
Università degli Studi di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica

XXIV Ciclo – 2011

Speculative Protocols for Actively

Replicated Transactional Systems

Roberto Palmieri

Università degli Studi di Roma “La Sapienza”

Dottorato di Ricerca in Ingegneria Informatica

XXIV Ciclo - 2011

Roberto Palmieri

Speculative Protocols for Actively

Replicated Transactional Systems

Thesis Committee

Prof. Francesco Quaglia (Advisor)
Prof. Maurizio Lenzerini

Reviewers

Prof. Jennifer Lundelius Welch
Prof. Rachid Guerraoui

Author’s address:
Roberto Palmieri
Dipartimento di Informatica e Sistemistica
Sapienza Università di Roma
Via Ariosto 25, I-00185 Roma, Italy
e-mail: palmieri@dis.uniroma1.it

www: http://www.dis.uniroma1.it/∼palmieri/

To my mother and father

Acknowledgments

My first special thanks goes to my colleague and friend Pierangelo. The help
and advices that he provided during my master thesis were invaluable. Thanks
to his effort I started soon my Ph.D.; without his support, I would never have
been able to publish my first international scientific article. Without his way
of being everyday, these three years together in room B120 would have been
so different.

There are not appropriate words in any language of the world for express-
ing my gratitude for my advisor prof. Francesco Quaglia. Francesco has been
able to lead me in these three years, trying to solve together with me all the
problems that manifested during my doctorate. He taught me the approach
to scientific research. He taught me that the quality of the work is the only
target that must be addressed. He is a wonderful person, a confidant, a friend
and last but not least, a big AS Roma supporter. I hope, sooner or later, to
give back to Francesco all the effort that he spent to help me pursuing my
Ph.D.

Together with Francesco, a special thanks goes to my (non-formal) co-
advisor, Paolo Romano. I met him seven years ago during my first level
degree, and for at least five years he has been a reference point for his way to
approach and solve the problems (scientific and not). All the works and the
quality of this thesis would not be the same without his contribution.

I owe a debt of gratitude also to the leader of our research group, who is
more than just a great scientist, but a father for all the group members and
in particular for me. He transmitted to me the enthusiasm for the teaching
activities but more important, he taught me to be a good person and to never
compromise myself for any reason. Thank you Bruno.

I am also grateful to prof. Jennifer Lundelius Welch and prof. Rachid
Guerraoui for having accepted to serve as external referees of this disserta-
tion, and to prof. Maurizio Lenzerini for the support while the evolution and

iii

finalization of this thesis.

A special thanks to the “young” researchers who have been close to me
in any situation (Roberto Vitali, Alessandro Pellegrini, Sebastiano Peluso and
Diego Rughetti).

To my family (Nadia, Luciano and Marco), the only reason that made it
possible. It is really impossible to think that their entire life has been dedi-
cated to me and my brother. This thesis and the person I have become, have
been possible only thanks to you!

Thanks to all the persons that have been close to me in these years.

Finally, a special thanks to a special person. Half of my thesis has been
written in her house.
Thanks for the support and to make me happy...everyday...Marina.

Roberto Palmieri

Abstract

Nowadays, the role of transactions has become twofold:

- they are used in order to guarantee consistency and atomicity in appli-
cations manipulating data;

- they are used as a means to synchronize the activities of threads working
concurrently within any software layer.

Overall, the concept of transaction, historically related to support data manip-
ulation in the context of database systems, has been widened so to encapsulate
synchronization aspects in the context of parallel and concurrent applications.
The latter aspect found its expression via Software Transactional Memory
(STM) technologies, which have been oriented to mask the complexity of syn-
chronization to the application programmers, thus moving along the path of
bringing the power of multi/many-core architectures into the hand of ordinary,
non-specialized, software developers. Such a widened scope of transactions,
together with significant technological innovations possibly impacting the ex-
ecution profile/cost of traditional database transactions (e.g. the advent of
SSD storage systems) and the level of transaction parallelism (e.g. the ad-
vent of many-core architectures), raise the need for reconsidering the design
of protocols supporting fault tolerance.

In this thesis, I focus on fault tolerant protocols based on the active repli-
cation paradigm, which is done by systematically exploiting speculative com-
putation approaches. More in detail, I worked on innovative speculative trans-
actional replication protocols relying on Optimistic Atomic Broadcast group
communication primitives, which have been used as a building block for repli-
cas coordination. Some proposed results are mostly oriented to theory, while
others have a more strict relation with pragmatic aspects associated with the
design/implementation of replicated transactional systems.

Most of the material presented in this document can also be found in the
following technical articles:

i

1. Roberto Palmieri, F. Quaglia and P. Romano
OSARE: Opportunistic Speculation in Actively REplicated Transactional
Systems
proc. 30th IEEE Symposium on Reliable Distributed Systems (SRDS
2011), Madrid, Spain, October 2011.

2. P. Romano, Roberto Palmieri, F. Quaglia, N. Carvalho and L. Rodrigues
An Optimal Speculative Transactional Replication Protocol
Proc. 8th IEEE International Symposium on Parallel and Distributed
Processing with Applications (ISPA), Taiwan, Taipei, IEEE Computer
Society Press, September 2010.

3. Roberto Palmieri, P. Romano, F. Quaglia
AGGRO: Boosting STM Replication via Aggressively Optimistic Trans-
action Processing
Proc. 9th IEEE International Symposium on Network Computing and
Applications (NCA), Cambridge, Massachussets, USA, IEEE Computer
Society Press, July 2010.

4. P. Romano, Roberto Palmieri, F. Quaglia, N. Carvalho, L. Rodrigues
On Speculative Replication of Transactional Systems (Brief Annunce-
ment)
Proc. 22nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), Santorini, Greece, ACM Press, June 2010.

5. Roberto Palmieri, F. Quaglia, P. Romano and N. Carvalho
Evaluating Database-oriented Replication Schemes in Software Transac-
tional Memory Systems
Proc. 15th IEEE Workshop on Dependable Parallel, Distributed and
Network-Centric Systems (DPDNS), Atlanta, USA, IEEE Computer So-
ciety Press, April 2010.

6. P. Di Sanzo, B. Ciciani, F. Quaglia, Roberto Palmieri and P. Romano
On the Analytical Modeling of Concurrency Control Algorithms for Soft-
ware Transactional Memories: the Case of Commit-Time-Locking
Elsevier Performance Evaluation Journal.

7. Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho
and Luis Rodrigues
On Speculative Replication of Transactional Systems
Journal of Computer and System Sciences, pending revision.

Contents

Abstract i

1 Introduction 1

1.1 QoS Historical Perspective . 2

1.2 Hints on Replication Approaches 3

1.3 The Need for Reconsidering Replication Management 6

1.4 Outline of Innovative Contributions 8

2 State of the Art 11

2.1 Primary Copy . 12

2.1.1 Primary Backup . 12

2.2 State Machine . 14

2.2.1 Certification . 15

2.2.2 Active Replication . 16

2.3 Speculative Processing . 17

2.4 Discussion . 19

3 Model of the Target System 21

3.1 Distributed Processes and Coordination Primitives 21

3.2 Internal Architecture of the Replicated Transactional Processes 22

3.3 Transaction Model . 24

4 A Quantitative Reassessment of Literature Proposals 27

4.1 The Trace Based Simulation Model 27

4.2 Simulation Results . 29

4.3 Outcomes . 32

5 Speculative Replication in Predictable Networks 35

5.1 System Model . 36

5.2 The AGGRO Protocol . 37

5.3 Protocol Correctness . 41

5.4 Simulation Study . 42

iii

5.5 Simulation Results . 44

6 Optimality of Speculative Replication in Generic Networks 49
6.1 System Model . 50
6.2 Problem Formalization . 51
6.3 An Optimal STR Protocol . 52

6.3.1 Protocol Overview . 53
6.3.2 Primitives and Notations used in the Pseudo-code . . . 54
6.3.3 Speculative Transaction Manager 54
6.3.4 Speculative Concurrency Control 56
6.3.5 Correctness and Optimality Proof 66
6.3.6 Dealing with Read-Only Transactions 72

6.4 Simulation Results . 72

7 Changing the Perspective: Speculating According to an Op-
portunistic Paradigm 75
7.1 System Model . 77
7.2 The OSARE Protocol . 77

7.2.1 Protocol Notations and Data Structures 77
7.2.2 Protocol Logic . 79

7.3 Speculative trajectories explored by OSARE 86
7.4 Protocol Properties . 87

7.4.1 Opacity . 87
7.4.2 1-Copy Serializability 88
7.4.3 Non-redundant speculation 88
7.4.4 Lock-freedom . 89

7.5 Simulation Study . 89
7.5.1 Simulation environment 89
7.5.2 Analysis of the Results 90

8 Concluding Remarks 93

Bibliography 95

Chapter 1

Introduction

Nowadays, more and more companies in the world rely on computing systems
as a base of their productivity. For some of them, the core business consists in
directly offering services to the users by exploiting the internet communication
channel, which allows reaching a large number of customers (clients) anywhere
in the world in a relatively simple and fast manner. Some other companies
exploit computing systems to support their internal activities, without a direct
influence on their finance, such as when decision support systems or work-flow
management systems are adopted. In either case, the global productivity
of the company takes advantages from the increasing level of quality of such
systems. Further, the nature of the offered services or products is continuously
evolving both thanks to the possibilities offered by emerging technologies and
also due to the need for competing within the market. Thus, the complexity
of the services hosted by modern computing infrastructures shows the trend
of a constant increase.

In such a context, the only viable way to come out and to appeal an in-
creasing number of users is to take quality aspects of the computing system
into account at design time. Among them we find all the parameters belong-
ing to the user-perception of a service, which globally impact the so called
abandon rate, namely a measure for the phenomenon where users abandon
their interactions with specific sites (systems) in favor of other providers just
due to some quality lacks (e.g. excessively long response time, non-negligible
frequency of system fault and reduced availability). The parameters to which
reference was made up have also been grouped within a more general classifi-
cation called Quality-of-Service (QoS). The macro-area of QoS is therefore an
expression for all those parameters that describe the system goodness.

Due to the growing importance of the offered products and services, and
of their impact on business, there are several key motivations to provide com-
puting systems able to reach prefixed levels of quality. This expectation has

1

2 CHAPTER 1

found its expression via the notion of Service Level Agreement (SLA), where
the provider (or system’s owner) engages the obligation to guarantee pre-
negotiated quality levels. Anyway, even without any subscripted contract,
high quality of the services offered by the supplier tends to grow up the fi-
delity of the users and, consequently, their appreciation.
As for the literature, the following three parameters are considered among the
most relevant for QoS:

− availability: used to characterize the readiness and the continuity of the
system;

− fault tolerance: used to characterize the capability of the system to
ensure correct processing in the presence of faults;

− performance: used to characterize system latency and throughput.

1.1 QoS Historical Perspective

Historically, QoS has become fundamental for Content Delivery Networks (or
Content Distribution Networks) [4, 44], that have been for a long time the
target of several research communities’ studies. This is because, at the begin-
ning of the Web, a great part of its contents was represented by static objects.
Hence, the most effective means employed to disseminate such information
was based on caching Web contents over apposite and possibly cooperative
hosts disseminated over the Internet, exactly referred to as CDNs.
In the last few years, the distributed platforms supporting CDNs have under-
gone a large growth so, currently, there is a number of commercial infrastruc-
tures, such as those owned by Akamai and Edgix, which are made up by even
more than 10.000 nodes distributed on a planetary scale.
When the number of nodes in the system increases, centralized approaches for
supporting services could fall short of scalability and, consequently, the tech-
nology has further moved to distributed approaches, based on the so called
Edge Computing [32] paradigm. As its name expresses, Edge Computing
pushes applications, data and computing power (services) away from central-
ized points towards the logical extremes of a network. Edge Computing repli-
cates fragments of information across distributed servers, that may be vast
and span over many networks. To ensure adequate quality levels of widely-
dispersed distributed services, large organizations typically implement Edge
Computing by deploying server farms with clustering.
When transactions are included as a support for applications deployed on
an ECP (Edge Computing Platform), like more recently happened for, e.g.,
e-commerce applications, there are many solutions to improve service lev-
els via the exploitation of caching methodologies [35, 18]. Specifically, ECP

1.2. HINTS ON REPLICATION APPROACHES 3

servers can use a caching repository to promptly access and return any in-
formation requested by clients. This yield an improvement in response time
and system availability, however limitedly to the case of requests entailing
read-only transactions. In fact, when the requests entail transactional data
updates, with workloads exhibiting write-intensive profiles or phases, tradi-
tional caching strategies cannot be successfully applied, and other strategies,
e.g. synchronized (or coordinated) replication schemes, are required in order
to assure the coherence among replicated data across the nodes within the
system.
In the latter scenario, the system needs to guarantee an additional property
called data consistency. Briefly, if in a transactional system both read and
write operations are performed on the same data entry, and the write precedes
the read, the latter must return the correct, updated value, independently of
whether there are cache servers collocated on the edges of the network. Over-
all, in order to correctly support transactional data manipulations, while still
taking advantage from replication, the system must implement some (efficient)
coordination protocol exactly aimed at guaranteeing the aforementioned con-
sistency property.

1.2 Hints on Replication Approaches

As pointed out, replication is the process of sharing information. It could
be used for improving systems performance, e.g., like with caching mecha-
nisms in the presence of read-only workloads. However, it could be used as
a form of consistency guarantee among redundant resources, such as software
or hardware components, in order to improve reliability, fault-tolerance, or
accessibility. There can be data replication, if the same data is stored on mul-
tiple storage devices, or computation replication, if the same computing task
is executed multiple times. Also, a task is typically replicated in space, i.e.
executed on separate devices, but it could be replicated even in time, if it is
executed repeatedly on a single device.

When focusing on computing systems offering services, and considering the
presence of (transactional) update requests, the data consistency issue can be
tackled via differentiated replication approaches whose typical classification
[83] is shown in Figure 1.1. As a very high level of abstraction, it is common
to talk about two fundamental classes of replication techniques: active and
passive. In passive replication there is a server (called primary) that receives
and processes the client requests. Subsequently, the primary updates the state
of the other (backup) servers and sends back the response to the client. If the
primary server fails, one of the backup servers takes its place. For the case
of a single primary server, the scheme is called primary-backup. Otherwise,

4 CHAPTER 1

Replica(on+Techniques+

Primary+Copy+ State+Machine+

Primary+Backup+ Cer(fica(on+
Based+

Ac(ve+
Replica(on+

Figure 1.1: Classification of Replication Techniques.

in presence of a group of primary servers, it is instead referred to as multi-
primary.
Communication between the primary and the backups has to guarantee that
updates are received and then processed in the same order, which is the case
if primary backup communication is based on FIFO channels. However, FIFO
channels are not enough to ensure correct execution in case of failure of the
primary. For example, consider the case where the primary fails before all the
backups have received the updates for a certain request, and another replica
takes over as a new primary. Some mechanism has to ensure that updates sent
by the new primary will be properly ordered as occurring after the updates
sent by the faulty primary.
View Synchronous Broadcast (VSCAST) is a mechanism that guarantees these
constraints, and can therefore be used to implement the primary backup repli-
cation technique [83]. Briefly, it is based on the notion of a sequence of views
of a group. Each view defines the composition of the group at any time, i.e.
the members of the group that are perceived as being correct at a certain
time. Whenever a process in some view is suspected to have crashed, or some
process wants to join, a new view is installed, which reflects the membership
change. Roughly speaking, VSCAST of message m by some member of the
group g currently belonging to view vi(g) ensures the following property:

− if one process p in vi(g) delivers m before installing view vi+1(g), then
no process installs view vi+1(g) before having delivered m.

Passive replication can tolerate non-deterministic servers (e.g., multi-threaded
servers) and uses reduced processing power when compared to other replication
techniques. However, passive replication may suffer from high reconfiguration
overhead when the primary fails and may exhibit scalability problems vs the

1.2. HINTS ON REPLICATION APPROACHES 5

volume of clients, since processing is carried out by a single server (at least in
the primary backup scheme).

Active replication, also called the state machine approach [63], is a non-
centralized replication technique. Its key concept is that all the replicas receive
and process the same sequence of client requests. Consistency is guaranteed
by assuming that the servers deterministically process the requests (a.k.a.
messages) in the same order. Determinism means that, given the same initial
state and the same sequence of messages, all processes will produce the same
sequence of replies and end up in the same final state. Clients do not contact
one particular server, but the whole set of servers as a single group. The main
advantages of active replication are related to the relatively simple way for its
implementation (e.g., same code/logic everywhere) and to its failure masking
capabilities. Failures are in fact fully hidden from the clients (also in terms
of perceived latency), since if a replica fails, the requests are still processed
by the other replicas. To guarantee determinism, active replication techniques
require at least the following two building-blocks:

− a distributed coordination protocol guaranteeing a deterministic delivery
order for all the messages among the members of the system;

− a local deterministic concurrency control within each replica that pro-
cesses the messages such in a way to respect a defined serialization order.

A typical group communication primitive used to support active replication
is Atomic Broadcast [75, 1] (AB), that is a broadcast messaging protocol which
ensures that messages are received reliably and in the same order by all the
replicas in the system. AB enables the sending of messages to a group of
processes, with the guarantee that processes agree on the set of messages to
be delivered, and on their delivering order.

A number of AB protocols have been proposed in literature (see, e.g.,
[30, 29, 28, 3]), under various assumptions about the network, failure models,
availability of hardware supports for multicast, and so forth. However, in
order to ensure especially the agreement and total order properties, these
protocols prove expensive in terms of both messages exchange and delivery
latency [33, 25, 34, 79]. This is essentially due to the fact that they address
the issue of consensus [78, 57, 7], which possibly requires, multiple rounds in
order for the agreement to be reached among all the involved replicas.

For specific system settings, those delays introduced by the coordination
phase could be hard to tolerate. For this reason, an improvement of Atomic
Broadcast called Optimistic Atomic Broadcast (OAB) [62, 48] was introduced.
OAB relies on an early event, termed optimistic delivery, that notifies to the
replicas the existence of a new message (request) to be process, additionally
guessing its final (non-optimistic) delivery order. Thanks to the optimistic

6 CHAPTER 1

delivery, some active replication protocols try to overwork time between de-
liveries to make use of idle resources to pre-process messages before they are
finally delivered (and hence finally ordered). A reconciliation phase is needed
to avoid inconsistencies when the message total order gets notified.

1.3 The Need for Reconsidering Replication Man-
agement

At the time most of the aforementioned solutions were proposed, the techno-
logical features associated with computing systems and infrastructures were
significantly different from those related to the actual trends. As a conse-
quence, in literature there exist several solutions tailored to (or shown as
suited for) settings that do not necessarily match the current ones. Reassess-
ing those protocols in the context of modern architectures is the first step
ahead for understanding how, and if, those solutions still fit last generation
execution environments. Also, proper features offered by the current tech-
nology could even open to the designers the possibility to create innovative
solutions that were unfeasible so far, or to optimize existing solutions in order
to exploit the new possibilities.

In terms of architectural trends, the multi-core paradigm is surely the
breaking innovation of the last years. From the recent desktop processors
equipped with two processing cores, in a relatively short time, off-the-shelf
architectures accessible at non-prohibitive costs have moved to massive multi-
cores, entailing 12 or 24 cores per CPU. The key factor contributing to this
paradigm shift is the slowdown of Moore’s Law. Over the past 40 years, the
number of transistors on a microchip doubled every 18 to 24 months [11].
Increasing the number of transistors in a constant area generally yields pro-
portional increase in a single processor’s clock-speed and, therefore, in its
computation speed. But as the industry approaches the physical limits for
the transistor size, the demand for continued improvements in computation
speed is driving hardware manufacturers to produce multi-core processors,
with multiple processing units on a single chip.

As a reflection, while in the past the exploitation of the architectural prop-
erties of a parallel machine was confined to a narrow field of programming
experts, the shift of the hardware industry towards (massively) parallel com-
puting architectures imposes that a wider set of programmers and algorithm
developers are mandatorily requested to take the potential offered by these
computer architectures into account. This is true also for the case of transac-
tional systems at the base of modern services and applications, which means
that existing transactional replication protocols would need to be demon-

1.3. THE NEED FOR RECONSIDERING REPLICATION
MANAGEMENT 7

strated to be able (or not to be able) to effectively cope with the case of
largely scaled up hardware parallelism, which potentially offers the possibility
to support scaled up levels of parallelism while processing transactions.

Spanning on the recent technological innovations, another one potentially
disruptive is related to the evolution of storage components. In particular,
we have moved from devices based on magnetic disk towards innovative ones,
which are based on Solid State technology. The advent of the NAND-flash
based solid-state storage device (SSD) certainly represents a sea change in the
architecture of computer storage subsystems. These devices are capable of
delivering not only large bandwidth, but also random I/O performance that is
orders of magnitude better than that of traditional rotating disks. Moreover,
SSDs offer both a significant savings in power budget and an absence of mov-
ing parts, thus leading to an improvement on the side of reliability. Although
the costs of solid-state disks are significantly higher than their rotating coun-
terparts, there are numerous applications where they can be employed with
great benefits. For example, in transactional systems, many rotating disks are
deployed to increase I/O parallelism. SSDs, suitably optimized for random
read and write performance, could effectively replace whole farms of (slow)
rotating disks. In addition, the cost of SSD technology continues to decrease,
so that the scope for its employment will certainly continue to grow. More-
over, by exploiting the reduced latency to read/write data from/to SSDs, the
performance of I/O intensive applications can be revolutionary improved [2].
Focusing the discussion on algorithms for replicated transactional systems,
the SSD-based storage system would knock down the latency for executing
transactions with the consequence of determining a significant change of the
ratio between group communication (i.e. coordination) latency and transac-
tions granularity. The latter phenomenon could lead to a reduction of the
effectiveness of the proposed solutions (even if they already rely on optimized
group communication schemes such as OAB), in terms of both client perceived
latency and resource utilization.

Finally, from the software-architecture point of view, the need to develop
applications with the aim at parallelizing the tasks, which would fit the multi-
core paradigm, has induced the rising of innovative programming paradigms,
such as the Software Transactional Memory (STM) one. The main benefit
from STM libraries is towards synchronization transparency in concurrent ap-
plications. In fact, leveraging on the proven concept of atomic and isolated
transactions, STMs spare programmers from the pitfalls of conventional man-
ual lock-based synchronization, significantly simplifying the development of
parallel and concurrent applications. When using STMs, the programmer is
not required to deal explicitly with concurrency control mechanisms. Instead,
he has only to identify the sequence of instructions, or transactions, that need
to access and modify shared objects atomically. As a result, code reliability in-

8 CHAPTER 1

creases and the software development time gets shortened. This paradigm has
grown with the widespread of multi-core architecture, simply because these ar-
chitectures can naturally support an increased level of application parallelism.

As a matter of fact, the use of STMs has changed (broadened) the nature
of transactional operations, which are no more seen as a means to exclusively
manipulate application data in a consistent manner, but also as a means to
synchronize worker threads acting within any software layer. Additionally,
they have induced a shift in terms of the properties to be guaranteed and
how these guarantees should be conveniently supported. According to the his-
torical perspective, transactional data manipulation supports were required
to enforce the so called ACID (Atomicity, Consistency, Isolation, Durabil-
ity) properties. On the other hand, durability via the logging of transaction
updates onto stable storage systems, like it occurs in traditional DBMS archi-
tectures, may become suboptimal in STM-based environments, and could be
instead demanded to replication strategies exclusively acting in main memory.
This shows how the execution profile of STM transactions can significantly
deviate from the one characterizing database transactions, hence again in-
ducing a change of the relative cost of coordination (vs computation) when
considering a replicated architecture. Also, new properties, such as opacity
[39], have become of interest given that STM layers may give rise to scenarios
where transactional threads are not executed within a sand-box, hence again
showing a potential impact of the execution profile of STM transactions wrt
their database counterpart. As a consequence, there would be the need for
reshuffling the design of transactional replication protocols in order to make
them able to cope with such a change of the execution profile.

1.4 Outline of Innovative Contributions

In the light of the aforementioned technological trends, the aim of this dis-
sertation is to reconsider replication mechanisms for transactional system in
order to devise innovative solutions able to effectively cope with the change of
the relative cost of computation vs communication, and to exploit hardware
parallelism.

Our starting point is represented by recent achievements in the field, which
can be identified as the set of active replication protocols where coordination
relies on the OAB service. On the basis of comparative studies provided in
literature (see, e.g., [81]), these have revealed as highly promising.

On the other hand, the innovation by this dissertation will be represented
by the reshuffle of OAB based transactional replication mechanisms in order to
systematically exploit the notion of speculative computation. We will address
the design of speculative transactional replication schemes by providing both

1.4. OUTLINE OF INNOVATIVE CONTRIBUTIONS 9

theoretical results and solutions more closely related to system design and
implementation aspects. Along the presentation path, particular attention
has been posed on discussing how the proposed solutions would fit emerging
systems setting, e.g., in terms of the ratio between communication and com-
putation granularity, and the level of parallelism offered by the computing
platform. Finally, the spectrum of results we provide copes with differentiated
levels of reliability for the OAB service, again representative of scenarios where
the OAB layer operates on top of (overlay) networks with different levels of
message latency predictability. The latter aspect will be also considered in re-
lation to the actual level of transaction concurrency natively associated with
the changes of the volume of requests over time.

Chapter 2

State of the Art

Replication techniques have been widely studied in the scientific literature.
In the beginning, replication was essentially seen as a way to provide system
availability, thus neglecting potential advantages that could be offered by repli-
cated architectures in terms of performance [83]. On the other hand, when
considering performance as a joint target wrt fault-tolerance and availability,
proper trade-offs between consistency and efficiency need to be devised.
Upon the growth of the interest in replication techniques, most commercial
[45, 22] and non-commercial [83] products were oriented to support replica-
tion schemes essentially prone to reduced coordination overhead, namely asyn-
chronous replication (a.k.a. lazy update model). This type of replication can
cause inconsistencies among the replicas, since remote members within the
system are updated only after a request has been locally processed and the
response was already issued to the client. Clearly, the advantages of this type
of replication are limited regarding fault-tolerance, while they can be signifi-
cant on the side of availability and performance (given the presence of multiple
processes acting in parallel on different sets of client requests).

A step ahead along the path of increasing replication robustness wrt fault-
tolerance has been done via the introduction of the synchronous replication
model (a.k.a. eager update model) [63]. This model drops any possibility
to fall in an inconsistent state on any replica. On the other hand, designing
synchronous solutions providing adequate performance is far from being trivial
[37].

Another aspect of interest in the design of replication protocols is related
to the type of faults they should cope with. On this side, the traditional classi-
fication entails Byzantine faults as well as Crashes [27]. Each of them requires
proper mechanisms, which may in some cases be orthogonal to each other. In
this dissertation, our focus is on the crash-failure model, thus the reminder
of this chapter is essentially focused on the presentation of the more relevant

11

12 CHAPTER 2

details related to replication protocols tailored for coping with process crashes.
Also, special attention is devoted to protocols oriented to transactional sys-
tems replication. For the case of Byzantine faults, examples of replication
protocols can be found in [26, 52, 47] and in works therein referenced.

The reported overview relies on a classification of the replication protocols
based on a common view point related to whether an individual request is, or
is not, allowed to be processed in parallel across the replicas upon its arising
[38]. As a last preliminary note, we essentially overview protocols adhering to
the synchronous replication model, which is the one our solutions have been
targeted to. As already hinted they represent a complex case to be addressed in
order to provide adequate performance while guaranteeing important property
of replicated-state consistency.

In the end of this chapter a brief discussion on the main limitations of state
of the art solutions that will be addressed by the results provided within this
dissertation is presented.

2.1 Primary Copy

The Primary Copy (PC) replication approach [41], also known as passive repli-
cation [63], associates to each object to be replicated a specific site (a.k.a the
primary copy). Any update request for that object must be sent to the pri-
mary copy, which processes the request and then propagates the updates to all
the other sites. A variation of this scheme is when the primary is in charge to
determine the serialization order according to which all the requests must be
processed. Actual processing activities can then occur on all the replicas, such
in a way to comply with the established serialization order. This approach is
typically complemented by an election protocol (see, e.g., [77, 46] for instanti-
ations of the leader election protocol suited for differentiated settings) which
is in charge of assigning the role of new primary among backup servers in case
of failure of the original primary.

2.1.1 Primary Backup

The Primary Backup (PB) approach [5] is a widely diffused implementation
of PC. As summarized in [41], in this technique one replica, the primary, plays
a special role: it receives invocations from the clients, processes the requests
and returns the replies. On the other hand, the backups only interact with the
primary, without exchange any data with the clients. Denoting with prim(x)
a primitive that defines whether the server x currently represents the primary,
and with op(arg) the client message together with its arguments, the below
steps provide an outline of PB:

2.1. PRIMARY COPY 13

1. process pi sends op(arg) to prim(x) together with a unique invocation
identifier invID.

2. prim(x) invokes op(arg), which generates the response res. prim(x)
updates its state and sends the update message (invID, res, state −
update) to its backups, where the state − update defines the new state
reached by the primary. Upon receiving the update message, the backups
update their state and return an acknowledgment to prim(x).

3. Once the primary replica receives the acknowledgements from all the
correct (non-crashed) backups, it sends the response to pi.

This scheme ensures linearizability [68] since the order according to which
the primary receives the invocations defines a total order for all the invocations.
On the other hand, the receipt of the state−update message by all the backups
ensures the atomicity property. In case of crash of the primary, the protocol
selects a new primary exploiting leader-election primitives. If a perfect failure
detection mechanism can be assumed [20], the PB replication technique is
relatively easy to implement but it becomes much more complicated when the
failure detection mechanism is not reliable (e.g. the case in which a client
may incorrectly suspect that the primary replica has crashed). The view-
synchronous communication paradigm can be used to ensure correctness of
the PB technique despite an unreliable failure detection mechanism [63].

Early implementations of PB were prone to scalability problems due to the
presence of a single active node in charge of processing all the client requests
[83]. More recently, a number of improvements of the original PB approach
have been proposed. The work in [73] provided the possibility to execute
read-only requests on top of backup servers, thus entailing the possibility to
process in parallel operations that only query the state of the replicated objects
without changing them. This helps improving the throughput especially in
case of read-intensive workloads.

In [16] the PB scheme is applied in the context of in-memory database
systems (IMDB). This is done by providing an algorithm for ensuring high
availability of an IMDB with a low replication overhead. In this approach,
an innovative middleware-level distributed algorithm exploiting assumptions
properly valid for IMDB, reduces to two communication steps the latency
needed to commit update transactions.

In [80] the authors propose two implementations of PB tailored for java
objects. The first one uses the JAVA remote invocation method (RMI) to
implement a simple and fast PB replication scheme for shared objects. The
second one, called replica-proxy, is a more complex implementation only rely-
ing on JAVA network packages, which however yields improved performance.

14 CHAPTER 2

2.2 State Machine

The State Machine (SM) approach has been proposed in [74]. It defines a
general method for implementing a fault-tolerant service by replicating servers
and coordinating client interactions with server replicas. By definition, a state
machine consists of state variables, which encode its state, and commands that
update the state. Each command is implemented by a deterministic program.
So the abstraction devises two key components to be implemented within a
SM protocol, which are:

− a communication system used by the replicas to coordinate with each
others;

− a support, if needed, to execute the commands (or operations) in a
deterministic fashion.

There are several aspects that make SM different wrt PC, but the most im-
portant is probably related to the assurance on the side of fault-tolerance. SM
provides full failure-masking, which means that, in case of failure, the protocol
does not pay direct additional costs (e.g. by delaying the processing of the
request) to re-configure the replicas, as instead occurs in PC, where the sys-
tem needs to re-elect a new primary in case the original one fails. Further, the
SM approach may offer advantages also because, instead of allowing a single
(primary) server to process the requests, multiple servers (possibly all) are
able to take care of request processing.

Exploiting the absence of passive 1 nodes, in literature there are several
works that ensure availability also empathizing performance indexes, e.g., sys-
tem response time and throughput, just by relying on SM. In [65] a state
machine replication approach has been used in the context of advanced sim-
ulation systems. This work is aimed at improving the response time of the
application level software by exploiting the fastest instantaneous reply among
diversity-based replicas of a same simulation component. Another example of
state machine replication used as a means for jointly coping with availability
and performance is in [64] where the authors propose a replicated multi-version
cache that reduces the performance impact associated with the need for ac-
cessing underlying databases. The proposed solution has been fully embedded
within the application server-tier on top of an off-the-shelf database. In partic-
ular, in this architecture, each node is not a single server but is instead formed
by a pair that includes an application server and its local copy of the database.
In the experimental study, the prototype outperforms the non-replicated ap-
plication server and shows a good scalability vs the number of replicas in terms
of both throughput and response time.

1Passive nodes are the processes that do not manage client requests.

2.2. STATE MACHINE 15

Another approach oriented to performance improvements can be found in
[70] where a state machine replication protocol explicitly tailored for multi-
tier data acquisition systems is provided. This protocol does not rely on any
replica coordination mechanism to be actuated prior to message processing
but rather, it enforces consistency across the replicated data-gathering sinks
only when strictly required, namely when some sink externalizes its current
state by producing an output message destined to back-end applications.

As for SM protocols specifically oriented to replication of transactional
systems, which are more strictly related to the results presented within this
dissertation, we provide an overview in the next sections, also classifying them
on the basis of the adopted approach to replication, namely certification vs
active replication.

2.2.1 Certification

Certification-based protocols ensuring serializability over replicated transac-
tional systems have been presented in [82, 49, 50]. As also pointed out in [83],
one core aspect characterizing all these protocols is related to determinism,
and on how it may (or may not) impact coherence of the state of the replicas.
With these schemes, each transaction is locally processed without pre-imposing
a deterministic execution path. Coherence is therefore demanded to the cer-
tification phase, where the local site broadcasts to the other replicas the state
updates performed by the transaction. This is the phase that requires to be
carried out deterministically (i.e. globally ordered) among all the members
of the system, so that all the replicas can instal the updates in a coherent
manner.

Clearly, the certification phase may fail, since the updates to be installed
might be incoherent with the local state trajectory (due to locally processed
concurrent transactions), in which case the transaction gets aborted at the
origin site and then reprocessed. Certification-base techniques are intrinsically
optimistic, thus potentially leading to significant abort/retry rate in specific
scenarios.

Summarizing, certification-based protocols start the execution of a transac-
tion on one delegate server in a non-deterministic fashion. Upon transaction
completion, the delegate sends to the other replicas information about the
data accessed (in either read or write mode) using a total order primitive that
ensures globally ordered communication. When a replica receives the latter
information, it installs the changes (if compliant with the local state) and
sends back an acknowledgement. Only when all the confirmations have been
received, the delegate replies to the client.

16 CHAPTER 2

2.2.2 Active Replication

Active Replication (AR) is a technique that gives to all replicas the same role
wrt any client request. In literature, it has been studied in a number of works
[1, 49, 48, 60, 12]. In AR, a client can submit the request to any server in
the system, in fact, at this stage, the role of the server is simply to act as a
forwarder of the request to all the other replicas using a total order broadcast
primitive. When a replica delivers the totally ordered message, it processes
the transactional operations using a deterministic concurrency control that is
able to provide a serializable history among concurrent operations respecting
the total order imposed by the group communication protocol. Also, the
transactional code needs to execute deterministically as well, which would
require to filter-out requests exhibiting non-deterministic nature, or to adopt
ad-hoc schemes to support their processing. The above features would lead
each replica end-up in the same final state. The client delivers the response
coming from the fastest replica that completes transaction processing.

The main advantage of AR is that it does not need a distributed deadlock
detection system, since transactional requests are spread using a total order
broadcast. Hence, in case of lock based concurrency control, locks for the
whole transaction can be acquired atomically and in the same order at all
the sites thereby preventing deadlocks. The bottleneck for such an approach
is the time spent to reach an agreement among replicas about the delivery
order, which appears on the critical path of request processing.

The problem of establishing, in a non-blocking fashion, the agreed upon
total order is typically encapsulated by the so called Atomic Broadcast (AB)
primitive. It is a group communication service, which represents a convenient
abstraction of consensus, for which a wide spectrum of alternative implemen-
tations have been proposed [31] and prototyped [6, 55] in literature. Among
them, we can find solutions that significantly improve performance in terms
of throughput by, e.g., batching multiple messages [55].

The traditional version of AB has been anyway pointed out as too much
conservative. This is because the client perceived response time is always
composed by the replicas coordination delay (which, as hinted, appears onto
the critical path of the client-server interaction) plus the execution time of
the corresponding transaction. To tackle the latter issue, a variant of atomic
broadcast has been proposed, termed Optimistic Atomic Broadcast (OAB)
[48] which, based on optimistic assumptions about the spontaneous order of
network deliveries, reduces the average delay for message notifications to the
application [61]. OAB early delivers messages as soon as they arrive (typically
after a single communication step) by optimistically guessing that the final
ordering will comply with the arrival order. This provides the application
layer with indications about the existence, and the possible final ordering, of

2.3. SPECULATIVE PROCESSING 17

the request, thus potentially allowing request pre-processing out of the criti-
cal path of coordination. As it will be discussed further in the next section,
pre-processing optimistically delivered transactions (thus entailing a form of
speculation) has been explicitly addressed by the work in [48], which provides
therefore an innovative approach along the direction of overlapping the coor-
dination phase associated with the atomic broadcast algorithm with the local
transactional processing activities. It is worthy to note that pre-processing
might require rollback mechanisms to be actuated in case the final delivery
reveals as not compliant with the ordering guessed via optimistic deliveries.

2.3 Speculative Processing

Speculative processing (SP) is a well known approach aimed at improving per-
formance. It has been applied in a number of different fields such as pipelined
computing architectures [53, 72] and high performance computing systems and
applications [21, 71, 76, 66].

In literature, the idea of exploiting speculation in transaction processing
environments has been investigated in [10] and [67]. The first work [10] tar-
gets non-replicated real-time databases and shows the benefits, in terms of
transaction timeliness, by speculatively forking, upon detection of a conflict,
a copy of the current transaction that remains idle and serves as a save-point
to reduce the rollback cost. The solution in [67] targets distributed databases
relying on distributed locking and atomic commit for transaction validation.
A speculative locking protocol is presented in which the waiting transaction is
allowed to access the locked data objects whenever the lock-holding transac-
tion makes after-images available during its execution. By exploring both the
execution paths related to before-images and after-images, different specula-
tive executions are carried out, one of which is retained (being it valid) upon
the final outcome of the preceding conflicting transaction.

In [12] a novel approach is presented, which provides a low overhead active
replication scheme for event-stream processing applications. The key contribu-
tion has been the usage of a speculation mechanism based on Software Trans-
actional Memories. This approach enables the replicas to make progress based
on optimistic deliveries while waiting for the final ordering of messages. It also
enables nodes to forward speculative information, and downstream-nodes to
pre-process such a speculative input, while also allowing multi-threaded pro-
cessing in the context of transactional data manipulation.

In [13], speculation is used for out-of-order event processing. This work
shows how speculation avoids idle periods due to the notification of the right
processing order and, by experiments, shows how this strategy brings substan-
tial performance benefits.

18 CHAPTER 2

In the context of certification-based replicated transactional systems, the
key idea at the core of [19] is to reduce via OAB-based schemes the time
to disseminate the updates generated by committing transactions in order
to provide executing transactions with fresher snapshots, thus reducing the
probability of abort due to reads from stale data, and increasing the probability
to detect conflicts earlier during transaction execution. This would lead to
a reduction of the amount of wasted computation and useless waiting time
caused by transactions doomed to abort.

For actively replicated transactional systems, a speculative processing frame-
work has been proposed, based on the reliance on OAB [48]. We overview this
framework detailedly since it will be used at some extent within this disser-
tation as a recent reference-result for the assessment and evaluation of the
innovative approaches we propose. This framework aims at taking advantages
from the overlap between the replica coordination phase, supported via OAB,
and the (speculative) processing of transactions. The framework is based on
optimistically broadcasting requests to all the replicas and on using the total
order provided by the OAB service to serialize the processing of the requests
coherently at all the sites. The transaction manager uses the tentative order
determined by the optimistic delivery to establish a convenient schedule for
the transactions, and then starts executing them.

Within the schedule proposed in [48], a single transaction is allowed to be
optimistically processed along a chain of conflicting transactions. This corre-
sponds to the top standing conflicting transaction according to the optimistic
delivery order. The commitment of the optimistically processed transaction,
however, is postponed, as well as the activation of the subsequent transactions
along the conflicting chain. When the OAB has determined the definitive total
order for the corresponding request, it delivers a confirmation (or not) of the
delivery order for the optimistically delivered message. If tentative and defini-
tive orders are the same, the transaction is committed. Otherwise, further
actions need to be taken to guarantee that the serialization order will obey
the definitive total order. This typically implies reordering of the chains of
conflicting transactions that have been left pending for rearranging the opti-
mistically explored serialization order.

Another important aspect for the framework in [48] is that the transactions
that live within the system need to be pre-catalogued on the basis of the data
they will access. This is required in order to build the chains of conflicting
transactions associated with the schedule. One way to address this is to stat-
ically determine conflict classes under the assumption that transactions of a
given class are only allowed to access objects of a certain partition of the whole
data-set, consequently different conflict classes work on different data parti-
tions (thus determining different chains within the schedule). This leads to
the implicit assumption that transactions within one conflict class have a high

2.4. DISCUSSION 19

probability of actually exhibiting conflicts, while transactions from different
conflict classes do not conflict.

Overall, reshuffling the framework description on the basis of the notion of
conflict classes, we have the below depicted behavior. For each conflict class
C there exists a FIFO class queue CQ. The semantics associated with the
conflict class structure is the following. When a transaction T ∈ C is opti-
mistically delivered, it is added to CQ. When T is the only transaction in C,
then its (optimistic) execution can be started. When there are other transac-
tions already queued in C, T has to wait. When a transaction commits (recall
that it must be the first one in its queue), it is removed from the queue and the
next waiting transaction starts to execute. Transactions in the same conflict
class are executed sequentially, conversely when they are in different classes,
their relative ordering is not pre-determined. Upon final delivery from the
OAB service, which notifies that a transaction could be committed (according
to a specific serialization order), if the transaction is correctly serialized, it
gets committed if already executed. If the transaction is not yet fully exe-
cuted, it is simply marked as committable. If no match occurs between the
finally delivered transaction and the executed (or executing) transaction, then
a mismatch happened within OAB. Hence the transaction must be aborted
and the correctly ordered one starts its execution.

2.4 Discussion

As hinted, the results presented within dissertation have very strict relations
with the framework in [48]. On the side of performance and efficiency, for this
framework we can draw the following considerations. If the time it takes to
receive confirmation of the message order is comparable to the time it takes
to execute a single transaction, and the tentative (optimistic) delivery order
mostly matches the final order, then successful overlap is achieved, since the
latency in between optimistic and final deliveries is fully exploited in term
of communication-overlapped processing activities. On the other hand, with
different ratios between OAB-finalization latency and transaction granularity,
the achievable benefits get likely reduced. As an example, if the transaction
granularity results very small, as it may be the case for, e.g., STM-based
environments, then the overlap likely comes out very partial, thus inducing
system-stall periods. Similar considerations can be made in case the scheme
is used on top of a massively parallel architecture (i.e. many-core machines),
since the degree of parallelism allowed while speculatively processing transac-
tions is limited by the amount of distinct conflicting chains (or conflict classes)
that are determined on the basis of the transaction profiles. In fact, a single
transaction along any chain of conflicting transactions is allowed to be specu-

20 CHAPTER 2

latively processed.
These performance and resource usage limitations will be addressed by the

innovative proposals provided within this dissertation. Overall, these propos-
als will provide theoretical and more pragmatical results on the context of
replicated transactional systems, which will still deliver the same advantages
already provided by the framework in [48]. In particular, these advantages can
be expressed in terms of failure masking capabilities (thanks to the reliance
on the active replication approach) and the exploitation of a highly optimized
group communication primitive like OAB for coordinating the replicas, which,
as also shown in [81], provides the potential for outperforming other transac-
tional replication approaches. On the other hand, the innovative proposals
guarantee additional advantages in terms of:

(a) the ability to cope with scenarios exhibiting reduced transaction granu-
larity (like, e.g., for STM environments and/or when SSD technology is
adopted);

(b) full exploitation of the hardware parallelism offered by the emerging
technology, which would lead to benefits on the side of, e.g., response
time and system throughput.

Chapter 3

Model of the Target System

In this chapter we introduce the general model of the distributed system
we consider as the target for the transactional replication schemes presented
within this dissertation. Additional model specifications or notations will be
provided whenever required while presenting individual solutions to the prob-
lem of replicating transactional systems.

3.1 Distributed Processes and Coordination Prim-
itives

We consider a classical distributed system [40] consisting of a set of processes
Π = {p1, . . . , pn} communicating via message passing, which can fail according
to the fail-stop (crash) model. The number of correct processes (i.e. processes
that do not fail) and the system synchrony level are assumed suffice to imple-
ment an Optimistic Atomic Broadcast (OAB) protocol [62], for which we list
below the interfaces we assume to be provided:

− TO-broadcast(m): which broadcasts message m to all the processes in
Π;

− Opt-deliver(m): which delivers message m to a process in Π in a tenta-
tive, also called optimistic, order (a.k.a. optimistic delivery);

− TO-deliver(m): which delivers a message m to a process in Π in a so
called final order that is the same for all the processes in Π (a.k.a. final
delivery or conservative delivery);

− Opt-DeliveredMsgs(): returning the totally ordered list of optimistic de-
livered messages;

21

22 CHAPTER 3

− TO-DeliveredMsgs(): returning the totally ordered list of final delivered
messages.

The latter two interfaces are not classical AOB primitives. However, with no
loss of generality, they have been added in order to ease the description of the
protocols we present in the subsequent chapters.
The OAB service enforces the following classical properties [62]:

− Termination: If a correct process TO-broadcasts m, it eventually Opt-
delivers m;

− Global Agreement: If a process Opt-delivers m, every correct process
eventually Opt-delivers m;

− Local Agreement: If a correct process Opt-delivers m, it eventually
TO-delivers m;

− Global Order: If two processes pi and pj TO-deliver messages m and
m′, they do so in the same order;

− Local Order: If a process TO-delivers m, it does this only after it
Opt-delivers m.

!"#$%&'()*#+
(,'-!'$().-+/'-'0#,+1!2/3+ .'4+

!"#$%&'()'*+,

"-+#(./01.%,

!"#(./01.%,

'""&)$'().-+&'5#,+

021&3.45')+6.7802-9+:'%';*<, %.+9%2,='/9.*,

!"#$%&'()*#+
$.-$%,,#-$5+$.-(,.&+1!$$3+

(,'-!'$().-'&+!(.,#+1(!3+

Figure 3.1: Replicated Process Architecture.

3.2 Internal Architecture of the Replicated Trans-
actional Processes

Figure 3.1 shows the software architecture of each replicated process pi ∈ Π.
Applications, which represent the clients of the replicated transactional sys-
tems, generate transactions by calling the invoke method of the local Specula-
tive Transaction Manager (SXM), specifying the business logic to be executed

3.2. INTERNAL ARCHITECTURE OF THE REPLICATED
TRANSACTIONAL PROCESSES 23

(e.g. the name of a DBMS stored procedure or of a method in a transactional
parallel applications) and the corresponding input parameters (if any). SXM
is responsible for:

− managing the invoke call, performed by the application, and propagat-
ing (via the TO-broadcast primitive) the transactional request across the
set of replicated processes;

− executing the transactional logic also exploiting the functions offered by
the underlying Transactional Store (TS);

− returning the corresponding result to the user-level application.

TS is the layer maintaining the local state of the replica, modelled as a set of
(multi-versioned) data items. It provides classical facilities for making atomi-
cally (all-or-nothing) visible a new version of data item generated by a write
operation performed by a transaction. Each data item X, maintained by the
TS layer, is associated with a set of versions {X1, . . . , Xn}, where each version
Xi stores:

− the data item value; and

− the identity of the creating transaction, namely the transaction that
wrote the data item, thus generating that version.

A single version of X can be committed at any time. Uncommitted versions,
residing within TS, are reflections of speculative computations. These un-
committed versions are used to propagate updates along chains of speculative
serialization orders. Further, TS exposes proper primitives to mark/update
the state of stored data item versions. These primitives could anyway change
depending of the specific protocol requirements, so they will be specified on
the basis of proper needs right upon presenting differentiated replication ap-
proaches and protocols within subsequent chapters.

At a logical level, the TS layer abstracts underlying storage mechanisms,
which may encompass RAM-only memory accesses (as for the case of transac-
tional memories) or logging on persistent storage to ensure transaction dura-
bility (as for the case of conventional DBMSs). Such an abstraction decouples
the proper mechanisms related to the transactional replication protocol wrt
the specific implementation of the underlying transactional store, bringing
benefits in terms of protocol design and flexibility.

As depicted in Figure 3.1, the interactions between SXM and TS are me-
diated by the Speculative Concurrency Control (SCC) layer. It is responsible
of executing concurrent transactions implementing the actual business logic.
It also offers the supports for the activation (or re-activation) of speculative

24 CHAPTER 3

instances of not yet committed transactions. Abstracting from its internal
mechanisms, it externalizes a classical interface for the execution of read/write
operations on the data items, as well as for finalizing transactions with a com-
mit or an abort.

In order to possibly manage multiple speculative instances of the same
transaction Ti, and consequently to permit their univocal identification among
all the activated transactions, SCC relies on an additional identifier, namely
specId. The notation T specIdi identifies therefore the speculative instance
specId of the transaction Ti. Overall, all the speculative instances of trans-
action Ti are marked as different members of the same family i. All the
transactions within the same family are named sibling transactions. Finally,
the notation T ∗i identifies any speculative instance of transactions belonging
to the family i.

3.3 Transaction Model

Each transaction T is modelled through a sequence of operations, denoted
with OT = {o1, . . . , on}, where each operation is either a read or a write
operation on a data item. To be highly general, it is assumed that neither
the sequence of operations to be executed within a transaction, nor the data
items to be accessed, are a-priori known. Conversely, it is assumed that the
transaction data access pattern can vary depending on the current state of the
underlying transactional store. More precisely, the transactional business logic
is considered to be snapshot deterministic in the sense that, if a transaction
is activated multiple times, the sequence of read/write operations performed
by each activation of the transaction does not change unless the return value
of any of its reads changes. In other words, if whichever instance T ji of a
transaction Ti always sees a snapshot S, defined as the set of values returned
by all its read operations, then it behaves deterministically by always executing
the same sequence of read/write operations. On the other hand, if different
instances of a transaction Ti are activated on different snapshots, they may
generate different sequences of operations.

More formally, consider two executions of the generic transaction T , pro-
ducing respectively the two sequences of operations O′T = {o′1, . . . , o′n} and
O′′T = {o′′1, . . . , o′′k} and assume, with no loss of generality, that k < n. Let
j ∈ [1 . . . k] be the index of the first operation in O′T , O′′T for which o′j 6= o′′j .
This implies that before executing o′j , respectively, o′′j , a read on a data item
X was executed both in O′T and O′′T , which returned two different values.

A transaction instance T ji that has fully executed its sequence of operations
O
T ji

(and produced a result ready to be delivered to the application layer once,

and if, the transaction is actually committed) is called a completed transaction

3.3. TRANSACTION MODEL 25

instance. With no loss of generality we assume the possibility to intercept
completion events, which could be done in actual transactional architectures
by mostly wrapping transaction finalization (internal) commands.

Chapter 4

A Quantitative Reassessment
of Literature Proposals

In this chapter we provide some experimental results for a quantitative re-
assessment of the efficiency of transactional replication protocols presented in
literature. This has been done in the light of the provided considerations about
the need for a verification of whether these protocols can still well fit (or not)
execution dynamics induced by the technological changes discussed in Section
1.3. The latter deal with reduction of the computation to communication
ratio within the replicated transactional system, as well as to the potential for
largely scaled-up parallelism.

In order to consider a scenario representative of such changes, the present
study is based on simulation results related to the context of applications
relying on the Software Transactional Memory (STM) paradigm. In terms of
abstractions, the STM case exactly models reduced ratio between transaction
granularity and coordination latency, which may even mimic contexts where
traditional database applications are run in top of SSDs based storage systems.

In the present study we consider a traditional SM approach to replica-
tion, and also the relatively recent active replication framework proposed in
[48], relying (as detailedly explained) on the OAB service for replica coordi-
nation, and on some form of transaction speculation. As already hinted, this
framework can be considered (and has been shown to actually be [81]) an op-
timized solution for both its failure-masking capabilities and the reliance on
last generation, performance prone group communication facilities.

4.1 The Trace Based Simulation Model

The simulation study presented in this chapter has been based on data access
traces related to commonly used (S)TM benchmark applications [42]. The

27

28 CHAPTER 4

provided performance evaluation study is based on a process-oriented simula-
tor developed using the JavaSim simulation package [54].

In order to accurately model the execution dynamics of transactions in
STM systems, we rely on a trace-based approach. Traces related to data ac-
cesses and transaction duration have been collected by running a set of widely
used, standard benchmark applications for (S)TMs. The machine used for the
tracing process is equipped with an Intel Core 2 Duo 2.53 GHz processor and
4GB of RAM. The operating system running on this machine is Mac OSX
10.6.2, and the used STM layer is JVSTM [15]. The simulation model of the
replicated STM system comprises a set of 4 replicated STMPs, each of which
hosted by a multi-core machine with 8 cores exhibiting the same power as in
the above architecture. During the tracing phase, we configured the bench-
marks to run in single threaded mode, so to filter out any potential conflict
for both hardware resources and data. Also, we extended JVSTM in order
to transparently assign a unique identifier to every object within the STM
memory layout and to log every operation (namely, begin/commmit/abort
operations, and read/write memory-object access operations) along with its
timestamp. This allowed us to gather accurate information on the data access
pattern proper of the benchmark applications and on the time required for
processing each transaction (in the absence of any form of contention).

Since any tracing strategy unavoidably introduces overheads, especially
in STM applications where transaction execution times are often less than
1 msec, in order to ensure the accuracy of the information concerning the
duration of transactions, we repeated each benchmark run (ensuring the de-
terministic re-execution of an identical set of transactions) by also disabling
the logging functionality. Then we compared the resulting mean transaction
execution time with the one obtained when logging is enabled. This allowed
us to compute a per-benchmark scaling factor (that was found to be on av-
erage around 15x) that was used to adjust the duration of the transaction
execution, filtering out the overheads associated with the logging layer, before
feeding this information to the simulator.

The traces were collected running three benchmark applications, RB-Tree,
SkipList and List, that were originally used for evaluating DSTM2 [42] and,
later on, adopted in a number of performance evaluation studies of (S)TM
systems [15, 23]. These applications perform repeated insertion, removal, and
search of a randomly chosen integer in a set of integers. The set of integers is
implemented either as a sorted single linked list, a skip list, or a red-black tree.
We configured the benchmark to initialize the set of integers with 128 values,
and allowed it to store up to a maximum of 256 values. Finally, we config-
ured the benchmark not to generate any read-only transaction (i.e. searches).
This has been done in compliance with the operating mode of the protocol
in [48], where read-only transactions can be executed locally at each single

4.2. SIMULATION RESULTS 29

replicated process, without the need for propagation via the atomic broadcast
(read-only transactions do not alter the state of the replicated transactional
memory system). By only considering update transactions in our study, we
can therefore precisely assess the impact of the coordination latency on the
performance of a replicated STM, as well as the performance gains achievable
by means of the optimistic approach proposed in [48]. The below table reports
the average transaction execution time observed for the three benchmarks via
the aforementioned tracing scheme:

Benchmark Average Transaction Execution Time (µsec)

RB-Tree 77
SkipList 281

List 324

As for the delay due to the OAB layer (i.e. the delay of the Opt-delivery
and of the corresponding TO-delivery), several studies have shown that OAB
implementations typically tend to exhibit flat message delivery latency up to
saturation [33], namely when the number of incoming messages is so high to
congest the network and the OAB service. On the other hand, our study is
not targeted to explicitly assess the saturation point of the OAB group com-
munication subsystem. For this reason we decided to run the simulation by
assuming that the OAB layer does not reach its saturation point. Therefore,
independently of the value of the message arrival rate λ, we use in our sim-
ulations an average latency of 500 microseconds for the Opt-delivery, and of
2 milliseconds for the TO-delivery. These values have been selected based on
experimental measures obtained running the Appia [55] GCS Toolkit on a clus-
ter of 4 quad core machines (2.40GHz - 8GB RAM) connected via a switched
Gigabit Ethernet, sending 100 bytes messages at a throughput ranging from
1 up to about 4000 messages per second.

Finally, we consider an ideal scenario with no mismatch between the opti-
mistic and the final (totally ordered) message delivery order. This is because
the protocol in [48] has been explicitly targeted to environments where such
a spontaneous ordering property holds (e.g. LAN based environments). This
clearly represents a best-case scenario for the protocol in [48], which allows us
to establish an upper bound on the performance achievable by this protocol
vs the behavior of OAB protocol (in terms of message ordering).

4.2 Simulation Results

In Figure 4.1 we report response time and CPU utilization values for the three
benchmarks, while varying the arrival rate of transactional requests λ from the

30 CHAPTER 4

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 5000 10000 15000 20000 25000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Requests per Second (h)

Red Black Tree

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000

%
 C

PU
 U

til
iz

at
io

n

Requests per Second (h)

Red Black Tree

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Requests per Second (h)

Skip List

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

%
 C

PU
 U

til
iz

at
io

n

Requests per Second (h)

Skip List

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Requests per Second (h)

List

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000 3500

%
 C

PU
 U

til
iz

at
io

n

Requests per Second (h)

List

SM - Coarse
Opt - Coarse

SM - Fine
Opt - Fine

Figure 4.1: Performance of SM vs Opt.

4.2. SIMULATION RESULTS 31

OAB layer. We plot results related to 4 different configurations for the repli-
cation protocols. Opt-Fine and Opt-Coarse refer to the values observed when
employing the replication protocol in [48] by using either the actual transac-
tion conflicts (as determined by using the exact access to memory objects
as determined by the benchmark execution traces) or a coarse conservative
estimation where each pair of concurrent transactions is assumed to always
conflict on some object inside the STM memory layout. For these two dif-
ferent conflict patters we also report the performance observed via a State
Machine (SM) approach relying on traditional, non-optimistic Atomic Broad-
cast, where transactions are activated only after the group communication
layer has notified their correct position.

As for the Opt-Coarse configuration, we note that it is an expression of
adverse data access patterns, where according to the protocol in [48], specula-
tion can occur along a single chain of (hypothetically) conflicting transactions,
with a single transaction at any time being allowed to be optimistically pro-
cessed (namely, the top standing one within the chain). However, we also note
that a relevant point for the viability of the approach in [48] is that it requires
a-priori knowledge of both read and write sets associated with transactions,
in order to a-priori identify conflicting transaction classes. As for this aspect,
the difficulty to exactly identify the data items to be accessed by transactions
before these are actually executed, may lead to adopt conservative conflict
assumptions based on coarse data granularity, e.g. whole, or large slices of,
database tables [64]. However, unlike relational database systems, STM-based
applications are characterized by arbitrary memory layouts and access pat-
terns which may make significantly harder, or even impossible, to a-priori
identify, with a reasonable accuracy (or a reasonable conservative approach),
the boundaries of the memory regions that will be accessed by transactions
prior to their execution. On the other hand, large over-estimation of the actual
transaction conflicts is an additional performance adverse factor since it can
strongly hamper concurrency, leading to significant resource under-utilization
in (massively) parallel systems. This is exactly the reason why we feel it
important to assess in this simulation study what may happen, in terms of
performance, when considering such an (over-estimated) coarse grain approach
to the identification of the potential conflicts.

By the results we can observe two major tendencies.

− For all the benchmarks, CPU utilization at the saturation point is al-
ways lower than 20%. Given that in our simulation the OAB layer is
configured to respond in its flat region, this is a clear indication that
data conflicts are the cause of system saturation. The worst case for
the impact of data conflicts on the saturation point can be observed
for List, where the CPU utilization does not even reach 6%, and the

32 CHAPTER 4

response time curves in case of actual conflicts exactly coincide with
the corresponding ones obtained via coarse conflict estimations. The
latter phenomenon is less evident for the other benchmarks, especially
RB-three. However, it is a clear indication that data access patterns
in STM environments may anyway exhibit actual conflict levels signifi-
cantly grater than in database applications, thus requiring investigations
on optimized concurrency control schemes, especially when employed in
replicated environments where transaction blocking up to the determi-
nation of the final order for already active conflicting transactions may
have excessive impact on resources under-utilization.

− The second tendency we can observe is related to limited advantages pro-
vided by the Opt scheme over SM in terms of effects of the overlapping
between coordination and computing phased vs the transaction execu-
tion latency. This is noted especially for the very fine grain RB-three
benchmark, exhibiting mean transaction execution time significantly
lower that the OAB delay (when considering final TO-deliveries). Such a
reduced transaction granularity, in combination with non-minimal trans-
action conflict levels observed even for the fine conflict determination
approach based on actual accesses, leads to very reduced gains from the
overlap. In fact, the coordination phase goes in overlap with a very re-
duced amount of fine grain computing activities, whose individual delay
is actually negligible compared to the coordination latency.

4.3 Outcomes

By the performance results shown in the previous section, there is a clear
need for revising replication management approaches for setting resembling,
e.g., STM-based transactional systems, but more generally for systems that
bring an unbalancing of the ratio between the replica-coordination delay and
local transaction execution time, compared to their counterpart for traditional
database systems. We envisage at least two ways according to which the
revision could be actuated:

A. The first one regards the local concurrency control within each replica.
It should allow an increased level of overlap between coordination and
computing phases. This would entail increasing the level of optimism
in transaction processing activities by avoiding the stall until the total
order is reached, in case of Opt-delivered transactions that conflict with
already active ones.

Such an aggressive-optimistic approach can provide advantages on the
response time. The maximum response-time benefits from this approach

4.3. OUTCOMES 33

are expected to be observed still when the Opt-delivery order well matches
the final TO-delivery. This is because optimistic anticipation in the exe-
cution of chains of conflicting transactions before the corresponding total
order gets determined will not likely result in cascading abort scenarios
otherwise caused by discrepancies between Opt-delivery and TO-delivery
orders when spontaneous ordering properties do not hold.

This approach should anyway provide no advantage in terms of CPU
utilization for processing activities associated with optimistic delivered
transactions that match the final total order. In fact, compared to the
scheme in [48], an increased level of optimism would simply yield to an-
ticipate the execution of conflicting transactions before the total order
for the oldest transaction along the conflict-serialized order is reached.

B. The second one regards the need to amortize response time penalties
that could arise in case when spontaneous ordering is not guaranteed
by concurrently exploring differentiated serialization orders, possibly ac-
cording to the aggressive-optimistic scheme provided in the above point.
This would lead to increase hardware resources utilization without neg-
atively impacting response time. The set of serialization orders to be
explored while notification of the correct one takes place via the finaliza-
tion of the OAB service could be determined on the basis of heuristics or
a clear theoretical analysis, allowing the avoidance of redundant execu-
tion of equivalent serialization orders on the basis of actual transaction
conflicts.

Both the above depicted paths for reorganizing the design of actively replicated
transactional systems are actually passed through in the subsequent chapters.
In particular, in Chapter 5 we explore point (A) by the introduction of a proto-
col based on an innovative, aggressively optimistic concurrency control scheme
to be locally actuated at the level of each individual replicated transactional
process, tailored for predictable networks (e.g., networks ensuring spontaneous
order). In Chapter 6 and in Chapter 7 we instead investigate along the line
of point (B) by providing, respectively, (i) a theoretical framework for non-
redundant speculation along any meaningful serialization path, to be possibly
established by the final deliveries within the OAB-based coordination, and (ii)
an instance of a more pragmatic protocol where the serialization orders to be
speculated are dynamically identified in an opportunistic manner depending
on run-time factors such as the actual level of concurrency among transactions,
as well as the actual level of transaction conflict.

Chapter 5

Speculative Replication in
Predictable Networks

In this chapter we present a protocol named AGGRO aimed at boosting repli-
cated transactional systems via an AGGRessively Optimistic transaction pro-
cessing scheme. It is particularly suited for systems deployed on networks
characterized by the spontaneous order property (i.e. optimistic and final
delivery orders mostly match).

The key idea behind AGGRO is to seek maximum overlap between replica
coordination and transaction execution phases by propagating the (uncom-
mitted) post-images of complete, but not yet finally delivered, transactions
across chains of conflicting transactions speculatively executed in a serializa-
tion order compliant with the optimistic delivery order. To ensure that the
actual transaction schedule matches the serialization order determined by the
sequence of optimistic deliveries, AGGRO relies on an innovative concurrency
control mechanism that, unlike existing OAB-based replication approaches,
does not require information on the transactions’ data access patterns prior
to their actual execution. Conversely, it detects any possible discrepancy be-
tween the transaction schedule and the optimistic delivery order a posteriori,
namely as soon as (and if) conflicts materialize.

As we will show by means of a detailed simulation study in the context
of STM applications, AGGRO allows achieving up to 75% reduction of the
transaction execution latency and 6x throughput increase with respect to state
of the art OAB-based replication schemes when deployed on replicas equipped
with an eight-core CPU (which today represents a typical configuration for
commodity server systems). Such performance gains are obtained without
sacrificing consistency. In fact, beyond ensuring 1-copy serializability, AGGRO
also enforces opacity [39] by guaranteeing that the snapshot observed by any
(eventually committed or aborted) transaction is always equivalent to one

35

36 CHAPTER 5

generated by a serial schedule, albeit possibly not matching the one associated
with either the optimistic or the final delivery order.

5.1 System Model

We consider the same system model already presented in Chapter 3. Actually,
AGGRO does not need to demarcate transactions according to the notation
T specIdi , where i is the family identifier and specId is the speculative instance
identifier. This is due to the fact that with AGGRO a single speculative in-
stance of a given family can be active at any time. Therefore, for simplicity, the
specId superscript has been dropped while presenting the AGGRO protocol.

Regarding the diagram in Figure 3.1, which depicts the reference soft-
ware architecture of each replicated process, in addition to the functionalities
already listed for the Speculative Concurrency Control (SCC), with no loss
of generality, we assume the existence of another function Complete(), used
to explicitly inform the Speculative Transaction Manager (SXM) about the
completion of the execution of a transaction.

Further, the Transactional Store (TS) is extended in order to take into
account a new state for each version of data item stored. Summarizing, with
AGGRO, a single version of data item X could be in the following different
states:

− committed;

− uncommitted.

Moreover, the uncommitted versions are further classified as:

− Work-in-progress (Wip), that are versions for which the creator trans-
action has not yet reached the complete stage;

− Complete (Comp), that are version for which the creator transaction has
reached the complete stage, but is not finalized as committed or aborted
yet.

More in detail, complete data versions are generated by fully executed trans-
actions, and are used to aggressively propagate updates to conflicting trans-
actions. On the other hand, declaration of the existence of Wip versions is
used by AGGRO as a means to early express that a given data item is being
currently manipulated by some transaction.
The manipulation of the data items occurs via the following primitives offered
by the TS layer:

− MarkAsWip(T,XT), which is used for declaring the existence of a Wip
version of data item X created by transaction T ;

5.2. THE AGGRO PROTOCOL 37

− UnmarkAsWip(T,XT), which is used for un-declaring the existence of a
previously declared Wip version of data item X by transaction T ;

− MarkedAsWip(T,X), which is used to query the existence of a Wip dec-
laration on X by transaction T ;

− setCompleteVersion(XT,T), which is used for updating the state of
a Wip data item XT created by T (hence belonging to the write-set of
transaction T) to Comp;

− unsetCompleteVersion(XT,T), which is used for removing a complete
data item version XT originally created by T .

5.2 The AGGRO Protocol

In our architecture, the speculative concurrency control (SCC) exploits the
aforementioned data item versioning mechanism to locally drive the execution
of transactions. Data item versions in the Comp state are aggressively made
visible to other transactions independently of whether the creating transac-
tions will be eventually committed. On the other hand, the SCC selects the
complete/committed data item versions to be returned by read operations
in order to match a serialization order compliant with the order in which
transactions are optimistically/finally delivered within the OAB scheme. For
environments where the spontaneous network ordering property holds, the op-
timistic delivery order highly likely reflects the final total order.
Hence, transactions reading Comp versions on the basis of the order accord-
ing to which they have been optimistically delivered are expected not to be
eventually (cascading) aborted. In other words, aggressiveness in transaction
processing via access to uncommitted (but complete) data items is expected
to pay-off:

(i) by avoiding to stall processing waiting for the finalization of the delivery
order;

(ii) by not requiring transaction abort and restart.

On the basis of the above considerations, the role of Wip data items becomes
central. They represent an early declaration about the fact that a new data
item version is likely to reach the Comp state in the (immediate) future. Hence,
the SCC can exploit the presence of Wip versions to regulate concurrency in
a way to temporarily suspend the execution of a transaction T that requires
read-access to that data item, and that follows the creating transaction T ′ in
the optimistic/final delivery order. On the other hand, an adverse schedule
may lead T to execute the read operation before T ′ has been able to issue its

38 CHAPTER 5

write on that data item, thus not being able to declare the existence of its
Wip version before T issues the read operation.
To cope with such a case, we have introduced within SCC an early abort
mechanism ensuring that T gets aborted as soon as the Wip version by T ′

gets produced.
As for the above point, for fine granularity transactional applications (like

with STM applications) hosted by massively (or even conventional) multi-core
architectures, unless for extremely high request-concurrency scenarios, we ex-
pect minimal likelihood for the optimistically/finally delivered transaction T ′

not to have reached the complete phase (or to have declared the existence of
Wip versions) before the subsequent optimistically/finally delivered transac-
tion T gets activated (thus accessing the post image of data with respect to
T ′). This is because:

(A) transactions typically exhibit very fine granularity;

(B) as we have also shown in Section 4.2, in typical settings, there are nor-
mally available computational resources to start processing transactions
immediately upon their delivery.

On the other hand, in environments with stricter hardware resources (CPU-
cores) limitations, the AGGRO concurrency control scheme can be easily inte-
grated with a CPU scheduling scheme (supported at the level of SXM-handled
threads) based on dynamic priorities, which can favor older transactions within
the optimistic/final delivery order. This would create a time-sharing execution
that is likely to allow the older transaction T ′ to declare the existence of Wip
versions, or to even run to completion, before T gets actually executed. We
omit such a CPU schedule integration mechanism in the presentation of the
AGGRO pseudo-code exclusively for simplicity.

The behavior of the SCC within the AGGRO protocol relies on a prece-
dence relation between transactions, defined on the basis of the order accord-
ing to which they are optimistically and/or finally delivered. The relation is
expressed as a function of the state of two lists maintained by the SXM:

− OptDelivered;

− TODelivered.

These lists keep, respectively, transactions that have been either optimistically
or finally delivered, and are sorted according to the corresponding delivery
order.

When a transaction T is optimistically delivered, it gets recorded at the tail
of the OptDelivered list. Upon the corresponding final delivery, the transaction
is moved from the OptDelivered list (whichever is its current position within

5.2. THE AGGRO PROTOCOL 39

this list) to the tail of the TODelivered list. The move operation between the
two lists is handled by the SXM as an atomic action. Finally, the transaction
is removed from the TODelivered list upon commit. In case of no discrepancy
between the OAB optimistic and final delivery orders, the transaction moved
at the tail of the TODelivered list is always the head-standing one (namely the
oldest one) of the OptDelivered list.

By exploiting the above ordered lists, the precedence relation among trans-
actions is expressed as follows. We say that transaction Ti precedes transac-
tion Tj according to the current state of the OAB protocol (as expressed by

the lists), using the notation Ti
OAB→ Tj , if one of the three below mutually

exclusive conditions holds:

1. Ti and Tj are both currently recorded within OptDelivered, with Ti or-
dered before Tj ;

2. Ti is currently recorded within TODelivered, while Tj is currently recorded
within OptDelivered;

3. Ti and Tj are both currently recorded within TODelivered, with Ti or-
dered before Tj .

We note that the
OAB→ relation is dynamic, in the sense that, when con-

sidering a couple of transactions Ti and Tj , their respective
OAB→ ordering can

change over time. This may occur in case they get sorted within the TODeliv-
ered list in the opposite manner, compared to the sorting they had within the
OptDelivered list (i.e. in the case of discrepancy between optimistic and final
delivery orders for the two transactions).
However, once that both these transactions are recorded within the TODe-

livered list, their respective
OAB→ order becomes stable (it can no longer be

inverted), and depends on which of the two transactions is ordered (and hence
TO-delivered) before the other one in the list (see point 3 above).
This relative order persists until the preceding transaction gets removed from
the TODelivered list upon its commit.

The pseudo-code for the behavior of the SCC is shown in Figure 5.1. For
focusing on protocol, we do not explicitly show the handler for the receipt of
transactional requests by the overlying application, as this simply entails a
TO-broadcast operation for propagating the request to the replicated sites via
the OAB service. Similarly, we do not explicitly show the logic for the retrieval
of the transaction result upon a commit operation, and the delivery of the re-
sult to the overlying application. In other words, the pseudo-code presentation
is focused on the core mechanisms associated with transaction processing and
concurrency regulation, which are activated as soon as a TO-broadcast trans-
actional request gets Opt-delivered to the SXM by the OAB layer. Via the

40 CHAPTER 5

Opt-deliver handler, a transaction is inserted within the OptDelivered list,
and then gets activated via the ActivateTransaction() function, which we use
to encapsulate the transaction processing logic triggering an a-priori unknown
sequence of read and write operations.
Whenever a write on a data item X is issued, the SCC activates the Write()
function, which first checks whether X already belongs to the transaction
write-set. In the positive case, the working copy within the write-set gets up-
dated, and then the Write() function simply returns.
On the other hand, if X does not currently belong to the write-set, it is added
to it along with the to-be-written value.
Successively, the SCC declares via the MarkAsWip() primitive the existence of
a Wip version associated with the currently writing transaction, say Ti.
Then the SCC verifies whether there are active transactions that follow Ti ac-

cording to the
OAB→ relation, and that read X from a transaction Tk different

from Ti such that Tk
OAB→ Ti. These transactions are not correctly serialized

according to
OAB→ since they should have read X from Ti or a subsequent trans-

action within the
OAB→ ordering. Hence an abort event for these transactions

is issued.
By the above explanation of write operations, the multi-versioning mechanism
supported by TS, and exploited by the SCC, actually provides a means for
avoiding stalls upon write/write conflicts.

In case the requested operation is a read on data item X, the SCC activates
the Read() function, which first checks whether X is already registered within
the transaction write-set/read-set. In the positive case, the registered copy
is returned. Otherwise, the SCC checks whether the reading transaction,

say Ti, follows, according to the
OAB→ relation, some transaction for which

a working copy of X is declared to exist. In the positive case, transaction
Ti is temporarily suspended until the above condition is no more verified.
Afterwards, the complete or committed version of data item X wrote by the

latest transaction preceding Ti according to
OAB→ is selected and added to the

read-set. Then the read-from set of Ti is updated in order to include the
read-from dependency associated with the transaction that wrote the selected
version of X. Finally, this version is returned.

In the Complete() function, the SCC simply removes the declaration about
the existence of Wip versions associated with the transaction, and then marks
each data item X belonging to the write-set as Comp. Afterwards, the trans-
action enters in the complete state.

In the Commit() function, the SCC installs the Comp versions of the data
items written by the transaction as committed versions. Then the transaction
is removed from the TODelivered list.

5.3. PROTOCOL CORRECTNESS 41

In the Abort() function, the SCC triggers a (cascading) abort event for all
the transactions that read whichever data belonging to the write-set of the
currently aborting transaction. These data are then simply discarded, the
current transactional context is released, and a new thread for reactivating
the transaction is spawned.

Via the TO-deliver handler, ther SXM moves the transaction from the
OptDelivered list to the TODelivered list. Then the execution of this handler is
suspended until the finally delivered transaction enters in the complete state.
The suspend condition also depends on whether there are other transactions

that precede the currently TO-delivered one according to
OAB→ . In such a case,

the handler waits until both of the following conditions are verified for the
currently TO-delivered transaction:

(i) it is fully executed; and

(ii) it becomes the minimum element within the
OAB→ relation.

Note that in AGGRO, waiting until a TO-delivered transaction Ti becomes the

minimum element of the
OAB→ relation ensures that every transaction preceding

Ti according to
OAB→ has already been safely committed. At this point Ti can

be safely validated by checking whether all the values read by Ti coincide with
the ones that are currently in the committed state. If the validation phase
is successfully passed, the TO-deliver handler generates the commit event
for the transaction, which causes the installation of the data items written by
the transaction, and the corresponding values, as committed, as well as the
removal of the transaction from the TODelivered list.
This enables the redefinition of a new minimum element, which iteratively
allows generation of the commit event for the corresponding transaction, once
it reaches the complete stage.

5.3 Protocol Correctness

In this section the set of safety, liveness and correctness properties ensured by
AGGRO is discussed.
As for safety, AGGRO ensures opacity [39] and 1-Copy Serializability [8].
The opacity property guarantees that:

(O.1) committed transactions should appear as if they were executed sequen-
tially, in an order that agrees with their real-time ordering;

(O.2) no transaction should ever observe the modifications to shared state done
by aborted or live transactions;

42 CHAPTER 5

(O.3) all transactions, including aborted and live ones, should always observe
a consistent state of the system.

In each replica, AGGRO ensures property (O.1) by committing transactions
only after a validation phase that would detect any unserializable behavior.
It ensures (O.2) because read operations can only return either a committed
value, or the value generated by a transaction whose execution has already
reached the complete phase (and hence is neither live nor aborted at the time
of the read). It ensures (O.3) since the read of a transaction Ti always returns
the value generated by the latest complete transaction that precedes Ti ac-

cording to
OAB→ .

Hence, the only possible anomaly that could affect Ti arises whenever Ti ob-
serves a value for a data item X generated by a transaction Tj such that

Tj
OAB→ Ti, and then a transaction Tk, where Tj

OAB→ Tk
OAB→ Ti, writes X.

In this case, if Ti were to issue a read on any data item generated by Tk, Ti
would observe an inconsistent state (having already been serialized before Tk
when it issued the read on X), thus violating (O.3). On the other hand, this
scenario is avoided by AGGRO since, as soon as Tk writes on X, it would

detect that Ti has been scheduled in a way that is inconsistent with
OAB→ , and

would immediately abort Ti.
Concerning 1-Copy Serializability, this is ensured by AGGRO since transac-
tions are committed at every site only upon a deterministic validation that is
executed by all replicas in the same total order, i.e., the final delivery order of
the OAB service.
As for liveness, AGGRO ensures lock-freedom, which guarantees that there
is always at least a thread to make progress, thus ruling out deadlock and
livelock scenarios. This is a direct consequence of the fact that the trans-

action currently representing the minimum element according to
OAB→ always

experiences an abort free (re)run.

5.4 Simulation Study

Our performance evaluation study is based on a process-oriented simulator
developed using the JavaSim simulation package which implements:

(i) the OAB-based replication protocol in [51], referred to as OPT in the
following;

(ii) the proposed AGGRO protocol.

As hinted, this study deals with STM applications, and in order to accurately
model the execution dynamics of transactions in STM systems, we rely on a

5.4. SIMULATION STUDY 43

trace-based approach. Traces related to data accesses and transaction dura-
tion have been collected by running a set of widely used, standard benchmark
applications for STMs. The machine used for the tracing process is equipped
with an Intel Core 2 Duo 2.53 GHz processor and 4GB of RAM. The operating
system running on this machine is Mac OS X 10.6.2, and the used STM layer
is JVSTM [14]. The simulation model of the replicated STM system comprises
a set of 4 replicated STM processes, each hosted by a machine equipped with
eight cores processing transactions at the same rate as in the above architec-
ture. As for the study presented in Chapter 4, we again configured the bench-
marks to run in single threaded mode, so to filter out any potential conflict
for both hardware resources and data. Also, we extended JVSTM in order to
transparently assign a unique identifier to every object within the STM mem-
ory and to log every operation (namely, begin/commit/rollback operations,
and read/write memory-object access operations) along with its timestamp.
This allowed us to gather accurate information on the data access patterns
of the benchmark applications and on the time required for processing each
transaction (in absence of any form of contention). The traces were collected
running the three benchmark applications already presented in Section 4.1,
RB-Tree, SkiptList and List. Further, we configured the benchmark not to
generate any read-only transaction because in both protocols considered in
this study, read-only transactions can be executed locally, without the need
for propagation via the atomic broadcast. By only considering update trans-
actions, we can therefore precisely assess the impact of the atomic broadcast
latency on the performance of a replicated STM, as well as the performance
gains achievable by AGGRO. The transactions’ arrival process via optimistic
and final message deliveries from the OAB layer is modeled in our simulations
via a message source that injects messages having as payload a batch of β
transactions with an exponentially distributed inter-arrival rate, having mean
λ. We recall that batching is a technique very commonly employed to op-
timize the performance of (Optimistic) Atomic Broadcast protocols [31]. By
amortizing the costs associated with the (O)AB execution across a set of mes-
sages, batching schemes have been shown to yield considerable enhancement
of the maximum throughput achievable by (O)AB protocols. The inclusion of
batching schemes in our study of OAB-based replication protocols for trans-
actional systems allows keeping into account optimized configurations for this
important building-block group communication primitive.

As for the delays of optimistic and final message deliveries, several studies
have shown that OAB implementations typically tend to exhibit flat message
delivery latency up to saturation [33]. On the other hand, our study is not
targeted to explicitly assess the saturation point of the OAB group commu-
nication subsystem. For this reason we decided to run the simulations by
assuming that the OAB layer does not reach its saturation point. Therefore,

44 CHAPTER 5

independently of the value of the message arrival rate λ, we use in our simu-
lations an average latency of 500 microseconds for the Opt-delivery, and of 2
milliseconds for the TO-delivery. As for the study in Chapter 4, these values
have been selected on the basis of experimental measures obtained running
the Appia [55] GCS Toolkit on a cluster of 4 quad-core machines (2.40GHz -
8GB RAM) connected via a switched Gigabit Ethernet.

5.5 Simulation Results

The plots in Figure 5.2 report the results of the simulation study. For each
benchmark are plotted the mean transaction response time, i.e. the average
time since the TO-broadcast of a transaction till its commitment, and the
CPU utilization of single replica (we recall that all the replicas have the same
hardware architecture and process the same sequence of transactions in the
same order, so, fixing a time slice, each replica in the system will produce
the same CPU utilization) for both AGGRO and OPT. These performance
issues are measured as a function of the transactions’ arrival rate and the
batching factor β. We recall that AGGRO is tailored for networks ensuring
spontaneous order so, in the simulation we focus on the case of absence of
mismatches between the optimistic and final delivery.

By the plots, we can draw two main considerations.
First, AGGRO allows achieving a striking increase in terms of maximum sus-
tainable throughput by a factor that, independently of the considered settings,
fluctuates around the 6x value. The reason underlying this impressive perfor-
mance gain is associated with AGGRO’s ability to make effective use of the
locally available computational resources. Specifically, the average CPU uti-
lization with OPT ranges between 5% and 20%, depending on the considered
benchmark, even when the system has reached the saturation point. Con-
versely, as the load increases, AGGRO succeeds in fully utilizing the whole set
of cores (that we recall being equal to 8 in this study) locally available at each
replica. This depends on the fact that the concurrency control policy adopted
by OPT results way too conservative, inducing very long (relatively speaking)
periods of stall in the processing activities. It is interesting to highlight that
AGGRO’s performance gains are achieved despite the rate of aborted transac-
tions grows significantly at high load (getting over 50% close to the saturation
point). This is a direct consequence of the aggressively optimistic approach to
concurrency control undertaken by AGGRO, which opts for incurring the risk
of (user transparent) cascading aborts in order to achieve maximum overlap
between processing and communication.
It is also interesting to note how, at low load, e.g. around 1000 transactions
per second, the performance of OPT rapidly degrades as the batching factor β

5.5. SIMULATION RESULTS 45

increases. This phenomenon is particularly manifest for the List benchmark,
where the mean transaction response time when β=8 is around 75% larger
than in absence of batching (β=1). In fact, when a batch of transactions is
Opt-delivered, in scenarios characterized by non-negligible conflict probability,
they are likely to create convoys.
In OPT, only the first transaction of a convoy is immediately processed,
whereas the remaining ones stall till the final order notification. Conversely, in
AGGRO, the whole batch of delivered transactions is very likely to have been
completely processed in the interval since the optimistic to the final order
notifications. This makes the transaction response time at low load almost
insensitive to the variation of the batching factor (at least for the explored
values of β).

List<Transaction> TODelivered,OptDelivered;

upon Opt-deliver(Transaction Ti) do
OptDelivered.add(Ti); // transaction Ti is added at the tail of the OptDelivered list
ActivateTransaction(Ti);

void ActivateTransaction(Transaction Ti) { . . . }

void Write(Transaction Ti, DataItem X, Value v)
if (@X ∈ WriteSetTi

)
WriteSetTi

.add(X,v);
MarkAsWip(X,Ti);

∀ Transaction Tj s.t. Ti
OAB→ Tj{

if (X ∈ ReadSetTj
and Tk ∈ ReadFromTj

with Tk
OAB→ Ti) event Abort(Tj);

else update X within WritSetTi
; // if X already in WriteSet it gets over-ridden

DataItemValue Read(Transaction Ti, DataItem X)
if (X ∈ WriteSetTi

) return WriteSetTi
.get(X).value;

if (X ∈ ReadSetTi
) return ReadSetTi

.get(X).value;

until (MarkedAsWip(X,Tj) s.t. Tj
OAB→ Ti) suspend;

select version of X wrote by Tj = max{Tj |Tj
OAB→ Ti};

ReadFromTi
.add(Tj);

return selected version of X

void Complete(Transaction Ti)
∀X ∈WriteSetTi

atomically do
UnmarkAsWip(X,Ti);
setCompleteVersion(X,Ti);

set Ti complete;

upon Commit(Transaction Ti)
∀X ∈WriteSetTi

atomically do
UnmarkAsWip(X,Ti);
setCommittedVersion(X,Ti);

TODelivered.remove(Ti);

upon Abort(Transaction Ti) do
∀ Tj s.t. Ti ∈ ReadFromTj

event Abort(Tj);

if (Ti is complete) unsetCompleteVersion(X,Ti);
else UnmarkAsWip(X,Ti);
release transactional context of Ti;
new thread(ActivateTransaction(Ti));

upon TO-deliver(Transaction Ti) do
atomically do

OptDelivered.remove(Ti);
TODelivered.add(Ti);

until Ti not complete or ∃Tj s.t. Tj
OAB→ Ti: suspend;

if (∃X s.t. X ∈ ReadSetTi
, X ∈WriteSetTj

, ¬(Ti
OAB→ Tj) event Abort(Ti);

else event Commit(Ti);

Figure 5.1: Behavior of AGGRO’s SCC.

 2000

 2500

 3000

 3500

 4000

 0 20000 40000 60000 80000 100000 120000 140000

Re
sp

on
se

 T
im

e
(µ

se
cs

)

Transactions per Second (h)

Red Black Tree

Opt - `=1
Opt - `=4
Opt - `=8

Aggro - `=1
Aggro - `=4
Aggro - `=8

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000

%
 C

PU
 U

til
iz

at
io

n

Arrival Rate (h)

Red Black Tree

OPT - `=1
OPT - `=4
OPT - `=8

AGGRO - `=1
AGGRO - `=4
AGGRO - `=8

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5000 10000 15000 20000 25000 30000 35000

R
es

po
ns

e
Ti

m
e

(µ
se

cs
)

Transactions per Second (h)

SkipList

Opt - `=1
Opt - `=4
Opt - `=8

Aggro - `=1
Aggro - `=4
Aggro - `=8

 0

 20

 40

 60

 80

 100

 5000 10000 15000 20000 25000 30000 35000

%
 C

PU
 U

til
iz

at
io

n

Arrival Rate (h)

SkipList

OPT - `=1
OPT - `=4
OPT - `=8

AGGRO - `=1
AGGRO - `=4
AGGRO - `=8

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 5000 10000 15000 20000 25000 30000 35000

Re
sp

on
se

 T
im

e
(µ

se
cs

)

Transactions per Second (h)

List

Opt - `=1
Opt - `=4
Opt - `=8

Aggro - `=1
Aggro - `=4
Aggro - `=8

 0

 20

 40

 60

 80

 100

 5000 10000 15000 20000 25000 30000 35000

%
 C

PU
 U

til
iz

at
io

n

Arrival Rate (h)

List

OPT - `=1
OPT - `=4
OPT - `=8

AGGRO - `=1
AGGRO - `=4
AGGRO - `=8

Figure 5.2: AGGRO vs OPT Performance Comparison.

Chapter 6

Optimality of Speculative
Replication in Generic
Networks

In this chapter a theoretical framework and an associated protocol are pre-
sented for actively replicated transactional systems relying on the Optimistic
Atomic Broadcast (OAB) service.

In Section 4.2 we have shown how the existing OAB-based solutions only
permit the parallel activation of optimistically delivered transactions that are
known not to conflict with each other [48, 59] and, such a choice, can seri-
ously constrain the achievable degree of parallelism. Additionally, existing
approaches require a-priori knowledge of both read and write sets associated
with incoming transactions, raising the non-trivial problem of systematically
predicting data access patterns, which may force to significant over-estimations
of the likelihood of transaction conflicts, with an obvious negative impact on
concurrency. The above drawbacks are exacerbated in a number of realistic
scenarios such as large scale geographical replication, where guessing the final
order can be very challenging [56], or in systems where the ratio between the
communication delay and the computation granularity is very large, such as
Transactional Memories [69].

The approach proposed in this chapter addresses these challenges by ex-
ploring the use of speculative transaction processing, hinted in Section 2.3,
motivated by the widespread use of multi-core parallel machines whose com-
putational power can be fully unleashed using such an approach. We inves-
tigate, from a theoretical perspective, the issues related to the adoption of
a speculative approach to replication of transactional systems, which we call
Speculative Transactional Replication (STR).

The idea underlying STR is rather simple: exploring multiple serialization

49

50 CHAPTER 6

orders for the optimistically delivered transactions, letting them observe the
snapshots generated by conflicting transactions, rather than pessimistically
blocking them waiting for the outcome of the coordination phase. We note that
this approach significantly differs from the one illustrated in Chapter 5 since
AGGRO does not speculatively process transactions in multiple serialization
orders. Rather, it early aborts and restarts transactions in order to align them
to the a serialization order at anytime compliant with the optimistic delivery
order. Overall, one significant difference between the two approaches is that
STR is suited for networks not necessarily guaranteeing spontaneous ordering,
hence generic networks.

We frame the problem in a model in which we do not assume the availabil-
ity of any a-priori information on the set of data items to be accessed by the
transactions (in either read or write mode), and in which we allow data access
patterns to be influenced by the state observed during the execution. Next,
a set of correctness and optimality criteria for the speculative exploration of
the permutations of the optimistically delivered transactions are discussed, de-
manding the on-line identification of all and only the transaction serialization
orders that would cause the optimistically executed transactions to exhibit dis-
tinct outcomes. Also, a specification of an optimal STR protocol is presented.
It relies on a novel graph-based construct, named Speculative Polygraph (SP),
which encodes information on the conflict relations developed during the spec-
ulative execution of transactions. SPs are designed to exactly identify what
subsets of the speculatively available data item versions would be visible in any
view-serializable execution, thus ensuring optimality of the STR protocol, in
terms of completeness and non-redundancy of the set of explored speculative
serialization orders.

To assess the viability of our proposal, we also report simulation results
based on the data access patterns produced by a well-known benchmark for
Software Transactional Memories [42].

6.1 System Model

The system model for STR is compliant with the one presented in Chapter 3.
The only extensions are discussed below.

We assume that presence of a method Complete, used to explicitly inform
the Speculative Transaction Manager (SXM) about the completion of the ex-
ecution of a transaction. Further, the the getResult method is also provided,
which allows the retrieval of the result generated by (completed) transactions.

Finally, the manipulation of the versions of the data items stored by TS
occurs via the following primitives:

− addSVersions(T ji), which makes the write set of a completed transac-

6.2. PROBLEM FORMALIZATION 51

tion T ji visible;

− removeSVersions(T ji), which removes from TS the write set of T ji ;

− commitSVersions(T ji), which commits the write set of transaction T ji
by replacing the corresponding existing committed version of any data
item.

6.2 Problem Formalization

From the perspective of the replicated transactional system as a whole, our
target correctness criteria is classic 1-copy serializability [9], which ensures that
a transaction execution history H across the whole set of replicated processes
Π is equivalent to a serial transaction execution history on a non-replicated
system. More specifically, we are interested in view serializability [9, 58] de-
fined as a property of H such that, for any prefix H′ of H, its committed
projection C(H′) (obtained from H′ by deleting all operations not belonging
to transactions committed in H′) is view equivalent to some serial history.
Roughly speaking, view equivalence of two histories H1 and H2 is defined as
the property by which, for any data item X:

(i) if Ti reads X from Tj in H1, then Ti reads X from Tj also in H2;

(ii) for each data item X, if Xw is the final written value of X by Ti in H1,
then it is also the final value written value of X by Ti in H2.

We now introduce the notion of optimality for a speculatively replicated trans-
actional system. This is done by formalizing a set of properties jointly ensuring
the consistency of speculative transactions, as well as the exploration of all
and only the speculative serialization orders in which the transactions observe
distinct states of the transactional store.
Let Σ = {T1, . . . , Tn} be the set of Opt-delivered but not yet TO-delivered
transactions. We denote with with Σ′ = {T 1

1 , . . . , T
k
1 , . . . , T

1
n , . . . , T

m
n } the set

of the corresponding speculative transactions that have run to completion,
namely that have fully executed their sequence of read and write operations
but have not been committed yet. We say that the system is quiescent if the
OAB service stops Opt-delivering and TO-delivering transactions, which en-
sures that Σ does not change over time. Finally, let us denote with π(Σ) the
set of all the possible permutations of Σ.

We say that a Speculative Transactional Replication (STR) protocol is
optimal if it guarantees the following properties:

− Consistency: the history of execution of each speculative transaction
in Σ′ is view serializable.

52 CHAPTER 6

− Non-redundancy: no two sibling transactions in Σ′ observe the same
snapshot.

− Completeness: if the system is quiescent then for every permutation
σ ∈ π(Σ) and for every transaction Ti ∈ Σ, there eventually exists a
speculative transaction T ji ∈ Σ′ that executes on (i.e. observes) the same
snapshot that would have been produced by sequentially executing all the
transactions preceding Ti in σ.

The non-redundancy property filters out trivial solutions based on the exhaus-
tive enumeration of every possible permutation of the Opt-delivered transac-
tions for the construction of plausible serialization orders. Such an approach
would certainly enumerate the permutation that will be eventually established
by the final TO-deliver order, thus providing completeness. On the other hand,
denoting with n the number of Opt-delivered but not yet TO-delivered mes-
sages, this approach would always require executing

∑
i=1...n

n!
(n−i)! = Θ(n!)

speculative transactions (i.e. the number of nodes of a permutation tree for
a set of cardinality n), independently of the conflict relations actually devel-
oped by the corresponding transactions. This would likely cause the useless
exploration of a (possibly very large) number of redundant serialization orders
in which transactions execute along identical trajectories, thus observing the
same snapshots and externalizing the same results.

As a final note, the assumption on the system’s quiescence in the specifi-
cation of the completeness property is a formal requirement ensuring that Σ
does not change over time. This assumption allows excluding scenarios where
processes are never provided with sufficient time to complete the speculative
exploration of the set of distinct serialization orders admitted by the STR
protocol. In other words, completeness is not intended as a property related
to the timing of actions by the STR protocol, but related to its own execution
logic.

6.3 An Optimal STR Protocol

This section is organized as follows. In Section 6.3.1 we provide a global
overview of the proposed STR protocol. In Section 6.3.2, we specify the set of
primitives used within the protocol’s pseudo-code to abstract over the activa-
tion and termination of threads, and the management of the data items’ ver-
sions by TS. Section 6.3.3 and Section 6.3.4 present, respectively, the pseudo-
codes of SXM and SCC. Finally, in Section 6.3.5, we prove that the presented
protocol is optimal according to the STR optimality properties specified in
Section 6.2.

6.3. AN OPTIMAL STR PROTOCOL 53

6.3.1 Protocol Overview

In the proposed STR protocol, each replica immediately starts processing
transactions as soon as these are optimistically delivered by the OAB ser-
vice. The issue of generating a speculated set of different serialization orders
is tackled by the SCC layer, which dynamically tracks the dependencies de-
veloped during the execution of the transactions through a novel graph based
construct which we name Speculative Polygraph (SP).

SPs can be viewed as an extension of Papadimitriou’s polygraphs [58],
which were introduced to determine view-serializability for (non-speculative)
transaction histories. More in detail, SCC exploits knowledge on conflict de-
pendencies tracked by a SP associated with each transaction T ji in order to
determine which subset V (X) of the currently available versions of a data
item X, can be returned by T ji upon its n-th read operation (on data item X)
without violating view-serializability, and given the history of execution of its
former n− 1 read operations. By forking from T ji a number of |V (X)|− 1 sib-
ling transactions, and delivering to each forked transaction, and to the parent,
a different value of X in the set V (X), SCC completely covers all the distinct
execution trajectories that T ji could undertake by letting the read operation
return a different value (though representative of some view-serializable exe-
cution history) among those already available for X.

This read-triggered forking mechanism is however insufficient to ensure the
complete exploration of differentiated speculative serialization orders. In fact,
new versions of a data item X can become available after the execution of
the read on X by transaction T ji . This happens if some transaction writes

on X after T ji carries out its read on X. To tackle these situations, the SCC
relies on an additional a-posteriori transaction re-spawning mechanism. The
re-spawning of transaction T ji , which leads to the re-start of a new sibling
transaction, say, T ki , is triggered as soon as a transaction T completes its
execution and makes available a new version of a data item X, which could
have been visible by T ji at the time of its read on X in some legal sequential
history. SCC serves all the reads issued by the re-spawned transaction T ki , up
to the read on data item X, by returning the same values already observed by
transaction T ji . Since we are assuming snapshot determinism, this implies that

T ki will “clone” the execution of T ji up to the read on X, which, conversely,
will return the version created by transaction T .

As hinted in Chapter 3, we made the choice to make visible the data item
versions written by a transaction only when the transaction completes its
execution, rather than as soon as the write operation is completed. In the re-
spawning mechanism, this avoids scenarios in which a transaction that writes
multiple times the same data item causes the activation of new speculative
transactions that observe “intermediate” values that would have never been

54 CHAPTER 6

visible in any view-serializable history. Such a phenomenon would in fact lead
to violations of the Consistency property.

Note that while such phenomena be ultimately tackled by aborting the
transactions that have observed not serializable snapshots, they would not
only lead to suboptimal usage of the available computing resources (which
would be wasted executing doomed speculative transactions), but could also
lead the transactional logic to generate serious anomalies in contexts, such
as transactional memories [43], where the transactional system is not fully
isolated by the external environment [39].

6.3.2 Primitives and Notations used in the Pseudo-code

We assume that the business logic associated with a transaction Ti is activated
via the startSXact and startNonSXact primitives. These take as input pa-
rameter a Transaction instance Ti and activate a new thread which starts a
new transaction T ji (where j is a freshly generated specId identifier) in a spec-
ulative and, respectively, non-speculative mode. As it will be further discussed
in the following, a transaction Ti is activated in non-speculative mode only if
its final TO-order has already been established and all the transactions that
precede Ti in the final TO-order have already been committed. Otherwise, the
transaction gets activated in speculative mode.

We associate each transaction with an instance of the class Transaction
and abstract over the implementation of the application-level business logic by
assuming that, whenever the thread executing a transaction issues a read/write
operation, the read/write method of the corresponding transaction’s object is
invoked.

6.3.3 Speculative Transaction Manager

The Speculative Transaction Manager (SXM) intercepts the application level’s
transactional requests, and interacts with the Optimistic Atomic Broadcast
(OAB) service and with the Speculative Concurrency Control (SCC) layer to
consistently orchestrate the set of speculatively activated transactions.

The pseudo-code for SXM is reported in Figure 6.1. SXM relies on three
data structures, namely the ActivatedXacts, CompletedXacts and Commit-
tedXacts sets, which contain references to T ji transactions within the cor-
responding execution stages. To simplify the pseudo-code, we assume that
whenever a transaction is started, forked or respawned it is inserted into the
ActivatedXacts set, and that it is inserted into the CompletedXacts when the
completed method is invoked. Also, whenever a transaction is aborted, it
is removed from the ActivatedXacts and CompletedXacts sets. When it is
committed, it is removed from the CompletedXacts set and is added to the

6.3. AN OPTIMAL STR PROTOCOL 55

Set<Transaction> ActivatedXacts;
Set<Transaction> CompletedXacts; // CompletedXacts ⊆ ActivatedXacts
Set<Transaction> CommittedXacts;

Result invoke(TransactionalLogic T, inputParams p) do
Transaction Ti = new Transaction(T, p, getNewXactID());
OAB.TO-broadcast(Ti);

wait ∃T ji ∈ CommittedXacts
return T ji .getResult();

upon Opt-Deliver(Transaction Ti) do
startSXact(Ti);

upon TO-Deliver(Transaction Ti) do

if (∃T ji ∈CompletedXacts s.t. T ji .validateTransaction())

T ji .commit(); //the commit method aborts any sibling transaction of T ji
else

∀T ji ∈ CompletedXacts do

T ji .abort(); //any completed T ji is invalid
if (@Tki ∈ ActivatedXacts)
if ((∀Tr s.t. (Tr → Ti)∈OAB.TO-DeliveredMsgs() ∃T sr ∈CommittedXacts))
startNonSXact(Ti);

else
startSXact(Ti);

Figure 6.1: Pseudo-code for the Speculative Transaction Manager.

CommittedXacts set.

When the application calls the invoke method, SXM marshals a mes-
sage containing the input parameters specified by the application, generates a
unique transaction identifier through the getNewXactID primitive (which we
denote with i in the pseudo-code) and TO-broadcasts the transaction through
the OAB service. Next it waits for the commitment of a transaction T ji in order
to return the associated result (retrieved through the getResult primitive) to
the overlying application.

The activities of SXM are also triggered by two additional events, namely
Opt-deliver and TO-deliver of a transaction Ti. In the former case, SXM
invokes the startSXact primitive with Ti as input in order to start a new
transaction instance T ji which will be executed in speculative mode and will
be added to the ActivatedXacts set.

On the other hand, upon TO-deliver of transaction Ti, SXM checks whether
there exists an already completed transaction T ji that successfully passes the

validation phase, which is meant to verify whether T ji accessed a snapshot
consistent with the one produced by sequentially executing all the transactions
that precede Ti in the final order (see Section 6.3.4 for details). If at least a
transaction T ji is successfully validated, it gets committed, causing the abort of
any of its sibling transactions, see Figure 6.5. Otherwise, whichever completed
transaction T ji is aborted, causing the cascading abort of any other transaction

56 CHAPTER 6

exhibiting (possibly indirectly) a read-from dependency (see Section 6.3.4 for
further details).
Next, SXM checks whether there is no other transaction T ji currently active.
In such a case, a new transaction T ki needs to be activated through either
startNonSXact or startSXact depending on whether the transactions that
precede Ti according to the final order have all been committed or not. In such
a case, in fact, the freshly activated transaction can safely read the current
committed snapshot. On the other hand, if there is any transaction preceding
Ti in the final order that has not been committed yet, rather than waiting
for the commitment, SXM activates T ki in speculative mode. This choice is a
further expression of optimism about the absence of conflicts among T ki and
any other not yet committed transaction preceding T ki in the final order.

6.3.4 Speculative Concurrency Control

To determine the set of speculative serialization orders according to which
transactions need to be executed, SCC relies on a novel graph-based construct,
which we call Speculative Polygraph (SP). SPs are inspired by Papadimitriou’s
polygraphs, introduced in [58] to test view-serializability of a non-speculative
history H and whose definition we briefly recall in the following.

Polygraphs. A polygraph P = (N,A,B) is a directed graph (N,A), whose
nodes are defined by the set N and whose arcs are defined by the set A,
augmented with a set B of so called bipaths. Each bipath is a pair of arcs
< (T ′′ → T ′), (T ′ → T) > (where (T → T ′′) ∈ A), not necessarily present in
A. De-facto, a polygraph is a compact representation of a family of directed
graphs (digraphs) D(N,A,B). A digraph (N,A′) is in D(N,A,B) if and only
if A ⊆ A′, and, for each bipath (a1, a2) ∈ B, A′ contains at least one of the
arcs a1 and a2.

Polygraphs capture partial order relations in a history of transactions, and
the polygraph P (H) associated with a history H is constructed according to
the following two rules:

(i) whenever a transaction T reads some data item X from transaction T ′,
the arc (T ′ → T) is added in A;

(ii) if a third transaction T ′′ also writes X, then the bipath< (T → T ′′), (T ′′ →
T ′) > is added to B.

In other words, each arc (T ′, T) inA keeps track of the direct read-from relation
between transactions T and T ′, whereas a bipath < (T → T ′′), (T ′′ → T ′) >
means that since also T ′′ writes X, it can not be between T ′ and T , but must
either precede T ′ or follow T .

6.3. AN OPTIMAL STR PROTOCOL 57

Based on the above definition of polygraph, Papadimitriou defines a poly-
graph as acyclic iff there is at least an acyclic digraph in D(N,A,B) and proves
that a history H is view-serializable iff its polygraph P (H) is acyclic [58].
We show in Figure 6.2.a and 6.2.b the polygraphs associated with, respec-
tively, the following two sequential transaction histories H1={T1, T2, T

0
3 } and

H2={T2, T1, T
1
3 }, where T1 writes on data items X and Y, T2 writes on data

items Y and Z, whereas T 0
3 and T 1

3 read the same data items, namely X, Y
and Z (returning different values for Y given that H1 and H2 serialize in a
different order transactions T1 and T2).
As in [58], in Figure 6.2 a bipath is denoted by adding a circular edge on its
common node. It can be easily verified that the only acyclic digraph associated
with the polygraph in Figure 6.2.a is obtained by selecting the edge (T1 → T2)
of the bipath centered on T1, whereas the only acyclic digraph associated with
the polygraph in Figure 6.2.b is obtained by selecting the edge (T2 → T1) of
the bipath centered on T2.

Speculative Polygraphs. The unfeasibility of conventional polygraphs to
reason on view-serializability of a speculative transaction history appears man-
ifest if one considers that the simultaneous coexistence within a polygraph of
two sibling transactions, representative of irreconcilable serialization orders
(such as transactions T 0

3 and T 1
3 in Figure 6.2), can corrupt the polygraph by

introducing cycles that might render it useless. An example of such a problem
is shown in Figure 6.2.c, which shows the polygraph obtained by merging the
polygraphs in Figure 6.2.a and 6.2.b. It is straightforward to verify that every
directed graph associated with this polygraph is cyclic. This is of no surprise
considering that the polygraph keeps track of every partial order relation in
a history that contains transactions that assume opposite serialization orders
for T1 and T2.

Speculative Polygraphs address exactly these problems. Unlike Papadim-
itriou’s polygraphs, which are representative of a whole, and non-speculative,
history, SPs are designed to keep into account the history of execution as
perceived by each speculative transaction. Roughly speaking, the SP of a

Figure 6.2: Polygraphs Associated with Histories H1 and H2.

58 CHAPTER 6

transaction T ji is dynamically generated by selectively merging only the poly-
graphs of those speculative transactions T ∗ that i) conflict, either directly or
indirectly, with T ji , and ii) such that exists at least a (non-speculative) serial-

ization order which allows both T ∗ and T ji to coexist.
More formally, we define the speculative polygraph associated with transaction
T ji , denoted as SP(T ji), as a triple (N,A,B) where:

− N is a set of nodes, each one representative of some speculative trans-
action.

− A is a set of, so called, merging edges denoted as (T sr~ → T ji), with

T sr , T
j
i ∈N, and where the notation T sr~ means that we are not just

adding an edge between T sr and T ji , but also merging SP(T sr) with

SP(T ji), and linking them via a (plain) edge from T sr to T ji .

− B is a set of, so called, asymmetric bipaths, denoted as
< (T vu~→ T sr), (T ji → T vu) >, with T sr , T

j
i ∈N, where the first of the two

arcs is a merging edge linking SP(T vu) with SP(T ji) through the plain

edge (T vu → T sr), and the second one, namely (T ji → T vu), is a plain edge

between the nodes T ji and T vu .

A speculative polygraph SP(T ji)=(N,A,B) generates a family of directed

graphs D(SP (T ji)), where each directed graph δ ∈ D(SP (T ji)) is obtained
by (1) recursively replacing any merging arc, say (T sr~ → T ut), of A and B
with the speculative polygraph SP(T sr)∪(T sr → T ut), and (2) for each asym-
metric bypath < a1, b1 > present after the previous “merging phase”, selecting
either a1 or b1.

A speculative polygraph SP(T ji) is initialized, at transaction creation time

(see Figure 6.3), by serializing T ji after the most recently committed trans-
action (according to the TO-deliver order), say T dc , through a merging edge.
This has the effect of setting a barrier, in terms of minimum logical time, for
the visibility of data item versions observable via read operations by T ji . The

speculative polygraph associated with transaction T ji is then used to deter-

mine whether the k-th read operation of T ji can return a given version Xs

(possibly created by a not yet committed transaction). Indeed, letting the
k-th read of T ji return a specific version Xs, rather than any other available
version, corresponds to speculating on a set of possible serialization orders
for T ji . In order to ensure the consistency of the k-th read by a transaction
with its current execution history, it is however necessary that at least one of
the speculative serialization orders associated with the reading of version Xs

results “compatible” with those already determined by having executed the
preceding k-1 reads. In this case we say that Xs is speculatively visible to T ji .

6.3. AN OPTIMAL STR PROTOCOL 59

To determine if T ji may speculatively view a data item version Xs based

on its current execution history, its Speculative Polygraph, SP(T ji), is updated
by:

(R.1) adding a merging edge from the creator of version Xs to T ji , namely

(Xs.creator~→ T ji)

(R.2) adding, for each other available version Xs′ , an asymmetric bipath:
< (Xs′ .creator~→ Xs.creator), (T ji → Xs′ .creator) >.

Version Xs is considered speculatively visible iff there exists at least one di-
rected graph δ ∈ D(SP(T ji)) such that:

(C.1) δ is acyclic;

(C.2) δ does not contain two sibling transactions T ra , T
q
a both serialized before

T ji , or, formally, @T ra , T
q
a ∈ δ such that (T ra → T ji) ∈ δ∗ and (T ra → T ji) ∈

δ∗, where with δ∗ we denote the transitive closure of δ.

If for a δ ∈ D(SP(T ji)) both conditions C.1 and C.2 hold, we also say that δ
is valid. The rationale underlying the above rules is to ensure that, whenever
a transaction T qp is serialized before T ji , the speculative polygraphs of both

transactions are recursively merged. This ensures that the resulting SP(T ji)
keeps a complete track of any conflict relation among the transactions that
generated the snapshot seen by T ji . On the other hand, whenever T ji issues a
read operation on a data item for which exists a version created by a trans-
action T ut , whose SP(T tu) cannot be merged with SP(T ij) without generating

cycles in any δ ∈ D(SP(T ij))(
1), rule R.2 allows to serialize T ut after T ji through

a plain edge without requiring to merge the polygraph of T ut . This prevents
corrupting SP(T ji) by blindly incorporating into it the history of transactions
associated with incompatible speculative serialization orders, and whose writes
shall never result visible to T ji . On the other hand, by serializing T ut after T ji
through the plain edge of an asymmetric bipath, we can still detect cyclic de-
pendencies involving transactions not serializable before T ji in SP(T ji). Finally,
condition C.2 avoids reading inconsistent snapshots generated by an execution
history which serializes (at least) a pair of different sibling transactions T ra , T qa
before T ji , as clearly, in any serial history a transaction Ta can be committed
in a single serialization order.

Transaction’s Data Structures. Each speculative transaction Tj
i is as-

sociated with an instance of the Transaction class which keeps track of the
following state information (see Figure 6.3):

1This may happen for instance if the polygraphs have two transactions in common, but
ordered in an opposite manner.

60 CHAPTER 6

(i) id and specId, which are set, respectively, to the values i and j when
the Transaction object associated with Tj

i is created;

(ii) SP , which stores the speculative polygraph of Tj
i ;

(iii) RS, namely Tj
i ’s read set, which is organized as an array whose n-th

entry records the identity X of the data item read during the n-th read
operation, the version of X read, and a copy of Tj

i ’s Speculative Poly-
graph right before the read took place;

(iv) WS, Tj
i ’s write set;

(v) two boolean variables, speculative and respawned, reflecting, respec-
tively, if the transaction was activated speculatively, and whether it was
respawned;

(vi) readOpCounter, namely a counter that keeps track of how many read
operations have been issued up to date by the transaction;

(vii) generatingRead, which stores a value different from 0 only if Tj
i has

been activated through the fork/spawn of some sibling transaction Tj
i ,

in which case it keeps track of the Tk
i ’s read operation that has triggered

the forking/spawing of Tj
i .

Write/Read Operations. The logic for the management of write operations
(see the write method in Figure 6.3) is extremely simple: the transaction
simply logs the identity of the target data item, as well as its new value,
into its local WS variable, which can be seen as the transaction’s “private
workspace”.

Concerning read operations (see the read method in Figure 6.3), SCC first
checks whether the transaction already wrote the same data item for which
it is issuing the read. In the positive case, it just returns the corresponding
value stored in its write set. Next, it verifies whether the transaction has
been activated in non-speculative mode. As anticipated in Section 6.3.3, T ji
is activated in non-speculative mode only if Ti has already been TO-delivered
and all the transactions preceding Ti in the final order have already commit-
ted. Hence, any read executed by a non-speculative transaction can safely
return the most recently committed version. On the other hand, if the read
operation is issued by a speculative transaction, SCC determines, through
the getAllVisibleVersions method, what subset of the available versions is
speculatively visible to the reading transaction based on its execution history.

The isVisible method returns either a ⊥ value if the target data item
version is not speculatively visible. Otherwise, it returns the SP of the reading

6.3. AN OPTIMAL STR PROTOCOL 61

class Transaction {
int id, specId;
Transaction T dc =max{Ta ∈ OAB.TO-deliveredMsgs() s.t. ∃T ba ∈CommittedXacts}
SpeculativePolygraph SP = (T dc ~→ T specIdid)
List<DataItemID, DataItemVersion, SpeculativePolygraph> RS;
Set<DataItemID,Value> WS;
boolean speculative, respawned;
int readOpCounter=0, generatingRead=0;

void write(DataItemID X,Value v)
WS.store(X,v); // if X already exists in WS it gets overridden

Value read(DataItemID X)
readOpCounter++;
if (< X, v >∈WS) return v;
if (¬speculative)
return X.mostRecentCommitted();

if (respawned ∧ readOpCounter≤generatingRead)
return RS[readOpCounter].getValue();

Set<DataItemVersion, SpeculativePolygraph> versions = getAllVisibleVersions(X);
[Xi, newSP] = versions.pop();
∀ <DataItemVersion Xj , SpeculativePolygraph SP’>∈versions do
forkSibling();
if (I am the just forked transaction)
RS[readOpCounter] = <X,Xj ,SP>;
SP = SP’;
generatingRead = readOpCounter;
return Xj ;

RS[readOpCounter] = <X,Xi,SP>;
SP = newSP;
return Xi;
. . .
}

Figure 6.3: Pseudo-code for the Speculative Concurrency Control (1).

transaction T ji updated to reflect the outcome of the read. Next, the transac-
tion picks one of the selected visible versions, say Xs, to use it as the return
value for the on-going read, logs it, together with its current SP, within its read
set, and successively replaces its SP with the one updated by the isVisible

method. Finally, before returning Xs, T ji forks, for each other visible ver-
sion Xt, a sibling transaction whose execution will proceed in parallel with
T ji , after returning Xt for the ongoing read (and after having correspondingly
updated its read set and SP).

Transaction’s Completion. When T ji completes its execution, it is added to
the Completed set and the Complete method (see Figure 6.4) is invoked. Then,
if Ti is already TO-delivered and exists some transaction Tp that precedes Ti
in the final order, which has not yet been committed, the completed method
simply ends, delegating the task of attempting to commit T ji to any T sp that
will subsequently enter the commit phase. Conversely, if all the transactions Tp
preceding Ti in the final order have already been committed, and T ji is either

non-speculative or successfully passes the validation phase, T ji is committed

62 CHAPTER 6

class Transaction {
. . .
void Complete() // invoked when the transaction logic terminates its execution
if (Tid /∈OAB.TO-DeliveredMsgs())

TS.addSVersions(T specIdid);
handleWriteAfterReadConflicts();

else
if (∀Tr s.t. (Tr → Tid)∈OAB.TO-DeliveredMsgs() : ∃T sr ∈CommittedXacts)
if (¬speculative ∨ validateTransaction())
commit();
Transaction Tj = min{Ta ∈ OAB.TO-deliveredMsgs() s.t. (Tid → Tj)}
do
if (∃Tkj ∈CompletedXacts s.t. (¬Tkj .speculative ∨ Tkj .validateTransaction()))

Tkj .commit();
else
∀Tkj ∈CompletedXacts do Tkj .abort();
break;

while(Tj = Tj .nextOAB.TO-deliveredMsgs())

else
abort();

if (@T ·id ∈ ActivatedXacts) startNonSXact(T specIdid);

void handleWriteAfterReadConflicts()
∀Tkj ∈ ActivatedXacts s.t. (Tkj .RS ∩WS 6= ∅) do

let r be the min index s.t. Tkj .RS[r].DataItemId ∈WS;

(X, ·, SP ′) = Tkj .RS[r];

let Xi be the value of X written by the current transaction;
if (r > generatingRead)
SpeculativePolygraph newSP = isVisible(X, Xi, SP ′, Tkj);
if (newSP6=⊥)
∀Tkj .RS[s] =< ·, ·, SP ′′ > s.t.s > r do

Tkj .RS[s] =< ·, ·, SP ′′∪ <(T specIdid ~→ Xs.creator), (Tkj →T
specId
id)>>;

ReadSet newRS;
∀ 1 < t < r do newRS[t] = Tkj .RS[t];

newRS[r] = <X,Xi,newSP>;
spawnSibling(Tj ,newSP,newRS,r);

. . .
}

Figure 6.4: Pseudo-code for the Speculative Concurrency Control (2).

and attempts to commit any completed transaction Tml , such that Tl follows
Ti in the final order.

On the other hand, in case Ti has not yet been TO-delivered, T ji
makes available its versions through addSVersions. Then it invokes the
handleWriteAfterReadConflicts method to determine whether there is any
transaction T ba that has read some data item also written by T ji , and whether

the version created by T ji was speculatively visible for T ba at the time in which
it executed the read.
To this end, the isVisible method is invoked passing as input parameter the
SP (retrieved from T ba ’s read set) that T ba was storing at the earliest time in
which T ba read a data item, say its r−th read, also written by T ji . Note that by
retrieving the SP related to the first data item belonging to T ba ’s read set that

6.3. AN OPTIMAL STR PROTOCOL 63

class Transaction {
. . .
Set<DataItemVersion,SpeculativePolygraph> getAllVisibleVersions(DataItem X)
Set<DataItemVersion,SpeculativePolygraph> VisibleVersions;
∀Xi ∈ X.getAllVersions() do

SpeculativePolygraph newSP = isVisible(X, Xi, SP, T specIdid);
if (newSP6=⊥) VisibleVersions = VisibleVersions ∪ < Xi, newSG >;

return VisibleVersions;

SpeculativePolygraph isVisible(DataItem X,
DataItemVersion Xi, SpeculativePolygraph currentSP, Transaction T)

SpeculativePolygraph newSP = (Xi.creator~→T)∪currentSP;
∀(Xj 6= Xi) ∈ TS.getAllVersions(X) do
newSP = newSP ∪ < (Xj .creator~→ Xi.creator) , (T→ Xj .creator)>;

if (∃δ ∈ D(newSP) s.t. isValid(δ, T)) return newSP;
else return ⊥;

void abort()

TS.removeSVersions(T specIdid);
∀Tml ∈ ActivatedXacts do
∀δ ∈ D(Tml .SP) s.t. isValid(δ,Tml) do
if ((Tid → Tml) ∈ δ∗)
Tml .abort();

ActivatedXacts = ActivatedXacts \ {T specIdid };
CompletedXacts = CompletedXacts \ {T specIdid };

void commit()

TS.commitSVersions(T specIdid);
∀Tmid ∈ ActivatedXacts do Tmid .abort(); // Abort sibling transactions

boolean isValid(DirectedGraph δ, Transaction T)

return (δ is acyclic ∧ (@ (T ji → T), (Tki → T) ∈ δ∗ with j 6= k));

boolean validateTransaction()
∀ <X,value,· > ∈ RS do
if (value 6= X.getCommittedVersion().getValue()) return false;
else return true;
}

Figure 6.5: Pseudo-code for the Speculative Concurrency Control (3).

has also been written by T ji , we detect the earliest possible point in the exe-

cution trajectory of T ba that could have been affected by a write of T ji . Recall
that in a snapshot deterministic model, if T ba had seen the version created by
T ji , rather than the one returned in its execution, T ba might have not executed
the same set of subsequent reads.

Hence, to avoid violating the Non-redundancy property, SCC respawns
only a single sibling of T ba , say T ca , even if there are multiple data items in
T ji .WS ∩ T ba .RS. T ca will re-execute (see the read method in Figure 6.3) the
same set of reads already performed by T ba , up to the read that caused its
spawn. Such a read will return the value created by T ji and, henceforth, T ca
will be free to evolve along its own execution trajectory. To enforce such a
behavior, the first r-1 entries of the read set of the spawned transaction are
set equal to the corresponding ones of T ba , and its r-th entry is set to reflect

64 CHAPTER 6

the read-from T ji . Note that T ji also updates, in the T ba ’s read set, every
entry following the read that caused the spawning, reflecting the fact that T ba
did not observe during the r-th read the data item version generated by T ji .
This guarantees the completeness of the information stored by SP(T ba), which
could be again queried in the future by the handleWriteAfterReadConflicts
method.

In order not to incur in violations of the Non-redundancy property, we take
one additional measure: if T ji detects that the conflict affects the r − th read
of transaction T ba , and T ba was activated due to a fork/respawn of some sibling
transaction T ca occurred upon T ca ’s k-th read (i.e. the value of generatingRead
for T ba is k), where r < k, then T ji avoids respawning T ba . In this case, in fact,
since T ba and T ca exhibit the same behavior up to the k− 1-th read, the sibling
transactions spawned by T ba and T ca to deal with a conflict occurring at a read
r < k would observe the same snapshot. It is therefore sufficient to re-spawn
exclusively T ca .

Commit/Abort/Validation. A transaction is considered successfully vali-
dated iff the values read by the transaction during its execution, and stored
within its RS variable, coincide with the values currently stored by the commit-
ted version of the corresponding data item (see validateTransaction method
of Figure 6.5).
The commit method marks the data item versions created by the commit-
ting transaction as the currently committed versions, and then triggers the
abort of any of its sibling transactions through the abort method. When this
latter method is invoked on transaction T ji , it first removes any data items’

versions made available by T ji , and then triggers the cascading abort of any
other transaction, say Tml , having a (possibly indirect) read-from dependency
with the aborting transaction. This is verified by checking if for every valid
δ ∈ D(SP(Tml)) there is a path from T ji to Tml .

Example Scenario. Let us consider an example scenario of execution of SCC
associated with the following history:
H3= { BT 0

1
, RT 0

1
(X), WT 0

1
(X), CT 0

1
, BT 0

2
, RT 0

2
(X), FT 1

2
, WT 0

2
(X), RT 1

2
(X), WT 1

2
(X)}

where we use the notation B
T ji

, R
T ji

, W
T ji

, C
T ji

and F
T ji

, to denote, respec-

tively, begin, read, write, complete (hence not commit) and fork of a trans-
action T ji . We shall assume that the only version for each data item present
in memory is the committed version, and denote with C the identifier of the
last committed transaction. In Figure 6.6.a we show the state of SP(T 0

1) right
after the execution of the read operation on X. Note that, in order to refer to
a merging edge, and distinguish it from a plain edge, we use a dashed arrow,
which in Figure 6.6.a reflects the read-from dependency of T 0

1 from C. Further,

6.3. AN OPTIMAL STR PROTOCOL 65

C

T0
1

C

T02

T0
1

C

T0
2

T0
1

C

T0
2

T0
1

(a) (b) (c) (d)

C

T0
1

T0
2

C

T0
1

T0
2

(e) (f)

T1
2

T0
1

C

(g)

C

T0
1

T0
2

(h)

T1
2

T0
1

CT0
2

(i)

Figure 6.6: SCC Execution for History H3.

within the speculative polygraph SP(T ji), we use the convention of drawing a

double circle to refer to transaction T ji .

Figure 6.6.b shows the state of SP(T 0
2) after the execution of the read

on X, assuming that T 0
2 reads the committed version. Since T 0

1 has already
completed executing (but has not been committed yet) at the time in which T 0

2

performs the read, T 0
2 finds also available the versions created by T 0

1 . Thus,
SP(T 0

2) contains also the asymmetric bipath < (T 0
1 ~ → C), (T 0

2 → T 0
1) >,

which we denoted by adding a circular arc on the common node. Figure 6.6.c
and 6.6.d shows the two directed graphs δ, δ′ ∈ D(SP(T 0

2)). As it can be
seen, the directed graph in Figure 6.6.c, associated with the merging edge
(T 0

1 ~ → C) exhibits a cycle, but since the directed graph in Figure 6.6.d is
acyclic the committed version of X results speculatively visible to T 0

2 .

In Figure 6.6.e we provide the speculative polygraph of T 0
1 after the up-

date performed during the completion phase of T 0
2 (i.e. within the method

handleWriteAfterReadConflicts, that adds the asymmetric bipath b1 =<
(T 0

2 ~→ C), (T 0
1 → T 0

2) > to SP(T 0
1). In Figure 6.6.g, we show the only valid

directed graph in D(SP(T 0
1)), which serializes T 0

1 before T 0
2 . In fact, as shown

in Figure 6.6.f, by considering the merging edge (T 0
2 ~→ C) of b1, and merging

SP(T 0
2) with SP(T 0

1), the resulting speculative polygraph is necessarily cyclic.

Finally, we show in Figure 6.6.h the speculative polygraph of T 1
2 , namely

the transaction forked by T 0
2 upon the read of data item X, and which returns

the version of X written by T 0
1 . Figure 6.6.i shows the only directed graph in

D(SP(T 1
2)) to be acyclic that permits the speculative visibility of the version

written by T 0
1 .

66 CHAPTER 6

6.3.5 Correctness and Optimality Proof

Theorem 1 The history of committed transactions generated by the STR
protocol is 1-copy serializabile.

Proof In STR a process pk ∈ Π commits a transaction T ji only if the cor-
responding Ti has been already TO-delivered, and all the preceding transac-
tions within the TO-deliver order have been committed. Hence, by the Global
Agreement and Global Order properties of Optimistic Atomic Broadcast, it
follows that every correct process pk ∈ Π commits transactions according to

the same ordered sequence Tk={T j
k

i1
, . . . , T j

k

il
, . . . , T j

k

in }, where with the nota-

tion T j
k

il
we denote that the l-th transaction along the sequence of two distinct

processes pk, pk′ ∈ Π, must have the same id, namely il, but may have differ-
ent specIds, respectively jk and jk

′
. Also, any process f that crashes can only

commit a prefix Tf of Tk. Hence, 1-copy serializability follows from that any

transaction T j
k

il
committed by a process pk ∈ Π is deterministically validated

to ensure that every read it issued returned the most recently committed ver-
sion with respect to the execution of a prefix of length l of the sequence Tk.
Lemma 1 Let R

T ji
= {r1(X1), . . .,rk−1(Xk−1)} be the set of k-1 read op-

erations already performed by a speculative transaction T ji . The isVisible

method determines that a version Xs
k of data item Xk is visible by the k-th

read of T ji if and only if there exists a sequential history H in which Ti executes
the same sequence of reads in R

T ji
, returning the same sequence of values seen

by T ji , and Xs
k at its k-th read.

Proof We proceed by showing that the isVisible method returns all and
only the versions that would have been visible by the considered transaction
if this had been executed in a speculative, but view-serializable, history. To
this end we prove the equivalence between the speculative polygraph of T ji ,

namely SP(T ji), and the polygraph P (H) representative of the non-speculative

history that generates the snapshot read by T ji up to the current execution

phase. A speculative polygraph SP(T ji) is equivalent to a polygraph P (H), iff

for each valid directed graph δ = (N,A) ∈ D(SP(T ji)) there exists an acyclic
directed graph δ′ = (N ′, A′) ∈ D(P (H)).

The rules R.1 and R.2 used to construct SP(T ji) ensure that any transaction

that is serialized before T ji (either directly, or indirectly, e.g., through the

merging edge of a speculative bipath) in every directed graph δ ∈ D(SP(T ji))

must have merged its speculative polygraph with the one of T ji in δ. This

implies that for any δ ∈ D(SP(T ji)) there exists a one-to-one correspondence
with a directed graph δ′ ∈ D(P(H)) where P is the polygraph associated
with the history H obtained considering all and only the transactions that are

6.3. AN OPTIMAL STR PROTOCOL 67

serialized (possibly indirectly) before T ji based on the snapshot observed by

T ji up to the current stage of execution. Also, since the isVisible method

considers a data item version Xs speculatively visible to transaction T ji only

if, by condition C.2, there are no two sibling transactions T ra , T
q
a preceding T ji ,

the above history H is guaranteed to contain at most one instance of a given
transaction. Hence for any δ for which condition C.2 holds, the corresponding
historyH constructed as discussed above, is representative of a non-speculative
history. Note however that the directed graph δ ∈ D(SP(T ji)) may contain a
set S of vertexes not present in its corresponding δ′ ∈ D(P(H)), each vertex
being associated with a speculative transactions T ′ such that:

− it created a version Xa of some data item X for which a read r(X)
operation was issued either by T ji , or by any transaction T rs preceding

T ji ∈ δ, and such that r(X) returned a different version Xb, and

− its speculative polygraph SP(T ′) prevents to serialize T ′ before T ji (via a
plain merging edge or through the merging edge of a speculative bipath)
because, in the resulting speculative polygraph SP*, every directed graph
δ ∈ D(SP∗) would not be valid.

Recalling that, by rule R.2, each time we serialize a transaction that creates
a data item version Xb after a transaction that reads a data item version
different from Xb, we do so via a simple (i.e. non-expanding) edge of a
speculative bipath, it follows that all the vertexes in S must be sink nodes
(i.e. they have no outgoing edges). However, since S is composed exclusively
of sink vertexes, their presence in SP(T ji) is not influential for the generation

of cycles in any directed graph δ ∈ D(SP(T ji). This ensures the equivalence

between SP(T ji) and the polygraph P (H) representative of the non-speculative

history that generates the snapshot read by T ji up to the current execution
phase. Also, recalling that a history H is view-serializable if and only if P(H)
is acyclic, it follows that the isVisible method returns all and only the
versions that would have been visible by the considered transaction if this
had been executed in a speculative, but view-serializable, history.

Theorem 2 (Consistency) The history of execution of each speculative
transaction in Σ′ is view-serializable.

Proof Derives directly by Lemma 1 and from that a read operation of a
speculative transaction returns a data item’s version only if this is deemed
visible by the isVisible method.

Theorem 3 (Non-redundancy) No two sibling transactions in Σ′ observe

68 CHAPTER 6

the same snapshot.

Proof In this proof we denote with generatorOf(T ba) the transaction Tml , if any,
that caused the activation (via either a fork or a respawn) of the speculative
transaction T ba , and with generatorOf∗ the transitive closure of the generatorOf
relation.

Let us now consider any two sibling transactions T ji and T ki . The following
three cases are possible:

1. generatorOf(T ki)= T ji (or alternatively generatorOf(T ji)=T ki). In this

case, T ji forked T ki while executing a read operation on some data item
X, for which there was a set S = {X1, . . . , Xn} of speculatively visible
data item versions. In this case, T ji and T ki necessarily returned two
different versions of data item X, therefore the two transactions neces-
sarily observe distinct snapshots. Clearly, the same considerations apply
if generatorOf(T ji)=T ki . Hence the claim follows.

2. Neither generatorOf(T ki)=T ji , nor generatorOf(T ji)=T ki , but T ki ∈
generatorOf∗(T ji) (or alternatively T ji ∈ generatorOf∗(T ki)). In this
case, it is possible to determine a chain of sibling transactions

(T ji ,T j
1

i ,. . . ,T j
n

i ,T ki), where:

T j
i =generatorOf(T j1

i), . . ., T jn−1

i =generatorOf(T jn

i), T jn

i =generatorOf(T k
i)

such that each transaction in the n-th position of the chain forks the
(n+ 1)-th sibling transaction of the chain. It follows that the snapshots
seen by T ki and T ji differ at least for one read data item, namely the

one which caused T ji to fork T j
1

i . The same considerations apply by

switching the roles of T ki and T ji . Hence the claim follows.

3. T ki 6∈ generatorOf∗(T ji) and T ji 6∈ generatorOf∗(T ki). With no loss

of generality let us focus on T ji , and let T ba be the transaction that

caused the activation of T ji , i.e. generatorOf(T ji)=T ba where a 6= i.
This is only possible if T ba completed its execution, which encom-
passed the issuing of a write on data item X, after some transaction
T si carried out the read of X, say, as its t−th operation. Also, dur-
ing the execution of the completed method by transaction T ba , the
handleWriteAfterReadConflicts method must have detected that the
version written by T ba could have been speculatively visible by T si at the

time it issued the read on X. This has caused the spawning of T ji .

Now assume by contradiction that there exists a transaction T ki which

sees the same snapshot of T ji . This implies that the first t reads of

6.3. AN OPTIMAL STR PROTOCOL 69

T ki must return the same sequence of data items’ versions returned by

the first t reads of T ji . However, T ji won’t fork any sibling transaction
during the execution of its first t reads, being these simply replayed
from T ji ’s read set. Also, no transaction T ∗ could cause the re-spawning

of T ji by making available a new version of a data item read by T ji
during any of its first t reads (this is avoided by an explicit guard in the
handleWriteAfterReadConflicts). Hence, for T ki to return, during its

first t reads, the same sequence of data items’ versions returned by T ji ,

it means that T ki was forked by T ji during its t′-th read, where t < t′.
In such a scenario we should have fallen in case 1 above, hence the
assumption is contradicted and the claim follows.

Theorem 4 (Completeness) If the system is quiescent then for every per-
mutation σ ∈ π(Σ) and for every transaction Ti ∈ Σ, there eventually exists
a speculative transaction T ji ∈ Σ′ that executes on (i.e. observes) the same
snapshot that would have been produced by sequentially executing all the trans-
actions preceding Ti in σ.

Proof Let us denote with Tc the last committed transaction by the STR
protocol over time. Given that by the protocol structure no transaction can
ever be committed before it is TO-delivered, and given that the system is
quiescent, eventually, Tc does not vary over time. Also, by the definition of Σ
and by the system’s quiescence, Tc /∈ Σ.

Let us now consider whichever permutation σ of the transactions belonging
to Σ. The proof is carried out by induction on the number n of transactions
preceding Ti in σ.
(n=0) In this case no transaction belonging to Σ precedes Ti according to a
sequential execution, and Ti sees the snapshot produced up to the commit
of transaction Tc. Hence, we have to show that, eventually, a speculative
transaction T ji completes its execution reading the snapshot produced by Tc
and by the transactions which committed before Tc. By the structure of
the SRT protocol, such a snapshot corresponds to the snapshot upon the
completion of Tc. Recall that, always by the structure of the STR protocol,
at least one transaction T ji eventually exists since Ti has been Opt-delivered
(given that it belongs to Σ). There are two cases:

1. The transaction T ji that is activated upon the Opt-deliver of Ti performs
its first read after the commit of Tc and of every transaction T ∗ preced-
ing Tc in the final TO-deliver order. We recall that at this time there
exists for each data item a version created by Tc or by any transaction
that committed before Tc. Given that the history in which T ji reads

70 CHAPTER 6

exclusively the committed versions of the data items is clearly serial-
izable, upon the first read operation by T ji on whichever data item X,
by Lemma 1 the isVisible method makes the committed version of X
visible. Assume, without loss of generality, that T ji exactly returns the
committed version of X, while other uncommitted versions of X, if any,
are returned by sibling transactions T ki forked upon such a read opera-
tion. Since the committed version of a data item always exists, we can
apply the same reasoning upon the second, and any other subsequent
read operation on whichever data item by T ji . Hence, T ji actually sees
the committed snapshot while performing all its read operations. This
corresponds to the snapshot observed by Ti, hence the claim follows.

2. The transaction T ji that is activated upon the Opt-deliver of Ti performs
its first read before Tc, or some transaction T ∗ preceding Tc in the final
TO-deliver order has committed. In this case, if T ji does not read any
of the data items written by Tc or by T ∗, by the same reasoning of the
above case, it will complete observing a committed snapshot equivalent
to the one generated by executing sequentially all the transactions up to
Tc according to the final TO-deliver order. If, conversely, T ji reads any
of the data items written by Tc or by T ∗, by the STR protocol structure,
T ji will be eventually aborted upon Tc’s or T ∗’s commit, and a new
speculative transaction instance T ki will be restarted. Hence, eventually
a transaction T ki will be activated after the commit of all the transactions
that precede Ti in the final TO-deliver order, thus leading us to fall in
case 1 above. Hence, in any of the discussed cases, the claim follows.

(n=m) Let us consider the subsequence of m transactions that precede Ti in
σ. Let us denote with T1, T2, . . . , Tm such a subsequence of transactions.
By the inductive assumption, it follows that there is a time t after which,
∀j ∈ [1 . . .m], a completed transaction T jkj exists that has executed observing
the snapshot generated by the execution of the sequential transaction history
Tc, T1, T2, . . . , Tj−1. We now prove that for Ti, being it the (m + 1)th

transaction in σ, there eventually exists a transaction T pi that completes its
execution observing the snapshot generated by the sequential execution of the
transaction history H = {Tc, T j11 , T j22 , . . . , T jmm }.

Let t be the earliest time in which a speculative transaction T pi performs
its first read operation and assume, with no loss of generality, that the read
operation is on data item X. If at time t, all the transactions belonging to
the history H are already completed, by Lemma 1 T pi will be able to see the
version of X created by the last transaction in H that wrote X. On the other
hand, if at time t not all the transactions in H have completed, it might
happen that a transaction T jkk ∈ H generates a new version Xk of the data

6.3. AN OPTIMAL STR PROTOCOL 71

item X, and makes it available with TS only after T pi issues the read on X. In

this case, by the structure of the STR protocol, T jkk will eventually respawn
a sibling transaction of T pi that will read Xk. In both cases, there exists a
transaction T qi that eventually reads the data item version created by the most
recent transaction in H that wrote X. By re-applying the same reasoning to
the subsequent reads of T qi , we have that eventually there is a transaction Twi
that completes by observing the snapshot produced by the execution of the
sequential history H. Hence the claim follows.

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14

Sp

ec
ul

at
iv

e
Tr

an
sa

ct
io

ns
 (n

)

Opt-Delivered Msgs (m)

Blind Speculation
STR: (A)
STR: (B)
STR: (C)

(a)

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

 2 4 6 8 10 12 14

#S
pe

c.
 T

ra
ns

ac
tio

ns
 /

#O
pt

-D
el

iv
er

ed
 M

sg
s

Opt-Delivered Msgs (m)

Blind Speculation
STR: (A)
STR: (B)
STR: (C)

(b)

Figure 6.7: #Speculative Transactions vs #Opt-delivered Msgs.

72 CHAPTER 6

6.3.6 Dealing with Read-Only Transactions

As in other OAB-based transactional replication solutions, when employing
the STR protocol, read only transactions can be processed locally by each
replica.

To this end, a simple approach would consist in running read-only transac-
tions in a purely optimistic fashion, letting them always read the most recently
commit data items’ versions and relying either on an a-posteriori (at commit
time), rather than eager (at each read) validation. This solution requires main-
taining at any time only a single committed version of the data items, albeit
at the cost of incurring in aborts of read-only transactions.

An alternative solution, exhibiting specular benefits and drawbacks, would
consist in ensuring that a read-only transaction is always able to observe the
snapshot created by the transactions already committed when it started. This
would shelter read-only transactions from the chance of aborting, though forc-
ing TS to maintain multiple committed versions of each data item.

6.4 Simulation Results

The optimality of an STR protocol, as expressed in Section 6.2, ensures the
ability of the protocol to explore the minimum set of distinct serialization or-
ders that suffices to guarantee the “coverage” of any arbitrary final delivery
order established by the OAB service. Clearly, given a number m of optimisti-
cally delivered transactions, the optimal number n of speculative transactions
that have to be spawned to ensure complete coverage is a function of the ac-
tual conflict patterns among transactions. Also, the value of n has a direct
impact on the computational resources that need to be employed both to carry
out the speculative execution and to handle any house-keeping data structure,
whose size may vary as a function of n. By this consideration, if for realistic
transaction data access patterns, the growth of n (with respect to m) happens
to be moderate, we can argue that an implementation of a protocol providing
optimality is likely prone to incur in a relatively bounded overhead (e.g. due to
bounded size of house-keeping data structures), while exhibiting the potential
for real performance improvements (e.g. via latency reductions in delivering
the results of transactional data manipulations to the application layer).

The simulation study presented in this section addresses effectiveness issues
exactly according to the above perspective, hence in a manner independent
of any specific technology or design style for the internals characterizing the
transactional system. In particular, our target is to gain insights on the prac-
tical relevance of our proposal by experimentally determining, the actual rate
of growth of the optimal number of speculative transactions as a function of
the number of optimistically delivered transactions, when considering realistic

6.4. SIMULATION RESULTS 73

settings for both the size of the data set and the transaction logic (e.g. in terms
of data access pattern). As a final preliminary note, the simulation study is
framed within the context of Software Transactional Memory systems.

To this end we have developed a simulator which can be fed with:

(i) a number m of optimistically delivered transactions, treated as an inde-
pendent parameter in our study;

(ii) traces of those m transactions accessing a specific data set.

Once started up, the simulator runs our STR protocol by activating the whole
(and optimal) set of n speculative transactions necessary to ensure the com-
plete coverage of the (conflict dependent) speculative serialization orders re-
lated to the different delivery orders associated with the m optimistically de-
livered messages.
Data access patterns of the transactions running within the simulation is de-
termined by using traces of the popular RedBlack Tree benchmark for Trans-
actional Memories introduced in [42].

Since read-only transactions can be handled within the replicated system
via solutions aside of speculation schemes proper of our protocol (see Section
6.3.6), in our simulation experiments we consider a mix containing exclusively
update transactions performing, with equal probability, either an insertion or
a delete of an entry of the RedBlack Tree. Given that the aim of the simulation
study is to determine the rate of growth of n vs m by observing the protocol
evolution in a phase which mimics quiescence, the timing of actions from the
traces becomes not relevant. Hence, each read/write operation is modeled as
having a fixed fictitious cost of one simulation time unit.

As for the data set, the RedBlack Tree benchmark is characterized by
two parameters, namely the initial size, init, and the maximum size, max, of
the tree, variations of which allow to vary the probability of conflict among
transactions (the larger is the size of the tree, the least is the conflict proba-
bility among transactions accessing the tree). To evaluate the STR protocol
in scenarios representative of different conflict probabilities, we consider three
different settings for these two parameters:

(A) init=32, max=1024;

(B) init=128, max=2048;

(C) init=1280, max=20480.

The plots in Figure 6.7.a contrast the number, n, of speculative transactions
activated by our STR protocol, with the number of transactions that would
have been activated by a naive speculative approach that does not take into

74 CHAPTER 6

account the actual conflict relations developed at run-time by the transactions.
As recalled in Section 6.2, such a number of speculative transactions is given
by the expression

∑
i=1...m

m!
(m−i)! .

In the plots, we report the value of n while varying the number m of opti-
mistically delivered messages between 2 and 15. The plots clearly highlight
the effectiveness of the optimal STR protocol in reducing the number of se-
rialization orders that need to be speculatively explored in every considered
scenario.
When m is equal to 10, for instance, n is equal to around 10 millions for the
blind speculative approach, whereas it varies between 15.6 and 17.7 for the
optimal STR protocol. Figure 6.7.b allows us to visualize these data from a
different perspective. By reporting the ratio between n and m, we can quan-
tify the amount of speculative transactions that the system should process in
order to ensure completeness, with respect to a non-speculative system which
exactly processes a single transaction for every Opt-delivered message (e.g. by
processing it only after the corresponding TO-deliver).
The plots show that, as long as m is less than 5, such a ratio is flat around the
value 1 for the STR protocol. On the other hand, if m grows up to 10, with
the STR protocol it suffices, on average, to execute each transaction in no
more than two different serialization orders. Finally, with m = 15, depending
on the considered contention scenario, it would be necessary to explore, on
average, between 2.5 and 5 different serialization orders per transaction.

As we have pointed out, non-speculatively replicated transactional sys-
tems wait for the completion of the distributed coordination scheme before
transaction processing activities are carried out. Hence, beyond impacting
the latency of transaction completion (and related result delivery) they may
also suffer from CPU under-utilization (as shown in Section 4.2), especially
in fine grain transactional contexts. The latter phenomenon could even be-
come more evident according to the trend of having machines based on the
many-core architectural paradigm.

By the above simulation results, the proposed speculative replication ap-
proach can lead to exploit such idle computational resources in a fruitful man-
ner since the reduced amount of speculatively explored serialization orders
(compared to any blind scheme not accounting for actual conflicts among
transactions) would allow avoiding thrashing. In other words, it is our belief
that the above data strongly support the practical relevance of our optimal
STR framework/protocol, thus establishing it as a reference for the design
and development of replicated OAB-based transactional systems relying on
the systematic exploitation of transaction speculation.

Chapter 7

Changing the Perspective:
Speculating According to an
Opportunistic Paradigm

Clearly, serializing the optimistically delivered transactions according to the
optimistic message delivery order does not pay-off in case of non-minimal like-
lihood of mismatch between optimistic and final message ordering. In such a
case, in fact, optimistically processed transactions may have to be aborted and
restarted right after OAB completion, thus nullifying any performance gain
associated with their early activation. Unfortunately, ordering mismatch is
more likely to occur at high load, which leads the aforementioned approaches
to lose their effectiveness precisely when the increased workload would have
instead demanded an increased efficiency in order to ensure adequate perfor-
mance. Experimental data provided in [51] show in fact that, even in case of
latency-predicable networks like LANs, the spontaneous order property typi-
cally holds only for normal load periods, but it is quite unlikely to hold when
the load tends to become heavy.

In order to cope with this issue, the approach described in Chapter 6 pro-
poses the idea to speculatively explore the entire set of serialization orders
in which optimistically delivered transactions would observe different snap-
shots (i.e. states) of the underlying transactional system. Such a complete-
exploration approach ensures the ability to eventually guess any actual order
established by the OAB service, provided the availability of sufficient time and
computational resources.

In this chapter we change our view point and presented a novel active repli-
cation protocol for transactional systems based on an opportunistic paradigm,
which we name OSARE, namely Opportunistic Speculation in Active REplica-
tion. Similarly to the one presented in Chapter 5, OSARE maximizes the over-

75

76 CHAPTER 7

lap between replica coordination and transaction execution phases by propa-
gating, in a speculative fashion, the (uncommitted) post-images of completely
processed, but not yet finally delivered, transactions across chains of conflicting
transactions. However, the rules according to which the speculated serializa-
tion orders are selected in OSARE are completely different from any existing
literature solution, and also from the approach presented in Chapter 6. To
maximize concurrency, OSARE activates the processing of a transaction, say
T , as soon as it is optimistically delivered and attempts to serialize it after any
previously optimistically delivered transaction, say T ′. Clearly, this attempt
may fail, given that, at the time in which the processing of T is activated, T ′

may still be running. Therefore, the read operations issued by T may miss the
values generated by T ′, an event that we refer to as “snapshot-miss” in the
following. In such a case, OSARE does not abort and restart T to ensure that
its serialization order is aligned with the optimistic message delivery order.

Conversely, OSARE takes advantage of the occurrence of snapshot-miss
events in an opportunistic fashion, by exploring additional serialization or-
ders not only for T , but also for any transaction originally serialized after
T whose execution may be affected, possibly transitively, by the snapshot-
miss involving T . Also, OSARE biases the speculative exploration towards
the serialization order aligned with the optimistic message delivery order, by
triggering the (re-)activation of a new instance of T (and, recursively, of the
transactions having developed a read-from dependency from T) as soon as it
detects T ’s snapshot-miss.

The OSARE respawning logic guarantees that freshly activated transac-
tions are correctly serialized after T ′, thus avoiding redundant executions of
multiple instances of the same transaction observing identical snapshots. In
addition, OSARE is designed to guarantee that, for each transactional re-
quest delivered by the OAB service, there eventually exists one speculative
transaction instance whose view of the serialization order is aligned with the
optimistic delivery order.

It is worthy to highlight that the likelihood of snapshot-miss events is
higher in high concurrency scenarios, namely when the inter-arrival time of
optimistic deliveries is relatively short compared to transaction processing la-
tency. Interestingly, these scenarios are precisely those in which the probability
of mismatches between the optimistic and final message delivery orders, and
consequently the added value of exploring additional speculative serialization
orders, is higher. The ability of OSARE to adjust adaptively its degree of spec-
ulation on the basis of the current level of concurrency in the system represents
a unique, innovative feature, which, to the best of our knowledge, does not
appear in any literature result in the field of actively replicated transactional
systems. Also, such an ability points out a tradeoff between OSARE and the
STR protocol provided in Chapter 6, where OSARE is designed according to

7.1. SYSTEM MODEL 77

a perspective that surely looks more pragmatical.

We assess the performance of OSARE via an extensive simulation study.
Our simulation model relies on traces collected by running well known bench-
marks for Software Transactional Memory systems (STM) [15, 42], and the
APPIA [55] group communication toolkit. Our experimental study highlights
the effectiveness of the opportunistic speculative approach pursued by OS-
ARE, showing that, when the probability of mismatch between optimistic and
final delivery in non-minimal, it can provide up to 160% response-time speedup
compared to the protocol described in Chapter 5, which entails speculation
limitedly to the serialization order associated with the optimistic delivery se-
quence.

7.1 System Model

The OSARE system model is compliant with one presented in Chapter 3. How-
ever, in order to ease the protocol presentation and simplify its understanding,
we introduced some additional features.

Firstly, we add to the functionalities of the Speculative Concurrency Con-
trol (SCC), the function Complete(), used to explicitly inform the Speculative
Transaction Manager (SXM) about the completion of the execution of a trans-
action.

Further, the Transactional Store (TS) has been enriched with two primi-
tives to manipulate data item versions that are:

− setComplete(XT,T), which marks a data item version XT written by
transaction T as complete;

− unsetComplete(XT,T), which is used for removing a complete data
item version XT originally exposed by transaction T .

7.2 The OSARE Protocol

In this section is provided the description of the OSARE protocol, by first
introducing some key notations and data structures and then discussing the
protocol pseudo-code.

7.2.1 Protocol Notations and Data Structures

The OAB service delivers transactions, each of which is denoted as Ti in our
protocol. OAB delivered transactions are however never directly executed
by SCC, which, conversely only executes speculative transaction instances,
denoted using the notation T ji .

78 CHAPTER 7

Each transaction T ji speculatively executed by OSARE keeps locally track
of its own serialization view, defined as the totally ordered sequence of trans-
actions that are expected to be serialized before T ji . The construction of the
per-transaction view of the serialization order relies on two main data struc-
tures:

− OptDelivered: a global list of speculative transaction identifiers, accessi-
ble by all the transactional threads;

− T ji .SpeculativeOrder: a local list of speculative transaction identifiers
which is associated with the transactional thread currently handling
transaction T ji .

The sequence of speculative transactions recorded within T ji .SpeculativeOrder

expresses, on the basis of the view by T ji , the order according to which specula-

tive transactions preceding T ji should be serialized. This determines a history

of speculative transactions whose snapshots may be visible by T ji ’s read oper-
ations.

We use the notation T hk
T ji→ T ts to indicate that T hk precedes T ts within the

ordered list T ji .SpeculativeOrder. This expresses that, according to the view of

T ji :

1. T hk and T ts belong to the same speculative history of transactions;

2. T hk and T ts are both expected to be serialized before T ji ;

3. T hk is expected to be serialized before T ts .

By convention, the special transaction identifier Tωα represents the minimum

element for the
T ji→ relation for whichever transaction T ji . This notation is used

to encapsulate the history of already committed transactions that, according

to T ji ’s view of speculative serialization expressed via the relation
T ji→, must

necessarily be serialized before T ji and before any transaction belonging to

T ji .SpeculativeOrder.

Always by convention, T ji represents the maximum element of the
T ji→ relation.

Overall, denoting with (T h1k1 , . . . , T
hn
kn

) the sequence of transactions recorded

within T ji .SpeculativeOrder, we have: Tωα
T ji→ T h1k1

T ji→ . . .
T ji→ T hnkn

T ji→ T ji .

The global list OptDelivered maintains the transaction identifiers whose
speculative serialization view is aligned with the order of optimistic deliveries
generated by the local OAB service. An addition to this list occurs upon

7.2. THE OSARE PROTOCOL 79

the Opt-delivery of a transaction Ti by appending, to the tail of the list,
the identifier of the first instance of speculative transaction associated with
Ti, which by convention we denote as T 0

i . Before such an update occurs,
T 0
i .SpeculativeOrder is populated with the current content of OptDelivered. In

this way, T 0
i is provided with a view of the speculative serialization order which

is (at least upon its activation) aligned to the one associated with the current
sequence of optimistically delivered transactions.

The global list OptDelivered is also updated when a commit occurs for
an already TO-delivered transaction. In this case one element is eliminated
from the list, reflecting the fact that the corresponding speculatively executed
transaction has been finalized. If the element is not the top standing one, it
means that some TO-delivery has subverted the Opt-delivery order.

A third type of update of OptDelivered occurs when a transaction T ji cur-
rently recorded within this list is discovered to have been actually executed
along a speculative serialization order that diverges from the one currently
expressed by the list content. As we will see, in this case, a new instance of
speculative transaction T ki is spawned, substituting T ji within that list (possi-
bly recursively causing other spawns and substitutions). This is done in order
to guarantee the existence of a speculative transaction instance that is being
processed in a serialization order compliant with the order expressed by the
currently optimistically delivered transactions.

7.2.2 Protocol Logic

The protocol pseudo-code is shown in Figures 7.1 and 7.2, and is discussed in
the following.

Optimistic delivery of transactions.

Upon the Opt-deliver event of a transaction Ti, the SXM instantiates a
speculative transaction T 0

i , and then sets up the serialization order to be seen
by this new transaction instance by copying the current content of OptDeliv-
ered into T 0

i .SpeculativeOrder. Next, the SXM appends T 0
i ’s identifier within

the global list OptDelivered to reflect that at least one instance of speculative
transaction associated with Ti exists, and that it should be serialized at the
tail of the sequence of speculative transactions currently recorded within the
OptDelivered list. Finally, the SXM passes the control to SCC for processing
T 0
i transaction activities by invoking the ActivateSpeculativeTransaction

function with T 0
i as input parameter. The latter function also adds T 0

i to the
set of active transactions ActiveXacts.

Handling of read and write operations.

80 CHAPTER 7

OrderedList<Transaction> TODelivered, OptDelivered;
Set<Transaction> ActiveXacts;

upon Opt-deliver(Transaction Ti) do
T 0
i =Ti.createNewSpecXact();
T 0
i .SpeculativeOrder = copy(OptDelivered);

OptDelivered.enqueue(T 0
i);

ActivateSpeculativeTransaction(T 0
i);

void ActivateSpeculativeTransaction(Transaction T si)
ActiveXacts.add(T si);
start processing thread;

DataItemValue Read(Transaction T si , DataItem X)
if (X ∈ T si .WriteSet) return T si .WriteSet.get(X).value;

select version of X completed or committed by T tj = max{T fj
Ts
i→ T si };

// the committed version is written by Tωα by definition
T si .ReadSet.add(X);
T si .ReadFrom.add(T tj);

return T si .ReadSet.get(X).value

void Write(Transaction T si , DataItem X, Value v)
if (X ∈ T si .WriteSet) T si .WriteSet.update(X, v) ;
else T si .WriteSet.add(X, v);

void Complete(Transaction T si)
atomically do
T si .isCompleted = TRUE
∀X ∈ T si .WriteSet do setComplete(X,T si);
∀ T tj s.t. (∃X ∈ T tj .ReadSet: (X ∈ T si .WriteSet and

T si = max{T fl : T fl
T t
j→ T tj exposing a complete version of X}) do

TxIdj =Tj .createNewSpecXact();

TxIdj .SpeculativeOrder = copy(T tj .SpeculativeOrder);

T tj .SpeculativeOrder.remove(T si); / reflects the snapshot-miss of T tj
if (T tj ∈ OptDelivered) OptDelivered.replace(T tj , T

xId
j);

wave(T tj ,TxIdj ,T si);

wait until TODelivered.topStanding == Ti;
if (∀X ∈ T si .ReadSet: X.version == LatestCommitted) T si .RaiseEvent(Commit);
else T si .RaiseEvent(Abort);

void wave(Transaction T tj , Transaction TxIdj , Transaction T si)

∀T fl s.t. T tj ∈ T
f
l .ReadFrom do

TxId
′

l =Tl.createNewSpecXact();

TxId
′

l .SpeculativeOrder = copy(T fl .SpeculativeOrder);

TxId
′

l .SpeculativeOrder.replace(T tj ,T
xId
j);

T fl .SpeculativeOrder.remove(T si);

if (T fl ∈ OptDelivered) OptDelivered.replace(T fl , T
xId′
l);

wave(T fl ,TxId
′

l ,T si)
∀T gl s.t. (T tj ∈ T

g
l .SpeculativeOrder and T tj /∈ T

g
l .ReadFrom) do

T gl .SpeculativeOrder.replace(T tj ,T
xId
j);

ActivateSpeculativeTransaction(TxIdj);

Figure 7.1: Behavior of SCC (Part A).

7.2. THE OSARE PROTOCOL 81

upon TO-Deliver(Transaction Ti) do
TODelivered.enqueue(Ti);

upon Abort(Transaction T si) do atomically
∀X ∈ T si .WriteSet do unsetComplete(X,T si);
∀Thj ∈ActiveXacts s.t. j 6= i and T si ∈ Thj .SpeculativeOrder do

Thj .SpeculativeOrder.remove(T si);

∀Thj s.t. T si ∈ Thj .ReadFrom do Thj .RaiseEvent(Abort);

ActiveXacts.remove(T si);

upon Commit(Transaction Tki) do atomically
ActiveXacts.Remove(Tki);
∀X ∈ Tki .WriteSet do Tki .WriteSet.Commit(X);
TODelivered.Dequeue(Ti);
OptDelivered.Remove(T ∗i);
∀Thi ∈ActiveXacts s.t. h 6= k do Thi .RaiseEvent(Abort);
∀Thj ∈ActiveXacts s.t. j 6= i and Tki ∈ Thj .SpeculativeOrder do

Thj .SpeculativeOrder.remove(Tki);

∀Thj ∈ActiveXacts s.t. Tki ∈ Thj .ReadFrom do Thj .RaiseEvent(Validate);

upon Validate(Transaction Tki) do
∀X ∈ Tki .ReadSet do

compute Thj = max{T fl : T fl
Tk
i→ Tki and X ∈ T fl .WriteSet};

if (Tki .ReadSet.get(X).Creator 6= Thj)

Tki .RaiseEvent(AbortRetry);
break;

upon AbortRetry(Transaction T si) do atomically
∀X ∈ T si .WriteSet do unsetComplete(X,T si);
∀Thj s.t. T si ∈ Thj .ReadFrom do Thj .RaiseEvent(AbortRetry);

restart transaction T si ;

Figure 7.2: Behavior of SCC (Part B).

82 CHAPTER 7

When a transaction T si issues a read operation on a data item X, the
SCC verifies whether a version of X belongs to the write set of the reading
transaction. In the positive case, the written value is returned (ensuring
that the read operation returns the version of X associated with the last
write issued by T si during its execution). On the other hand, if T si has
not previously issued a write on X, the precedence relation associated with
T si .SpeculativeOrder is used in order to determine which version of X that
should be made visible to T si . To this end it is used a simple rule that allows
identifying the most recent version exposed by a completed or committed
transaction according to the serialization view of T si .
Specifically, it is determined the maximum speculative transaction T tj

preceding T si according to the
T si→ relation, which has:

(i) written X, and

(ii) already completed its execution.

The logic associated with a write operation of a transaction T si on a data item
X is also very simple: the SCC simply stores the updated value of X into the
write-set of the writing transaction. As we will see, the data item versions
generated by a transaction T si are in fact made all atomically visible to the
remaining speculative transactions only once that T si reaches its completion
phase.

Completion of speculative transactions.

The core of the OSARE protocol is represented by the logic handling
the completion of a speculative transaction. Specifically, when the Complete
method is executed by the SCC for transaction T si , each data item version
created (i.e. written) by T si is made speculatively visible by setting its state
to the complete value. Before making the snapshot produced by T si visible,
however, it is first checked whether every transaction T tj that, according to
its serialization view, is serialized after T si , is still correctly executing along
that order, or whether it has instead missed the snapshot generated by the
execution of T si .
More in detail, a snapshot miss event is detected in case:

(i) T si wrote some data item X for which T tj has already issued a read
operation;

(ii) T si is the last speculative transaction to have written X among those in
T tj ’s speculative view.

7.2. THE OSARE PROTOCOL 83

In this case, in fact, T tj has observed a different version of X, despite, according
to its serialization view, it should have observed the version of X generated by
T si . A snapshot is detected if T tj should have seen the version that T si wrote,
but it has observed some different version of X . In this case we are in the
presence of a snapshot-miss event, since the current serialization view of T tj
has not been respected, given that it did not observe the data item version
that it should have read from T si .
The following three actions are taken to handle a snapshot-miss event.

1. A new speculative instance T xIdj is activated, setting its serialization
view to be equal to the one currently associated with T tj . Given that T si
has now reached completion, the new instance T xIdj , during its execution,
is guaranteed not to miss the snapshot produced by T si .

2. The serialization order of T tj is then updated by removing T si (namely the
transaction whose write operation T tj missed) from T tj .SpeculativeOrder.
Next, if T tj was originally recorded within OptDelivered, it is replaced by

T xIdj within this list. This reflects the fact that T tj is known not to be
any longer in a serialization order compliant with that of the optimistic
message delivery order, and that there is now a new incarnation of Tj ,
namely T xIdj , which will be activated (in the wave, see the next point)
in order to pursue this serialization order.

3. The snapshot-miss event is recursively propagated via the wave() method
(described shortly afterwards) across chains of transactions that were
transitively serialized (according to their own serialization view) after
the transaction T tj involved in the snapshot-miss event.

After having handled all the snapshot-miss events detected upon its com-
pletion, T si simply remains waiting for the corresponding transaction Ti
to be TO-delivered, and to become the top standing element within the
TODelivered queue. As it be clearer in the following, this means that for any
transaction Tj , which was TO-delivered before Ti, there exists a corresponding
speculatively executed transaction T ∗j that has been already committed.
Hence T si can now be safely validated (by verifying whether it has read data
items belonging to the latest committed snapshot) and, depending on the
validation’s outcome, a commit, or an abort, event is raised to finalize the
commit, or the abort, of the speculative transaction.

Recursive propagation of snapshot-miss events.

As we have just explained, the completion of a transaction T si can trig-
ger a series of snapshot-miss events involving transactions T tj , which,

84 CHAPTER 7

according to their serialization view, should have observed the value of a data
item updated by T si when executing a read operation and that have instead
observed a version of that data item created by a different transaction. In
this case T tj ’s speculative view is updated (removing T si from it) to reflect
the occurrence of the snapshot-miss event, and a new speculative instance
of transaction Tj , namely T xIdj is activated that will be guaranteed not to
miss the snapshot created by T si . In order to pursue, on one hand, the
opportunistic exploration of additional serialization orders, and, on the other
hand, the completion of a sequence of transactions serialized in an order
compliant with the optimistic message delivery order, OSARE transitively
propagates the handling of the snapshot-miss event via the wave method.
The transaction T tj , in fact, may have already completed its execution and

exposed its snapshot to a different speculative transaction, say T fl . In this

case, even if T fl had not missed the snapshot generated by T si , it is still
transitively involved by the snapshot-miss event affecting T tj . Analogously to

T tj , therefore, T si needs to be removed by the speculative view of T fl . Further,
in order to pursue the exploration of a serialization order compliant with the
optimistic message delivery order, a new speculative instance of Tl, namely
T xId

′
l , needs to be activated, which should now include in its serialization

view T xIdj .

Finally, just like in the Complete method, it is verified if T fl was considered
to be serialized in an order compliant with the optimistic delivery order (by
checking whether it is included in OptDelivered). In the positive case, the

OptDelivered sequence needs to be updated, replacing T fl with T xId
′

l , reflecting
the fact that it is now the latter one to be expected to be serialized according to
the optimistic delivery order. Note that the wave method relies on an elegant
recursion technique to ensure the complete propagation of the snapshot-miss
across the whole set of transactions that have established a transitive read-
from relationship from T tj . Upon returning from the recursive call, the SCC

substitutes T tj with T xIdj from the speculative view of every transaction T gl
that:

(i) contained T tj in its speculative view, and

(ii) did not develop a read-from dependency from T tj .

This is necessary in case T gl is still active, in order to ensure that during its
subsequent reads, it will be able to observe the snapshot generated by T xIdj ,
thus correctly realigning T gl ’s speculative view towards the serialization order
compliant with the optimistic message delivery oder.
Finally, activation of processing activities for the spawned transaction T xIdj

takes place right before returning from wave().

7.2. THE OSARE PROTOCOL 85

Final delivery of transactions.

As for the handling of final delivery events, the associated logic only
entails the enqueuing of the delivered transaction within TODelivered. This
ensures that the corresponding placeholder is sequentialized after all the
already TO-delivered ones and regulates that all the replicas validate (and
ultimately commit) transactions in the same total order.

Abort and Commit Events.

The handling of the abort event simply removes the aborting transac-
tion from the set ActiveXact and from any speculative order currently
recording the transaction identifier. It also propagates the abort event
towards all the transactions having read-from dependency from the currently
aborting transaction.

A bit more sophisticated is the handling of the commit event. In this case,
the committing transaction identifier T ki is removed from ActiveXacts, and
every data item it wrote is marked as committed. Then, the corresponding
transaction Ti is dequeued from the TODelivered list. This can cause another
TO-delivered transaction to become the top standing transaction of this list,
eventually enabling the commit of one of its corresponding speculative in-
stances.
Next, whichever transaction instance T ∗i currently present within OptDelivered
is removed from this list, in order to ensure that instances of Ti are no longer to
be considered as belonging to the speculative portion of the serialization order
associated with the sequence of optimistically delivered transactions. Further,
the abort event is raised for all the transactions different from T si that are
instances of Ti. This leads to the abort of all the speculative transactions that
had developed a, possibly transitive, read-from dependency from a a instance
of Ti different from T si . T si is then removed from any serialization view that
is currently recording it (again because it is logically passed to the committed
transaction history).

Finally, it is necessary to verify whether transactions having (direct or
transitive) read-from dependencies from the committing transaction are still
valid. This is required since, as hinted, T si is moved to the committed history.
Therefore we need to verify whether the transactions exhibiting dependencies
on the snapshot produced by T si are still executing along a consistent specula-
tive serialization path. This check is performed via the Validate function, which
simply verifies whether the items read by those transactions still correspond
to those produced by the transactions representing the maximum elements
exposing these items as complete along the corresponding serialization orders.

86 CHAPTER 7

In the negative case it means that the transaction (directly or transitively)
reading from the committing transaction T ki needs to be restarted by specu-
lating along the modified path where T si has been moved to the committed
history (see the AbortRetry module).

7.3 Speculative trajectories explored by OSARE

!"#"

$"%"

&"!" &"'" &"(" &"#"
!"(" '"#"
("#"

#"#"'"("!"'"

("(")"#"
*"#"

+"#"

,"

," ," ," ,"

,"," ,"

,"

,",","

," ,"

,"

,"

-./01/23401"15.6/76859""/224.960:"
-4"-;5"4<3=6132"9576>5.?"4.95."

Figure 7.3: Largest Set of Speculative Serialization Orders Explored by OS-
ARE.

Rather than attempting a complete speculative exploration, OSARE biases
speculation exploration towards the optimistic delivery order. More precisely,
OSARE explores exclusively serialization orders obtained by extracting sub-
sequences of variable length of the optimistic delivery order, see Figure 7.3.
This choice allows, on one hand, to favor the opportunistic exploration of se-
rialization orders ”close” to the optimistic delivery order. On the other hand,
it allows to rely on a simple and lightweight logic (when compared to the pro-
tocol presented in Chapter 6, which is oriented to speculation completeness)
to identify the set of speculative serialization orders to be explored.

Given that OSARE activates additional speculative transactions in an op-
portunistic fashion (i.e. only upon the occurrence of snapshot-miss events),
the actual number of speculative transactions spawned by OSARE depends
on the level of concurrency and conflict among the set of optimistically deliv-
ered transactions.

Nevertheless, it is still possible to determine analytycally an upper bound
on the number of speculative transactions activated in OSARE as a function
θ(n) of the length n of the sequence σ of optimistically, but not yet finally,
delivered transactions. Figure 7.3 illustrates the scenario in which OSARE
explores the maximum number of alternative serialization orders for a sequence
σ of length 4. The number of nodes of such a (partial) permutation tree can

7.4. PROTOCOL PROPERTIES 87

be, in general, enumerated using the following expression:

θ(n) =
∑
i=1...n

δ(i, n)

where δ(i, n) denotes the number of distinct subsequences of σ obtainable after
discarding from σ the first i− 1 messages, and is computable recursively as:

δ(i, n) =

{
1 +

∑
j=i+1,n δ(j, n) i 6= n

1 i = n

By using standard unfolding techniques, it is possible to show that θ(n) =
2n − 1.

7.4 Protocol Properties

7.4.1 Opacity

As hinted in Section 5.3, the opacity property guarantees that (O.1) committed
transactions should appear as if they were executed sequentially, in an order
that agrees with their real-time ordering, (O.2) no transaction should ever
observe the modifications to shared state done by aborted or live transactions,
and (O.3) all transactions, including aborted and live ones, should always
observe a consistent state of the system.

In each replica, OSARE ensures property (O.1) by committing transactions
only after a validation phase that would detect any unserializable behavior.
It ensures (O.2) because read operations can only return either a committed
value, or the value generated by a transaction whose execution has already
reached the complete phase (and hence is neither live nor aborted at the time
of the read). It ensures (O.3) since the read of a transaction T si always re-
turns the value generated by the latest complete transaction that precedes T si
according to its own view of the speculative serialization order. This mech-
anism clearly excludes the possibility of incurring in any anomaly in case all
the reads executed by T si take place i) after that all the transactions preced-
ing it according to its speculative order have already completed, and ii) if the
speculative order of T si is never altered.

Let us start by analyzing the scenario in which a transaction T fl , which is
serialized before T si according to its speculative order, completes after T si has
already issued at least a read operation. Assume, with no loss of generality,
that this read is on a data item X and returned a value written by a transac-

tion T tj such that T tj
T si→ T si . In this case, the only possible anomaly that could

affect T si would arise if also T fl had written X and if T tj
T si→ T fl

T si→ T si . In this

88 CHAPTER 7

case, if T si were ever to read, along its execution, the value of any data item

written by T fl , it would observe an inconsistent state. In fact, having read X

from T tj , T
s
i has already serialized itself before T fl . This would therefore lead

to a violation of property (O.3). On the other hand, this scenario is avoided in

OSARE since, as soon as T fl completes (namely, before making its data items
speculatively visible), it detects that T si has missed its write on X and removes
itself from the speculative order of T si , preventing T si from ever reading values

written from T fl .
To complete the reasoning on the absence of non-opaque schedules it remains
to assess the scenarios in which the speculative order of a transaction is al-
tered during its execution. This can happen in three situations. The first one,
whose correctness has just been discussed, is associated with a snapshot-miss
event. The remaining two cases are associated, respectively, with the Commit
and Abort events of a transaction T ki . Both events, in fact, trigger the removal
of T ki from the speculative order of every transaction T hj that is supposed to

serialize itself after T ki . In the case of a Commit event, T hj is immediately
aborted (and restarted) if it is detected that the previously executed read op-
erations would have observed different values if re-executed according to the
updated speculative order. On the other hand, in the case of an Abort event,
T hj is immediately aborted if it developed any (direct or transitive) read-from

dependency from T si . In both cases, therefore, it is guaranteed that T hj , were
it still be running at the time in which its speculative order is altered, will not
observe inconsistent snapshots when continuing its execution.

7.4.2 1-Copy Serializability

1-Copy Serializability [8] is ensured since transactions are committed at every
site only upon a deterministic validation that is executed by all replicas in the
same total order, i.e., the final delivery order of the OAB service.

7.4.3 Non-redundant speculation

This property ensures that no two speculative instances T tj , T
xId
j of the same

transaction Tj observe the same snapshot. This follows by observing that
OSARE activates a new speculative transaction T xIdj only if it detects that a
transaction T tj has missed a value written by a transaction T si serialized before

T tj according to its speculative order. In this case, T xIdj will observe at least

a data item version different from those observed by T tj since T xIdj will not
miss the value written by T si , having T si already competed and made visible
its snapshot. The same is true for all the transactions that are (recursively)
spawned due to an (direct or transitive) read-from dependency on T si . They

7.5. SIMULATION STUDY 89

will execute along a serialization order where the snapshot by T tj is not visible

since it is replaced by the one provided by T xIdj .

7.4.4 Lock-freedom

Lock-freedom [36] guarantees that there is always at least a thread to make
progress, thus ruling out deadlock and livelock scenarios. In OSARE, this is
a direct consequence of the fact that the transaction currently representing
the top standing element within the TODelivered queue always experiences an
abort free (re)run.

7.5 Simulation Study

7.5.1 Simulation environment

In order to assess the performance of OSARE we developed detailed simulation
models for the following protocols: OSARE, AGGRO (presented in Chapter
5 and Opt [51], all relying on OAB, and traditional State Machine (SM),
relying on AB. AGGRO and Opt are baseline protocols for the evaluation of
OSARE since they entail some form of speculation, either limited to conflicting
transaction chains of length one, or entailing multiple conflicting transactions
along the chain. SM acts as a reference for assessing the performance of
speculative vs non-speculative protocols.
In order to accurately model transactional execution dynamics we collected
traces using a number of heterogenous STM benchmarks, namely:

(i) three micro-benchmarks, that have been adopted in a number of perfor-
mance evaluation studies of STM systems [15, 24, 42]:

◦ Red Black Tree;

◦ List;

◦ SkipList;

(ii) two benchmarks of the STAMP suite [17]:

◦ Yada;

◦ Labyrinth++;

The micro-benchmarks are already described in Section 4.1. Conversely,
Yada++ is a parallel implementation of the Ruppert’s algorithm for Delau-
nay mesh refinement, which uses transactions to concurrently modify a shared
graph. Labyrinth, instead, implements a variant of the Lee’s algorithm to lay
in parallel the junctions of an electrical circuit. The above benchmarks were

90 CHAPTER 7

configured not to generate any read-only transaction. This choice depends on
the fact that, in all the protocols considered in this study, read-only transac-
tions can be executed locally, without the need for distributed coordination.
By only considering update transactions, we can therefore precisely assess
the impact of distributed coordination on the performance of the replicated
system, as well as the performance gains achievable by OSARE.

The machine used for the tracing process is equipped with an Intel Core
2 Duo 2.53 GHz processor and 4GB of RAM, running Mac OS X 10.6.2 and
JVSTM [15].

The simulation model of the replicated system comprises a set of 4 repli-
cated STM processes, each hosted by a machine equipped with 32-cores pro-
cessing transactions at the same speed as in the above architecture.

The transactions’ arrival process via optimistic and final message deliv-
eries is also trace-driven. Specifically we use traces generated by running a
sequencer based (O)AB implementation available in the Appia GCS Toolkit
[55] on a cluster of 4 quad-core machines (2.40GHz - 8GB RAM) connected via
a Gigabit Ethernet and using TCP at the transport layer. We injected in the
system messages of 512 bytes (largely sufficient to encode the parameters of
the transactional methods exposed by the considered STM benchmarks) with
an exponentially distributed arrival rate having mean λ. We treat λ as the
independent parameter of our study, letting it vary in the range [1000,4000]
messages per second, thus expressing from low/moderate up to high load to
be sustained by the group communication service. As expected, the mismatch
between optimistic and final delivery orders (or message reordering for the
sake of brevity) increases along with the message arrival rate, ranging from
16%, at 1000 msgs/sec, up to 48%, at 4000 msgs/sec.

7.5.2 Analysis of the Results

The plots in Figure 7.4 report the speed-up achieved by OSARE vs the other
protocols, evaluated as the percentage of additional latency for executing a
transaction (being the latency the average time since the TO-broadcast of
a transaction till its commitment) in any of these protocols with respect to
OSARE.

The data highlight striking performance gains by OSARE compared to
AGGRO, which increase (up to around 160%) as the load and the message
reordering grow. This is due to the fact that, by opportunistically processing a
transaction in multiple serialization orders, OSARE overlaps more effectively
processing and communication. On the other hand, the gains over Opt (which
unlike OSARE and AGGRO does not speculate along chains of conflicting
transactions) and SM are even larger, being on the order of up to 350/360%.

Comparing more closely OSARE and AGGRO, which both speculate along

7.5. SIMULATION STUDY 91

0 %

50 %

100 %

150 %

200 %

250 %

300 %

350 %

1000/16% 2000/26% 3000/34% 4000/48%

Sp
ee

d-
up

 (%
)

Transactions per second / % Msg Reordering

SkipList Osare/SM
SkipList Osare/Opt

SkipList Osare/Aggro
List Osare/SM
List Osare/Opt

List Osare/Aggro
RBTree Osare/SM
RBTree Osare/Opt

RBTree Osare/Aggro

0 %

2 %

4 %

6 %

8 %

10 %

1000/16% 2000/26% 3000/34% 4000/48%

C
PU

 U
til

iz
at

io
n

(%
)

Transactions per second / % Msg Reordering

SkipList
List

RBTree

0 %

50 %

100 %

150 %

200 %

1000/16% 2000/26% 3000/34% 4000/48%

Sp
ee

d-
up

 (%
)

Transactions per second / % Msg Reordering

Labyrinth++ Osare/SM
Labyrinth++ Osare/Opt

Labyrinth++ Osare/Aggro
Yada++ Osare/SM
Yada++ Osare/Opt

Yada++ Osare/Aggro

0 %

2 %

4 %

6 %

8 %

10 %

1000/16% 2000/26% 3000/34% 4000/48%

C
PU

 U
til

iz
at

io
n

(%
)

Transactions per second / % Msg Reordering

Labyrinth++
Yada++

Figure 7.4: Speed-up by OSARE.

chains of conflicting transactions, the number of transactions that have already
started (or completed) along a serialization order compliant with the OAB final
delivery sequence is up to 50% higher in OSARE than in AGGRO. Also, at
high load, the number of transactions aborted in AGGRO is around 4x larger
than in OSARE. This depends on that AGGRO uses an aggressive rollback-
retry mechanism which re-activate transactions as soon as they are detected
not to be serialized according to the optimistic delivery order. This policy
pays off at negligible levels of message reordering. On the other hand, as soon
the probability of message reordering becomes non-minimal, AGGRO incurs
in a significant waste of computation, which is conversely fruitfully exploitable
by OSARE thanks to its opportunistic speculative approach.

Finally, interesting conclusions can be drawn by analyzing the statistics
on the average and maximum number of speculative transactions generated in
OSARE. At 4000 transactions per second (exhibiting about 48% of message

92 CHAPTER 7

reordering), the average number of speculative instances activated by OSARE
for a given transaction (across all the evaluated benchmarks) is 2.7. In other
words, beyond the serialization order associated with the final delivery order,
only 1.7 additional serialization orders are explored for each transaction.

Also, our experimental data show that, on average, the corresponding
CPU utilization is less than 8% with OSARE on the simulated hardware ar-
chitecture. Overall, we can deduce that the speculative approach provided
by OSARE is perfectly sustainable by off-the-shelf multi-core and many-core
architectures, at least when considering scenarios resembling the simulated
settings.

Chapter 8

Concluding Remarks

In this dissertation I have presented some innovative research results address-
ing the issue of active replication of transactional systems. The basic idea
underlying all these results has been to maximize the overlap between replica-
coordination and local transactions processing activities. This has been done
in order to effectively cope with challenging scenarios where (A) the ratio be-
tween transaction granularity and coordination latency gets reduced due to
differentiated (technological) trends, such as the usage of SSD technology or
the reliance on the Software Transactional Memory (STM) paradigm, and (B)
the level of real parallelism while processing transactions may be largely scaled
up thanks to the widespread diffusion of massively parallel architectures, such
as many-core machines.

All the provided approaches have been based on the exploitation of an op-
timized group communication primitive, such as Optimistic Atomic Broadcast
(OAB) and their performance have been evaluated by selecting STM applica-
tions as the reference test-bed. In the following I summarize the key aspects
of each proposed approach.

− AGGRO (Boosting STM Replication via Aggressively Optimistic Trans-
action Processing) is an active replication protocol that relies on an
Optimistic Atomic Broadcast service to determine a global transaction
serialization order across all replicas, and on an innovative concurrency
control scheme that allows for immediately processing optimistically de-
livered transactions (according to the guessed serialization order) while
the broadcast service is being finalized. AGGRO is designed for networks
ensuring the spontaneous order.

− STR (Speculative Transactional Replication) is a speculative framework
for the replication of transactional systems. STR exploits an Optimistic
Atomic Broadcast service and maximizes the overlapping between com-

93

94 CHAPTER 8

munication and local computation by processing transactions in differ-
ent speculative serialization orders, corresponding to distinct permuta-
tions of the set of optimistically delivered messages. The challenge is
to avoid the exhaustive exploration of the whole set of permutations of
the optimistically delivered messages, because this is both infeasible and
non-productive considering that the scenario where every transaction
conflicts with every other can result highly unlikely. Hence, a (possibly
large) portion of the set of the permutations would actually generate
identical, redundant, computations.

− OSARE (Opportunistic Speculation in Active REplication) is an active
replication protocol for transactional systems that combines the usage
of an Optimistic Atomic Broadcast service with a speculative (oppor-
tunistic) concurrency control mechanism. OSARE relies on a lock-free
algorithm to bias the speculative serialization of transactions towards
an order aligned with the optimistic message delivery order. Due to
the lock-free nature of the concurrency control algorithm adopted by
OSARE, at high concurrency levels, namely when the probability of
mismatches between the optimistic and final delivery orders is higher,
the chances of exploring alternative (i.e. not equivalent to the optimistic
message delivery order) transaction serialization orders correspondingly
increase. By adaptively adjusting its degree of speculation on the basis of
the current level of concurrency in the system, OSARE achieves robust
performance also in scenarios characterized by non-minimal likelihood
of mismatches between the optimistic and final delivery orders.

Bibliography

[1] Divyakant Agrawal, Gustavo Alonso, Amr El Abbadi, and Ioana Stanoi.
Exploiting atomic broadcast in replicated databases (extended abstract).
In Proc. of Euro-Par, pages 496–503, London, UK, 1997. Springer-Verlag.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark
Manasse, and Rina Panigrahy. Design tradeoffs for ssd performance. In
USENIX 2008 Annual Technical Conference on Annual Technical Con-
ference, pages 57–70, Berkeley, CA, USA, 2008. USENIX Association.

[3] Marcos Kawazoe Aguilera and Robert E. Strom. Efficient atomic broad-
cast using deterministic merge. In Proceedings of the nineteenth an-
nual ACM symposium on Principles of distributed computing, PODC ’00,
pages 209–218, New York, NY, USA, 2000. ACM.

[4] Akamai. Akamai white paper: Internet bottleneck.

[5] Peter Alsberg and J. D. Day. A principle for resilient sharing of distributed
resources. In ICSE, pages 562–570, 1976.

[6] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant archi-
tecture and protocol for wide area group communication. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), June 2000.

[7] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus
problem in fault-tolerant computing. ACM Comput. Surv., 25:171–220,
June 1993.

[8] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[9] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.

[10] Azer Bestavros and Spyridon Braoudakis. Value-cognizant speculative
concurrency control. In Proc. of VLDB, pages 122–133, 1995.

95

96 BIBLIOGRAPHY

[11] Nadya Bliss. Addressing the multicore trend with automatic, 2007.

[12] Andrey Brito, Christof Fetzer, and Pascal Felber. Multithreading-enabled
active replication for event stream processing operators. In Proc. of SRDS,
pages 22–31, Washington, DC, USA, 2009.

[13] Andrey Brito, Christof Fetzer, Heiko Sturzrehm, and Pascal Felber. Spec-
ulative out-of-order event processing with software transactional memory.
In Proc. of DEBS, July 2008.

[14] Joao Cachopo. Development of Rich Domain Models with Atomic Actions.
PhD thesis, Technical University of Lisbon, 2007.

[15] Joao Cachopo and António Rito-Silva. Versioned boxes as the basis for
memory transactions. Sci. Comput. Program., 63(2):172–185, 2006.

[16] Lásaro J. Camargos, Fernando Pedone, and Rodrigo Schmidt. A primary-
backup protocol for in-memory database replication. In NCA, pages 204–
211, 2006.

[17] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. STAMP: Stanford transactional applications for multi-processing.
In Proc.of ISWC, 2008.

[18] Michael J. Carey, Michael J. Franklin, Miron Livny, and Eugene J.
Shekita. Data caching tradeoffs in client-server dbms architectures. SIG-
MOD Rec., 20:357–366, April 1991.

[19] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. Scert: Speculative
certification in replicated software transactional memories. In SYSTOR,
page 10, 2011.

[20] Bernadette Charron-bost, Rachid Guerraoui, and André Schiper. Syn-
chronous system and perfect failure detector: solvability and efficiency
issues. In In International Conference on Dependable Systems and Net-
works (IEEE Computer Society, pages 523–532. IEEE, 2000.

[21] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes,
Yong-Fong Lee, Dan Lavery, and John P. Shen. Speculative precompu-
tation: long-range prefetching of delinquent loads. In Proceedings of the
28th annual international symposium on Computer architecture, ISCA
’01, pages 14–25, New York, NY, USA, 2001. ACM.

[22] Oracle Corporation. Oracle8i advanced replication, November 1998.

BIBLIOGRAPHY 97

[23] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luis Rodrigues.
D2stm: Dependable distributed software transactional memory. Technical
Report 30/2009, INESC-ID, May 2009.

[24] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Luis Rodrigues.
D2STM: Dependable Distributed Software Transactional Memory. In
Proc. of PRDC. IEEE Computer Society Press, 2009.

[25] Maria Couceiro, Paolo Romano, and Luis Rodrigues. A machine learning
approach to performance prediction of total order broadcast protocols.
Self-Adaptive and Self-Organizing Systems, IEEE International Confer-
ence on, 0:184–193, 2010.

[26] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and
Liuba Shrira. Hq replication: a hybrid quorum protocol for byzantine
fault tolerance. In Proceedings of the 7th symposium on Operating systems
design and implementation, OSDI ’06, pages 177–190, Berkeley, CA, USA,
2006. USENIX Association.

[27] Flavin Cristian. Understanding fault-tolerant distributed systems. Com-
mun. ACM, 34:56–78, February 1991.

[28] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast
channels. The Journal of Real-Time Systems, 2:195–212, 1990.

[29] Flaviu Cristian, Richard De Beijer, and Shivakant Mishra. A performance
comparison of asynchronous atomic broadcast protocols. Distributed Sys-
tems Engineering, 1:177–201, 1994.

[30] Flaviu Cristian, Shivakant Mishra, and Guillermo A. Alvarez. High-
performance asynchronous atomic broadcast. Distributed Systems En-
gineering, 4(2):109–, 1997.

[31] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–
421, 2004.

[32] John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop, Ramesh K.
Sitaraman, and William E. Weihl. Globally distributed content delivery.
IEEE Internet Computing, 6(5):50–58, 2002.

[33] Richard Ekwall and André Schiper. Modeling and validating the perfor-
mance of atomic broadcast algorithms in high-latency networks. In Proc.
of Euro-Par, pages 574–586. Springer, 2007.

98 BIBLIOGRAPHY

[34] Richard Ekwall and André Schiper. Modeling and validating the per-
formance of atomic broadcast algorithms in high latency networks. In
Anne-Marie Kermarrec, Luc Bougé, and Thierry Priol, editors, Euro-
Par, volume 4641 of Lecture Notes in Computer Science, pages 574–586.
Springer, 2007.

[35] Michael J. Franklin, Michael J. Carey, and Miron Livny. Transactional
client-server cache consistency: Alternatives and performance. ACM
Trans. Database Syst., 22(3):315–363, 1997.

[36] Keir Fraser. Practical lock freedom. PhD thesis, Cambridge University
Computer Laboratory, 2003.

[37] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In Proc. of the SIGMOD, pages 173–182. ACM, 1996.

[38] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 1992.

[39] Rachid Guerraoui and Michal Kapalka. On the correctness of transac-
tional memory. In Proc. of PPOPP, 2008.

[40] Rachid Guerraoui and Luis Rodrigues. Introduction to Reliable Dis-
tributed Programming. Springer, 2006.

[41] Rachid Guerraoui and André Schiper. Software-based replication for fault
tolerance. IEEE Computer, 30(4):68–74, 1997.

[42] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible frame-
work for implementing software transactional memory. SIGPLAN Not.,
41(10):253–262, 2006.

[43] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures. In
Proc. of the Symposium on Principles of Distributed Computing (PODC),
pages 92–101, New York, NY, USA, 2003. ACM.

[44] Markus; Leland R. Beaumont: Hofmann. Content networking: Architec-
ture, protocols, and practice.

[45] IBM. Db2: Replication guide and reference, June 1999.

[46] Rebecca Ingram, Patrick Shields, Jennifer E. Walter, and Jennifer L.
Welch. An asynchronous leader election algorithm for dynamic networks.
In IPDPS, pages 1–12, 2009.

BIBLIOGRAPHY 99

[47] Khushboo Kanjani, Hyunyoung Lee, Whitney L. Maguffee, and Jen-
nifer L. Welch. A simple byzantine-fault-tolerant algorithm for a multi-
writer regular register. IJPEDS, 25(5):423–435, 2010.

[48] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing transactions
over optimistic atomic broadcast protocols. In Proc. of the 19th IEEE
International Conference on Distributed Computing Systems, page 424,
Washington, DC, USA, 1999. IEEE Computer Society.

[49] Bettina Kemme and Gustavo Alonso. A suite of database replication
protocols based on group communication primitives. In Proc. of the The
18th International Conference on Distributed Computing Systems, page
156, Washington, DC, USA, 1998. IEEE Computer Society.

[50] Bettina Kemme and Gustavo Alonso. A new approach to developing and
implementing eager database replication protocols. ACM Trans. Database
Syst., 25(3):333–379, 2000.

[51] Bettina Kemme, Fernando Pedone, Gustavo Alonso, Andre Schiper, and
Matthias Wiesmann. Using optimistic atomic broadcast in transaction
processing systems. IEEE TKDE, 15(4):1018–1032, 2003.

[52] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: speculative byzantine fault tolerance. In Pro-
ceedings of twenty-first ACM SIGOPS symposium on Operating systems
principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007. ACM.

[53] Venkata Krishnan and Josep Torrellas. A chip-multiprocessor architecture
with speculative multithreading. IEEE Trans. Computers, 48(9):866–880,
1999.

[54] University of Newcastle upon Tyne Mark Little. Javasim 0.3 ga,
http://javasim.codehaus.org/, 2008.

[55] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel
supporting multiple coordinated channels. In Proc. of ICDCS, pages 707–
710, Phoenix, Arizona, April 2001. IEEE.

[56] J. Mocito, A. Respicio, and L. Rodrigues. On statistically estimated
optimistic delivery in large-scale total order protocols. In Proc. of PRDC,
page (accepted for publication), University of California, Riverside, USA,
December 2006. IEEE.

[57] Ngoc Thanh Nguyen. Consensus system for solving conflicts in distributed
systems. Inf. Sci. Inf. Comput. Sci., 147:91–122, October 2002.

100 BIBLIOGRAPHY

[58] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, 1979.

[59] Marta Patino-Martinez, Ricardo Jiménez-Peris, Bettina Kemme, and
Gustavo Alonso. Middle-r: Consistent database replication at the mid-
dleware level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

[60] Fernando Pedone, Rachid Guerraoui, and André Schiper. The database
state machine approach. Distributed and Parallel Databases, 14(1):71–98,
2003.

[61] Fernando Pedone and André Schiper. Optimistic atomic broadcast. In
DISC, pages 318–332, 1998.

[62] Fernando Pedone and André Schiper. Optimistic atomic broadcast: a
pragmatic viewpoint. Theor. Comput. Sci., 291(1):79–101, 2003.

[63] Fernando Pedone, Matthias Wiesmann, André Schiper, Bettina Kemme,
and Gustavo Alonso. Understanding replication in databases and dis-
tributed systems. In ICDCS, pages 464–474, 2000.

[64] Francisco Perez-Sorrosal, Marta Pati no-Martinez, Ricardo Jimenez-
Peris, and Bettina Kemme. Consistent and scalable cache replication
for multi-tier j2ee applications. In Middleware ’07: Proceedings of
the ACM/IFIP/USENIX 2007 International Conference on Middleware,
pages 328–347, New York, NY, USA, 2007. Springer-Verlag New York,
Inc.

[65] Francesco Quaglia. Software diversity-based active replication as an ap-
proach for enhancing the performance of advanced simulation systems.
Int. J. Found. Comput. Sci., 18(3):495–515, 2007.

[66] T. Ragunathan and P. Krishna Reddy. Improving the performance of
read-only transactions through speculation. In Proceedings of the 5th
international conference on Databases in networked information systems,
DNIS’07, pages 203–221, Berlin, Heidelberg, 2007. Springer-Verlag.

[67] P. Krishna Reddy and Masaru Kitsuregawa. Speculative locking protocols
to improve performance for distributed database systems. IEEE TKDE,
16(2):154–169, 2004.

[68] Lúıs Rodrigues, Nuno Carvalho, and Emili Miedes. Supporting lineariz-
able semantics in replicated databases. In NCA, pages 263–266, 2008.

[69] P. Romano, N. Carvalho, and L. Rodrigues. Towards distributed software
transactional memory systems. In Proc. of the Workshop on Large-Scale
Distributed Systems and Middleware, September 2008.

BIBLIOGRAPHY 101

[70] Paolo Romano, Diego Rughetti, Francesco Quaglia, and Bruno Ciciani.
Apart: Low cost active replication for multi-tier data acquisition systems.
In NCA, pages 1–8, 2008.

[71] Amir Roth and Gurindar S. Sohi. Speculative data-driven multithreading.
In Proceedings of the 7th International Symposium on High-Performance
Computer Architecture, HPCA ’01, pages 37–, Washington, DC, USA,
2001. IEEE Computer Society.

[72] Peter G. Sassone and D. Scott Wills. Dynamic strands: Collapsing spec-
ulative dependence chains for reducing pipeline communication. In Pro-
ceedings of the 37th annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 37, pages 7–17, Washington, DC, USA, 2004.
IEEE Computer Society.

[73] O. T. Satyanarayanan and Divyakant Agrawal. Efficient execution of
read-only transactions in replicated multiversion databases. IEEE Trans.
Knowl. Data Eng., 5(5):859–871, 1993.

[74] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[75] Fred B. Schneider. Replication management using the state-machine ap-
proach. ACM Press/Addison-Wesley Publishing Co., 1993.

[76] Gurindar S. Sohi and Amir Roth. Speculative multithreaded processors.
IEEE Computer, 34(4):66–71, 2001.

[77] Scott D. Stoller. Leader election in asynchronous distributed systems.
IEEE Trans. Computers, 49(3):283–284, 2000.

[78] John Turek and Dennis Shasha. The many faces of consensus in dis-
tributed systems. Computer, 25:8–17, June 1992.

[79] Péter Urbán, Ilya Shnayderman, and André Schiper. Comparison of fail-
ure detectors and group membership: Performance study of two atomic
broadcast algorithms. In DSN, pages 645–654. IEEE Computer Society,
2003.

[80] Li Wang and Wanlei Zhou. Primary-backup object replications in java. In
In Proc. of TOOLS Asia’98, pages 78–82. IEEE Computer Society Press,
1998.

[81] Matthias Wiesmann and Andre Schiper. Comparison of database replica-
tion techniques based on total order broadcast. IEEE Trans. on Knowl.
and Data Eng., 17:551–566, April 2005.

102 BIBLIOGRAPHY

[82] Matthias Wiesmann and André Schiper. Comparison of database repli-
cation techniques based on total order broadcast. IEEE Trans. Knowl.
Data Eng., 17(4):551–566, 2005.

[83] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme,
and Gustavo Alonso. Database replication techniques: A three parameter
classification. In SRDS, pages 206–215, 2000.

	Abstract
	Introduction
	QoS Historical Perspective
	Hints on Replication Approaches
	The Need for Reconsidering Replication Management
	Outline of Innovative Contributions

	State of the Art
	Primary Copy
	Primary Backup

	State Machine
	Certification
	Active Replication

	Speculative Processing
	Discussion

	Model of the Target System
	Distributed Processes and Coordination Primitives
	Internal Architecture of the Replicated Transactional Processes
	Transaction Model

	A Quantitative Reassessment of Literature Proposals
	The Trace Based Simulation Model
	Simulation Results
	Outcomes

	Speculative Replication in Predictable Networks
	System Model
	The AGGRO Protocol
	Protocol Correctness
	Simulation Study
	Simulation Results

	Optimality of Speculative Replication in Generic Networks
	System Model
	Problem Formalization
	An Optimal STR Protocol
	Protocol Overview
	Primitives and Notations used in the Pseudo-code
	Speculative Transaction Manager
	Speculative Concurrency Control
	Correctness and Optimality Proof
	Dealing with Read-Only Transactions

	Simulation Results

	Changing the Perspective: Speculating According to an Opportunistic Paradigm
	System Model
	The OSARE Protocol
	Protocol Notations and Data Structures
	Protocol Logic

	Speculative trajectories explored by OSARE
	Protocol Properties
	Opacity
	1-Copy Serializability
	Non-redundant speculation
	Lock-freedom

	Simulation Study
	Simulation environment
	Analysis of the Results

	Concluding Remarks
	Bibliography

