs reply

positively, the simulation is halted.

3.1.2 Interfacing with ROOT-Sim

ROOT-Sim provides a per-LP data structure, called lp_struct which it uses

to provide stock PDES functionalities, such as storing snapshots and managing

events queues. We extended it with the necessary memory pointers towards

the data structures used to implement the API functionalities. We therefore

3.2 Topology implementation details 36

defined a new per-LP memory block which keep tracks of the topology state

called topology_t, and another one to keep track of agents states and region

neighborhoods called region_t.

To catch simulation events it is sufficient to override ProcessEvent() and

ScheduleNewEvent() with our custom logic. The API is transparent to GVT

computations, but our implementation attaches to the fossil collection in order

to periodically cleanup its data structures. For performance reasons, our API

runtime doesn’t use the model memory manager for its allocations, instead

it uses directly malloc() and free(). Rollbacks and restores of our data

structures therefore must be handled manually when ROOT-Sim initiates a

rollback or a restore of a LP.

We had to attach to ROOT-Sim argument parser to provide the model

developer with a way to specify various parameters at model launch, such as

for example, the path of the JSON topology file. ROOT-Sim argument parser

is written using the GNU library argp.

3.2 Topology implementation details

This module provides ROOT-Sim with extended topology functionalities and it

is implemented so as to be completely independent from the actual Agent-Based

Modeling runtime. The JSON file containing the topology information is loaded

at simulation startup; if it isn’t supplied, default values are used. Weights are

saved and processed as double-precision floating point numbers. We managed

to fit the topology related state into a single contiguous memory block per LP.

This renders rollbacks and restores of topology related information as simple

as a single memory copy. The implementation deeply differentiates cost-based

and probability-based topologies, for that reason we describe them separately.

3.2 Topology implementation details 37

Figure 3.2. Comparison between cost-based and probability-based topologies

memory layout

3.2.1 Cost-based topologies

A comparison of the memory layout of cost-based and probabilities based

topologies is shown in Figure 3.2.

In a cost-based topology the whole cost matrix has to be stored by each

LP in order to compute minimum cost paths correctly even in the frequent

occurrence of rollbacks and LP logical times misalignments. In the worst

case, the memory consumption scales as the cube of the number of LPs. Our

implementation allows the model developer to mark his topology as read only;

in this case memory consumption can be greatly reduced by storing only a

single copy of the weights matrix per MPI kernel instance.

As mentioned before, our implementation uses Dijkstra’s Shortest Path

First algorithm to compute the minimum cost paths. Those are computed on

demand when either FindReceiverToward() or ComputeMinTour() are called.

Our Dijkstra’s algorithm implementation uses a binary heap as priority queue

achieving asymptotic time complexity of O((numLP + numedg))log2(numLP)

3.2 Topology implementation details 38

where numLP is the count of LPs while numedg is the number of edges in the

topology implied graph. In case we are dealing with a grid-base geometry E

scales linearly with numLP , a satisfying running time. In the worst case, such

as dense graph-based topology geometries, numedg is quadratic with respect to

numlp. We employ Neumaier’s algorithm to compute the partial weights sums;

this is needed in order to avoid the loss in precision deriving from repeated

sums of floating point numbers.

We expect that the vast majority of minimum path computations would

have source LP coincident with the LP which issued the call. For this reason,

topology_t structures maintain a cache of the minimum spanning tree rooted

in the related LP (the memory area is indicated in Figure 3.2). Clearly we need

to invalidate that cache if some weights have changed value. With one single

run of Dijkstra we can update the cache, this explains why we use this algorithm

instead of a simpler Depth First Traversal. With the aid of this cache it is

possible to serve in constant time FindReceiverToward() calls, and in linear

time (instead that the log-quadratic worst case) calls to ComputeMinTour()

with the “right” source.

Calls to the API SetValueTopology() are implemented with a special

control event that is broadcast to all the LPs (except the one originating the

request) with timestamp equal to the currently processed event. These control

messages follow the same logic of the model’s ones with respect to rollbacks

and antimessages. The only difference is that they are hidden to the model

developer; they are intercepted instead directly by our API runtime. Whenever

such a control message is received, the API simply applies the requested weight

to its local copy of the cost matrix.

3.2.2 Probability-based topologies

The topology_t data structure only needs to store weight values associated

with the related LP. This leads to a consumption of memory which is quadratic

3.2 Topology implementation details 39

with respect to the number of LPs in the worst case. This doesn’t sound

satisfying, but it isn’t possible to improve the situation significantly simply

because the edge count of a graph is quadratic in the worst case.

Stochastic functionalities such as FindReceiver() are implemented with

the aid of ROOT-Sim rollback-able PRNG library. The PRNG supports

rollbacks in order to keep consistency even during silent execution of events.

Let the weight associated with the exit probability toward LPi be wi. The

naive approach for randomly selecting the exit LP would be:

1. compute sumw =
n∑

k=0
wk

2. select a random floating point number r ∈]0, sumw]

3. select LPj as exit LP with j = min{i | r <
i∑

k=0
wk}

If the number n of neighbors regions is high or if the weight values exhibit a

large dynamic range, this approach misbehaves because of the limited precision

of floating point numbers. This other algorithm is used instead:

1. compute sumw =
n∑

k=0
wk

2. select a random integer number j ∈ [0, n− 1]

3. select a random floating point number r ∈]0, sumw]

4. select LPj as exit LP if r < wj, else restart from step 2

It can be shown that the latter procedure is mathematically equivalent to the

former one, but for our application the last one is undoubtedly more accurate.

The trade off is the chance of computing many iterations of the algorithm

to conclude a random selection. To alleviate the impact of this algorithm,

the value sumw is cached, refreshing it whenever a local probability value is

changed.

3.3 Agent-Based Modeling runtime 40

Figure 3.3. ABM runtime memory layout: TrackNeighbourInfo() used to keep

count of adjacent agents

Calls to the API SetValueTopology() require a single message if the source

LP of the request is different from the one issuing the call. If this isn’t the

case, the update request can be trivially handled locally.

3.3 Agent-Based Modeling runtime

The ABM module heavily depends on the topology runtime described earlier.

In fact the initialization phase of this module needs topological information

in order to set up correctly sized memory buffers. During operation, the

ABM module needs the topology APIs in order to move the agents following

minimum cost paths or respecting the probability distributions decided by

the model developer. The region_t structure associated to each LP is fairly

simple as it is a contiguous memory block. The most interesting piece is the

carefully tuned agents hash map but we will describe it later.

The implementation of TrackNeighborInfo() consists in registering a

pointer to the memory area inside the region_t structure. After each processed

3.3 Agent-Based Modeling runtime 41

Figure 3.4. The agent memory layout as per our implementation

event, the runtime checks if the tracked area has changed and if it did, a special

control event containing the new memory data is broadcast to every region’s

neighbor. Upon reception of such a control event the runtime writes the data

in the corresponding memory area inside the region_t structure as shown

in the example in Figure 3.3. This eager diffusion protocol is necessary in

order to keep consistency but, as the assessment will show, it comes with a

big performance cost: a rollback in a region may cause a chain of rollbacks in

several LPs, effectively serializing the simulation execution.

The agent memory representation is depicted in Figure 3.4. Visits APIs

require the agent to maintain two lists with the future and past regions visits.

These are two separate list because a model may not need past visits functional-

ities; the model developer can disable past visits logging with a flag, potentially

saving large quantities of memory. GetVisit(), EnqueueVisit() and the

other related functions are therefore implemented as simple list operations.

ScheduleNewLeaveEvent() is implemented as a control message sent with

the intended agent leave as timestamp to the very same LP issuing the call.

3.3 Agent-Based Modeling runtime 42

This control event is caught by our runtime which verifies that the agent is

still alive or in the region. Then ProcessEvent() is called so that the model

can be informed of the leaving agent. When an agent actually leaves (the

model can still kill the agent when it is informed of his intention to leave),

another type of control message containing the serialized agent is sent to the

destination LP. At the same time the agent is removed from the hashmap. At

this point the receiving LP only needs to deserialize the agent, insert it in the

hashmap and then call ProcessEvent() to inform the model of the visit event.

Removal is done lazily by flagging the killed agents. During fossil collections

the flagged agents are definitely cleaned up.

3.3.1 The agents data structure

In our API implementation, the agent_t which uniquely identifies the agents

is simply a 64 bit number generated using the aforementioned Cantor pairing

function. To support the retrieval of the agents state we need to store them in

a dictionary-like data structure. In order to efficiently doing so, it is necessary

to carefully choose a proper data structure. We opted for a hash table with

linear probing through Robin Hood hashing and backward shift deletion[6].

Let’s define dibx as the distance between the position x would have in

the empty table and its actual one (Distance from Initial Bucket). Insertion

of a new element A using the Robin Hood hashing strategy works as linear

probing with one important difference: instead of inserting A necessarily in

the first empty slot, it is swapped with the currently probed table element B

if dibB < dibA (dibA is computed using the position A would have if inserted

in B’s place). The insertion would then continue with B. The operation ends

when an empty slot is found.

Backward shift deletion coincides with the traditional one followed by an

additional step: all the elements positioned after the deleted one following the

insertion probing direction, are shifted back by one slot. This process is ended

3.3 Agent-Based Modeling runtime 43

as soon as an element with dib equal to 0 is encountered. This reduces the dib

of the shifted elements by one.

The effect of this policies is reducing the mean and standard deviation

of dib which traduces in faster look-ups and insertion on average. The table

size is constrained to be a power of two so resizes are performed doubling or

halving the table size. This way, elements positions can be computed with a

right shift of their hash. It has been shown experimentally[22] that even with

load factors nearing 0.9, the mean probe sequence length is only seven. We

therefore selected 0.85 as the upper load factor limit before a table resize is

performed. To limit memory consumption during long simulation runs, we also

resize the table if its load factor goes below 0.15. These precautions guarantee

us constant amortized time insertion, lookup and deletions. Separate chaining

achieves a comparable performance level but with one drawback which is major

for our application: separate chaining handles a new collision allocating a new

memory block necessary for the chaining list. This means that in average, the

number of distinct memory blocks involved in a rollback would scale linearly

with the number of elements contained in the data structure. For comparison,

snapshots and restores of our hash table need only exactly two distinct memory

copies.

Since our agents are identified by a 64 bit number, it is possible to select

a very fast hash function by sacrificing the possibility to compute hashes of

arbitrarily long data sequences. We adapted a variant of the SplitMix pseudo

random number generator[52] to act as an hashing function. This solution

yields good quality hashes with few shifts and multiplications.

44

Chapter 4

Assessment

4.1 Test-Bed Models and Environment

For our assessment, we consider for this study 3 synthetic models, and 3

real-world applications. The considered models are the following:

1. Stupid Model [43]: in a toroidal region, several bugs (the agents) move

randomly. Each cell produces food, at a certain production rate, which is

eaten by the bugs which enter it—while eating, a bug grows in size. Bugs

can move to another cell only if the destination cell is empty, and they

select the empty neighboring cell with the highest food amount. With a

certain probability, when a bug enters a cell, it either dies or reproduces.

When a bug reproduces, it spawns five new bugs in surrounding cells if

they are empty. If not enough empty cells are available, the bug spawns

a smaller number of children. The simulation halts when the largest bug

reaches a certain size.

2. Segregation [47]: this social model is used to show how segregation among

people happens, even though people (the agents) do not mind being

surrounded by other agents of a different race. An agent is modeled by

its race, ethnicity, economic status, etc. Multiple populations occupy a

4.1 Test-Bed Models and Environment 45

certain environment with random positions. An agent can be satisfied or

not with its current location, in the sense that an agent is surrounded by

a certain percentage of agents that are like itself. In the negative case,

the agent moves to a different (empty) location.

3. Sugarscape [15]: in a grid environment, every cell contains different

amounts of sugar. The agents move around by targeting the cell filled

with the largest amount of sugar. Once they eat, they metabolize and

leave pollution. In a way similar to the stupid model, they can die and

reproduce. Additionally, the agents can trade or borrow sugar, generate

immunity or transmit diseases.

4. Terrain-Covering Ant Robots (TCAR) [28]: This is an agent-based model

particularly interesting for the assessment of rescue scenarios. If some

kind of accident occurs in a region which is either unknown by the

rescuers or altered by the accident itself, the first action in order to

actually rescue the victims is to explore the whole region. The terrain

is modeled as an undirected graph, accounting also for obstacles, in

which ant robots move in every direction. While moving, they leave

pheromones, i.e. they implement a node-counting algorithm, where each

cell is assigned a counter which gets incremented whenever any robot

visits it. Each ant picks its next direction by selecting the neighboring

cell with the smallest visit counter value.

5. Robot Explore [16]: A group of robots is set out into an unknown space,

with the goal of exploring it. They keep a representation of the explored

world, so as to determine which is the closest unexplored area they can

reach, and they compute the shortest path to reach it. While moving

around, the robots gather measurements of the environment and store

them in their state. During the exploration, some accidents can make

a region non-traversable. The robots explore independently, until one

4.1 Test-Bed Models and Environment 46

coincidentally detects another robot in its proximity. Once two robots

meet, they can exchange the information sensed from the environment

and make collaborative exploration decisions.

6. Tuberculosis [35]: This model allows to simulate the spread of tuberculo-

sis infections. It has been effectively used to study this phenomenon in

the city of Barcelona. Individuals (the agents) can move around. They

can be healthy, infected, sick, under treatment, or susceptible to relapse.

Depending on their interactions, healthy individuals might become in-

fected. Sick agents might be susceptible to death. This is an overall

epidemiological model which requires a very large number of agents, with

complex state transitions, to allow the identification of emergent behavior

related to the spread of the disease.

In the experimental assessment, we report performance data of 4 of the

aforementioned models. We have used a cluster of three medium size hetero-

geneous servers connected via a 1 GB dedicated Ethernet connection. Two

servers are 32-core (AMD Opteron 6168) machines equipped with 64 GB of

RAM. One is a 48-core (AMD Opteron 6168) machine equipped with 128 GB

of RAM. All machines run Linux 4.9.0. We have used gcc 8.2.0 to compile

the software, and OpenMPI 3.1.3 as the MPI runtime environment. In the

experiments, the total number of threads has been varied from 3 to 112. The

MPI assignment policy has been set so as to ensure that all three machines are

used, by distributing the threads on the cluster in a round-robin fashion. This

is a worst-case scenario, especially when the number of threads is low, because

we always incur in the communication cost even though a single machine could

support message passing by relying on shared memory.

4.2 Effects on Programmability 47

Model Original Implementation Using our API

Stupid Model 189 138

Segregation 83 110

Sugarscape 1072 152

TCAR 228 1 103

Robot Explore 500 332

Tuberculosis 1,115 654

Table 4.1. LOCs for the different Model Implementations

4.2 Effects on Programmability

While assessing the effects on programmability is not easy, especially in contexts

which involve models coming from multiple domains, we are taking into account

here classical agent-based models from the literature, and we compare their

classical implementations with ones made relying on the proposed API. For each

of the aforementioned models, we have considered the original implementation

(where available). We have compared the Lines of Code (LOCs) of the original

implementation with the LOCs of our re-implementations using the discussed

API.

Table 4.1 shows the comparison. As it can be seen, except for segregation

model, the line count is always smaller when implementing the models by

relying on the proposed API. It should be kept in mind that segregation model

original implementation It is interesting to note that this is the case also when

dealing with very simple (toy) models, such as the Stupid Model. This is

an indication of the fact that the API is effective at capturing the needs of

ABM, thus reducing the burden on the model developer which can benefit
1The original paper in [28] does not provide a reference implementation. Therefore, we

report here the LOCs associated with a re-implementation of the model, according to the

specification, which does not rely on our API.

4.3 Performance Assessment 48

Model # LPs Involved Agents

Stupid Model 4,096 1 2

Segregation 10,000 10,000

TCAR 4096 16

Tuberculosis 1024 400,000

Table 4.2. Configurations of the models

from the performance speedup and the increased amount of working memory

traditionally offered by distributed PDES.

4.3 Performance Assessment

We present performance data of 4 of the aforementioned simulation models

on the described hardware infrastructure. The models used and their configu-

rations are reported in Table 4.2. To show the viability of our proposal from

a performance point of view, we report the speedup of the distributed runs

over a sequential simulation. Sequential simulations are extremely optimized,

as they are based on a fast O(1) scheduler based on a calendar queue [4]. We

remind that the experimental setup is a worst case, due to the fact that we

always incur in increased network activity when we rely on a reduced number

of threads, due to the distribution of the threads in the cluster.

In Figure 4.1 we report the performance data related to the synthetic

benchmarks Stupid Model and Segregation. It is interesting to note that both

models exhibit a linear speedup on the machine, despite the fact that the

event granularity is quite small (on the order of tens of microseconds) and the

amount of events exchanged across the LPs is non-minimal—this latter point is

related to the fact that in both models we rely on the TrackNeighbourInfo()

API which transparently sends control messages to neighboring LPs upon any
2This is the initial agent count. During the simulation, the number of agents increases.

4.3 Performance Assessment 49

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
Stupid Model Segregation

Figure 4.1. Results with Synthetic Models.

update, and the number of agents in the model (especially in the segregation

case) is quite high. The reason behind this point is that the scale of the model

can be significantly increased (up to 10,000 LPs in the Segregation model case)

due to the fact that simulations states are very small, and so is the number of

explanatory variables used to describe an agent. Anyhow, this result suggests

that if these models are used (as they are intended to) as skeletons to build

more complicated logic, then these models will benefit from the increased

computing power offered by distributed PDES.

In Figure 4.2 we report the performance results for two real-world simulation

models, namely tuberculosis (TBC in the plot) and TCAR. With respect to

TCAR, we can see that after a certain number of concurrent threads, the

performance observes a significant drop. This is a foreseeable results, taking

into account the configuration reported in Table 4.2. Indeed, there is a

high imbalance between the number of active agents and the regions in the

model. Given the distributed nature of the simulation, the probability that

LPs observe a skew in the simulation time is high. This, in its turn, affects

4.3 Performance Assessment 50

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
TBC TCAR

Figure 4.2. Results with Real-World Applications.

the overall efficiency of the simulation—in our runs, it got as low as 15% in

some configurations. While this is a phenomenon which would have appeared

independently of the API used to implement the model, we can note that the

proposed API and its implementation is resilient to this unfavorable scenario

up to a non-negligible number of distributed thread (42).

With respect to TBC, we note that this is the model with the highest degree

of parallelism, due to the fact that one thread manages a reduced number of

LPs (9 LPs per thread is the minimum). This is a scenario which is known

to increase the rollback probability. Moreover, this is also exacerbated by

the fact that the number of agents in the simulation, compared to the size

of the environment, is quite large. The proposed API, in this case, is able to

provide anyhow a speedup, although minimal. It is important to note that

this is a clear case in which resorting to our proposal allows to make unfeasible

problems feasible, due to the possibility to overcome the memory wall thanks

to the increased number of nodes used for the simulation. In this specific

model, the sequential simulation has shown a memory footprint of more than

4.3 Performance Assessment 51

 0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45

S
p

ee
d

u
p

 o
v
er

 S
eq

u
en

ti
al

 S
im

u
la

ti
o

n

Number of Cores
Stupid Model TBC

Figure 4.3. Results using a single node.

16 GB, which could not be manageable when using off-the-shelf commodity

hardware.

For the sake of completeness, in Figure 4.3 we report performance data

taken when running on the largest single node of our cluster, fo the real-world

applications. Here, we do not pay communication costs, but the trends of the

curves are perfectly similar to the ones shown in Figure 4.2, thus showing that

the proposed API and its reference implementation is also resilient to network

delays.

52

Chapter 5

Conclusions and Future Work

In this thesis we have introduced an API specification for ABM in speculative

runtime environments implemented according to the Time Warp synchroniza-

tion protocol. This API has been shown to be effective at implementing very

different agent-based models in a compact and expressive way. An implemen-

tation of our API has also shown that it is possible to obtain non-minimal

speedup also in very simple (toy) models. We therefore consider this as an

important step ahead at disclosing the power of PDES to domain expert which

should not be exposed to the complexity of speculative synchronization.

We deem community feedback fundamental for the reason that a program-

ming interface is useful only if it is proficiently used. We recognize that the

APIs need a refinement in order to provide a better development experience.

The implementation needs to improve as well: while simpler models showed

very good scaling capabilities, the Tuberculosis model doesn’t scale well enough

on distributed architectures using our runtime implementation. We nonetheless

feel that is a very promising work, therefore working on the worst bottleneck,

the TrackNeighbourInfo() and GetNeighbourInfo() API implementations.

We will also try to port the API to a higher level language such as Python;

we recognize that C development can be a very daunting task for the non

IT-professional.

53

The implied purpose of this work is to initiate an interaction between us in

the HPC community, and the domain experts, in order to reach an agreement

on the set of needed ABM runtime features. This would allow on one side, to

focus on the optimization of a clear set of functionalities while offering, on the

other side, a standardized interface to the model developers.

54

Bibliography

[1] Abar, S., Theodoropoulos, G. K., Lemarinier, P., and O’Hare,

G. M. Agent Based Modelling and Simulation tools: A review

of the state-of-art software. Computer Science Review, 24 (2017),

13. Available from: https://linkinghub.elsevier.com/retrieve/

pii/S1574013716301198, arXiv:arXiv:1011.1669v3, doi:10.1016/j.

cosrev.2017.03.001.

[2] Allen, T. T. Introduction to Discrete Event Simulation and Agent-based

Modeling. Springer London, London (2011). ISBN 978-0-85729-138-7.

doi:10.1007/978-0-85729-139-4.

[3] Bonabeau, E. Agent-based modeling: Methods and techniques for

simulating human systems. Proceedings of the National Academy of

Sciences, (2002). arXiv:1709.03423, doi:10.1073/pnas.082080899.

[4] Brown, R. Calendar queues: a fast O(1) priority queue implementation

for the simulation event set problem. Communications of the ACM, 31

(1988), 1220.

[5] Carothers, C. D., Perumalla, K. S., and Fujimoto, R. M.

Efficient optimistic parallel simulations using reverse computation. ACM

Transactions on Modeling and Computer Simulation, 9 (1999), 224.

[6] Celis, P., Larson, P.-A., and Munro, J. I. Robin hood hashing. In

Proceedings of the 26th Annual Symposium on Foundations of Computer

https://linkinghub.elsevier.com/retrieve/pii/S1574013716301198
https://linkinghub.elsevier.com/retrieve/pii/S1574013716301198
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.cosrev.2017.03.001
http://dx.doi.org/10.1016/j.cosrev.2017.03.001
http://dx.doi.org/10.1007/978-0-85729-139-4
http://arxiv.org/abs/1709.03423
http://dx.doi.org/10.1073/pnas.082080899

Bibliography 55

Science, SFCS ’85, pp. 281–288. IEEE Computer Society, Washington,

DC, USA (1985). ISBN 0-8186-0844-4. Available from: https://doi.

org/10.1109/SFCS.1985.48, doi:10.1109/SFCS.1985.48.

[7] Cingolani, D., Pellegrini, A., and Quaglia, F. RAMSES:

Reversibility-based agent modeling and simulation environment with

speculation support. In Proceedings of Euro-Par 2015: Parallel Process-

ing Workshops (edited by S. Hunold, A. Costan, D. Ginenéz, A. Iosup,

L. Ricci, M. E. Gómez Requena, V. Scarano, A. L. Varbanescu, S. L. Scott,

S. Lankes, J. Weidendorfer, and M. Alexander), PADABS, pp. 466–478.

LNCS, Springer-Verlag (2015). doi:10.1007/978-3-319-27308-2_38.

[8] Cingolani, D., Pellegrini, A., and Quaglia, F. Transparently

Mixing Undo Logs and Software Reversibility for State Recovery in Opti-

mistic PDES. ACM Transactions on Modeling and Computer Simulation,

27 (2017), 1. doi:10.1145/3077583.

[9] Collet, Y. xxHash: Extremely Fast Hash Algorithm (2015). Available

from: http://www.xxhash.com/.

[10] Collier, N. and North, M. Parallel agent-based simulation with

Repast for High Performance Computing. SIMULATION, 89 (2013), 1215.

doi:10.1177/0037549712462620.

[11] Colman, A. M. The complexity of cooperation: Agent-based models of

competition and collaboration. Complexity, (1998).

[12] Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D.,

Scarano, V., and Spagnuolo, C. A framework for distributing

agent-based simulations. In Proceedings of Euro-Par 2011: Parallel Pro-

cessing Workshops (edited by M. Alexander, P. D’Ambra, A. Belloum,

G. Bosilca, M. Cannataro, M. Danelutto, B. Martino, M. Gerndt, E. Jean-

not, R. Namyst, J. Roman, S. L. Scott, J. L. Traff, G. Vallée, and J. Wei-

https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1109/SFCS.1985.48
http://dx.doi.org/10.1109/SFCS.1985.48
http://dx.doi.org/10.1007/978-3-319-27308-2_38
http://dx.doi.org/10.1145/3077583
http://www.xxhash.com/
http://dx.doi.org/10.1177/0037549712462620

Bibliography 56

dendorfer), Lecture Notes in Computer Science, pp. 460–470. Springer

Berlin Heidelberg (2012). ISBN 978-3-642-29736-6. Available from:

http://link.springer.com/10.1007/978-3-642-29737-3{_}51, doi:

10.1007/978-3-642-29737-3_51.

[13] Dickman, T., Gupta, S., and Wilsey, P. A. Event pool structures

for PDES on many-core Beowulf clusters. In Proceedings of the 2013

ACM/SIGSIM Conference on Principles of Advanced Discrete Simulation,

pp. 103–114. ACM Press (2013). ISBN 9781450319201. doi:10.1145/

2486092.2486106.

[14] Dijkstra, E. W. A note on two problems in connexion with graphs.

Numerische Mathematik, 1 (1959), 269. doi:10.1007/BF01386390.

[15] Epstein, J. and Axtell, R. L. Growing Artificial Societies: Social Sci-

ence from the Bottom Up (1997). ISBN 9780874216561. arXiv:9809069v1,

doi:10.1007/s13398-014-0173-7.2.

[16] Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., and

Stewart, B. Distributed Multirobot Exploration and Mapping. Proceed-

ings of the IEEE, 94 (2006), 1325. doi:10.1109/JPROC.2006.876927.

[17] Fujimoto, R. M. Parallel Discrete Event Simulation. Communications

of the ACM, 33 (1990), 30.

[18] Fujimoto, R. M. and Hybinette, M. Computing Global Vir-

tual Time in Shared-Memory Multiprocessors. ACM Transactions

on Modeling and Computer Simulation, 7 (1997), 425. Available

from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.22.5956, doi:10.1145/268403.268404.

[19] Gardner, M. Mathematical games: The fantastic combinations of John

Conway’s new solitaire game ’Life’. Scientific American, 223 (1970), 120.

http://link.springer.com/10.1007/978-3-642-29737-3{_}51
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1007/978-3-642-29737-3_51
http://dx.doi.org/10.1145/2486092.2486106
http://dx.doi.org/10.1145/2486092.2486106
http://dx.doi.org/10.1007/BF01386390
http://arxiv.org/abs/9809069v1
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.1109/JPROC.2006.876927
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.5956
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.5956
http://dx.doi.org/10.1145/268403.268404

Bibliography 57

[20] Gilbert, N. and Terna, P. How to build and use agent-based models

in social science. Mind & Society, 1 (2000), 57. Available from: http://

link.springer.com/10.1007/BF02512229, doi:10.1007/BF02512229.

[21] Goldsman, D., Nance, R., and Wilson, J. A brief history of

simulation. pp. 310 – 313 (2010). doi:10.1109/WSC.2009.5429341.

[22] Goossaert, E. Robin hood hashing: backward shift dele-

tion (2013). Available from: http://codecapsule.com/2013/11/17/

robin-hood-hashing-backward-shift-deletion/.

[23] Holcombe, M., Coakley, S., and Smallwood, R. A general

framework for agent-based modelling of complex systems. In Proceedings

of the 2006 European conference on complex systems. European Complex

Systems Society Paris, France (2006).

[24] Iba, H. Agent-Based Modeling and Simulation with Swarm. Chapman

and Hall/CRC (2013). ISBN 9781466562400. doi:10.1201/b15024.

[25] Jefferson, D. R. Virtual Time. ACM Transactions on Programming

Languages and System, 7 (1985), 404.

[26] Jefferson, D. R. Virtual time II: storage management in conservative

and optimistic systems. In Proceedings of the ninth annual ACM sympo-

sium on Principles of distributed computing, PODC ’90, pp. 75–89. ACM,

New York, NY, USA (1990). ISBN 0-89791-404-X. Available from: http:

//doi.acm.org/10.1145/93385.93403, doi:10.1145/93385.93403.

[27] Karpov, Y. G. AnyLogic — a New Generation Professional Simulation

Tool. In Proceedings of the 6th International Congress on Mathematical

Modeling, MATHMOD (2004).

[28] Koenig, S. and Liu, Y. Terrain Coverage with Ant Robots: a Simulation

Study. In Proceedings of the fifth international conference on Autonomous

http://link.springer.com/10.1007/BF02512229
http://link.springer.com/10.1007/BF02512229
http://dx.doi.org/10.1007/BF02512229
http://dx.doi.org/10.1109/WSC.2009.5429341
http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
http://codecapsule.com/2013/11/17/robin-hood-hashing-backward-shift-deletion/
http://dx.doi.org/10.1201/b15024
http://doi.acm.org/10.1145/93385.93403
http://doi.acm.org/10.1145/93385.93403
http://dx.doi.org/10.1145/93385.93403

Bibliography 58

agents, AGENTS, pp. 600–607. ACM (2001). ISBN 1-58113-326-X. doi:

10.1145/375735.376463.

[29] LaPre, J. M., Gonsiorowski, E. J., and Carothers, C. D. LO-

RAIN: a step closer to the PDES ’holy grail’. In Proceedings of the 2nd

ACM SIGSIM/PADS conference on Principles of Advanced Discrete Sim-

ulation, PADS, pp. 3–14. ACM Press, New York, New York, USA (2014).

ISBN 9781450327947. doi:10.1145/2601381.2601397.

[30] Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and

Balan, G. MASON: A multiagent simulation environment. Simulation,

81 (2005), 517. doi:10.1177/0037549705058073.

[31] Mabu, S., Hirasawa, K., and Hu, J. A Graph-based Evolution-

ary Algorithm: Genetic Network Programming (GNP) and its Exten-

sion sing Reinforcement Learning. Evolutionary computation, 15 (2007),

369. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17705783,

doi:10.1162/evco.2007.15.3.369.

[32] Macal, C. M. and North, M. J. Tutorial on Agent-Baesd Modeling

and Simulation. In Proceedings of 2005 Winter Simulation Conference

(2005). ISBN 9788578110796. arXiv:arXiv:1011.1669v3, doi:10.1017/

CBO9781107415324.004.

[33] McKee, S. a. Reflections on the memory wall. In Proceedings

of the first conference on Computing Frontiers, p. 162. ACM Press,

New York, New York, USA (2004). ISBN 1581137419. Available

from: http://portal.acm.org/citation.cfm?doid=977091.977115,

doi:10.1145/977091.977115.

[34] Mithen, S. Stepping out: a computer simulation of hominid

dispersal from Africa. Journal of Human Evolution, 43 (2002),

http://dx.doi.org/10.1145/375735.376463
http://dx.doi.org/10.1145/375735.376463
http://dx.doi.org/10.1145/2601381.2601397
http://dx.doi.org/10.1177/0037549705058073
http://www.ncbi.nlm.nih.gov/pubmed/17705783
http://dx.doi.org/10.1162/evco.2007.15.3.369
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://portal.acm.org/citation.cfm?doid=977091.977115
http://dx.doi.org/10.1145/977091.977115

Bibliography 59

433. Available from: http://linkinghub.elsevier.com/retrieve/

pii/S0047248402905841, doi:10.1016/S0047-2484(02)90584-1.

[35] Montañola-Sales, C., Gilabert-Navarro, J.-F., Casanovas-

Garcia, J., Prats Soler, C., López Codina, D., Ribas Valls, J.,

Cardona Iglesias, P. J., and Vilaplana, C. Modeling tuberculosis

in Barcelona. A solution to speed-up agent-based simulations. In Proceed-

ings of the 2015 Winter Simulation Conference, pp. 1295—-1306. IEEE

Computer Society (2015).

[36] Montañola-Sales, C., Onggo, B. S., Casanovas-Garcia, J.,

Cela-Espín, J. M., and Kaplan-Marcusán, A. Approaching parallel

computing to simulating population dynamics in demography. Parallel

Computing, (2016). doi:10.1016/j.parco.2016.07.001.

[37] MPI Forum. Message Passing Interface Forum. http://www.mpi-

forum.org/ (1994). Available from: http://www.mpi-forum.org/.

[38] Pellegrini, A. and Quaglia, F. The ROme OpTimistic Simula-

tor: A tutorial. In Proceedings of the Euro-Par 2013: Parallel Pro-

cessing Workshops (edited by D. an Mey, M. Alexander, P. Bientinesi,

M. Cannataro, C. Clauss, A. Constan, G. Kecskemeti, C. Morin, L. Ricci,

J. Sahuquillo, M. Schulz, V. Scarano, S. L. Scott, and J. Weidendorfer),

PADABS, pp. 501–512. LNCS, Springer-Verlag (2014). Available from:

http://link.springer.com/10.1007/978-3-642-54420-0{_}49, doi:

10.1007/978-3-642-54420-0_49.

[39] Pellegrini, A. and Quaglia, F. Wait-free Global Virtual Time

computation in shared memory Time-Warp systems. In Proceed-

ings of the 26th International Conference on Computer Architecture

and High Performance Computing, SBAC-PAD, pp. 9–16. IEEE Com-

puter Society, Paris, France (2014). ISBN 978-1-4799-6905-0. Avail-

http://linkinghub.elsevier.com/retrieve/pii/S0047248402905841
http://linkinghub.elsevier.com/retrieve/pii/S0047248402905841
http://dx.doi.org/10.1016/S0047-2484(02)90584-1
http://dx.doi.org/10.1016/j.parco.2016.07.001
http://www.mpi-forum.org/
http://link.springer.com/10.1007/978-3-642-54420-0{_}49
http://dx.doi.org/10.1007/978-3-642-54420-0_49
http://dx.doi.org/10.1007/978-3-642-54420-0_49

Bibliography 60

able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6970641, doi:10.1109/SBAC-PAD.2014.38.

[40] Pellegrini, A., Quaglia, F., Montanola-Sales, C., and

Casanovas-Garca, J. Programming agent-based demographic mod-

els with cross-state and message-exchange dependencies: A study with

speculative PDES and automatic load-sharing. In Proceedings of the 2016

Winter Simulation Conference, WSC, pp. 955–966. IEEE (2016). ISBN

978-1-5090-4486-3. doi:10.1109/WSC.2016.7822156.

[41] Pellegrini, A., Vitali, R., and Quaglia, F. Di-DyMeLoR: Logging

only dirty chunks for efficient management of dynamic memory based

optimistic simulation objects. In Proceedings - Workshop on Principles

of Advanced and Distributed Simulation, PADS, pp. 45–53. IEEE (2009).

ISBN 9780769537139. doi:10.1109/PADS.2009.24.

[42] Pugh, W. Skip lists: a probabilistic alternative to balanced

trees. Communications of the ACM, 33 (1990), 668. Avail-

able from: http://portal.acm.org/citation.cfm?doid=78973.78977,

doi:10.1145/78973.78977.

[43] Railsback, S. F., Lytinen, S., and Grimm, V. StupidModel and

Extensions: A Template and Teaching Tool for Agent-based Modeling.

Tech. rep., Swarm Development Group (2005).

[44] Reynolds, C. W. Flocks, herds and schools: A distributed behavioral

model. ACM SIGGRAPH Computer Graphics, 21 (1987), 25. doi:

10.1145/37402.37406.

[45] Richmond, P. and Romano, D. Agent based gpu, a real-time 3d

simulation and interactive visualisation framework for massive agent

based modelling on the gpu. In Proceedings International Workshop on

Supervisualisation (2008).

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6970641
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6970641
http://dx.doi.org/10.1109/SBAC-PAD.2014.38
http://dx.doi.org/10.1109/WSC.2016.7822156
http://dx.doi.org/10.1109/PADS.2009.24
http://portal.acm.org/citation.cfm?doid=78973.78977
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1145/37402.37406

Bibliography 61

[46] Rubio Campillo, X., Cela, J. M., and Hernàndez Cardona,

F. X. Simulating archaeologists? Using agent-based modelling to improve

battlefield excavations. Journal of Archaeological Science, 39 (2012), 347.

doi:10.1016/j.jas.2011.09.020.

[47] Schelling, T. C. Sorting and Mixing. In Micromotives and Mmacrobe-

havior, chap. 4, p. 270. W W Norton & Co (1978). ISBN 02549948.

[48] Sleator, D. D. and Tarjan, R. E. Self-adjusting binary search trees.

Journal of the ACM, 32 (1985), 652. Available from: http://portal.

acm.org/citation.cfm?doid=3828.3835, doi:10.1145/3828.3835.

[49] Tisue, S. and Wilensky, U. Netlogo: A simple environment

for modeling complexity. In Proceedings of the International Con-

ference on Complex Systems, ICCS, pp. 1–10. NECSI (2004). ISBN

0769520723. Available from: http://ccl.sesp.northwestern.edu/

papers/netlogo-iccs2004.pdf.

[50] Toccaceli, R. and Quaglia, F. DyMeLoR: Dynamic Memory Logger

and Restorer Library for Optimistic Simulation Objects with Generic

Memory Layout. In Proceedings of the 22nd Workshop on Principles

of Advanced and Distributed Simulation, pp. 163–172. IEEE Computer

Society (2008). ISBN 978-0-7695-3159-5. doi:http://dx.doi.org/10.

1109/PADS.2008.23.

[51] Tocci, T., Pellegrini, A., Quaglia, F., Casanovas-García,

J., and Suzumura, T. ORCHESTRA: An asynchronous wait-free

distributed GVT algorithm. In Proceedings of the 2017 IEEE/ACM

21st International Symposium on Distributed Simulation and Real Time

Applications, DS-RT (2017). ISBN 9781538640289. doi:10.1109/DISTRA.

2017.8167666.

http://dx.doi.org/10.1016/j.jas.2011.09.020
http://portal.acm.org/citation.cfm?doid=3828.3835
http://portal.acm.org/citation.cfm?doid=3828.3835
http://dx.doi.org/10.1145/3828.3835
http://ccl.sesp.northwestern.edu/papers/netlogo-iccs2004.pdf
http://ccl.sesp.northwestern.edu/papers/netlogo-iccs2004.pdf
http://dx.doi.org/http://dx.doi.org/10.1109/PADS.2008.23
http://dx.doi.org/http://dx.doi.org/10.1109/PADS.2008.23
http://dx.doi.org/10.1109/DISTRA.2017.8167666
http://dx.doi.org/10.1109/DISTRA.2017.8167666

Bibliography 62

[52] Vigna, S. Further scramblings of marsaglia’s xorshift generators. Journal

of Computational and Applied Mathematics, 315 (2017), 175 . Avail-

able from: http://www.sciencedirect.com/science/article/pii/

S0377042716305301, doi:https://doi.org/10.1016/j.cam.2016.11.

006.

[53] Vitali, R., Pellegrini, A., and Quaglia, F. Towards Symmetric

Multi-threaded Optimistic Simulation Kernels. In 2012 ACM/IEEE/SCS

26th Workshop on Principles of Advanced and Distributed Simulation,

PADS, pp. 211–220. IEEE (2012). ISBN 978-1-4673-1797-9. Available

from: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=

6305914http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6305914http://ieeexplore.ieee.org/document/

6305914/, doi:10.1109/PADS.2012.46.

[54] Vulov, G., Hou, C., Vuduc, R., Fujimoto, R., Quinlan, D.,

and Jefferson, D. The Backstroke framework for source level reverse

computation applied to parallel discrete event simulation. In Proceedings

of the 2011 Winter Simulation Conference (WSC), pp. 2960–2974. IEEE

(2011). ISBN 978-1-4577-2109-0. doi:10.1109/WSC.2011.6147998.

[55] Wittek, P. and Rubio-Campillo, X. Scalable agent-based modelling

with cloud HPC resources for social simulations. In Proceedings of the 4th

International Conference on Cloud Computing Technology and Science,

CloudCom, pp. 355–362. IEEE Computer Society (2012). doi:10.1109/

CloudCom.2012.6427498.

[56] Xiao, J., Andelfinger, P., Eckhoff, D., Cai, W., and Knoll,

A. Exploring Execution Schemes for Agent-Based Traffic Simulation

on Heterogeneous Hardware. In Proceedings of the 22nd International

Symposium on Distributed Simulation and Real Time Applications, DS-

http://www.sciencedirect.com/science/article/pii/S0377042716305301
http://www.sciencedirect.com/science/article/pii/S0377042716305301
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.11.006
http://dx.doi.org/https://doi.org/10.1016/j.cam.2016.11.006
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914 http://ieeexplore.ieee.org/document/6305914/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914 http://ieeexplore.ieee.org/document/6305914/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914 http://ieeexplore.ieee.org/document/6305914/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6305914 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6305914 http://ieeexplore.ieee.org/document/6305914/
http://dx.doi.org/10.1109/PADS.2012.46
http://dx.doi.org/10.1109/WSC.2011.6147998
http://dx.doi.org/10.1109/CloudCom.2012.6427498
http://dx.doi.org/10.1109/CloudCom.2012.6427498

Bibliography 63

RT, pp. 1–10. IEEE Computer Society (2018). ISBN 978-1-5386-5048-6.

doi:10.1109/DISTRA.2018.8601016.

http://dx.doi.org/10.1109/DISTRA.2018.8601016

	Introduction
	Related Work

	The ABM API
	Reference System Model
	Modeling Agents and their Interactions
	Basic Agent Management
	Supporting Agent Interactions and Decisions
	Moving Agents Around

	Describing the Topology

	Implementation
	ROOT-Sim overview
	ROOT-Sim high level interface
	Interfacing with ROOT-Sim

	Topology implementation details
	Cost-based topologies
	Probability-based topologies

	Agent-Based Modeling runtime
	The agents data structure

	Assessment
	Test-Bed Models and Environment
	Effects on Programmability
	Performance Assessment

	Conclusions and Future Work

