
Faculty of Computer Engineering

Computer Science and Statistics

Master of Science in Engineering
in Computer Science

Master Thesis

Runtime management of simulation objects’ cross
state dependencies in NUMA oriented parallel

simulation platforms

Academic Advisor Candidate

Prof. Francesco Quaglia Francesco Nobilia

Dr. Alessandro Pellegrini

Academic Year 2014/2015

“Learn from yesterday, live for today, hope for tomorrow.

The important thing is not to stop questioning.”

—Albert Einstein

ABSTRACT

Nowadays, the well acceptable solution for speeding-up and making

very large and complex simulation models tractable is the parallel-

DES (PDES) paradigm. In a speculative environment two simu-

lation entities with different simulation times can reach the same

portion of simulation state at the same wall-clock time. In this case

the system has to manage their accesses always guaranteeing state

coherence. For copying with this issue the entire model has been par-

titioned into distinct Logical Processes (LPs): each LP handles and

models a portion of the whole simulated environment/phenomenon,

and interacts with others by means of time-stamped event messages

(local causality constraint) [1]. The reasons behind this disjunction

are only technical. They impose a coding style that prevents the

possibility that some LP can directly manage more than one state

at a time. The purpose of this work is answering to the question

raised by Fujimoto [1] whether building a shared state system by

using messages only is the natural way to program simulation. Our

solution is based over the concept that each LP can directly access

the state of any other LP by means of synchronization phase. This

behaviour is achieved setting-up each simulation object over a paral-

lel memory view. Further, given that modern parallel machines are

organized according to the Non-Uniform-Memory-Accesss (NUMA)

model, we also provide approaches for making the access to memory

slices associated with the parallel memory view efficient in NUMA

i

systems. We augment the ROme OpTimistic Simulator (ROOT-

Sim)[2] with our proposal and we use this environment as test-bed.

Finally, we demonstrate how our approach improves the simulation

performance.

CONTENTS

1 Introduction 1

2 Parallel Discrete Event Simulation 5
2.1 Synchronisation Strategies . 9

2.1.1 Conservative Synchronisation 9
2.1.2 Optimistic Synchronisation 12

State Saving Policies . 13
Rollback Policies . 16

2.1.3 Hybrid Synchronisation 17
2.2 State Management . 17

3 Memory Issue 21
3.1 Memory Usage vs NUMA . 22
3.2 State Sharing . 23

3.2.1 Static vs Dynamic and Partial vs Full Sharing 28
3.3 Considerations . 29

4 Symmetric Multi-Threaded Optimistic Simulator 31
4.1 The Reference System Architecture 31
4.2 Simulation Engine . 40

4.2.1 Supported APIs . 42
4.2.2 Internals and Subsystems Organization 45

4.3 A Code Example . 46

5 Cross-Accessing Logical Processes’ States 49
5.1 Intel x86-64 Paging . 51

5.1.1 Hierarchical Paging Structures 52
5.1.2 Translation . 53

5.2 Event and Cross-State Synchronisation 54
5.2.1 Cross-State Dependency Tracking 54
5.2.2 The Event Cross-State Synchronization Scheme 62

Correctness . 65
Progress . 66

5.2.3 Integrating State Sharing Policies with NUMA Oriented
Support . 70

5.2.4 Third Party Libraries Handling 84

iii

6 Experimental Evaluation 85
6.1 Model . 85
6.2 Tests . 88

7 Conclusion 91

Bibliography 93

LIST OF FIGURES

2.1 Symmetric Multi-Threaded Simulation Kernel 7
2.2 Example of causality violation . 9
2.3 Rollback work flow . 13
2.4 Example of rollback in case of CSS 14
2.5 Example of rollback in case of PSS 15

3.1 NUMA Architecture . 24

4.1 Top/bottom Halves Architecture 33
4.2 LTF Scheduler Management Upon Normal and LP Handoff Phases 34
4.3 GVT Computation Phases Example 36
4.4 The Dual-mode Execution model 36
4.5 mem_map Data-structures . 37
4.6 Memory Allocation for Platform and Application Usage 39
4.7 Segment Migration Operation . 40
4.8 Root-Sim Architecture . 43

5.1 Paging Strucutures . 52
5.2 Linear-address translation . 53
5.3 Example relation between LPs and Stocks 55
5.4 Memory Stock of LPx is opened to the current worker thread . . 58
5.5 State diagram of simulation object according to ECS 60
5.6 Example where a rendezvous event generates deadlock 67
5.7 Example where rendezvous events generate livelocks 67
5.8 Example where rendezvous events generate cascading rollbacks . 69
5.9 New layer for allocating 1GB of contiguos memory 70
5.10 How ROOT-Sim page-fault handler left the stack 76
5.11 Excution flow of ESC traking . 76
5.12 State diagram of simulation object 77
5.13 Evolution of LP states during ECS handling 78
5.14 Processing flow of controll messages 80
5.15 Logs position regards to ECS . 82
5.16 New Root-Sim Architecture . 83

6.1 Experimental Results . 89

v

CHAPTER 1

Introduction

Discrete Event Simulation (DES) is a type of simulation used to study systems

where the changes in their states occur at discrete points in time. It is widely ex-

ploited for evaluating and analysing systems in many fields including computer

and telecommunication systems, biological networks, military war gaming, on-

line games, operational management and decision making. Timeliness in the

delivery of simulation outputs is a relevant issue. The DES performance limita-

tions have been overcome by Parallel Discrete Event Simulation (PDES). Instead

of running a serial simulation, it exploits the natural parallelism available in,

e.g., every modern multi-core processors. PDES is based on the idea of dividing

the entire simulation model into distinct slices, namely Logical Processes (LPs)

or Simulation OBJs (SOBJs), that are executed concurrently on the available

CPU-cores. Thanks to partitioning and concurrent execution, PDES allows ex-

ploiting the computing power offered by parallel/distributed platforms in order

to both speed-up model execution and make large models tractable. Any LP is

implemented as a set of data structures plus a call-back function that processes

simulation events by, e.g. accessing/updating these data structures [1].

The execution of the simulation model is a complex process that evolves

according to a sequence of discrete events, namely instantaneous actions with

an impulsive duration, managed by LPs. Executing events and following a

1

2 1. INTRODUCTION

predetermined logical scheme allow LPs to pass through one state to another

simulating the evolution of the target environment/phenomenon.

A PDES environment schedules LPs in non-decreasing time-stamp order by

always dispatching the LP that handles the event with the minimum time-stamp.

However, such a dispatching operations occurs in parallel on multiple CPU-

cores, thus some synchronization mechanism is required to ensure correctness.

There are two main approaches: the conservative one and the optimistic one.

According to the former it is impossible that an event is executed out of time-

stamp order along any LP. While the latter allows LPs to speculatively process

their events under the optimistic assumption that the time-stamp order of events

will never be violated. In other words, it leads to executing events without

the assurance that no one will eventually generate an event in the logical past

of some already processed event. If a violation arises, a rollback protocol is

exploited to bring the LP back to the snapshot that stands right before the

time-stamp of the event that caused the violation. The most common optimistic

PDES protocol is the Time Warp [3].

The traditional interaction between LPs based over the cross-scheduling of

events entails large computational and storage overheads both for handling mes-

sages and for storing them just in case of recovery procedure. Even though it

is possible to build a shared-state system by using messages only, Fujimoto [1]

raised the question of weather this is the natural way to program simulation

applications.

Considering a battlefield simulation [4], a lot of information residing in each

grid sector is required to be shared among many combat units, however in

classical PDES we model each sector and each unit as an individual LP with

its own private state. In the absence of shared variables, a message passing

solution for reading and updating information in each sector should bee put in

place, which might also lead the LPs handling sectors to become the bottlenecks

1. INTRODUCTION 3

(e.g., due to flooding of event-messages for accessing their states). Also a pure

shared-state approach may be not efficient because we would need to synchronize

the LPs while accessing it so as to always return (and produce) values coherent

with the LP’s local virtual (logical) time. As Fujimoto affirmed, a more efficient

approach would be the one of duplicating the shared information within the state

of the LP that needs it, but a protocol would be required to ensure coherence

among the various copies. He suggested to hide the coherence strategy in the

underlying simulator. Starting from this idea dated 1990 some solutions have

been designed to cope with the state-sharing issue, as a means for creating

scenarios where LPs share (dynamically) the portions of the state that better

fit the model semantic.

This work answers the Fujimoto question in the context of shared-memory

multi-core architecture. We provide a more general programming and execution

model than the traditional PDES. The state portion that can be access by each

LP during its execution is not limited to its own state or to shared global vari-

ables only. Indeed, an LP is allowed to access the state of whichever simulation

objects both in read and write mode . The idea is granting each simulation

object the possibility of accessing the others LPs’ states as in a sequential-style

DES execution, where the latter pass to the former a pointer to their states

inside the payload of simulation message. Nevertheless, targeting this situation

in a sequential environment is trivial, while inside a parallel one it requires the

creation of an advanced memory management architecture together with an ad-

vanced synchronisation mechanism that can guarantee consistency and progress.

Furthermore, we cope with these issues in a transparent manner and targeting

NUMA machines.

This solution has been implemented inside the ROme OpTimistic Simulator

(ROOT-Sim)[2].

The rest of this thesis is organized as follow: Chapter 2 provides an

4 1. INTRODUCTION

overview of theoretical aspects of simulation DES, Chapter 3 introduces is-

sues related to memory usage and discusses relevant research literature results

which will be taken into account during this work. Chapter 4 is dedicated

to the ROOT-Sim engine and its subsystems relevant for this work. Our solu-

tion is detailed in Chapter 5, while Chapter 6 provides experimental results.

Finally, Chapter 7 concludes the thesis with some considerations.

CHAPTER 2

Parallel Discrete Event

Simulation

Discrete Event Simulation (DES) is a type of simulation used to study systems

where the changes in their states occur at discrete points in time. It is widely ex-

ploited for evaluating and analysing systems in many fields including computer

and telecommunication systems, biological networks, military war gaming, on-

line games, operational management and decision making.

The first definition of Parallel and Distributed Simulation by Chandy and Misra

[5] dates back to 1979 and the following definition of Discrete Event Simulation

suffered of performance limitations. These limitations have been overcome by

Fujimoto with the definition of Parallel Discrete Event Simulation (PDES) [1]:

instead of running a serial simulation, it exploits the natural parallelism avail-

able in, e.g., every modern multi-core processors. Nowadays PDES is the well

accepted solution for speeding-up the execution of simulation applications, and

for making very large and complex simulation models tractable.

DES is based on the idea of executing a sequence of so called discrete events

that modify the simulation state. A discrete event is an action such that the

time of its beginning corresponds with its ending as well, and therefore it has an

5

6 2. PARALLEL DISCRETE EVENT SIMULATION

impulsive duration. Based on the receiver’s identity we have two different types

of messages: a local event, if the sender and the receiver are the same simulation

object, or a remote event, if the sender is different from the receiver.

PDES adds to previous definition the idea of dividing the entire simula-

tion model into distinct slices, namely Logical Processes (LPs) or Simulation

OBJects (SOBJs), that are executed concurrently on the available CPU-cores.

Each LP handles and models a portion of the whole simulated environment/phe-

nomenon, and interacts with others by means of time-stamped event messages,

namely discrete event temporally related by Local Virtual Time (LVT) . More

in detail, according to the classic PDES idea an LP can only handle its own

state and the interactions across the LPs take place by message passing, say

cross-scheduling of events. Therefore simulation is the result of cooperation

between LPs by means of non deterministic sequences of events that lead to

the computation of a global predicate. Non deterministic means that executing

twice the same simulation could generate the same outcome passing through

different intermediate steps.

Figure 2.1 shows the typical architecture of a simulation platform, namely

the Simulation Kernel. It has a multi-layer organization where on top we can

find LPs that are handled by the underling simulation kernel instance. Kernel

instances are divided according to the multi-thread paradigm: as soon as they

are activated they take control of all available CPU cores inside the hosted

machine precluding the operating system chances of moving them around, in

this way we can improve both the performance and locality. More than one

machine may take part in the simulation and therefore libraries for supporting

communication across different machine are required (e.g MPI library [6]).

Exploiting the parallelism has introduced new problems in addition to the

one formerly presented in DES paradigm. They are related to the fact that we

are now targeting asynchronous environments where events happen at irregular

2. PARALLEL DISCRETE EVENT SIMULATION 7

Figure 2.1: System Architecture: Symmetric Multi-Threaded Simulation Kernel

intervals. In the past years these problems have been widely studied and thou-

sands of different solutions have been provided. The most important issues are:

1. state consistency : the global state of simulation model must be always co-

herent with environment/phenomenon that we are simulating and with the

sequence of generated events: inside an asynchronous system it is highly

possible to receive a message with time-stamp smaller than the receiver’s

LVT and therefore counteractions must be designed for guaranteeing co-

herence

2. scheduling : LPs are dispatched in non-decreasing time-stamp order by

always dispatching the LP that handles the event with the minimum time-

stamp, hence the scheduler enhances evolution of simulated environment

generating the sequence of changes that will modify the state trying to

select them in an order that does not violate causality relations

3. global clock : in a multi-core environment and even more in a distributed

system there is the lack of a shared global clock. This type of instrument

8 2. PARALLEL DISCRETE EVENT SIMULATION

is fundamental for driving the evolution of simulation without violating

causality and therefore the determination of a Global Virtual Time (GVT)

is required

4. message exchange: any message received by any LP is stored inside a

FIFO (first-in-first-out) queue sorted by time-stamp for preserving their

sequence and causality. Due to the system asynchronicity there is no

guarantee that a straggler message1 will be never generated

Summarizing: the management of event queues, communication, synchronisa-

tion and execution orders are operations demanded to the simulation kernel.

Due to the intrinsic asynchronicity of these systems, it is highly possible that

an unsorted message queue, that saves messages in the same order in which

they were arrived, stores an event e before e′ with e being at time-stamp t and

e′ at time-stamp t′ such that t′ < t. Executing e before e′ is inconsistent. e′

will find a state already modified by e at time t while its action is related to t′

and therefore the execution of e′ will lead the simulation into an inconsistent

state. This is the problem of coherence over the observability of the simulation

state. A possible solution is to schedule LPs in non-decreasing time-stamp order

by always dispatching the LP that handles the event with the minimum time-

stamp. However, such a dispatching operation occurs in parallel on multiple

CPU-cores and so it may be not enough: simulation object LPx may send an

event at time tx to simulation object LPy while LPy is at time ty with ty > tx

(see Figure 2.2). In this case the simulation kernel has to apply a technique for

restoring a state of LPy coherent with the time-stamp tx to guarantee that from

now on all following events will be executed respecting the correct order as long

as a new straggler arrives.

1A straggler is a message with time-stamp smaller than receiver’s LVT

2. PARALLEL DISCRETE EVENT SIMULATION 9

Figure 2.2: Example of causality violation

2.1 Synchronisation Strategies

Scheduling LPs in non-decreasing time-stamp order does not guarantee correct-

ness: dispatching the LP that handles the event with the minimum time-stamp

is not sufficient because this operation occurs in parallel on multiple CPU-cores.

For copying with this issue, some synchronization mechanisms had been intro-

duced. Particularly, there are two synchronisation approaches: the conservative

and the optimistic one. According to the former it is impossible that an event

is executed out of time-stamp order along any LP. On the other hand the latter

allows LPs to speculatively process their events under the optimistic assumption

that the time-stamp order of events will never be violated. In other words, it

leads to executing events without the assurance that no one will eventually gen-

erate an event in the logical past of some already processed event. If a violation

arises, a rollback protocol is exploited to bring the LP back to the snapshot that

stands right before the timestamp of the event that caused the violation. There

is also a third solution: the hybrid approach that simply mixes the other two

approaches trying to exploit their strength points [7, 8, 9, 10].

2.1.1 Conservative Synchronisation

Conservative synchronisation was the first approach for targeting PDES envi-

ronment. It tries to a-priori avoid causality errors: an event is executed only

10 2. PARALLEL DISCRETE EVENT SIMULATION

if it is recognized as safe [5, 11, 12, 13, 14, 10]. This synchronisation scheme

distinguishes two types of events:

• safe events: an event e at time-stamp t is declared safe if during the

dispatching of e inside the system any other event has time-stamp bigger

than t and the simulation kernel can guarantee that from now on an event

with a time-stamp smaller than t will never be generated

• unsafe event: if at least one of the constrains described above does not

hold then event is declared unsafe

In this way any event execution will never generate causality violations. This

solution is implemented by establishing a FIFO channel without loss for each

LP. At each run the channel will deliver to the corresponding LP the event

with the minimum time-stamp already presented inside the channel, in other

words events are executed in non-decreasing time-stamp order. In case of unsafe

execution the corresponding LP waits for the late messages, as soon as they will

arrive the LP can restart its execution. Obviously, this behaviour can lead the

system into a deadlock: all LPs are waiting for same messages that will never

arrive since all simulation objects are blocked. For avoiding this scenario some

solutions have been provided [5]. For completely avoiding deadlock scenarios

between LPx and LPy, the system has to guarantee that time-stamp order of

messages sending by LPx to LPy is non-decreasing. If so, the last event received

by LPy and sent by LPx is the lower bound of all next feasible time-stamps that

they will use for exchanging messages from now on. If LPx is waiting for LPy

while the latter is waiting for the former, system generates an artificial message,

called null message, sent by LPx to LPy, with time-stamp equal to t meaning

that LPx will never generate new messages with time-stamp smaller than t. If

deadlock could not be avoided, there is a mechanism able to bring the system

back to a snapshot in which deadlock no longer exists.

The definition of safe event is strictly related to the concept of lookahead : if a

simulation model can certainly affirm that all events starting from virtual time

t until event at t+ L are safe, it means its lookahead is equal to L. This value

2. PARALLEL DISCRETE EVENT SIMULATION 11

is bigger than or equal to zero since in the worst case it represents the time

interval between two consecutive events. Setting an optimal value of lookahead

is not trivial since it depends from the model that we are simulating : if it is

too small it can hamper performance since a lot of already arrived events are

considered as unsafe. Some solutions exist for improving this limit: they are

based on the idea that we can pre-process a small sequence of unsafe events

and check, after their completion, if the simulation model still holds a coherent

state2.

Conservative Synchronisation has three main advantages:

• aggressiveless: each simulation step leads the model in a coherent state,

according to the synchronisation scheme there is no event execution that

produces an incoherent state

• riskless: each computation of either an intermediate or a global predicate

is always correct

• minimum synchronisation between simulation objects: each computational

step always advances the logical time: it is impossible to roll back the LVT

of at least one simulation object. Therefore computing a global predicate

is always possible without entailing any kind of synchronisation.

On the other hand, the exaggerated conservativeness produces a simulation

that does not perform and advances slower: the parallelism generates only few

advantages because it is not entirely exploited. Let us consider two simultaneous

events e1 and e2, if they have a causality relation, say e1 → e2, the system will

execute e1 and then e2, if instead they are not related they could be executed

in whatever order but the system still forces the previous execution order event

although it is useless and reduces performance.

2This solution reminds optimistic synchronisation scheme, but they are actuated in a dif-
ferent manner [15]

12 2. PARALLEL DISCRETE EVENT SIMULATION

2.1.2 Optimistic Synchronisation

In contrast with the conservative philosophy, the optimistic synchronisation still

executes events in a non-decreasing time-stamp order, but it dispatches the LP

that handles the event with the minimum time-stamp without checking if it

violates local causality constrains thus being oriented to higher parallelism. In

this way optimistic means advancing the simulation as far as possible toward

the future without checking whether any internal or external event has been

safely generated according to LVT. The lack of this safety led to the designing

of techniques able to bring the simulation objects back to a snapshot that stands

right before the time-stamp of the event that caused the violation.

The most common optimistic PDES protocol is Time Warp [3]. It dispatches

the LP that handles the event with the minimum time-stamp, meanwhile it

checks if this execution is consistent or not. If a causality error is later re-

vealed, meaning that a simulation object has received a straggler event, the

simulation flow is stopped and a coherent snapshot is reloaded into the sys-

tem. A coasting-forward procedure is actuated for correctly taking into account

the new information stated by the straggler. All events with time-stamp big-

ger than straggler are annihilated and then the rollback phase is triggered: all

events from the snapshot to the straggler are re-executed accordingly the actual

correct order (see Figure 2.3).

The work in [3] suggests the adoption of th Global Virtual Time (GVT) that

determines the lower bound of any future rollback. It is computed by a dis-

tributed algorithm across all LPs [16, 17]. This lower bound identifies a logical

time before all events which are considered as commited : no rollback can occur

at any time smaller than GVT, meaning than no straggler with a time-stamp

smaller than the GVT will be ever generated.

As counter part, high parallelism entails additional overhead due to memory

consumption for taking snapshots and computational power loss due to rollback.

2. PARALLEL DISCRETE EVENT SIMULATION 13

Figure 2.3: Rollback work flow

State Saving Policies

Before introducing the rollback operation, let us explain how the snapshots re-

stored by rollback are computed.

In this work [18] introduced the reverse computation technique: instead of

restoring a previous snapshot, they suggests to invert the execution flow of

the application code for reproducing the required state, this can be done in an

automatic or semi-automatic way. However, techniques for State Saving (SS)

are believed to be more progressive [3, 19, 20]. The SS challenge is to have

a solution transparent to the application level programmer that takes care of

which check-point police is better to use, how long should be the period between

two consecutive checkpoints, reducing at minimum the required resources and

understanding when it is possible to delete old snapshots.

As follow a briefly preview of the most used technique for taking snapshots.

Formerly introduced in [3], Copy State Saving (CSS) is the easiest way for

dealing with SS. At the end of each event execution, the simulation kernel takes

14 2. PARALLEL DISCRETE EVENT SIMULATION

a complete snapshot of the entire simulation object state and its required data-

structures useful for rolling back. Each snapshot is marked with the time-stamp

of the last-executed event, therefore in case of a straggler the snapshot that

stands right before the straggler’s time-stamp is simply restored and nothing

has to be reprocessed for reaching the required LVT. Of course, this solution

implicates a huge overhead in terms of memory consumption. To avoid the

execution of all available memory, snapshots that are no longer useful for future

rollback executions must be deleted. This operation is called fossil collection

[19]: all snapshots with a time-stamp smaller than the GVT can be safety

deleted thanks to the GVT definition itself. Actually, fossil collection takes care

of freeing message queues from messages with time-stamp smaller than GVT as

well.

Figure 2.4: Example of rollback in case of CSS

To reduce the overhead of CSS, Sparse State Saving (SSS) solutions have

been provided. Instead of taking snapshots between each simulation event, they

try to log states sparsely according to either a constant period (Periodic State

Saving-PSS) or a variable one (Adaptive State Saving-ASS). Initially designed

in [21] and then improved in [22], PSS or State Skipping takes snapshots every

n messages where n is a parameter that can be set before launching the sim-

2. PARALLEL DISCRETE EVENT SIMULATION 15

ulation. Now, when a simulation object receives a straggler a snapshot with

exactly the required time-stamp may not exist. In this case, the system se-

lects the snapshot which stands right before the required time-stamp and then

re-executes in silent mode all events that exist between snapshot’s logical time

and the straggler one. Re-executing events due to rollback is named coasting

forward or state rebuilding, while silent mode means reprocessing events with-

out sending messages to other LPs since they had already been sent during the

original execution. Each reprocessed event must return the same result that

produced during the first execution otherwise rebuilding the correct state will

be impossible; in other words each event’s execution must be deterministic, only

message arrival order is non-deterministic. This behaviour is called piece-wise

determinism (PWD) [23]. PSS optimises memory consumption by reducing the

computational power: the coasting forward phase has a relevant cost. Hence it

is crucial to set an optimal value for the check point period: a too small value

entails an inefficient memory usage while a too large one reduces performance.

ASS solution has exactly this purpose: according to the model it tries to identify

the best value of checkpoint period [24, 25, 26, 20].

Figure 2.5: Example of rollback in case of PSS

In scenarios where the states of simulation objects are too big SSS solution

16 2. PARALLEL DISCRETE EVENT SIMULATION

is too expensive in terms of memory consumption. The only possible alternative

is the Incremental State Saving (ISS) approach. Instead of logging the entire

state, the underling system saves only the memory areas modified after the

last checkpoint. Of course it produces a smaller overhead in terms of memory

consumption and computation power loss for taking snapshots.

Rollback Policies

The introduction of Time Warp paradigm has led to the design of mechanisms

able to a-posteriori detect the materialisation of causality violations due to strag-

gler events. This mechanism, called rollback, restores a consistent simulation

state and then restarts the execution taking into account also the straggler

event (see Figure 2.5). Rolling back the state and re-executing some events

are not enough, as we can see in Figure 2.5, the LP that is rolling back has to

retract all messages that it has sent in the logical time interval between instant

in which it has received the straggler and straggler’s time-stamp itself. This

undoing is actuated by means of anti-messages that notify positive messages’

receiver that the involved messages has should be annihilated. When an LP re-

ceives an anti-message, if it is temporally successive to its LVT, it simply deletes

the corresponding message from its input queue, on the other hand if the anti-

message is temporally before its LVT , it has to roll back into a consistent state.

This is the State Save & Restore. Its counter part is the Reverse Computation.

Instead of sending anti-messages, it sends a negative message that applies the

same operations of the corresponding positive message but with opposite result.

The same behaviour is actuated in case of straggler message: the receiver has

to apply all required negative messages in order to restore a consistent state co-

herent with the simulation time of straggler. The main difference within these

two approaches is that the latter generates rollback longer than the former: ac-

cording to the State Save & Restore is sufficient to restore the coherent state for

bringing the simulation object back to an older simulation time, on the other

2. PARALLEL DISCRETE EVENT SIMULATION 17

hand Reverse Computation has to apply all negative-messages from th simula-

tion time in which the straggler has been received until the straggler’s time. As

said before, the most used technique is State Save & Restore.

2.1.3 Hybrid Synchronisation

In simulations where many zero-lookahead events occur, the Time Warp proto-

col performance is reduced: the more zero-lookahead events happen, the higher

is the rollback frequency. Hence in [27] hybrid solution between Conservative

and Optimistic synchronisation has been discussed. This solution fits models

where the number of LPs exceeds thousands. Starting with a Conservative ap-

proach, as soon as the scheduler encounters an unsafe event the simulation will

continue via optimistic synchronisation. There are two possible approaches: ei-

ther events are executed optimistically just inside a slice of simulation trajectory

and therefore rollbacks are bounded inside the involved trajectory (Limited ag-

gressiveness), or the traditional optimistic approach is performed but then the

entire model may be subjected to rollback (Unlimited aggressiveness). In the

second case a temporal window is required for limiting the duration of specula-

tive execution. This hybrid solution is called Local Time Warp (LWT).

2.2 State Management

For targeting PDES environments the entire simulation model has to be divided

in disjoint slices called LPs or simulation objects where each one of this sub-

states model a portion of the entire physical phenomenon. How this LP is

composed from the coding point of view has not yet been discussed.

Each simulation objects is implemented as a set of data structures, namely

state variables, plus a call-back function that processes simulation events by,

e.g. accessing/updating these data structures. Each variable depicts a physical

18 2. PARALLEL DISCRETE EVENT SIMULATION

feature of the real environment that the LP is representing. Any change in

the physical environment is represented as a variable update [28]. Therefore a

simulation program defines a collection of state variables that evolves across the

simulation logical time following the logic depicted by itself. We can summarize

the code of simulation program as follows

Algorithm 1: simulator
1: procedure simulator
2: init()
3: while ¬empty_queue() do
4: mex← rm_stf_event()
5: execute(mex)
6: send_new_messages()
7: end while
8: end procedure

Sending messages can be seen like a request/query of LPx toward LPy for

updating the state of LPy (pull event) or for retrieving the required information

for modifying the state variable of LPx (query event). Concurrently dispatching

different objects over all available CPU cores leads to concurrent updates of

state variables. If LPx and LPy share a state variable while they are at different

simulation times, any update of LPx over the wall-clock time will leave the

shared variable in an inconsistent state for LPy and vice versa. The only way

to prevent this type of causality error is imposing two limitations: the so called

local causality constraint [28]

• sharing state variables in PDES environment is not allowed

• LPx can trigger updates over the state of LPy only by message passing

The whole simulation state must be divided into state vectors (SV), in the

correspondence of one SV per LP. This assumption guarantees that a parallel

simulation where each SOBJ agrees with local causality constraint will generate

exactly the same result of serial simulation if events are executed in time-stamp

order and in case of simultaneous events they are executed in the same order

in both environments. Of course, this constraint is sufficient but not necessary

2. PARALLEL DISCRETE EVENT SIMULATION 19

for assuring that no causality error will occur: a straggler message may still be

generated and two simultaneous events causality unrelated may be executed by

two different SOBJs according to a different order without generating consis-

tency issues. Furthermore it entails nothing about correctness since correctness

is in charge of synchronisation protocols (see Section 2.1).

So far we have considered only state variables that are initialised during the

initialisation procedure of simulation, without considering the possibility that

the allocation of new state variable may be needed during the simulation. This

new requirement adds a new challenge for our synchronisation strategies: the

rollback procedure has to take into account any kind of simulation object’s mem-

ory shape and therefore if we want to instantiate new memory buffers during the

simulation run we need a mechanism to notify rollback about the new allocation.

Informing it only upon memory creation is not enough, we must communicate

also each memory free operation. Without countermeasures, a run-time allo-

cation of memory may be rolled back and consequently a memory leak may

be generated since the rollback procedure cannot free it. On the other hand,

if the system rolls back a memory free operation the involved area beforehand

owned by LPx may have been reallocated for LPy and therefore both of them

will unconsciously use the same memory area, a situation that generates an un-

predictable behaviour of model. The solution presented in [29] exactly fits these

issues establishing an intermediate level between the simulation kernel and the

underling operating system by wrapping any memory related operation. The

possibility of dynamically allocating memory during simulation gives the possi-

bility of building state variables with sizes that evolves over the simulation time.

Fujimoto [28] suggests to see the snapshots of state variable as a special

messages that LPs send to themselves containing information regarding their

state variables. The value of the time-stamp related to the message/snapshot

20 2. PARALLEL DISCRETE EVENT SIMULATION

is the time-stamp of last event that has updated variables. In this way, in case

of rollback the system has just to scan the per LP queue that stores snapshots

and selects the state with the required simulation time.

The implementation discussed above is completely orthogonal with the con-

cept of global variable described in [30]. They provide support for managing

global variables satisfying transparency, non-blocking and dynamic constrains,

and including a rollback protocol for PDES environments.

CHAPTER 3

Memory Issue

The cost of reaching high performance exploiting high level of parallelism and

speculative computation lies in huge memory usage. For coping with causality

errors a PDES environment has to periodically take state snapshots of each

simulation object; in this way it will have the required information for dealing

with rollback operations. In simulation models where the number of involved

simulation object exceed thousands (such as agent-based demographic simula-

tions [31]) or in situation where the simulation states are extremely large (such

as distributed cloud data store models [32]) the amount of memory occupied by

each snapshot is striking as well as the memory occupied by the state that is

now depicting each simulation object. In this context where uncommitted in-

formation can exceed the capacity of RAM, memory trashing and the resulting

system degradation must be avoided as well a mechanism for improving data

locality is required[33].

The amount of memory used during the simulation is not the only issue re-

garding memory. According to the classic PDES idea each simulation object

can only access the memory areas bounded within its own state while any ac-

cess outside these limits is not allowed for causality issues. The interactions

across simulation objects take place only by message passing. Even though it

is possible to build a shared-state system by using messages only, Fujimoto [1]

21

22 3. MEMORY ISSUE

raised the question of whether this is the natural way to program simulation

applications. Due to speculative execution it is highly possible that two simu-

lation objects with a different LVT reach the same area of simulation state at

the same wall-clock time. In this case the system has to manage their accesses

in such a way that after their actions the model will still hold a coherent state.

Traditionally, for copying with this issue the entire simulation state S has been

partitioned into per-LP substates Si, with the possibility that each LP can only

access its own state and it can interact with other LPs only by message passing

(local causality constraint). This can be summarized with the following state/

interaction constraint in a system with N LPs:

S =

N−1⋃
i=0

Si ∧ Si ∩ Sj = ∅ ∀i 6= j (3.1)

Equation (3.1) constraints dictates restrictions that are caused by only tech-

nical limitations. For handling rollback operation and the relative forward ex-

ecution the traditional solution expects that simulation state is divided into

smaller portions, in this way in case of rollback only the involved simulation

objects have to rewind their states while all other can carry on the simulation.

Those technical limits generate clear disadvantages to application level program-

mer. Indeed, simulation models such as agent-based demographic simulations

[31] or distributed cloud data store models [32] could improperly use the cross-

scheduling of events: the former has to exchange thousands of events just for

communicating the value of a single variable, while the latter generates events

hosting huge copies of state sections.

3.1 Memory Usage vs NUMA

In [33] a memory management architecture able to attenuate latency for access-

ing memory area in case of execution over multi-core Non-Uniform-Memory-

3. MEMORY ISSUE 23

Access (NUMA) platform is described. The challenge of NUMA environment

is related to the fact that the amount of available RAM and the number of

available CPU-cores always increase, therefore actuating uniform memory ac-

cess is not trivial. The idea behind the NUMA memory architecture is to have

memory areas with different access latencies according to their location: each

processor can rapidly access its local memory, whereas it gets slower when ad-

dressing shared memory or, worse still, of others processors. In the context of

multi-thread Time Warp platforms running on top of NUMA, they create an

advanced memory manager able to

• store the data of each single simulation object into private memory: each

SOBJ is instanced over a set of memory pages that are disjoint from the

memory of other SOBJs

• guarantee that all memory pages of a SOBJ are handled by NUMA node

that hosts the worker thread which dispatches it, in this way low latency

and high throughput are ensured when the worker thread accesses the

SOBJ’s information

Linking simulation object’s data and NUMA node is done in both static and

dynamic way. In the latter case a daemon thread periodically checks whether a

simulation object has been migrated to a different NUMA node and therefore

memory migration is required. This solution is completely transparent to the

application level programmer that can still exploit libraries for dynamically

allocating the state of simulation objects.

3.2 State Sharing

Clustering simulation objects using a non-blocking and fully transparent ap-

proach, allowing high speculation by means of optimistic synchronization, and

a dynamic scheme well fitting the simulation model semantic is a topic still

24 3. MEMORY ISSUE

Figure 3.1: NUMA Architecture

under investigation.

The idea is to build a system that allows LPx during its execution to access

the memory slices keeping the state image of LPy .

This problem was originally studied in [34] and then in [35]. During the

past years some solutions have been developed for optimising and making the

formerly proposed approaches coherent with modern hardware and operating

systems.

We can divide the solutions in two different types: (i) the ones that want to

share a partial view of the LPs’ states and store this information inside shared

variables, and (ii) the ones that aim to share the entire state image.

In [36] sharing is in charge of an extra-LP that handles all data that other

LPs want to share, thus working as a server, for which a new rollback protocol

must be adopted. This particular LP employs a multi-version list for storing its

variables. Whenever another LP wants to modify the shared state, it commu-

nicates to the server the new value by a write operation and then the extra-LP

will add the new data within the multi-version list. During a read operation, the

3. MEMORY ISSUE 25

server selects the most appropriate data version according to local virtual time

of the requesting LP (say the client). If during a write the local simulation time

of the writer is smaller than the one of the value stored at the tail of the list,

a causality violation materialises hence a rollback is required. Both read and

write operations are actuated by message passing primitives. This solution sat-

isfies none of the previous listed capabilities. From a performance point of view,

the centralised node may be a bottleneck: it processes all requests sequentially

limiting the evolution of simulation, while we are looking for something that can

solve the problem through a non-blocking (say concurrent) way. Everything is

left to the programmer himself: he has to call the proper API’s for interacting

with the shared data, as in the case of the (M,N) Atomic Register.

In [37] the concept of state query is introduced. Any LP that wants to

access another LP’s state can send a message to the corresponding owner (query

event). Then it will wait until the handler sends back the required information

(read event). As before, a causality violation may occur if queries are processed

optimistically. In this case the corresponding anti-event is entered in the system.

Again, there is no transparency and no wait-free behaviour. This approach

resembles the one suggested in [1].

The idea of implementing shared variables by global is presented in [38]. This

choice allows the developers to design read and write operations in-place, how-

ever they always need locks to ensure mutual executions. Also, the programmer

must specify which LPs will use the shared variable.

The middleware presented in [39] and [40] implements shared variables but,

as the word middleware suggests, it has been designed for a distributed environ-

ment and moreover without a speculative synchronization protocol. It exploits

a request/reply protocol based on timestamp-ordering.

The idea of threads that want to concurrently access shared information in

atomic way is strictly related with the concept of Transactional Memory. These

26 3. MEMORY ISSUE

can be either hardware or software, which are also called Software Transactional

Memory and [41] shows how it is possible to solve our problem by using them.

However, this solution shows two drawbacks: application-level developers have

to explicitly mark transactions, and there is no way to support rollback of

committed transactions even though this is a fundamental tool inside optimistic

environments.

The solution in [30] provides support for managing global variables satisfy-

ing transparency, non-blocking and dynamic constrains, and includes a rollback

protocol for PDES environments. This proposal has been designed for ANSI-C

based simulation models and has been integrated and made available as free

software within the ROme OpTimistic Simulator (Root-Sim)[2]. It exploits the

capabilities of a free software instrumentation tool called Hijacker [42] plus the

Compare&Swap (CAS) hardware support to build non-blocking version lists

where all operations (read/write) are done in-place since every data and meta-

data are stored within the same address space that is accessible by the concur-

rent threads that execute the LPs. The lock-free property is guaranteed by the

CAS instruction and each list item stores the timestamp related to the event

that has updated the value in order to avoid the ABA problem. Everything is

done in a fully transparent manner. At compile time inside the assembly code,

Hijacker finds each mov operations, understands if it is either read or write and

then substitutes it with a proper injected code that allows the simulation to

deal with global variables. As in [36] and [37] a casualty violation may arise

but just in case of writes, and therefore [2] has been augmented with necessary

functions for correctly rolling back wrong read operations upon writes occurring

out of timestamp order. Read operations never rise violations because the old

versions are always kept until memory pruning. However, this solution does not

provide the possibility to share the entire state across all the LPs.

With the intention of targeting the optimistic synchronization protocol over

multi-cores machines, [43] is the first solution in which LPs can directly access

3. MEMORY ISSUE 27

the states of other LPs. The authors define the concept of Extended LPs (Ex-

LPs) that are sets of LPs: a LP can access all states of its-mates without

synchronization. The scheduling protocol guarantees that for each set of LPs

just one element per group is executing at any time. This solution has two

problems: no transparency is provided because specific APIs must be called

in order to access the states; and the group composition must be known in

advance, the programmer groups all LPs that he believes having close causal

relationships.

In [44] and [7] the concept of Space-Time Memory (STM) presented in [45]

has been used to address sharing states in PDES environments. Instead of

considering memory as a linear array of values accessible by a single spatial

“coordinate”, Chandy and Sherman suggest to see it as a two-dimensional array

where together with the idea of space there is also time dimension. The pur-

pose is to share states among LPs. They partition the two-dimensional spaces

into distinct regions, each one assigned to a single process that is in charge of

computing the values of state variables stored there. The computation ends as

soon as a fixed point is reached. Ghostand and Fujimoto suggest the creation of

this shared object and the implementation of such behaviour achieving simpler

coding and better performances enabling also rollback operations. Their ab-

straction contains three types of operations for creating, reading and modifying

an object that must be directly called by programmers. Read and write opera-

tions cannot be invoked more then once over the same object by the same event

because these return a handle to a “memory page” that stores the value, hence

all future actions will be actuated through it. Both operations exploit two locks:

one is used to know which event that has the lowest timestamp is now writing

the object and one guarantees mutual execution. The used data structure is a

linked-list sorted by timestamp, therefore the aforementioned handle is merely

a pointer to the required list item. In order to modify the data structure, the

list must be fully scanned adding a huge overhead.

28 3. MEMORY ISSUE

3.2.1 Static vs Dynamic and Partial vs Full Sharing

The aforementioned solutions can be divided in two main categories: static and

dynamic. With the former we indicate all alternatives that allow LPs to sharing

their state only before the simulation is started and do not provide any facility

to tune the share scheme according to simulation model evolution. Instead,

the latter includes all those alternatives that augment the former ones with the

possibility of run-time state sharing.

In both categories there are solutions that allow to share the LPs states

completely or partially. Partial share relies on global variables [38, 30], or on

a sort of server LP [36], or on Software Transactional Memory [41]. There is a

sort of API that allows LPs to store some information inside a shared area, and

the interaction with this API is left to the application-level programmer with

no transparency whatsoever with respect to memory direct access. However,

a centralized entity, like in [36], will likely become the bottleneck of the entire

architecture. Also the absence of dynamicity in [38, 41] is a significant limita-

tion: in both cases we need to know in advance which are the LPs that will use

shared variables. Achieving transparency with additional compile-phases like in

[30] has been shown to be viable limited to global variables (not the heap). The

work in [37, 43, 44, 7, 45] describe how to share the entire state. [37] uses a

message passing mechanism for allowing LPs to query others in order to access

their state, entailing however huge overhead (indirect access). [43] defines how

to access directly any state. The first one divides LPs in subsets in which every-

one can access the states of any other, but these groups must be predetermined

before the simulation is started. The approaches in [45, 44, 7] allow a complete

access to the entire state.

However, none of the aforementioned solutions provide a mechanism leading

3. MEMORY ISSUE 29

to dynamic sharing of LPs’ states in a non-blocking and fully transparent man-

ner, and still providing speculation. However, based on these solutions we claim

that the possible approaches to target the hit are two: either we can rely on

multi-version linked list like in [36, 30, 44, 7, 45], or we can augment the PDES

environment so as to directly access the actual state like [43]. In both cases the

read/write operations should be executed in-place like in [38]. The tradeoff is

granting direct access to the states paying the cost of locks since the hit LPs

must be blocked while the reading/writing one is actually working, or taking

advantages of version-lists where causality errors are materialised only during

write operations paying huge memory consumption. Furthermore similarity to

how [43, 44, 7] have suggested, each group must be handled by a single thread:

there is no reason to divide the LPs of a single group over two or more threads,

it will cause only additional overhead due to synchronisation and information

sharing.

3.3 Considerations

Today, PDES synchronization paradigms able to allow simulation objects to

share their whole state in a completely transparent way towards the application

programmer are still lacking. Our aim is to provide this synchronization scheme

as well as allow the programmers to code in a sequential style. We provide

a more general programming and execution model than the classic PDES. The

state portion that can be accessed by each simulation object during its execution

is not limited to its own state or to the shared global variables only. Indeed, each

LP is allowed to access the state of whichever simulation objects both in read and

write mode. The idea is to grant each LP the possibility to access the other LPs

state as in a sequential-style DES programming model, where the latter pass to

the former a pointer to their states inside the payload of a simulation message.

Nevertheless, targeting this situation in a sequential environment is trivial, while

30 3. MEMORY ISSUE

inside a parallel one it requires the creation of an advanced memory management

architecture together with an advanced synchronisation mechanism that can

guarantee consistency and progress. Furthermore, we cope with these issues in

a transparent manner.

Our solution is completely orthogonal to the possibility to migrate memory

inside a NUMA environment. Our aim is to provide each simulation with a set

of logically contiguous, private and pre-reserved memory pages that it can share

with other LPs on demand. After migrating memory from one NUMA node to

another, the memory pages that were previously logically contiguous are still

contiguous: each NUMA node manages all available memory as a single address

space.

CHAPTER 4

Symmetric Multi-Threaded

Optimistic Simulator

In this chapter we describe our reference architecture as well as our test-bed

platform: ROme OpTimistic Simulator (ROOT-Sim) [2].

4.1 The Reference System Architecture

Out target architecture is called Symmetric Multi-Threaded optimistic simu-

lation kernel for massively multi-core architectures with NUMA facilities (see

Figure 2.1). It is pyramidal organised: on top there are LPs, underneath we find

the simulation kernel instance that handles LPs, further there are CPU-Cores

over which simulation kernels are spread. At the bottom of the architecture

we find a communication layer: since multiple machine should take place in the

simulation we need a mechanism to put them in contact (message passing-based

communication network based on MPI library [6]). All involved machines follow

the same system architecture. With the intention of achieving high performance

exploiting the intrinsic parallelism of architecture and favouring memory local-

ity, simulation kernels are divided according to a multi-threaded programming

31

32 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

paradigm: during the start-up phase each worker thread is statically assigned

to an available CPU core thus blocking any attempt of underlining operat-

ing system‚Äôs scheduler to spread worker threads around. Each LP has two

timestamp-ordered queues able to guarantee high-performance: input queue and

out queue. The former contains all received events, while the latter stores all

sent events and it is useful for sending anti-messages during rollback operations.

Since executed events are not eliminated, the input queue is both a future-event

list and a past-event list, there is a pointer that keeps track of last-correctly

executed event, say the bound event. LPs are dispatched following the “Small-

est timestamp first”: the event with smaller timestamp is always selected before

the other that holds a next event with bigger timestamp. As Time Warp [3]

suggests, rollbacks are executed only when they are really necessary: as long as

the Select-Timestamp-First scheduler does not select an LP that holds a roll-

back state, the real rollback is not executed (lazy rollbackl). In this way the

frequency of rollback is significantly reduced.

To take the most out of Symmetric Multi-Threaded simulation kernel a syn-

chronisation mechanism is required for guarantee the correctness of simulation.

It must take into account two main points:

• running in kernel mode without explicit synchronisation mechanism for

avoiding scalability problem and improving performances

• avoiding loss of locality for completely exploiting the benefits of caches

Executing according to data partitioning paradigms satisfies the former condi-

tion, while the latter is naturally fit from multi-threading paradigm: all worker

threads of a simulation kernel execute within the same address space and there-

fore all data structures related to whatever LP are accessible by any worker

thread.

These two conditions have driven the design of top/bottom-half mechanism

for those actions that lead a simulation object to potentially cross the boundaries

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 33

of another simulation object while the former accesses the data-structures of the

latter. Whenever the former has to execute such a task, instead of blocking the

latter, it updates the top-half data-structure without triggering an immediately

finalisation. As soon as the latter has completed the tasks stored inside the

bottom-half data-structures, it checks whether some new tasks are available,

and if so, it will finalise them. This behaviour resembles the Linux task queue.

For guaranteeing safety during concurrent accesses to top/bottom-half data-

structure, a spin-lock array with as many entries as the number of simulation

objects is owned by each simulation kernel, in other words a mutual-exclusion

paradigm is provided. Techniques have been applied for ensuring high perfor-

mances while using spin-locks. A typical application for the aforementioned

data-structure is when LPx has to access the bottom-half queue of LPy due to

new message/antimessage destined to LPy while they are handled by two dif-

ferent worker threads. A similar situation occurs when LPy has to handle the

message reception.

Figure 4.1: Top/bottom Halves Architecture

For coping with locality, we establish a wall-clock-time window during which

a matching between LPs and worker threads is created. The affinity mechanism

entails that a worker thread of a specific simulation-kernel instance is not allowed

to run every LP hosted by that kernel. Instead, it handles just a subset of

34 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

them. For each LP that worker thread has in charge, it executes the following

operation:

1. flushing the bottom-half queues of all simulation object controlled by each

LP

2. selecting the LP that has to execute according to a time interleaved mode

Note that affinity between worker threads and LPs can change over time taking

into account the variations of the amount of available worker threads. Due to

the division a per thread data-structures, called dispatched_info[], are created.

They take track of what LPs are handled by the current worker thread. It is just

an array of pointer to the original shared state data-structure. In this way during

the execution of Smallest Time-stamp First scheduling algorithm, each worker

thread accesses only the private data-structure without interfering with others.

Furthermore, using a shared data-structure would have caused lower perfor-

mance due to continuous cache invalidation: the update operations would any-

way invalidate the cached portion of the scheduler state on all worker threads,

or would require cache fill, hampering performance. In this way each worker

thread accesses only the LP’s state pointed by its local dispatched_info[].

Figure 4.2: LTF Scheduler Management Upon Normal and LP Handoff Phases

With the purpose of maximising the global event rate, the affinity between

worker threads and LPs can be modified also taking into account the amount

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 35

of work-load computed by each LP. The new division can be periodically re-

computed during the GVT determination. The power reallocation algorithm

computes a Knapsacks algorithm, that uses as weight parameter the work-

load. For each LPx hosted by simulation-kernel instance ki, with i ∈ [1,K]

x ∈ [1, numLP ki] where numLP ki is the cardinality of ki, the workload factor

Lx is computed by ki. Taking into account the simulation events currently regis-

tered in the input-queue and that will be executed in the next run, the esteemed

distance in the future equal to the last GVT advancement that new events ex-

ecution will cause weighted by the average CPU time for event processing, the

equation to compute the work-load is:

Lx =
qx × δx

LV T qx
x − LV T 1

x

where ql is the amount of pending events within the event-queue of LPx with

timestamps that fall within the interval of interest, LV T i
x is the timestamp as-

sociated with the i-th pending event along the queue, and δx is the average CPU

requirement for event processing by LPx along that chain of pending events.

In massively multi-core architectures and even more in a distributed system

there is lack of a shared global clock. This type of instrument is fundamental

for driving the evolution of simulation without violating causality and therefore

the determination of a Global Virtual Time (GVT) is required. According to

the traditional definition of Time Warp, the GVT value determines the lower

bound of any future rollback, in other words it is the global minimum across all

worker-threads of messages/anti-messages timestamps that are either into the

message-queue or that have already been incorporated into the event-queue.

This computation is divided in two phases:

1. each worker thread computes the local minimum: the minimum time-

stamp of events kept by the event-queue

2. the minimum of all local minimum is computed by a distributed and wait-

free algorithm where all worker threads participate.

36 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

Figure 4.3: GVT Computation Phases Example

In our architecture we assume that the PDES system runs according to a

dual-mode scheme where we distinguish between application vs platform modes.

A worker thread enters in application mode as soon as it dispatches a simulation

object, while it will renter in platform mode after the ending of each simulation

event. In this context we consider the live state of a simulation object as recover-

ability data. Furthermore, any memory allocation/deallocation operation is not

demanded to the standard malloc library: they are transparently intercepted

by the underlying PDES environment and redirected to proper allocators.

Figure 4.4: The Dual-mode Execution model

Upon calling the standard-library memory management API, the underlying

environment identifies which is the invoking simulation object and then performs

a non-anonymous memory allocation/deallocation operation. get_new_buffer(int

sobj_id, size_t size) function allocates memory knowing the identity of the

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 37

caller simulation object. It exploits the underling open-source DyMeLoR alloca-

tor [29]. DyMeLor pre-allocates large memory segments by the original malloc

library, and then it partitions these big segments into chunks. It uses compact

bitmaps for tracking who is the user of each chunk and exhibits facilities to

provide memory recoverability. DyMeLoR is also able to handle unrecoverable

memory, in this case it is exploited by platform level code that hence does not

require recoverable facilities.

Since we are targeting a NUMA environment, we need a NUMA alloca-

tor able to pre-reserve memory segments that can be delivered to the overlying

(user-level) chunk allocator in non-anonymous way. void* allocate_segment(int

sobj, size_t size) fits exactly this scenario. In case of NUMA environment,

the user-level allocator calls the NUMA allocator for obtaining the required

segment instead of calling the traditional malloc. As in the previous case, the

NUMA allocator pre-allocates memory on-demand returning it to the invoker.

Figure 4.5: mem_map Data-structures

Pre-reserving is supported via the POSIX mmap system-call, which allows for

38 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

validating in the process memory map a set of contiguous virtual pages, whose

global size complies with the size of the segment allocation request.

As Figure 4.6 shows, in case a worker thread has to allocate a buffer for plat-

form level usage, say a unrecoverable memory area, the get_new_buffer func-

tion of the DyMeLoR user-level allocator for the unrecoverable case is called.

This returns a pointer to a non-anonymous segment pre-reserved by DyMeLoR

where the buffer resides. Instead, if the caller requires recoverable memory, the

recoverable version of get_new_buffer service is called.

Thanks to the above architectural organization, the NUMA memory man-

ager guarantees that the set of virtual memory pages destined to keep event

buffers, live state and recoverability data for any individual simulation object

is actually disjointed from the set of virtual memory pages used for storing

data associated with other simulation objects hosted by the multi-thread PDES

system.

Let us now discuss how these virtual memory pages are allocated on the

different NUMA nodes. set_mempolicy system-call is called during the initial-

isation of our NUMA manager for ensuring that empty-zero memory is materi-

alized on the NUMA node associated with the CPU-core where memory access

is performed. This strict binding, together with the idea that memory pages

keeping chunks of a specific simulation object are accessed only by the worker

thread to which the object is bound, guarantees that physical memory allo-

cation takes place exactly on the NUMA node associated with the CPU-core

where the thread is running. It is clear that this architecture fits only situa-

tion where worker threads are statically bound to a specific CPU-core (such as

when running with the sched_setaffinity service posted) and the simulation

objects are statically bound to a specific worker thread.

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 39

Figure 4.6: Memory Allocation for Platform and Application Usage

To cope with dynamic scenarios a page migration daemon, called pagemigd,

is added to the previous architecture. It runs a set of CPU non-intrusive threads

that periodically move memory pages associated with the memory map of a

specific simulation object to a target NUMA node. Worker threads can trigger

a move request via void move_sobj(int sobj_id, unsigned target_node).

In this case pagemigd accesses the data structure associated with the object

to move, and migrates segments registered within the segment table of that

simulation object.

The move is actuated via move_pages Linux system call, that takes as input

the virtual addresses of pages to be moved and NUMA nodes toward which the

move has to be actuated (see Figure 4.7).

As said before, pagemoved can be made up of multiple threads, each one in

charge of checking migration requests, and migrating subsets of the simulation

objects. Having multiple threads augments the probability that a move request

is promptly executed. Furthermore, the performance is less hampered by parti-

tioning the whole migration across multiple threads. Note that due to pagemigd

40 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

Figure 4.7: Segment Migration Operation

daemon no additional rollbacks are likely generated.

4.2 Simulation Engine

In this Section we discuss the technical organization of ROme OpTimistic Sim-

ulator (ROOT-Sim)[2], a open source PDES simulation kernel relying on the

Symmetric Multi-Threaded Optimistic synchronization paradigm. It comes as

a static library which can be linked to executables implementing simulation

models using the ANSI-C programming standard [46], as if they were com-

pletely sequential.

In particular, the user can organize the code in as many functions/files as

needed, can perform any I/O operation during the simulation (keeping in mind

that I/O operations can degrade performance) can use dynamically-allocated

memory to build the simulation state. No regular entry point is required for the

application-level code, as entry points for the application code are specified by

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 41

ad-hoc APIs.

The actual simulation is based on events: each LP processes events, and

its advancement in the LVT is connected to their execution. LPs communi-

cate via messages or via global variables. As the Time Warp protocol suggests,

ROOT-Sim forces a logical identity between events and messages. Each message

contains an event that must be scheduled to some destination LP. Each event

is identified by a numerical code, which is defined by the application-level logic

and therefore more than one type of message can be used. The application-level

programmer has to implements a struct for each event type, where the con-

tent of a message (an event) must be specified. Furthermore, there is an unique

identifier number associated with each message that must be specified whenever

a message is sent.

Each LP has its own execution context and its own stack. They are both

implemented as user-level threads (ULT). Each stack lives in the LP’s stock,

so we enforce a complete separation between the simulation-kernel-level and

the LP-level data structures. Context switches are executed relying on POSIX

setjmp/longjmp API functions. Thus, activating an LP also means changing

the execution context from the worker thread to the LP.

Each logical process has its data structures enclosed in a LP_struct data

structure (resembling what the Linux kernel does for processes), thus enforc-

ing modularity end easiness to extension. All execution context information is

maintained into this structure.

Concurrent execution is based on the notion of worker thread. At simulation

start-up, ROOT-Sim as many threads as the number of available CPU-cores and

42 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

spreads them one per core, in this way it can exploit all computing resources

available in the underlying architecture. The ROOT-Sim divides LPs in disjoint

subsets and assigns a subset to each worker thread. During the simulation, this

binding can be periodically modified taking into account the work-load of each

simulation object in order to maximize the overall performance by adopting a

load sharing policy.

The first event, namely the INIT message, executed by each LP is automat-

ically sent by ROOT-Sim. The application code related to this event must be

always specified because it initialises the simulation state of related LP by a se-

quence of malloc() calls. At the end of INIT the other events can be scheduled

allowing the simulation to start. The state created during the INIT handling

is considered as the initial part of the LP’s simulation state, and will pass via

a pointer to the API that executes any event that can be overridden by appli-

cation programmer. In this way LPs’ states can arbitrarily grow/shrink during

the simulation’s execution, just relying on additional malloc()/free() calls.

The general architecture of the current version of ROOT-Sim is shown in

Figure 4.8.

4.2.1 Supported APIs

The interaction between application-level code and the simulation kernel is es-

tablished via three core API that must be necessarily implemented in the simu-

lation model to be compliant with the library. Then, the rest of the code can be

implemented in any way, albeit respecting the ANSI-C standard. These APIs

are:

• void ProcessEvent(int me, time_type now, int event_type, void

*event_content, void *state) is the callback that supports the actual

processing of simulation events, and it is used by the kernel to give control

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 43

Figure 4.8: Root-Sim Architecture

to the application layer. Its parameters are:

– me: the ID of the LP being scheduled

– now: the current value for the local clock

– event_type: the numerical code for the event to be processed

– event_content: the information regarding the event that me is going

to execute

– state: the current LP’s state.

Inside of ProcessEvent() the execution is fully speculative: the events

that are executed might be eventually undone in a way that is com-

pletely transparent to the application-level programmer. However, if non-

rollbackable actions are executed inside this function they cannot be un-

done, for instance if the programmer prints some texts on the screen during

the execution of an event that will be eventually rolled back, the output

generated will not be reverted.

• void ScheduleNewEvent(int receiver, time_type timestamp, int event_type,

void *event_content, int event_size) is a function that allows in-

jecting a new simulation event within the system, to be destined to whichever

44 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

simulation object. Its parameters are:

– receiver: the ID of the destination LP

– timestamp the LVT associated with the event to be processed

– event_type: the numerical code for the event to be processed

– event_content: the information regarding the event that current

LP is sending

– event_size: the event memory size

Instead, events are buffered and asynchronously delivered when the ex-

ecution of the current one is completed. This allows to pack together

more events if the destination LP is the same, and prevents delays in the

current event’s execution. We note that this asynchronous deliver does

not affect the correctness of the execution but decreases the amount of

rollbacks, because ROOT-Sim will order events in the input queue before

scheduling the next event to the destination LP. In case the delay created

by this internal buffering generates an out-of-order execution at some LP,

then the rollback procedure will restore consistency.

• bool OnGVT(void *snapshot, int gid) is a callback that gives control

to the application layer by also providing a committed snapshot of the

simulation object. Its parameters are:

– snapshot: the newer committed state related to the current LP

– gid: the ID of the current LP

The execution of OnGVT() is therefore not speculative. This means that,

e.g., any I/O operation within this function is perfectly safe, and therefore

it can be used to gather statistics on the ongoing simulation. We note that,

since the timestamp associated with snapshot refers to the committed

portion of the computation, it is forbidden to call ScheduleNewEvent()

within OnGVT(), because this might induce a rollback operation of already

committed events. OnGVT() additionally implements a distributed ter-

mination control: since snapshot is a portion Si of the Committed and

Consistent Global State (CCGS) S, a global predicate can be locally eval-

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 45

uated on Si. If the model determines that the simulation is completed for

that particular LP, OnGVT() can return the true value. ROOT-Sim will

collect all return values, and in case all the LPs agree, the simulation will

stop.

Other important facilities are:

• void SetState(void *new_state) that allows the LP to manually spec-

ify which is its simulation state.

• numerical library which has functions that generate random numbers

according to several distributions: Random(), Expent() (exponential),

Normal(), Gamma(), Poisson(), and Zipf() distributions. This library

is noteworthy: the same sequence of numbers will be deterministically

produced if a rollback operation is performed. It maintains one seed per

each LP, pseudo-randomly drawn by an initial master seed which can be

either randomly computed at simulation start-up, or manually specified

by the user. This gives full control on the model’s execution, giving the

possibility to re-study the same configuration (determined by the initial

master seed) which will give the same final outcome, independently of the

actual events’ execution pattern.

• int FindReceiver(int topology): returns an LP’s neighbour accord-

ing to some geometric topology uniformly at random. Valid values for

topology are RING, BIDRING, LINEAR, HEXAGON, SQUARE, STAR, MESH, which

describe respectively a ring, a bidirectional ring, a linear vector, a square

region divided in several hexagonal cells, a square region divided in several

square cells, a star topology, and a mesh.

4.2.2 Internals and Subsystems Organization

The main simulation loop of ROOT-Sim is shown in Algorithm 4.2.2. It is

concurrently executed by each worker thread

46 4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR

procedure Simulation-Loop
while End == false do

Receive remote messages
Process Bottom Halves
if GVT interval has passed then

start GVT computation
end if
enext ← events associated with timestamp Tmin among the bound LPs
if thenenext is a straggler

rollback LP in charge of processing enext to Tenext

else
switch context to LP in charge of processing enext

end if
if CCGS tells simulation is complete then

End← true
end if
process outgoing messages
if GVT computation complete then

execute Fossil Collection
end if

end while
end procedure

4.3 A Code Example

We present here some code snippets implementing a ROOT-Sim application

which models a set of N nodes connected as a mesh, sending packets randomly

to each other. The first important thing is to define the possible events handled

by the model, the content of an event message, and the structure of the state:

1 #include <ROOT−Sim.h>

2 #define PACKET 1 // Event definition

3 #define DELAY 120

4 #define PACKETS 1000000 // Termination condition

5

6 typedef struct _event_content_t {

7 simetime_t sent_at;

8 } event_content_t;

9 typedef struct _lp_state_t{

10 int packet_count;

11 } lp_state_t;

In this model we allow just one application-defined event, PACKET, which identi-

fies the transit of a packet in the mesh. Then, we must specify the actual events’

logic. ProcessEvent() is the only entry point for speculative event processing,

4. SYMMETRIC MULTI-THREADED OPTIMISTIC SIMULATOR 47

so we rely on a switch construct to demultiplex them:

18 void ProcessEvent(unsigned int me, simtime_t now, unsigned int event, event_t ∗content,

unsigned int size, lp_state_t ∗ptr) {

19 event_t new_event;

20 simtime_t timestamp;

21 unsigned int recv;

22

23 switch(event) {

24 case INIT: // must be ALWAYS implemented

25 state = (lp_state_t ∗)malloc(sizeof(lp_state_t));

26 state−>packet_count = 0;

27 timestamp = (time_type)(20 ∗ Random());

28 ScheduleNewEvent(me, timestamp, PACKET, NULL, 0);

29 break;

30

31 case PACKET:

32 pointer−>packet_count++;

33 new_event.sent_at = now;

34 recv = FindReceiver(MESH);

35 timestamp = now + Expent(DELAY);

36 ScheduleNewEvent(recv, timestamp, PACKET, &new_event, sizeof(

new_event));

37 break;

38 }

39 }

The code logic is fairly simple: upon INIT event, the LP’s state is malloc’d and

initialized, and an initial packet is sent to the LP itself. Whenever a PACKET

event is received, a local counter is increased, and a packet is sent back to a

random LP in the simulation environment. Timestamps are computed accord-

ing to an exponential distribution, exploiting the internal Expent() function.

OnGVT() is the second callback to be implemented, which performs a local check

on the LP’s state. If the number of packets passed through the LP is smaller

than PACKETS, then the simulation cannot be halted yet:

40 bool OnGVT(lp_state_t ∗snapshot, int gid) {

41 if (snapshot−>packet_count < PACKETS)

42 return false;

43 return true;

44 }

CHAPTER 5

Cross-Accessing Logical

Processes’ States

According to the traditional definition of Parallel Discrete Event Simulation

(PDES) [1], the simulation model is divided into distinct simulation objects

that will be concurrently dispatched. It has led to the definition of simulation

objects’ states that are completely disjointed and to event executions that can

access only the memory areas bounded within the executer’s state. Due to

this limitation, the execution of whatever event cannot directly access any valid

memory location outside the boundaries of the running LP state: developing

simulation code according to sequential style is no longer possible. If during

its execution, LPx has to partially or totally access also the memory view of

LPy, the programmer has to a priori map this behaviour over explicit message

exchange. This mapping should take place during the code design/development

phase. This concept promotes parallelism but limits the performance adding

huge overhead to the entire system. Our aim is to relax this memory restriction

favouring speed-up.

Nowadays, thanks to the spread of shared-memory parallel machines, such

as multi-core and SMP machines, there is the possibility to directly share the

49

50 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

state information between different entities by means of shared memory and/or

unique address space. Today, the synchronization paradigm providing such

behaviour is still lacking inside simulation platforms. Our aim is to provide

this synchronization scheme as well as allowing the programmers to code in a

sequential style.

The idea is granting each simulation object the possibility to dynamically

and directly access the local state of any other involved objects as in a sequential-

style DES programming, where the latter passes to the former a memory pointer.

Such pointer is the same one that the LP uses to dynamically allocate its mem-

ory during the simulation and therefore it references exactly the original state

information. The LP that will receive this pointer will be able to access the lo-

cal state of the sender both in read and write mode. This requires the creation

of an advanced memory management architecture together with an advanced

synchronisation mechanism that can guarantee consistency and progress. Fur-

thermore, we cope with these issues in a transparent manner. Henceforth, the

programmer will be able to treat simulation objects’ states that are no longer

disjoint. During the execution of whatever event, any valid memory location

stating a portion of the state of whichever object can be accessed. From now on,

we will refer to this new kind of memory dependency as cross-state dependency,

which is complementary with respect to the traditional PDES event dependency.

Our contribution can be summarized as follow:

• an advanced memory management architecture, targeting Linux systems

running on the x86 Intel-based architecture, has been designed and imple-

mented in order to detect transparently the materialization of cross-state

dependencies between concurrent simulation objects

• an advanced synchronisation mechanism is presented. It masks a tradi-

tional sequential simulation, where events are scheduled in a non-decreasing

time-stamp and any object can access any valid memory area even if it is

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 51

logically owned by another simulation object, with a parallel one where

events and cross-state dependencies are concurrently managed. It is totally

hidden in the underling simulation platform with the purpose of making

every aspect transparent to the application-level programmer. We call our

scheme ECS (Event and Cross-State synchronisation).

This solution has been implemented and tested inside the ROme OpTimistic

Simulator (ROOT-Sim) [2].

5.1 Intel x86-64 Paging 1

For better understanding notions that we will introduce in the next sections, let

us explain how the Intel x86-64 paging works.

By definition paging is the action of translating a linear address into a phys-

ical one with the purpose of using it for accessing memory or I/O devices. The

computed physical address allows the system to verify if the current access

is permitted (the address’s access rights) and what is type of caching policy

adopted for the pointed memory (the address’s memory type).

Intel-64 processors supports three different types of paging:

• 32-bit paging

• PAE paging

• IA-32e paging

They differ with regard to:

• the size of the linear addresses that can be translated

• the size of the physical addresses produced by paging

• the granularity at which linear addressed are translated

• support for execute-disable access rights

• support for PCIDs

• support for protection key
1The notions of this section have been extracted from [47].

52 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

We are interested in IA-32e paging with page size of 4-KBytes.

5.1.1 Hierarchical Paging Structures

All mentioned modes use hierarchical paging structures. Each paging structure

is composed by 4096 bytes containing 512 entries of 64 bits (8 bytes). Processor

adopts a combination of those hierarchical structures with linear address that

is being translated. Linear addresses can be divided in two parts: the first one

states the entries of each paging level data-structures used to obtain the physical

address of memory page that contains our data (page frame), while the second

identifies the offset inside the previous identified memory page (page offset).

Each one of 512 entries contains a physical address that points either the next

paging structure level, namely it is referencing the other paging structure, or a

page frame, and in this case we say that it is mapping a page.

Paging structures are named according to their use during the translation

process.

Figure 5.1: Paging Strucutures in the Different Paging Modes

Considering page size of 4-KByte, it translates 48-bit linear addresses to 52-bit

physical ones mapping at most 256 TBytes of memory. In details:

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 53

1. PML4 table maps 256 TBytes, each of 512 PML4E points 512 GBytes

2. PDPT table maps 512 GBytes, each of 512 PDPTE points 1 GBytes

3. PD table maps 1 GBytes, each of 512 PDE points 2 MBytes

4. PT table maps 2 MBytes, each of 512 PTE points 4 KBytes

5.1.2 Translation

Figure 5.2: Linear-address translation to a 4-KByte page using IA-32e Paging

The translation takes place according to an iterative procedure. It starts

by reading the value of CR3 register storing the physical address of the first

paging-structure. The uppermost bits of linear address is used to select an entry

within the first level data-structure. If the selected entry references another

paging structure, the procedure continues with the next portion of linear address

following the one just used. The translation terminates as soon as the selected

entry map a page: in this case the lower bits of linear address represents the

page offset within the identified page frame.

Only one case exists such that the translation terminates before a page frame

54 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

has been reached. This occurs when the procedure reaches a page-structure

entry marked as “not present” or a reserved bit is set. In this case a page-

fault exception is triggered meaning that either the translation is not allowed

or simply it does not exist.

5.2 Event and Cross-State Synchronisation

This solution has been designed for targeting PDES platforms based on the

multi-threading paradigm and exploiting NUMA facilities. In the last years, re-

searchers have proofed how this can reach performances higher than simulators

running as single-threads processes [43, 48, 49, 50].

Our case of study takes into account the situation where multiple threads dis-

patch whatever simulation object in a non-decreasing order based over the time-

stamp of their simulation events. Technically, the execution starts by calling an

ANSI-C function (event-handler) that takes as input informations like the state

base pointer, that is the data-structure actually pointing all the dynamically

allocated buffers for the current simulation object that can be accessed via

pointers. This scheme traces the classical DES-style coding rules.

5.2.1 Cross-State Dependency Tracking

In this section we present the mechanism that we have designed and imple-

mented for managing cross-state dependencies. This solution is totally trans-

parent to the application-level programmer and it safeguards the benefits of

multi-threading and NUMA paradigms.

Let us highlight again some technical aspects of our architecture. As de-

scribed in Chapter 4, simulation objects see virtual memory in the form of

stocks, namely a set of aligned pages that our allocator delivers on demand. The

classical malloc service has been substituted with a custom allocator, therefore

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 55

each traditional malloc call is automatically redirected to our API. This returns

memory buffers allocated via mmap POSIX API with size aligned to a power

of two. However these buffers are not immediately allocated since they contain

empty-zero pages, they will be allocated only upon the first read/write operation

as the POSIX standard suggests.

With the idea of simplifying the cross-state detection, we have forced each

simulation object to a priori allocate a single stock aligned to one entry of second

level paging structure, namely a PDPTE. In other words, contiguous virtual-

pages addresses composing a single stock are translated from virtual-to-physical

by one PDPTE. It means that a single stock is exactly 1 GByte of memory,

equivalent to 5122 pages, and therefore handling multiple stocks within a single

simulation object means managing multiple gigabytes of state at the same time.

Figure 5.3 shows exactly this situation, starting from a PML4E we find a PDPT

where each entry is reserved for a different LP: the virtual memory pointed by

0-th entry is hold by LPx while the LPy is set up over the 1-st entry.

Figure 5.3: Example relation between LPs and Stocks

In order to track the materialisation of cross-state dependences, we need a

mechanism that notifies us as soon as they appear. Namely, we want a solution

for protecting the memory of each simulation object, in this way as soon as

56 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

an object accesses at least one area that is out of its control, say the state of

another simulation object, the underlining memory management system informs

us about the violation. Coping with this issue is not trivial, the complexity is

in the fact that we are targeting Parallel-DES and therefore we concurrently

dispatch simulation objects over different worker thread (WT). Our base case

is:

1. LPy schedules an event for LPx containing within the payload also a

pointer to memory area of its state. This pointer will be used by LPx

to directly handle information of LPy.

2. LPx executes the event and accesses the LPy state via pointer

According to PDES, LPx may be hold by WTa while LPy is handles by WTb.

The traditional memory protection of operating system, the segmentation-fault

handling scheme, is not able to cope with our issue. Note that exactly the

same page table is shared among all worker threads. Nonetheless, segmentation

can detect accesses out of the state boundaries of a simulation object: thanks

to mprotect POSIX API it is possible to change the state of page table, but

this is not applicable because it hinders the concurrency. Other worker threads

are actually dispatching different simulation objects and due to mprotect they

will find the needed memory protected. The violation of this protection will

generate memory faults which are not usually triggered. In other words, all

objects, except for one, will trigger a memory fault as soon as they will try to

access their own states instead of “remote” stocks.

Moreover, transparent code instrumentation is also not useful for dealing with

our case study. It can be adapted but it will not perform. All read/write

operations must be instrumented also if they turn out as not being cross-state

dependencies.

The entire logic of our solution is implemented by a special device file driver

added to the Linux Kernel via an external module. The simulator interacts with

it using the following ioctl commands:

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 57

• SET_ANCESTOR_PGD

• GET_PGD

• GET_FREE_PML4

• SCHEDULE_ON_PGD

• UNSCHEDULE_ON_PGD

During the initialisation of LPs’ memory, GET_FREE_PML4 returns to the plat-

form an address aligned with the first empty PML4E, the returned value is the

initial address of the 1 GB of first LP that necessarily will be translated by one

single PDPTE. All consecutive memory allocations for the other LPs will take

place immediately after the returned value. For instance let us consider that

ioctl returns i and we have n LPs, then the first n PDPTEs pointed by i− th

PML4E will contain all states of our LPs. If n is bigger than 512, then the

platform calls one more time GET_FREE_PML4 to retrieve the next free PML4E

and the procedure continues as before.

The possibility of knowing exactly where are the stocks of each LP inside the

page table is the key point of our memory management architecture. Any

worker thread owns a completely new page table instantiated by GET_PGD at

the beginning during start up of simulation platform, we name this new paging

structure SIBLING_PML4 (henceforth we will make reference to the original

paging data-structure as ANCESTOR). The ioctl command builds a copy

of original PML4 setting to NULL those PML4Es that translated our stocks.

The NULL value represents our protection mechanism: if during the paging of

whatever logical address we bump into a NULL entry it means that the related

translation does not exit and a page-fault exception is triggered, exactly as we

said in Section 5.1. Therefore we do not grant the possibility to reach the lower

level paging structures, blocking any possible access to the previously allocated

stocks.

When a worker thread WTi has to execute an event for simulation object x its

SIBLING_PML4 is updated as follow (i.e. we say that we have “opened” the

58 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

memory of x for the worker thread WTi):

1. a new PDPT, namely a SIBLING_PDPT, is instantiated

2. the entries related to the stocks of x inside the SIBLING_PDPT are set

up copying the value from the corresponding ANCESTOR_PDPT

3. the associated PML4E inside the SIBLING_PML4 is populated with the

physical address of new PDPT instanced at Step 1

In this way WTi can compute the correct translation from virtual to physical of

those addresses that point the stocks of x. Obviously, in case some pages of x

are not present it means that are swapped-out pages. Note that we have opened

to WTi only the memory of x while all others stocks owned by other simulation

objects are not accessible yet.

Figure 5.4: Memory Stock of LPx is opened to the current Worker Thread

Figure 5.4 shows exactly the situation explained above: the executed steps

are marked with dotted lines. Again the x’s stock is handled by the 0 − th

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 59

entry. This operation is computed thanks to the command SCHEDULE_ON_PGD:

after the execution of previous 3 steps the value of page table pointer register,

namely CR3 in X86_64 processor, is substituted with the physical address of

SIBLING_PML4. In this way the current WTi enters into simulation-object

mode. Let us stress again that only the entry associated to the dispatched

object has a value different from NULL and therefore the stocks of x are the only

ones that can be accessed, regarding other stocks there is no way to reach them

because all associated entries are set to NULL. Note that changing the value

of CR3 is an onerous function because the logic of x86_64 processors firmware

automatically flushes the TLB.

The possibility of concurrently dispatching and executing different simulation

objects while tracking whenever any object tries to access memory out of its

boundaries is given by the presence of different PML4 tables for each thread:

we have a different SIBLING_PML4 per thread. Our architecture is based

on the idea that the ANCESTOR paging data-structure are already filled up

with all needed information. A simple mmap does not leave data-structures in

this situation, it just set memory to empty-zero value. In order to overcome this

default behaviour, after mmapping the required memory our architecture writes

also an entire page of NULL values forcing Linux Kernel to initialise the whole

chain of structures used to manage our stocks. This guarantees the existence

of each PDPTE associated with our stocks and used to update the SIBLING

structures during the dispatch of simulation objects.

UNSCHEDULE_ON_PGD is the dual command of SCHEDULE_ON_PGD. As soon as

a simulation object completes an event execution, the related worker thread calls

the former ioctl command. This simply rewrites the original pointer to the

ANCESTOR_PML4 inside CR3 and then it destroys the SIBLING_PDPT used

to access the stock, in this way during a new despatch a new SCHEDULE_ON_PGD is

re-triggered and the architecture has just to rexecute the steps presented above:

every situation is reduced to a single case easier to manage. This execution

60 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

brings the simulation object back to the platform mode.

Figure 5.5: State diagram of simulation object according to the value of CR3

We have not discussed how the cross-state dependencies are tracked yet. As

we said before, as soon as a worker thread tries to access any stock that is not

handled by the current dispatched object a page-fault exception is triggered since

the related entries of PDPT contain NULL values. The classical segmentation-

fault management leads to reallocating the entire chain of paging data-structures

related to the interested stock since the stocks have been already allocated via

mmap. It means that for the same virtual page there might be multiple page

tables entries that point it. We want to avoid this behaviour since it can not

be directly handled by Linux Kernel without a custom patch. To cope with

this issue, we have created a custom version of page-fault handler that is substi-

tuted to the original one during the initialisation of our file driver changing the

corresponding value inside the IDT table that can be accessed via IDT register.

Our version of page-fault handler knows what are the entries of PML4 table

interested by our stocks, therefore upon fault it checks whether the problem is

related to our PML4Es; if so, it verifies whether the entry is already present

inside SIBLING PML4 and in the negative case this is a cross-state hence the

process ends; whereas when the PDPTE is present it controls whether the fault

is confined to the PDPT so that it is a cross-state dependency, otherwise it

is a normal memory fault and the normal do_page_fault of Linux Kernel is

called. In case of cross-state dependencies, our handler identifies the involved

stocks and the resulting PDPTEs. This information is stored inside the stack

by the handler and the control is given back to the platform. After the control

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 61

comes back to the platform, architecture retrieves the new information from the

stack, updates the needed data-structures and calls UNSCHEDULE_ON_PGD (see

Figure 5.5). In this way we can synchronise the simulation objects involved

in the dependencies via our synchronization scheme that will be depicted in

the next section. During this management we pass from user-mode to kernel-

mode and then again to user-mode. In the past such behaviour was exacting

for high performance computing, but nowadays thanks to the low latency pro-

vided by machine instructions sysenter and sysexit the prohibitive costs have

decreased by one-forth making our implementation possible and faster. These

machine instructions target operating systems without segmentation and with

a memory model that is flat.

We base our architecture on the possibility of changing the value of CR3 and

leaving it unchanged until the conclusion of dispatched event. During the re-

dispatching of a thread, the scheduler retrieves the pointer of current thread page

table that is actually going into CPU from the memory context. This memory

management information stores the address of original page table, namely the

ANCESTOR one, but since we do not have any assurance that a dispatched

event has been completed with just one run we need a mechanism to refill

CR3 with the SIBLING PML4 if necessary; in this way the worker thread is

allowed to access only the needed stocks while the others can be still protected or

concurrently dispatched along other threads. In order to deal with this issue, we

have designed another kernel module that patches the Linux scheduler, adding

a new function at the end of schedule that simply checks if a special function-

pointer is not NULL, if so it calls our file driver that sets up CR3 with proper

value. This function exploits some meta-data initialised with SCHEDULE_ON_PGD

command to understand if CR3 must be updated with the related SIBLING

PML4. Obviously, if the pointer is equal to NULL the reschedule action works

according to the standard behaviour. In this way our architecture can coexist

with the traditional schedule of Linux Kernel.

62 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

5.2.2 The Event Cross-State Synchronization Scheme

A new synchronisation scheme has been designed in order to synchronise the

simulation objects involved in the cross-state dependency, it exploits the memory

management described in the previous section. While it allows each simulation

to process its events according to a non decreasing time-stamp order for entail-

ing correctness inside a PDES platform, it guarantees also that a cross-state

dependence occurred at time t will find the other involved stocks at the same

simulation time t, as if it had been materialised in a sequential environment

where simulation objects advance always in a non-decreasing time-stamp order.

To achieve our goal, we have augmented the number of possible states in which

a simulation objects can pass though giving the possibility of returning back

the control to the platform even if the event execution is not yet completed

(interrupt-driven scheme), and we have introduced a special class of events

called rendezvous that can be triggered only by the platform in order to tem-

porarily disable involved simulation objects and align them according to sim-

ulation time at which the dependencies has been materialised, since they are

platform-generated events they do not have any associated processing rule at

the application level, let us stress again that our solution is totally transparent

to application-level programmer. These two innovations allow us to improve

the PDES execution model with some concept of Transactional Memory mod-

els: we have made read and write operations serialisable across multiple stocks

according to the logical time at which their occur.

As the name of scheme suggests, a cross state dependency terminates to-

gether with the event that materialised it. Therefore all new data-structures

added to the platform in order to handle cross-state dependences will be emp-

tied after the conclusion of each cross-state event.

Each simulation object has been associated with a cross-state dependency

set that stores all identifiers of simulation objects towards which the current

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 63

object has materialised cross-state during the execution of an event. We refer

to set of x as CSDx. Upon dispatching of new event, CSD is initialised as

empty and it will be updated as soon as the memory management observes a

cross-state dependence. Let us consider that simulation object x is trying to

access either in read or write mode the stock of y during the execution of its

event ex since it has received a memory pointer from y inside the payload of its

event ex. A cross-state dependency is materialising. Our page-fault hander is

called, and the needed parameters are given to the platform. Handling of ECS

takes place in accordance with the following algorithmic steps:

1. object x passes through a blocking state and therefore the execution of its

event ex is temporarily blocked

2. a unique identifier of rendezvous rvid(ex) is computed and added to the

payload of ex

3. a rendezvous event ervy is sent to object y, it has the same rendezvous

mark and the same time-stamp of ex

ts(ex) = ts(ervy) rvid(ex) = rvid(ervy)

Rendezvous events are treated as classical events, therefore they are inserted into

the event list of the receiver object, in our case y. It means that a rendezvous

event may be a straggler event in the case that the simulation time of the

receiver is bigger than the time-stamp stored inside the payload of event. This

case may be highly possible since we are targeting speculative environments.

Another important aspect is that rendezvous events are handled as application-

level event without a rule defined by the programmer, their behaviour is hidden

inside the platform and generates results at platform level as a classic event

without updating the receiver state.

When ervy becomes the event of y with lowest time-stamp, the following

algorithmic steps are actuated by ECS in order to handle it:

1. object y passes through a blocking state

2. a rendezvous acknowledgement event ervax is sent to object x with the same

64 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

rendezvous mark of ex but without time-stamp
rvid(ex) = rvid(ervax)

On the other side, as soon as x receives ervax ECS actuates the following algo-

rithmic steps:

1. the identifier of y is added to CSDx

2. x comes back to the ready state and it will be eventually dispatched over

some worker thread and it will try to complete the previous interrupted

event ex

Object y will be blocked until x finishes ex, since we want to allow x to read

and/or write stocks of y in order to complete the operation that originates the

cross-state dependency. Upon re-dispatching object x the underling memory

management uses CSDx for opening to x not only its stocks but also the one

owned by y; in order to do so we pass to the SCHEDULE_ON_PGD command the

set CSDx ∪ x, that in our example states x and y.

All showed steps can be iterated in case object x materialises other cross-state

dependencies towards multiple LPs. According to our memory management

architecture and our synchronization protocol, any access to stocks owned by

simulation objects whose identifiers are stored inside CDS will not lead to new

ECS memory fault.

After the ending of ex, ECS informs all objects whose identifiers are stored

inside CSD that the cross-state dependency is finished and therefore they are

no longer blocked and after resuming they can go ahead with their event. To

achieve this result ECS executes the following algorithmic steps:

1. for each identifier k stored inside CSDx, a rendezvous unblock event eubk) is

generated with the same rendezvous mark oof ex but without time-stamp

rvid(ex) = rvid(ervax)

2. upon the delivery eubk , the receiver gets back to ready state and it will be

eventually re-scheduled

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 65

This section and the previous one describe in details our solution but they omit

some details in regards to correctness and progress. We also need to explain in

detail how to handle rollbacks and anti-messages since we are targeting specu-

lative environments.

Correctness

ECS introduces new relations between at least two simulation objects which

previously where not possible: it allows object x to read and/or write the stocks

of other objects as in-memory transactions, therefore x must find all needed

stocks, its own and the ones handled by the other involved objects, at the very

same simulation time. In other words, if during the processing of an event ex

a rendezvous event is inserted into the system thus it means that from now on

the involved objects are causally related and therefore as soon as one of them

rollbacks at time preceding the cross-state materialisation our protocol has to

take into account this relationship. Particularly, a rollback of one simulation

object induces the rollbacks of all simulation objects involved into the cross-

state. The possible situations are two, if object x rollbacks at time t′ < ts(ex)

and ex had generated a ervy , we need to rollback also y because x during its

execution may have performed some updates on the stocks of y; if y has to

rollback at time t′ < ts(ervy) we need to rollback also x since x may have used

some information handled within the state of y to update its local state affecting

the outcome related to the execution of ex.

To cope with this issue we implement the following scheme. To solve the

problem generated by the rollback of ex, we simply send an anti-event related to

the rendezvous event ervy that will drive the classic annihilation phase that leads

to rolling back y to the latest processed event with time-stamp smaller than

ts(ex). This is possible since the rendezvous event was added into the event list

of receiver. If instead y, that actually is the simulation object that received the

66 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

rendezvous event, has to rollback at a simulation time smaller than ts(ervy) we

need to annihilate any possible change made by x using the simulation state

of y. This is done by means of a special anti-message that will be sent to x.

When ex will be dispatched again after rollback, a new marked rendezvous will

be generated therefore no discrepancy will occur and no cycles will be generated

by annihilation process.

With respect to the other ECS events, such as acknowledgements and unblocks,

they are not added into the event lists of the receiver and therefore they can

be simply discarded without requiring a rollback scheme. Considering FIFO

channels between simulation objects, these events can be rejected if the ren-

dezvous mark stored inside the event payload is different from the one owned

by simulation object that receives the event.

Progress

The classical issues that can hamper performance inside a speculative PDES

environment may be generated also from our ECS scheme, therefore we need to

take care to avoid deadlocks, livelocks and domino-effects during the rollback

phase.

Whenever an object x generates a rendezvous event at time t1 directed to z

while it is waiting for y to reah time t3 for a rendezvous between y and z, while

y in turn is expecting that x reaches time t2 for a rendezvous between x and y,

this leads the system into a deadlock condition. A rendezvous cycle is generated:

in order to continue its ECS execution, object with minimum time-stamp waits

the rollbacks of other simulation objects while in turn they are in a blocked state

waiting for the unblock of one of them and the object with minimum time-stamp.

In order to avoid this scenario, we augment our simulation scheme with the

following rule: whether a simulation object x has to rollback while it is blocked

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 67

Figure 5.6: Example where a rendezvous event generates deadlock

due to a rendezvous event generated by processing event ex, before setting it

back to a ready state, event ex will be squashed and relative anti-event will be

sent into the system to inform all involved objects that event ex has been forced

to finish and a rollback is needed (See Figure 5.6). From the point of view of

involved objects, a rollback is needed because x may have modified their state,

therefore we must guarantee that after resuming all simulation objects have a

coherent state. According to our synchronization scheme, using anti-message to

annihilate a rendezvous event is safe since the involved objects are all blocked,

therefore they can handle it immediately.

Figure 5.7: Example where rendezvous events generate livelocks

Live-lock is another classic issue that we have to take into account. Simula-

tion objects that materialise circular cross-state dependences will surely enter in

a livelock condition. Figure 5.7 shows exactly this situation, object x processes

ex at simulation time ts(ex) and it raises a cross-state dependence towards y,

meanwhile y is executing ey at simulation time ts(ey) = ts(ex) that in turn

generates a rendezvoud event toward x. This situation may cause a cycle of

68 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

rollbacks that may be repeated indefinitely. This issue can be solved by a sim-

ple priority management scheme for simultaneous events extended to rendezvous

events. We need a mechanism to identify concurrent events that are causally

related. If the presence of two simultaneous events ex and ey with ey causally

related to ex, namely ts(ey) = ts(ex) such that ex → ey, we must extend this

property also to any rendezvous event generated by x: any rendezvous event

ervy generated by x towards y during the ex processing will be in turn causally

related to ey, namely ervy → ey. In this way any possible conflict materialised by

simultaneous events will be serialised according to their causality relations. Is-

sues related to simultaneous events are a general problem of speculative PDES

environment. In the last years, they were widely studied and some solution

have been provided in order to tie-breaking simultaneous events that can be

integrated with the just showed scheme.

The last issue that we have to take into account is the domino effect. We

recall that a cross-state dependency between x and y means that x will directly

manage the state of y as soon as the latter will grant it the access. In order to

show to x a consistent snapshot of state of y, y has to be at simulation time

exactly equal to x. This condition is assured thanks to our synchronisation

scheme. Due to a rollback of x at simulation time smaller than the simula-

tion time of event ex that raised cross-state dependency, x may execute ex in

silent execution. Note that during the coasting-forward phase no one of previous

already sent messages will be resent since executing in silent execution means

reaching the needed time starting from the first available state with time smaller

than the straggler event that caused rollback. In other words, simulation ob-

jects will reprocess some events that have not been annihilated according to the

classic rollback handling for speculative PDES environment in the case of sparse

state saving. Hence x may access the state of y without synchronisation, in this

situation two different issue may be verified. If both x and y are concurrently

dispatched over two different worker threads, the former could concurrently han-

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 69

dle the same memory area of the latter; meanwhile y is executing on the other

worker thread. Instead, if y is not dispatched while x is executing, the latter

may access the state of former while the former is at simulation time different

from the one of x thus a violation of coherence will be materialised losing the

correctness of simulation: x will observe a state of y that may be either older

or earlier of its current simulation time. If x rollbacks the only way to ensure

consistency is to rollback also y because they are causally related due to their

cross-state dependency. It is easy to show that the rollback of y may trigger

also the rollback of another object z due to a cross-state dependency as well

and a so called domino effect may be generated. With the purpose of avoiding

this incorrect behaviour our scheme forces a new log, exactly at the end of each

cross-state event, to the logs taken by the sparse state saving policy thus it will

be impossible that during coasting-forward our simulation objects will dispatch

cross-state events: no rendezvous generating event will ever be in the sequence

of events between two subsequent logs of the same simulation object.

Figure 5.8: Example where rendezvous events generate cascading rollbacks

Another solution for our issue is taking logs at the end of each correctly

processed event, but it is not practicable because it hampers performance of

our system.

70 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

5.2.3 Integrating State Sharing Policies with NUMA Ori-

ented Support

The ROme OpTimistic Simulator (ROOT-Sim) is our test-bed environment.

The environment described in Chapter 4 has been augmented with some new

functionality in order to implement our advanced memory management archi-

tecture as well as our advanced synchronisation scheme.

Figure 5.9: New layer for allocating 1GB of contiguos memory

In order to handle the new memory constraints we have added a new layer

below the Stock Allocator (see Chapter 4) of ROOT-Sim called ECS_allocator.

Inside our platform, the memory demands are taken into account by the DyMeLor

open source allocator [29, 51] cooperated with the Stock Allocator (see Chap-

ter 4), they manage two types of memory: unrecoverable and recoverable. The

former is directly asked to the Kernel, while the latter is demanded from our

new allocator. We recall that our solution for properly working needs that

each LP owns exactly 1 GBytes of aligned memory pages. ECS_allocator has

been created for exactly fitting this purpose. During its initialisation, DyMeLor

initialises the Stock Allocator that in its turn triggers the ECS_allocator by

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 71

calling allocator_ecs_init. This function forces the reservation of 1GBytes

for each simulation object by calling the mmap API of Linux Kernel, writing a

NULL byte into one single stock’s page, namely the first one, and concludes the

procedure by populating our new data structure lp_mem_region. A single call

to mmap API is not enough to allocate the needed 1GBytes because the amount

of memory that can be obtained with a single call is limited to at most 512

MBytes thus we have to call it twice.

Algorithm 2: allocator_ecs_init

1: procedure allocator_ecs_init(int n_prc)
2: size← (512 ∗ 512 ∗ 4096)/2 . 512MB
3: for i← 0, n_prc do
4: index← ioctl(GET_FREE_PML4)
5: addr ← get_mem_addr(index)
6: for y ← 0, 511 do
7: lp_mem_region[i].base_pointer ← mmap(addr,size)
8: addr ← addr + size
9: mmap(addr,size)

10: addr ← addr + size
11: i← i+ 1
12: end for
13: end for
14: end procedure

Before calling mmap, the platform calls GET_FREE_PML4 for retrieving the

first free PML4E, starting from its index we compute the initial address aligned

with the first PDPTE pointed by the retrived PML4E. GET_FREE_PML4 simply

scans ANCESTOR PML4 locking for the free entry, as soon as it finds the index,

it updates a local vector called dirty_pml4 that tracks what entries of PML4

level are under control of our allocator. Populating the initial page of each

stock is crucial: as soon as the Linux Kernel accesses an empty-zero memory

area it allocates the whole chain of paging data-structure that we will exploit

for managing cross-state events.

The new data-structure that tracks of recoverable memory of each simulation

object is composed by the following two fields:

72 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

• base_pointer: identifying the initial address of corresponding stock, namely

the base of allocated memory associated with the LP state. NULL has been

used as the default initialisation value.

• brk: setting the end of data segment already used by the current simula-

tion object.

As of malloc library, we implement a classical per LP pre-allocation strategy.

This is done in order to have memory ready for serving the on demand requests

of DyMeLor API which tries to improve memory locality for the LP state with

the purpose of optimising checkpoint/restore operations. Hence at the end of

allocator_ecs_init we have allocated an array of as many entries as the num-

ber of simulation objects where each entry contains exactly one lp_mem_region

structure, and we have allocated as many Giga bytes as the number of simula-

tion objects.

As soon as DyMeLor needs a new malloc_area for recoverable memory we iden-

tify which LP is calling the API and then we redirect the request to ECS_allocator

that will try to deliver the new memory retrieving it from the pre-reserved Giga.

This operation is computed by get_memory_ecs function. Starting from the

caller’s lid, the allocator identifies the associated lp_mem_region and returns

memory only if the value of brk plus the required size does not exceed the

preserved 1 GBytes. In the positive case, it returns the initial pointer of new

memory and increments the brk fields of size passed as input to the request,

while in the negative case it notifies to the upper level that the required memory

is not available.

The last API that we have introduced is get_base_pointer. In order to trigger

the SCHEDULE_ON_PGD command, we have to populate the data-structure that

it takes as input, namely ioctl_info. It is composed as follow:

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 73

1 struct ioctl_info{

2 unsigned mapped_processes;

3 ulong callback;

4 int ds;

5 void∗∗ objects_mmap_pointers;

6 int objects_mmap_count;

7 }

objects_mmap_pointers contains the addresses of stocks that we want to

“open” to the simulation object which we are dispatching. Those addresses are

retrieved by calling get_base_pointer: giving the id of the simulation object

that holds the stock which we are interested in get_base_pointer returns the

value of base_pointer field stored inside the lp_mem_region data-structure

associated with the engaged LP.

Together with the innovations introduced in the management of recoverable

memory, we modify the procedure for dispatching simulation objects. In order

to launch the execution of simulation events, first of all platform has to trigger

SCHEDULE_ON_PGD command: it is in charge of checking if the ANCESTOR and

the corresponding SIBILING pgds differ within those entries that are not taken

into account by ECS_allocator, then our file driver finds what entries of SIB-

LING paging data-structure must be populated for “opening” memory to the dis-

patched LP according to the addresses provided inside objects_mmap_pointers

field. We recall that, ANCESTOR and SIBLING paging structures differ within

just entries that point to the states of our LPs, namely within entries that

we use to implement our protection mechanism, while the former has these

entry correctly populated, the latter contains just NULL value. In the end,

SCHEDULE_ON_PGD notifies to the platform that SIBLING pgd’s pointer must

be loaded inside CR3 register for moving the execution over the parallel view.

UNSCHEDULE_ON_PGD is the dual of SCHEDULE_ON_PGD. This command is trig-

gered by the platform after the conclusion of each simulation event. It loads

inside CR3 the ANCESTOR pgd’s pointer and then empties by writing NULL val-

74 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

Algorithm 3: SCHEDULE_ON_PGD

procedure SCHEDULE_ON_PGD(LpMemRegion MRS, int wt)
2: check_diff(SIBLING[wt], ANCESTOR[wt])

for mem_reg ∈ MRS do
4: entry = get_PML4E(mem_reg.address)

open(entry, SIBLING[wt])
6: end for

load_CR3(SIBLING[wt])
8: end procedure

ues all those PDPTs previously instantiated by SCHEDULE_ON_PGD. Substituting

CR3 value at run-time is a safe operation inasmuch the two paging structures

differ only in terms of those entries that map stocks, in other words the two

structures are equal except for entries saved inside dirty_pml4 vector enhanced

in the ANCESTOR but not in the SIBLING one. The freeing of SIBLING

PDPTs are needed to simplify the code of SCHEDULE_ON_PGD: there is no dif-

ference if a worker thread calls this command for the first time or for the n-th

time, it always must instantiate all entries related to the given stocks without

taking care if some of them were enhanced beforehand.

As stated before, “opening” memory only at the start time and closing it

at the end of execution is not enough: a worker thread may be de-scheduled

even if its cross-state event has been not yet completed. For this reason, we

need a function, that during the re-dispatching of a worker thread that has not

been concluded yet, reloads its current simulation event with the proper value

inside CR3 register, namely the pointer to the SIBLING pgd. Another kernel

module is created for coping with this issue: schedule_hook that stores inside

one of its parameters the function pointer of load_sibling method. At run-

time after the last step of schedule function of Linux Kernel, schedule_hook

adds a call to load_sibling that checks if the current Linux thread is one of

the worker threads of our platform and if it is necessary to refill CR3 regis-

ter with its SIBLING PGD, in this way the worker thread will be allowed to

access only the stocks opened after calling SCHEDULE_ON_PGD while the other

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 75

stocks remain protected or concurrently dispatched along other threads. On

the other hand, there is no problem if the system re-dispatches a worker thread

that has already concluded its event, because during the de-scheduling Kernel

automatically saves inside the memory context the value of ANCESTOR pgd

and therefore it automatically restores it inside CR3.

We have not explained how our solutions tracks event cross-state materi-

alisation yet. Another Kernel module is created for overriding the classical

page-fault handler of Linux Kernel: instead of calling do_page_fault our han-

dler simply calls root_sim_page_fault after the materialisation of any memory

fault. root_sim_page_fault checks whether the fault is related to one of our

dirty_pml4, if this is not the case it passes the control to the traditional page-

fault handler otherwise a cross-state dependency is just raised and therefore

starting from the value of CR2 register in which the firmware stores the address

that has caused the memory fault, it identifies which is the simulation object

hit by a cross-state dependency. These actions are performed at kernel-level

where all informations needed to finalise the synchronisation between the in-

volved LPs are not available: at ring-0 we can identify which entry of PML4

is involved while the data-structures that must be updated for keeping track of

cross-state relation are stored at user-level. Therefore we need to give back the

control to our platform but not before storing into the stack the information

retrieved at kernel-level. As usual inside Linux Kernel, we use the stack for

passing parameters from kernel to user level and vice versa since this is the only

common area between these two levels. At the end of root_sim_page_fault

execution, the stack contains (see Figure 5.10):

• the pid of current worker thread

• the id of target LP

• the instruction value register used for reactivating the execution after the

finalisation of our synchronisation protocol

Our custom page-fault handler concludes its execution by substituting the

IR register with the function pointer of our ECS_stub, in this way the control

76 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

Figure 5.10: How ROOT-Sim page-fault handler left the stack

comes automatically back to the user-level. The ECS_stub is an X86 Assembly

stub with just one goal: it has to prepare our CPU for calling ECS_handler: it

arranges registers by putting inside the values written within the stack by the

Kernel and it finally calls the ECS_handler. This last handler is the starting

point of our synchronisation protocol: it blocks and aligns the involved objects

in terms of simulation time. How the involved objects are really blocked is de-

scribed in the next paragraphs. The entire work flow is described by Figure 5.11.

Figure 5.11: Excution flow of ESC traking

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 77

Our new synchronisation protocol requires some innovations as well, the two

main changes are

• the introduction of three new LP states for tracking event cross-state de-

pendence between involved simulation objects

– READY_FOR_SYNCH

– WAIT_FOR_SYNCH

– WAIT_FOR_UNBLOCK

• the creation of four new types of messages used by simulation objects for

synchronising their operations

– RENDEZVOUS_START

– RENDEZVOUS_ACK

– RENDEZVOUS_UNBLOCK

– RENDEZVOUS_ROLLBACK

The state machine of our simulation object is evolved as shown in Figure 5.12.

To the states presented in Chapter 4, we have added the notion of blocked state:

states that cannot be considered by the scheduler. They are:

• WAIT_FOR_SYNCH

• WAIT_FOR_UNBLOCK

Figure 5.12: State diagram of simulation object

78 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

Henceforth, the ROOT-Sim scheduler will despatch LPs by taking into ac-

count both their local virtual time for satisfying the “select time-stamp first”

condition and their state as well: it will select the LP with the minimum time-

stamp that holds a non blocked state. In this way each simulation object that

is involved in a cross-state dependency will be dispatched only at the end of

our synchronisation protocol according to this rule: the LP that has been hit

will become schedulable only after that the one that raised the dependency has

already terminated.

Algorithm 4: SCHEDULER
procedure Schedule

LP ← LPS[0]
3: for i← 1, n_prc do

if LPS[i].lvt < LP.lvt ∧ ¬isBlocked(LPS[i]) then
LP ← LPS[i]

6: end if
end for
return LP

9: end procedure

Figure 5.13: Evolution of LP states during ECS handling

In details, when an LP hits another simulation object, the hitter is set as

WAIT_FOR_SYNCH and sends a RENDEZVOUS_START to the stricken LP at the same

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 79

simulation time of event that caused the cross-state, a procedure actuated by

the ECS_handler. As soon as the LP that has been hit by cross-state depen-

dence reaches the correct simulation time for processing the RENDEZVOUS_START,

it passes into the WAIT_FOR_UNBLOCK state and sends back to the striker the

RENDEZVOUS_ACK. Inside the payload of these control messages, there is a spe-

cial field called rendezvous_mark, generated inside the ECS_handler, that is

used to distinguish the control messages of a rendezvous execution from mes-

sages of another: we recall that in case of rollback a rendezvous execution may

be either discarded or re-executed, in the latter case the new execution will

take place with a different rendezvous_mark from the one that was used previ-

ously. When the LP that has partially executed the cross-state event receives

the RENDEZVOUS_ACK, it switches to the READY_FOR_SYNCH state: meaning that

as soon as it will become the LP that handles the event with the minimum

time-stamp inside its thread, the scheduler will dispatch it for trying to final-

ising the cross-state event. If this LP is able to conclude the event, in other

words if no new cross-state dependencies are materialised, it comes back to the

READY state and sends to the hit objects the RENDEZVOUS_UNBLOCK messages.

On the other hand, when hit objects process the RENDEZVOUS_UNBLOCK, they

come back to the READY state. Let stress again that all rendezvous messages

associated with the same simulation event have the same rendezvous mark and

the same time-stamp of event that has caused the relation.

Since we have introduced the notion of blocked state, we had to modify also the

point at which messages are executed: a blocked LP will never transit through

the schedule function until it is bocked, hence it is impossible for it to execute

control messages inside the schedule function rather than normal simulation

events. If an LP is blocked, it will manage the control messages meanwhile it

processes the bottom-half queue. In details:

Taking care of control messages during the processing of bottom-half does

not violate the “smallest time-stamp first” condition because thanks to the ren-

80 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

Figure 5.14: Processing flow of controll messages

dezvous mark we are able to recognise the rendezvous messages that we are

looking for and we are also sure that they are exactly next logical events for the

blocked LPs: no message inversion is created. In case of LP that has already pro-

cessed the RENDEZVOUS_START the only possible next message in terms of logical

time is the corresponding RENDEZVOUS_UNBLOCK, while for the one that has sent

the RENDEZVOUS_START the only possible next message is the RENDEZVOUS_ACK.

Obviously the synchronisation procedure is not free from rollbacks, we are

targeting speculative environments and for this reason the protocol must take

into account rollbacks. The message pattern presented above has one advantage:

from the point of view of a stricken object processing RENDEZVOUS_START and

sending the related RENDEZVOUS_ACK is an atomic action as well as processing

RENDEZVOUS_ACK and the consequently RENDEZVOUS_UNBLOCK by the striker is

an atomic action (i.e. considering that no other cross-state relations are mate-

rialised for the same simulation event): it means that it is not possible to take

logs between either RENDEZVOUS_START-RENDEZVOUS_ACK or RENDEZVOUS_ACK-

RENDEZVOUS_UNBLOCK, in other words it is impossible rolling back inside one of

these couples, therefore they can only roll back

1. before sending RENDEZVOUS_START that is the same simulation time pre-

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 81

vious to the processing the cross-state event

2. after sending RENDEZVOUS_START that is the same simulation time previous

to the receiving RENDEZVOUS_ACK

3. after sending RENDEZVOUS_UNBLOCK that is the same simulation time of

the end of cross-state event

4. before receiving RENDEZVOUS_START

5. after sending RENDEZVOUS_ACK that is the same simulation time previous

to the receiving RENDEZVOUS_UNBLOCK

6. after processing RENDEZVOUS_UNBLOCK that is the same simulation time of

the end of cross-state event

According to the definition of silent execution actuated during the coasting

forward phase, rollbacking situations described in 2 and 5 must be avoided.

During the re-processing of events in silent execution the involved simulation

object does not re-send messages that were already sent during the previous

normal processing otherwise it duplicates them and furthermore their receivers

have already replayed to them. It means that since inside its messages queue

the rollbacking object already owns the messages required to complete the event

cross-state synchronisation, it will be sure that the involved objects are synchro-

nised with it but instead they are in another simulation time: this behaviour

destroys the coherence of our simulation. Hence we do not take logs in these two

situations as well as executing cross-state events in silent execution. The latter

situation is guaranteed by the fact that at the end of each cross-state event any

involved simulation object takes a log. Due to a straggler event they can come

back either before the simulation time of cross-state event or immediately after

it. Adding these new logs to those that are already taken by the sparse state

saving policy of our platform avoids also the possibility of generating domino-

effect due to event cross-state rollbacking. The following scheme explains how

logs are taken:

During an event cross-state handling the possible situation in which our

82 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

Figure 5.15: Logs position regards to ECS

simulation objects may receive a straggler event are two (See Figure 5.15) :

1. meanwhile the hitter is in WAIT_FOR_SYNCH

2. meanwhile the stricken is in WAIT_FOR_UNBLOCK

In the first case LPx has inside its anti-event queue the anti-event aers

related to RENDEZVOUS_START and therefore during its rollback LPx simply sends

aers to LPy. In the second case from the point of view of LPy, it exploits a

queue, say rendezvous-queue, that is orthogonal to the anti-event one in which

it stores each RENDEZVOUS_START that it has processed: in case of rollback

it scans the rendezvous-queue and sends to each involved simulation object

the corresponding anti-start-event. Regarding the others control messages they

do not require any anti-event because if a simulation object receives a control

message with a rendezvous mark different from the one that it is waiting for it

simply discards it because it can be sure that it is an old control message.

Prior to the introduction of our synchronisation scheme, before dispatching

the new event for the current simulation object the schedule function updats

the bound of the object that it is dispatching, namely the last event correctly

5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES 83

executed by the current object. From now on this update is possible only in

some cases. During the execution a cross-state event e the simulation object x

will pass through schedule function at least twice: the first time when x starts

executing e and the second, after the resolution of the cross-state dependency,

when it is re-dispatched with the information for “opening” the required stocks.

If at each call of schedule we update the bound, we do not correctly complete

the simulation event that has raised the dependency. Therefore if a LP holds

the READY_FOR_SYNCH state its bound will be updated only when it will pass

through to READY state meaning that it has really completed the cross-state

dependency.

In order to simplify the interaction of application programmer, we have

added a flag that can be utilised at compile-time of our platform for enabling or

disabling our new advanced memory manager and the related synchronisation

scheme.

This is how our platform is evolved:

Figure 5.16: New Root-Sim Architecture

84 5. CROSS-ACCESSING LOGICAL PROCESSES’ STATES

5.2.4 Third Party Libraries Handling

Our memory management architecture supports also the third party libraries be-

cause it cooperates with the DyMeLoR open source allocator which has the goal

of handling memory allocation needs in optimistic PDES platforms. DyMeLoR

itself wraps all function needed by ANSI-C stateless libraries and third-party

libraries: it handles any memory allocation demanded from these libraries (e.g.

strdup). Therefore, in case of simulation objects call one of these libraries no

updates are required in terms of paging data-structures while they are running

in simulation-object mode, otherwise such updates may be materialised by the

dynamic linker over the SIBLING page table rather than on the ANCESTOR

one. Except for the malloc and stdio, no stateful libraries (e.g. strtok) are

supported yet because the data-structures needed by these for handling read

and write operation triggered by whatever concurrent simulation events may

cause indirect cross-state dependencies that may hamper the performances of

our advanced memory management. The work in [52] shows how to provide

consistency for I/O operations in case of optimistic environment in a transpar-

ent manner for the application code. Offering support for stateful libraries will

be the goal of future works.

CHAPTER 6

Experimental Evaluation

In this chapter we describe the simulation model that we have used for our

experimental as well as we discuss our experimental results.

6.1 Model

We have implemented the support for ECS within the open source ROme Op-

Timistic Simulator (ROOT-Sim)[2].

In this section we provide experimental data achieved by testing our pro-

posal running the implementation of a multi-robot exploration and mapping

simulation model, according to the results in [53]. In this model, a group of

robots is set out into an unknown space, with the goal of fully exploring it,

while acquiring data from sensors (e.g., cameras, lasers, . . .) which are used to

map the environment. The robots are equipped with enough processing power

to elaborate the sensors data online (thus, the map is constructed during the

exploration), so as to allow them to rely on the acquired knowledge to drive the

exploration in a more efficient way. Specifically, whenever a robot has to make

a decision about which direction should be taken to carry on the exploration,

it is done by relying on the notion of exploration frontier. By keeping a repre-

85

86 6. EXPERIMENTAL EVALUATION

sentation of the explored world, the robot is able to detect which is the closest

unexplored area which it can reach, computes the fastest way to reach it and

continues the exploration.

The robots explore independently of each other until one coincidentally de-

tects another robot. Whenever two robots enter a proximity region, they per-

form three different actions:

1. they use their sensors to estimate their mutual physical position, recall

that they are just in proximity

2. they verify the goodness of their position hypothesis by creating a rendez-

vous point (not to be confused with rende-vous control messages in our

synchronisation protocol) in the explored part of the region, and trying to

meet again there

3. if the hypothesis is verified, they exchange the data acquired during the

exploration, thus reducing the exploration time and allowing for a more

accurate decision of the actions to be taken

Additionally, in case step 2 succeeds (i.e., the robots actually meet in the

rendez-vous point), it means that the estimation of their respective position

is correct. Therefore, they can form a cluster, i.e. they can start exploring

the environment in a collaborative way. This collaborative exploration can

take place in two different ways. On the one hand, they jointly define (by

relying on cost and utility functions, as defined in [53]) their next exploration

targets, so that they can minimize the time required for a complete environment

exploration. On the other hand, they might decide to make a guess about the

position of other robots (the total number of which is known) which are not

part of the cluster yet. In the latter case, one of the robots (the one for which

the utility/cost ratio is convenient) targets the hypothesized position. If a robot

is found there, the aforementioned steps are carried out, so as to increase the

knowledge of the environment.

Discovering the presence of a nearby robot is a crucial step while coding this

6. EXPERIMENTAL EVALUATION 87

simulation model. In fact, in case of reliance on classical PDES programming

schemes not based on cross-state access, either the robots must communicate

to each other their current position (thus exponentially increasing the number

of exchanged messages, say cross-scheduled events, which in turn can limit the

performance of the simulation), or they have to notify it to specific simulation

objects (i.e., the regions), again increasing the number of messages exchanged.

Additionally, estimating the respective position of the agents, many simulation

events could be required. In this specific case, these events should be marked

with the same timestamp, thus requiring efficient (but non-negligible in cost)

tie-breaking approaches, like the one in [54]. Third, exchanging map information

could entail a data transfer non-negligible in size, posing a huge burden on the

communication subsystem.

This model is therefore a good test-case for testing the innovative pro-

gramming paradigm based on cross-state access and consequent adoption over

NUMA. In our implementation, we rely on two different types of LPs, namely

active ones (implementing the robots) and passive ones (implementing regions of

the exploration environment). More specifically, the environment is represented

as a square region, divided into hexagonal cells. This choice allows us to define

a meaningful mobility model for the agents, and at the same time allows us to

define proximity regions which are used by the agents to detect the presence of

other robots in the nearby. Also, in our model, periodic events occurring into

any cell are envisaged as the basis for modeling the evolution (inside the cell) of

any phenomenon characterizing the dynamic change in the state of the explored

region.

At simulation startup, each passive simulation object creates random obsta-

cles (which prevent the agents from reaching any neighbour cell), mimicking a

rescue scenario, where an open space is modified by an accident and the robots

are used to explore it for rescue activities. At the same time, each passive LP

instantiates in its private simulation state (by relying on a traditional malloc

88 6. EXPERIMENTAL EVALUATION

call) a presence vector. Each entry of the vector is associated with a specific

robot. Whenever a robot enters a given cell, it explicitly informs the LP tak-

ing care of the cell’s state by exchanging an event, piggy-backing a pointer to

a buffer in the robot’s simulation state which keeps the representation of the

explored map. When the cell processes this event, it stores the pointer in the

presence vector, which is then scanned to synchronize the information in the

map. In particular, all the robots’ states are in-place accessed, so as to copy

the information from one state to the other. This operation clearly triggers

cross-state synchronization.

6.2 Tests

To test the ECS proposal with and without NUMA facilities, we have compared

the execution time for this simulation model when run without ECS therefore

relying on the traditional paradigm where cross-state access is not employed/-

supported, thus basing the interactions among the different parts/entities in

the model exclusively on the cross-scheduling of events across the different LPs,

then with ECS enable and in the end with both ECS and NUMA facilities

enable. For all the tests we run a model with 1000 LPs, the 10% of which

represent robots, and the remaining 90% represent sub-regions of the overall

bi-dimensional region to be explored.

The hardware architecture used for running the experiments is a 64-bit

NUMA machine, namely an HP ProLiant server, equipped with four 2GHz

AMD Opteron 6128 processors and 64 GB of RAM. Each processor has 8 cores

(for a total of 32 cores) that share a 12MB L3 cache (6 MB per each 4-cores

set), and each core has a 512KB private L2 cache. For the parallel runs we

configured the simulation platform to use 32 worker threads.

The total execution time for the simulations are reported in Figure 6.1 for

6. EXPERIMENTAL EVALUATION 89

Figure 6.1: Experimental Results

the different settings of the underlying simulation engine (where each reported

sample is averaged over 10 runs).

By the results we observe that ECS protocol is a little bit more expensive

than traditional PDES coding paradigm. Therefore we can affirm that we have

allow application-level programmer to code according to a sequential-style in-

side a parallel environment without lost performances. The noteworthy result

is achieved activating the NUMA supports, in this way ECS provides high per-

formance: the execution time becomes 2 times lower compared to both the

traditional PDES case and the ECS without NUMA facilities. This improve-

ment is caused by the fact that now thanks to the ad-hoc ECS_allocator, the

NUMA_allocator can move the entire memory area related to the state of each

LP toward the must suitable NUMA node, while previously it was able to mi-

grate only general page segments. In this way any NUMA node can address

with low latency the entire state of each simulation object, handled by one of

its CPU-cores.

CHAPTER 7

Conclusion

ECS (Event and Cross-State): the new protocol for synchronizing the execu-

tion of concurrent simulation objects forming a DES model is the answer to

the Fujimoto question[1] in the context of shared-memory multi-core NUMA

architecture. We have provided a more general programming and execution

model than the traditional PDES. The state portion that can be now accessed

by each LP during its execution is not limited to its own state or to the shared

global variables only. Now, an LP is allowed to access the state of whichever

simulation objects both in read and write mode . Each simulation object has

the possibility of accessing the others LPs’ states as in a sequential-style DES

execution, where the latter pass to the former a pointer to their states inside the

payload of simulation message. We have created an advanced memory manage-

ment architecture together with an advanced synchronisation mechanism that

can guarantee consistency and progress. Our work supports cross-state access,

joints to concurrency and speculative processing, in an application transparent

manner. All our work has been done targeting NUMA machines.

The results have proofed what we claimed: it is possible augmenting a PDES

environment with capabilities that allow application-level programmer to rely

sequential-style coding approach, where any memory location is implicitly ac-

91

92 7. CONCLUSION

cessible while processing any simulation event.

Using together with ECS protocol the facilities of NUMA_allocator, better

performance be achieved since now it is possible to move the entire memory area

related to the state of each LP toward the must suitable NUMA node proving

low latency memory accesses.

Thanks to our new protocol, a better performance can be achieved. During

the past the only way to share big amount of data inside a PDES platform was

cross-scheduling of events, therefore sending large data entailed huge overhead

due to the copy of the entire interested memory area. Now, thanks to our so-

lution these expensive copies are no longer required, an LP can simply send to

another simulation object its pointer to the real data enveloped inside a simu-

lation message.

However, our solution entails huge overhead due to many rollbacks for align-

ing the involved simulation object to the required simulation time. The natural

evolution of our protocol is the clusterisation of simulation object. Instead

of scheduling single LP, our environment could take into account sets of LPs,

where each set is composed by all LPs that are linked together by multiple/re-

peated event cross-state dependences. In this way all LPs that show affinity are

grouped and therefore they must not be synchronised for granting access the

state of each other. They evolve all together like in a sequential environment.

This assumption is guaranteed if the scheduler still dispatches according to the

STF algorithm. Groups require a new synchronisation protocol to agree upon

the start-time of group execution, a new scheduling scheme and a consequent

new rollback police as well as a redesigned coasting-forward phase. All these

aspects have been targeted by Nazzareno Marziale in [55].

Bibliography

[1] Richard M. Fujimoto. Parallel discrete event simulation. Commun. ACM,

33(10):30–53, October 1990.

[2] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. The rome

optimistic simulator: Core internals and programming model. In Proceed-

ings of the 4th International ICST Conference on Simulation Tools and

Techniques, SIMUTools ’11, pages 96–98, ICST, Brussels, Belgium, Bel-

gium, 2011. ICST (Institute for Computer Sciences, Social-Informatics and

Telecommunications Engineering).

[3] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, July 1985.

[4] Wieland F. and Jefferson D.R. Case studies in serial and parallel simula-

tion. In In Proceedings of the 1989 International Conference on Parallel

Processing, volume 3, pages 255–258, August 1989.

[5] K Mani Chandy and Jayadev Misra. Distributed simulation: A case study

in design and verification of distributed programs. Software Engineering,

IEEE Transactions on, (5):440–452, 1979.

[6] MPI Forum. Message Passing Interface Forum. http://www.mpi-

forum.org/, 1994.

93

94 BIBLIOGRAPHY

[7] R. M. Fujimoto. The virtual time machine. In Proceedings of the First

Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA

’89, pages 199–208, New York, NY, USA, 1989. ACM.

[8] Richard M Fujimoto. Parallel and distributed discrete event simulation: al-

gorithms and applications. In Proceedings of the 25th conference on Winter

simulation, pages 106–114. ACM, 1993.

[9] Paul F Reynolds Jr. A spectrum of options for parallel simulation. In

Proceedings of the 20th conference on Winter simulation, pages 325–332.

ACM, 1988.

[10] Alois Ferscha and Satish K Tripathi. Parallel and distributed simulation of

discrete event systems. 1998.

[11] K. Mani Chandy and Jayadev Misra. Asynchronous distributed simulation

via a sequence of parallel computations. Communications of the ACM,

24(4):198–206, 1981.

[12] Randal E Bryant. A switch-level model and simulator for mos digital sys-

tems. Computers, IEEE Transactions on, 100(2):160–177, 1984.

[13] Richard Fujimoto and David Nicol. State of the art in parallel simulation.

In Proceedings of the 24th conference on Winter simulation, pages 246–254.

ACM, 1992.

[14] David M Nicol. Principles of conservative parallel simulation. In Proceed-

ings of the 28th conference on Winter simulation, pages 128–135. IEEE

Computer Society, 1996.

[15] David M Nicol. Parallel discrete-event simulation of FCFS stochastic

queueing networks, volume 23. ACM, 1988.

[16] Steven Bellenot et al. Global virtual time algorithms. In Proceedings of the

SCS Multiconference on Distributed Simulation, volume 22, pages 122–127.

Society For Computer Simulation, San Diego, CA, 1990.

BIBLIOGRAPHY 95

[17] Yi-Bing Lin and Edward D Lazowska. Determining the global virtual time

in a distributed simulation. In ICPP (3), pages 201–209, 1990.

[18] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto.

Efficient optimistic parallel simulations using reverse computation. ACM

Transactions on Modeling and Computer Simulation (TOMACS), 9(3):224–

253, 1999.

[19] David Jefferson. Virtual time ii: storage management in conservative and

optimistic systems. In Proceedings of the ninth annual ACM symposium on

Principles of distributed computing, pages 75–89. ACM, 1990.

[20] Alessandro Pellegrini, Roberto Vitali, Sebastiano Peluso, and Francesco

Quaglia. Transparent and efficient shared-state management for optimistic

simulations on multi-core machines. In Proceedings 20th International Sym-

posium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems, MASCOTS, pages 134–141. IEEE Computer Society,

August 2012.

[21] Yi-Bing Lin and Edward D Lazowska. Reducing the state saving overhead

for Time Warp parallel simulation. University of Washington, Department

of Computer Science, 1990.

[22] Steven Bellenot. State skipping performance with the time warp operating

system. In 6th Workshop on Parallel and Distributed Simulation, volume 24,

pages 53–64, 1992.

[23] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and

David B Johnson. A survey of rollback-recovery protocols in message-

passing systems. ACM Computing Surveys (CSUR), 34(3):375–408, 2002.

[24] Avinash C Palaniswamy and Philip A Wilsey. An analytical comparison

of periodic checkpointing and incremental state saving. In ACM SIGSIM

Simulation Digest, volume 23, pages 127–134. ACM, 1993.

96 BIBLIOGRAPHY

[25] Robert Rönngren and Rassul Ayani. Adaptive checkpointing in time warp.

In ACM SIGSIM Simulation Digest, volume 24, pages 110–117. ACM, 1994.

[26] Sven Sköld and Robert Rönngren. Event sensitive state saving in time warp

parallel discrete event simulations. In Proceedings of the 28th conference

on Winter simulation, pages 653–660. IEEE Computer Society, 1996.

[27] Hassan Rajaei, Rassul Ayani, and Lars-Erik Thorelli. The local time warp

approach to parallel simulation. In ACM SIGSIM Simulation Digest, vol-

ume 23, pages 119–126. ACM, 1993.

[28] Richard M Fujimoto. Parallel and distributed simulation systems, volume

300. Wiley New York, 2000.

[29] Roberto Toccaceli and Francesco Quaglia. Dymelor: Dynamic memory

logger and restorer library for optimistic simulation objects with generic

memory layout. In Proceedings of the 22nd Workshop on Principles of Ad-

vanced and Distributed Simulation, pages 163–172. IEEE Computer Society,

2008.

[30] Quaglia F. Pellegrini A., Peluso S. and Vitali R. Transparent speculative

parallelization of discrete event simulation applications using global vari-

ables.

[31] Cristina Montañola-Sales, Joan-Francesco Gilabert-Navarro, Josep

Casanovas-Garcia, Clara Prats Soler, Daniel López Codina, Joaquim

Ribas Valls, Pere Joan Cardona Iglesias, and Cristina Vilaplana. Modeling

tuberculosis in Barcelona. A solution to speed-up agent-based simula-

tions. In Proceedings of the 2015 Winter Simulation Conference, pages

1295—-1306. IEEE Computer Society, 2015.

[32] Pierangelo Di Sanzo, Francesco Quaglia, Bruno Ciciani, Alessandro Pel-

legrini, Diego Didona, Paolo Romano, Roberto Palmieri, and Sebastiano

Peluso. A Flexible Framework for Accurate Simulation of Cloud In-Memory

Data Stores. Simulation Modelling Practice and Theory, 2015.

BIBLIOGRAPHY 97

[33] Alessandro Pellegrini and Francesco Quaglia. Numa time warp. In Pro-

ceedings of the 3rd ACM Conference on SIGSIM-Principles of Advanced

Discrete Simulation, pages 59–70. ACM, 2015.

[34] Douglas W. Jones. Concurrent simulation: An alternative to distributed

simulation. In Proceedings of the 18th Conference on Winter Simulation,

WSC ’86, pages 417–423, New York, NY, USA, 1986. ACM.

[35] D. W. Jones, C.-C. Chou, D. Renk, and S. C. Bruell. Experience with

concurrent simulation. In Proceedings of the 21st Conference on Winter

Simulation, WSC ’89, pages 756–764, New York, NY, USA, 1989. ACM.

[36] David Bruce. The treatment of state in optimistic systems. In Proceedings

of the Ninth Workshop on Parallel and Distributed Simulation, PADS ’95,

pages 40–49, Washington, DC, USA, 1995. IEEE Computer Society.

[37] Alessandro Fabbri and Lorenzo Donatiello. Sqtw: A mechanism for state-

dependent parallel simulation. description and experimental study. In Pro-

ceedings of the Eleventh Workshop on Parallel and Distributed Simulation,

PADS ’97, pages 82–89, Washington, DC, USA, 1997. IEEE Computer

Society.

[38] Boon Ping Gan, Malcolm Yoke Hean Low, Junhu Wei, Xiaoguang Wang,

Stephen John Turner, and Wentong Cai. Distributed simulation and man-

ufacturing: Synchronization and management of shared state in hla-based

distributed simulation. In Proceedings of the 35th Conference on Winter

Simulation: Driving Innovation, WSC ’03, pages 847–854. Winter Simula-

tion Conference, 2003.

[39] Malcolm Yoke Hean Low, Boon Ping Gan, Junhu Wei, Xiaoguang Wang,

Stephen John Turner, and Wentong Cai. Shared state synchronization for

hla-based distributed simulation. Technical report, 2006.

98 BIBLIOGRAPHY

[40] Malcolm Yoke Hean Low, Boon Ping Gan, Junhu Wei, Xiaoguang Wang,

Stephen John Turner, and Wentong Cai. Shared state synchronization for

hla-based distributed simulation. Simulation, 82(8):511–521, August 2006.

[41] João Cachopo and António Rito-Silva. Versioned boxes as the basis for

memory transactions. Sci. Comput. Program., 63(2):172–185, December

2006.

[42] Alessandro Pellegrini. Hijacker: Efficient static software instrumentation

with applications in high performance computing (poster paper). In Pro-

ceedings of the 2013 International Conference on High Performance Com-

puting & Simulation, pages 650–655. IEEE Computer Society, 2013.

[43] Li-li Chen, Ya-shuai Lu, Yi-ping Yao, Shao-liang Peng, and Ling-da Wu.

A well-balanced time warp system on multi-core environments. In Proceed-

ings of the 2011 IEEE Workshop on Principles of Advanced and Distributed

Simulation, PADS ’11, pages 1–9, Washington, DC, USA, 2011. IEEE Com-

puter Society.

[44] K. Ghostand and R.M. Fujimoto. Parallel discrete event simulation using

space-time memory. In Proceedings of the 1991 International Conference

on Parallel Processing, pages 201–208, August 1991.

[45] K.M. Chandy, R. Sherman, and University of Southern California. Infor-

mation Sciences Institute. Space-time and simulation. Number No. 238 in

ISI reprint series. University of Southern California, Information Sciences

Institute, 1989.

[46] Brian W Kernighan and Dennis M Ritchie. The {C} Programming Lan-

guage. Prentice Hall Professional Technical Reference, 2nd edition, 1988.

[47] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s

Manual. Number 253669-033US. December 2009.

BIBLIOGRAPHY 99

[48] R. Vitali, A. Pellegrini, and F. Quaglia. A load-sharing architecture for

high performance optimistic simulations on multi-core machines. In High

Performance Computing (HiPC), 2012 19th International Conference on,

pages 1–10, Dec 2012.

[49] R. Vitali, A. Pellegrini, and F. Quaglia. Towards symmetric multi-threaded

optimistic simulation kernels. In Principles of Advanced and Distributed

Simulation (PADS), 2012 ACM/IEEE/SCS 26th Workshop on, pages 211–

220, July 2012.

[50] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. Optimization of parallel

discrete event simulator for multi-core systems. In Parallel Distributed

Processing Symposium (IPDPS), 2012 IEEE 26th International, pages 520–

531, May 2012.

[51] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Di-dymelor:

Logging only dirty chunks for efficient management of dynamic mem-

ory based optimistic simulation objects. In Proceedings of the 2009

ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Dis-

tributed Simulation, pages 45–53. IEEE Computer Society, 2009.

[52] Francesco Antonacci, Alessandro Pellegrini, and Francesco Quaglia. Con-

sistent and efficient output-streams management in optimistic simulation

platforms. In Proceedings of the 2013 ACM SIGSIM conference on Princi-

ples of advanced discrete simulation, pages 315–326. ACM, 2013.

[53] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk Schulz,

and Benjamin Stewart. Distributed Multirobot Exploration and Mapping.

Proceedings of the IEEE, 94(7):1325–1339, 2006.

[54] H Mehl. A deterministic tie-breaking scheme for sequential and distributed

simulation. In Proceedings of the Workshop on Parallel and Distributed

Simulation. ACM, 1992.

100 BIBLIOGRAPHY

[55] Nazzareno Marziale. Dynamic clustering of simulation objects in specula-

tive parallel simulation systems. Master’s thesis, Sapienza, University of

Rome, 1 2016.

Acknowledgements

First of all, I wish to thank Professor Quaglia, for believing in us even though

the situation prevented us from hoping for an auspicious ending.

I cannot forget the tireless Alessandro Pellegrini, without his precious help

completing this project would have been unworkable. He has been close to us

for the entire project. He has made feasible what seemed unfeasible. He led us

to a different way of thinking, continuously reasoning and discussing with us.

I wish to thank the irreplaceable friend, supporter and colleague Nazzareno,

this project would have been impossible without him.

Billions of thanks to my mother, my father and my sister , for all the sacri-

fices that they have faced for me. I hope to have made them proud of me, and

if so, to continue in this way. I apologize for the constant irritability of the last

months.

Thousands of thanks to my second family: Pina, Tonino and Elisa that have

embraced me as a son, supporting me along the entire duration of my academic

career and not only.

A lot of thanks to Silvia, for having tolerated Nazzareno, me and all our

stupid jokes.

Special thanks go to my Syrian brother Obaida, it has been a pleasure and

honour for me meeting him.

Thanks to my cousin Edoardo for helping me to never lose my smile.

The list of friends that I want to thank for supporting me is endless. Marco,

Giammarco, Ilaria, Antonio, Lele, Alessio, Giulio, Francesca Romana, Katarina

and so on. Without you this path would have been hard.

i

I cannot forget my special friends of “Società Źubrówka”, that made the last

two years amazing.

I cannot forget Marilyn and her efforts to teach me English.

Last but not least Stephanie. She has supported me giving the energy and

courage to always go ahead. She has helped me to deeply analyse all situations

in order to find the best solution. I would have not been able to get at this

stage without her.

ii

	Introduction
	Parallel Discrete Event Simulation
	Synchronisation Strategies
	Conservative Synchronisation
	Optimistic Synchronisation
	State Saving Policies
	Rollback Policies

	Hybrid Synchronisation

	State Management

	Memory Issue
	Memory Usage vs NUMA
	State Sharing
	Static vs Dynamic and Partial vs Full Sharing

	Considerations

	Symmetric Multi-Threaded Optimistic Simulator
	The Reference System Architecture
	Simulation Engine
	Supported APIs
	Internals and Subsystems Organization

	A Code Example

	Cross-Accessing Logical Processes' States
	Intel x86-64 Paging
	Hierarchical Paging Structures
	Translation

	Event and Cross-State Synchronisation
	Cross-State Dependency Tracking
	The Event Cross-State Synchronization Scheme
	Correctness
	Progress

	Integrating State Sharing Policies with NUMA Oriented Support
	Third Party Libraries Handling

	Experimental Evaluation
	Model
	Tests

	Conclusion
	Bibliography

