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Abstract

In Event-Driven programs the data-structure which contains not scheduled events is

called Pending Event Set and is implemented as a priority queue. The literature

offers several implementations that guarantee O(1) time for enqueue and dequeue

operations, but the wide diffusion of multicore processors imposes that Pending Event

Set management has to be scalable as well as asymptotically efficient. In fact concurrent

priority queues based on mutual exclusion limit the advantages of an increasing number

of cores. To addressing this issue, several non-blocking priority queues have been

proposed, but none targets constant time accesses, even if it is achieved by some

blocking algorithms. On one hand there are algorithms that guarantee O(1) access

times, but they are based on locking primitives that reduce scalability, while on the

other hand there are scalable non-blocking algorithms that have at least O(log n)

asymptotic cost per access. Designing and implementing an efficient non-blocking

priority queue with constant time access is still an open question. In this work we

propose a practical lock-free implementation of a priority queue based on a multi-list

object paired with an overflow data structure. Moreover in our performance evaluation,

we show that our algorithm is more scalable than an efficient blocking implementation

of the calendar queue.

The remainder of this thesis is organized as the following. In Chapter 1 we give an

overview of concurrent programming, focusing in particular on non-blocking concurrent

objects. Chapter 2 frame the problem of Pending Event Set management in the

Event-Driven programming, outlining the state of the art. In Chapter 3 we present

a deep description of our non-blocking priority queue, showing its operation and

properties. The results of the experimental evaluation addressed to verify the validity

of the proposed solution are reported in Chapter 4.
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Chapter 1

Concurrent Programming

The idea of creating a software that is able to perform multiple operations

simultaneously came together with computer science. In fact, the first concurrent code

can be found in the Dijkstra article “Solution of a Problem in Concurrent

Programming Control” [1] of 1965, just three years after the establishment of the first

academic course in computer science in the United States.

“A concurrent system is one in which multiple tasks can be in progress at any

instant” [2], thus time-sharing is the first attempt of concurrent computing, that allows

a single processor to create the illusion of executing more applications simultaneously.

This is reached by running a program for a time-slice and then allowing another process

to gain the control of the CPU for the succeeding slice. Multitasking Operating Systems

and Database Management Systems are well-known examples of concurrent systems on

which a multitude of application are executed concurrently, even if only one processor

is available.

Thanks to time-sharing, developers can write applications in which a multitude

of tasks is specified and to run them on a single processor. Clearly, the capability

of separating different execution flows in the source code simplifies the development

of complex applications, giving an improved maintainability. On the other hand, the

presence of multiple concurrent tasks might require synchronization when accessing

shared resources in order to manipulate them correctly. In fact we cannot assume that

tasks are executed in a deterministic order and are able to complete the manipulation

of a shared resource in a known number of time-slices. Thus we have to guarantee
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mutual exclusion [1] during the access of a shared resource by allowing only one task

to execute the critical section, namely, a portion of code that needs to be executed

in isolation by one task at a time. The most intuitive solution to guarantee mutual

exclusion is the one of suspending tasks that want to access a critical section executed

by another task. Anyhow, in a single processor machine, making some tasks to wait

means giving an order of execution on them, without affecting the CPU utilization.

Since the eighties, for twenty-five years the speed of processors doubled every

year. This led developers and users to believe that their programs could be faster

by using a new generation of processors, regardless of whether the application is

sequential or concurrent. The continuous upgrade of processor performance was

predicted by Moore’s Law [3], i.e., the observation that the number of transistor in

an integrated circuit increases exponentially in time. Increasing density of transistors

and their resulting smaller size allow to increase the speed of processors, giving

improvements to any program. As stated in [4], since the 2000s the Moore’s Law

changes its manifestation. In particular the processors do not increase their sequential

performance, but their number of cores, becoming ever more parallel. The reasons

behind this trend reversal are a set of “walls”, i.e., issues in the current technology,

that represent insurmountable obstacles to performance improvement of single core

processors.

The power required by a core increases as the clock frequency, but a part of it

is consumed in heat. In order to maintain an acceptable level of reliability, extreme

high speed processors have to be cooled with very sophisticated solution, that are too

expensive for commodity hardware. Thus, the effort to reach higher frequencies is

unprofitable, leading to the Power Wall.

In order to increase single core performance, manufacturers make processors capable

to perform more operations at a time by instruction level parallelism (ILP). For

example, some processors can manipulate more data in a single instruction (Very

Long Instruction), but its usage can limit the portability of the application. Another

strategy consists in increasing the number of pipeline stages allowing to process more

instructions at the same time. Since each stage of the pipeline executes different parts

of different instructions, in case of conditional branches, we have to guess the result of
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the next instruction. If we are lucky, the program can continue at full speed. In case

of misprediction, we have to flush the whole pipeline, because we are executing wrong

instructions. If we have a very long pipeline, we have to guess more frequently and the

probability of flush increases, leading to more wasted time and worse performances.

The most recent approach to achieve ILP is superscalar execution that consists in

replicating some execution units (e.g. ALU) in order to process multiple instructions

in parallel. In [5] the author explains that making ILP speedup significant requires

very strong assumptions such as perfect caching and unlimited replicated resources.

Removing them vanishes the payoff of extreme ILP. Moreover those solution have a

super-linear complexity and power consumption, but they do not guarantee a linear

speedup, giving the Instruction Level Parallelism Wall.

The memory wall is the last obstacle to performance improvement of processors.

The speed of memory accesses increases exponentially, but in a smaller measure than

the microprocessor speed improvement. As observed in [6], the gap between two

exponential functions follows an exponential, leading main memory to be the major

bottleneck in current and near-future applications.

Having an increased computational power means that a known problem could be

resolved faster or with more accuracy, and, at the same time, a new set of problems

can be faced. In other words, we can always find a way to exploit new computational

resources and the demand for higher computational power has a perpetual growth. Due

to the power and ILP walls, manufacturers tend to use available density of transistor

in order to satisfy the increasing request of computational power by increasing the

number of cores in a CPU. Clearly this trend has its limit in the memory wall. In fact

more and more cores will fight for accessing same main memory locations and cache

line. It is reasonable to think that the speed of air-cooled processors has reached its

limit, but in future the number of cores per processor is destined to increase. This

means that developers have to deal with parallel programming in order to exploit the

multicore architecture of current and near future processors.

Parallel programming is a kind of concurrent programming. The difference between

them is that, in parallel programming, we deal with hardware that allows to execute

more tasks at the same time instant and this parallelism is visible to the developer.
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As in time-sharing programming, in a parallel program several tasks cooperate in

order to reach a common goal, typically sharing a set of resources. Thus, they

need to coordinate through some form of communication and synchronization, making

parallel programming harder than sequential one. The idea is trying to partition

the computation and to distribute it to available processing units. The most used

approaches are task-parallelism and data-parallelism. In the first case, we have to

distinguish independent sets of tasks and then execute them in parallel on different

cores. The second one consists in partitioning the working set in smaller parts that

can be processed independently and in parallel. Both strategies are not a definitive

solution. Task-parallelism assumes that we have enough tasks to make use of available

cores. On the contrary, data-parallelism cannot be applied to any program. This

implies that, in most cases, we have a combination of them in order to overcome their

individual limitations.

Since several operations are executed at the same time, synchronization has new

consequences when compared to time-sharing. In particular, we have explained that

mutual exclusion allows one process at a time to access the critical section, while others

have to wait. This creates a serialization that, considering a concurrent execution on a

multicore machine, makes the application effectively use one core at time. In this case,

no matter how many processors are available, our application is wasting a significant

amount of resources and, at the same time, it is not able to take advantage of the

addition of new processors.

This explains why an application does not run two times faster when executed on

two processors, four times faster on four processors and so on. Amdahl’s Law [7] poses

a theoretical limit to maximum speedup achievable by parallelism, observing that any

program has a sequential section which cannot be parallelized due to synchronized

accesses to shared resources. If f is the percentage of code that can run in parallel on

p processors, the speedup is:

Speedup(f, p) =
1

(1− f) + f
p

(1.1)
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It means that if 90% of the program is parallelizable and we have an unlimited

number of processors, the maximum speedup is:

lim
p→∞

Speedup(f, p) =
1

1− 0.9
= 10

The program cannot run more than 10 time faster, regardless of the number of

processors. Thus, speedup is bounded by critical sections. This is the reason behind

the raising up of non-blocking algorithms, that limit synchronization to the execution

of an atomic instruction provided by the underlying hardware architecture.

1.1 Parallel Hardware

With parallel hardware we mean a hardware that is able to perform multiple operations

at the same time and this parallelism could be visible to programmers. In fact, even if a

processor can handle multiple instructions at a time by using pipelining and superscalar

hardware, these techniques are transparent to developers, who has to carefully design

its program in order to exploit their potential, because it is not possible to control them

directly. On the contrary, in parallel programs we have to explicitly deal with multiple

entities (processes or threads), that can be executed at the same time on several

processors. Processors share a medium that is used to communicate and coordinate the

computation among them. This medium can be shared memory, a network or both.

According to the used communication medium, we can distinguish between parallel and

distributed programming. Parallel programs use shared memory to communicate, while

in distributed programming processors communicate by sending messages through a

network. Other authors make a different distinction between parallel and distributed

programming [8]:

• “in parallel computing, a program is one in which multiple tasks cooperate closely

to solve a problem;”

• “in distributed computing, a program may need to cooperate with other programs

to solve a problem.”

According to Flynn’s taxonomy [9], we can distinguish several kinds of parallel
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hardware depending on the number of data streams and instruction streams that it can

handle at the same time. Thus a single-core processor is a Single Instruction stream

and Single Data stream (SISD) machine. In fact instructions of every program are

serialized building one flow of instructions, which manipulate a single data (excluding

vector instructions). This flow is then executed by processors using techniques, such

as pipelining or superscalar processing, that allow them to run multiple instructions of

one flow at a time. In order to have a parallel machine, we need to increase the number

of instruction streams, data streams or both.

Multiple Instruction streams, Single Data stream MISD allows to perform

multiple instruction on the same data. We do not know a hardware machine that is

universally recognized as MISD.

Single Instruction stream, Multiple Data streams A SIMD hardware is a

synchronous system, because every computational unit executes the same instruction

on different data at the same time. Thus the developer can exploit data-partitioning

by writing a single sequential program that is executed in parallel for each unit of data.

This allows to reduce the complexity of controlling units and to increase the number

of ALUs in the chip, exploiting data parallelism. Graphic Processing Units (GPUs) fit

into this category.

Multiple Instruction streams, Multiple Data streams The last category is

MIMD, that can be modeled as a collection of Single Instruction stream processors

connected through a communication medium, which could be a network or a firmware

interconnection of processors. Thus a MIMD system is usually asynchronous because

each processor executes its own stream of instructions and, even if they are running

the same program, we cannot assume that they are executing the same instruction at a

given instant. As said before processors are connected with a network and to a memory.

According to the mutual logical position between memory and communication network

we can distinguish two kinds of systems:

Shared Memory Systems Processors are connected first to the interconnection

medium and then to memory, thus, they can access to any memory location.
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Consequently communication among processors is made implicitly by writing

and reading memory locations.

Distributed Memory systems Each processor is directly connected to its own

private memory and can reach other processors through the network. A processor,

that wants to access a location of the private memory of another processor, has

to explicitly ask for it by sending a message.

1.2 Shared Memory

In shared memory systems, every memory location is accessible by each processor and

communication among cores can be achieved by writing and reading memory locations.

Shared memory is proper of multicore processors and, according to the core view of

memory, we can distinguish:

Uniform Memory Access Each core is directly connected to the whole memory,

thus it can access any location with the same latency and speed.

Non Uniform Memory Access Each core has some memory locations that are

accessed faster than others. A core is directly connected to a block of memory

(close memory, fast access), while it delegates accesses to other blocks to a special

hardware embedded in the processor (far memory, slow access). Each block of

memory is called NUMA node and more core can be connected to the same

NUMA node.

1.2.1 Synchronization Primitives

Synchronization primitives are a set of atomic instructions offered by hardware. An

atomic instruction allows us to execute a set of operations that appears to the system as

performed instantaneously at an indivisible instant of time. Generally shared memory

systems offer atomic read and write from/to memory of 1,2,4 bytes until accessed

memory is aligned to 1,2,4 bytes respectively. On 64-bits systems read and write of 8

bytes are guaranteed to be atomic if aligned to 8 bytes. Other atomic synchronization

primitives are:
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test&set(mem, i) returns false if the i-th bit of the mem location is already set,

otherwise sets the bit and return true;

fetch&add(mem, val) increments the value contained in memory location mem by val

and writes the computed value into mem;

compare&swap(mem, old, new) returns false if the value contained in mem is not equal

to old, else writes new into mem and return true.

In [10], the author explains that each synchronization primitive can resolve a specific

class of the consensus problem. In particular the compare&swap (denoted as CAS) is

a universal primitive, since it can resolve the consensus problem with any number of

processes.

A problem associated with the usage of CAS is the ABA problem. This comes from

the fact that a CAS cannot distinguish if a given value is written multiple times into

a memory location. In fact, suppose that a thread T reads a value A from a shared

memory location m and then another thread T ′ updates twice the value of m, first from

A to B and then back to A. At this point, T performs a successful CAS. If T presumes

that m has been untouched, it can leave the shared object, that contains m location,

in an inconsistent state.

A possible solution for ABA problem is adding to the value a signature of the

update, reducing the number of usable bits for representing the data. Conversely, if

the value represents a memory reference, it means that the ABA problem occurs due to

memory re-usage. Under the assumption that a shared variable cannot assume twice a

given address until the referenced memory is released and allocated, a garbage collector

system (see Section 1.6) can resolve the issue. In fact, it denies the capability of freeing

memory (and thus reusing it) until any thread holds a reference to it.

1.3 Progress Conditions

As said above, in a concurrent program a set of tasks cooperate to reach a common

goal, sharing a set of resources. With process or thread we mean the execution of

an instruction stream. Concurrent accesses to a shared resource not being serialized
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might produce unpredictable results, called race conditions [11], that depend on the

non-deterministic interleaving of tasks’ executions. A section of a program that can

lead to a race condition is a critical section. For our purpose we are interested in

considering the shared resource as a memory object, i.e., data that can be manipulated

by using a set of procedures called primitives. The definition of an object is unrelated

to the application concurrency, thus the preconditions and postconditions of primitives

have sequential definition. It implies that accessing a shared object leads to a critical

section, which should be protected in order to guarantee mutual exclusion. This goal

could be reached by delaying a process that wants to enter in a critical section executed

by another process. However, if the process in the critical section is suspended, those

that are waiting cannot resume the execution. This leads to an underutilization of

the computational resources because no one is proceeding. We define as blocking a

procedure that has a critical section and a process executing it can be suspended

otherwise it is a non-blocking procedure. A memory object is non-blocking if all its

primitives are non-blocking. From this definition it follows that, in a non-blocking

algorithm, the critical section must be an atomic instruction, because it ensures that

a process cannot be suspended during its execution.

A progress condition is a procedure property that guarantees some level of evolution

in the system state. We can distinguish several kinds of progress depending on whether

the procedure is blocking or non-blocking [12]. In the first case, the weakest progress

condition is deadlock-freedom. A procedure is deadlock-free if it is guaranteed that

some thread eventually executes its critical sections. This condition guarantees that

system makes progress, but does not ensure the same property for each thread. On the

contrary, a starvation-free procedure ensures that every thread eventually executes the

critical section, thus making progress. The progress conditions for blocking algorithms

are dependent from the scheduler, because they need that each thread performs infinite

operations in an infinite period and, consequently, it can complete a critical section.

Non-blocking algorithms have specular progress condition and are called independent

because they can perform any number of operations in an infinite time. In particular

lock-freedom guarantees that some method eventually returns and wait-free ensures

that every method eventually returns. Another progress condition that is proper of
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non-blocking procedures and strictly weaker than lock-freedom, is obstruction-freedom,

which guarantees that a procedure returns if executed in isolation, i.e., in a period

without contention with other threads on the same data.

In general a programmer assumes that the operating system is benevolent and

has a scheduler which ensures each thread to advance. This assumption promotes

lock-freedom and deadlock-freedom to their respective upper-level progress conditions,

wait-freedom and starvation-freedom respectively.

1.4 Correctness Conditions

Correctness conditions allow to understand the properties that concurrent objects have

to satisfy in order to develop a relevant result. In particular dealing with concurrency

means developing in an environment that is intrinsically non-deterministic, because no

assumption can be made on the interleaving among operations performed by different

processes. More feasible is understanding if a sequential execution is correct or not.

Obviously, a valid sequential execution is one compliant with the object definition.

Objects have a sequential definition, but they live in a concurrent environment, thus,

in order to demonstrate the correctness of a concurrent execution, we have to find

an equivalence with a sequential one and check if it is valid. Before analyzing the

correctness conditions, we give the notion of history.

A history models a process execution and it is a finite sequence of call and return

events [13]. Clearly this a simplification of a process execution, that can involve a

huge number of read and write on several shared memory locations, but we can model

those operations as a pair of call and return. This means that the given definition

of history is not restrictive to memory objects, but can be applied to any complex

system that accesses memory. A history is sequential if: every call in the history, is

immediately followed by its response; each response is immediately preceded by its

call. A concurrent history is a history that is not sequential. Given a process and

a history, the process subhistory is the subsequence of all events performed by the

considered process in the history. Given that a process is a sequential execution, in

a history all process subhistories are sequential histories. In this case the concurrent
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history is well-formed. A object-history is a subhistory in which all events are related

to a given object, thus it is not necessarily a sequential history. A sequential history is

legal if each object-history is correct according to the sequential definition of the object

itself. The given definition of history can capture the concurrency generated by any

kind of parallelism (time-sharing, hardware parallelism, etc.), because it relies only on

call and return events. Now we can define the equivalence between two histories. Two

histories are equivalent if for every process, the process subhistories are identical in

both histories. Finally, in order to evaluate the correctness of a concurrent execution,

we have to check its equivalence with a chosen sequential one, that satisfies a given set

of properties.

We report three conditions: sequential-consistency [14], serializability [15] and

linearizability [13] and we explain their implication by using as example some executions

that manipulate a FIFO queue. A FIFO queue is a data structure that consists in a

set of items on which two procedures are defined: enqueue that adds a given element

to the set; dequeue which removes from the set and returns the element inserted before

than others. In the examples, the signature opi(x) indicates a procedure op invoked by

a thread i with parameter x, while reti(v) means that the last procedure of the thread

i has returned the value v (since we are considering only well-formed history).

1.4.1 Sequential Consistency

Sequential consistency, defined by Lamport [14] requires that a history h has to be

equivalent to a valid sequential history h′. It means that the routines invoked by a

thread have to appear in the same order in h′, while it is not required to maintain

the order among operations of different threads. In the example, the history H is

sequentially consistent because it is equivalent to the sequential history H ′, even if this

one does not follow real-time order.

1.4.2 Linearizability

A history is linearizable [13] if it is equivalent to a sequential history such that any

couple return-call appears in the same order in both histories. Linearizability is similar
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H:

1. pushA(x)
2. retA()
3. pushB(y)
4. retB()
5. popB()
6. retB(y)

H’:

1. pushB(y)
2. retB()
3. popB()
4. retB(y)
5. pushA(x)
6. retA()

to sequential consistency, but imposes that the reference sequential history maintains

real-time ordering among completed procedures. Conversely concurrent invocations

can have an arbitrary order among them as long as the resulting history is valid.

Informally it is like concurrent procedures appear as executed in an atomic point

between the invocation and the return and the order among those points is compatible

with the sequential definition of the object. The concurrent history H ′′ is equivalent

to H ′′′, thus is linearizable, while the history H of the previous paragraph is not

linearizable since no reordering is possible (it is a sequential history).

H’’:

1. pushA(x)
3. pushB(y)
2. retA()
4. retB()
5. popB()
6. retB(y)

H’’’:

1. pushB(y)
2. retB()
5. pushA(x)
6. retA()
3. popB()
4. retB(y)

1.4.3 Serializability

Serializability [15] imposes that a history is equivalent to a valid sequential one, in which

event of different process subhistory cannot interleave. This definition was designed

for Data Base Management Systems in which a process is a transaction, i.e. a set of

ordered operations on different objects that has to appear to the system as executed

in atomicity and isolation. Strict-serializability maintains the real-time order among

transactions. It means that if the transactions involve one operation on a single object

serializability collapses into the sequential-consistency and strict-serializability into the

linearizability.
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1.5 Non-Blocking Data Structures

In this section we analyze some lock-free data structures that are useful in order to

understand non-blocking synchronization. For each proposed example, we will explain

implementation details and give some sketch proof of lock-freedom and linearizability.

The algorithms analyzed use CAS as synchronization primitive, since it is universal and,

as stated in [12], it is both necessary and sufficient to reach lock-free synchronization

when paired with atomic read and write. In the proposed algorithms there is not any

explicit handling of the ABA problem in order to maintain the focus on the strategy

used to obtain lock-freedom. Moreover, we believe that algorithms built on top of CAS

primitive should ignore ABA problem at first, because we can build a software CAS on

top of this hardware primitive, which guarantees a higher level of robustness. Similar

assumptions are made on two other aspects. The first one is the implementation

of the memory allocator. In fact if we want to use a lock-free object, we have to

guarantee lock-freedom for routines, used by the object, that allocate and free memory.

A simple trick, that allows to keep our object lock-free when using a blocking allocator,

is moving every allocation before each invocation of object routines and every release

after. Unfortunately, in order to apply this strategy, we have to know in advance how

many and which objects are allocated in procedure execution, but this is not always

possible. Anyhow, if we are interested in using a non-blocking object, probably we

are building an algorithm that we would like to be non-blocking, thus the problem

still holds. Consequently we have to rely on non-blocking allocators. Finally in a

non-blocking algorithm we need a garbage collection mechanism in order to safely

release memory, but the reason behind this is explained in the next section.

System Model The reference system is a MIMD multi-processor with shared

memory, in which a program specifies a set of cooperating tasks, each one executed

sequentially in a processor. The execution of a task is called thread or process. The

synchronization primitives available are atomic read,write (non explicit in the proposed

algorithms) and atomic compare&swap denoted as CAS. As the correctness criterion we

adopt the linearizability.
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TreiberStack{
pointer<TreiberStack> top;
Value key;

}

Figure 1.1: Treiber’s Stack object.

CAS

TOP

(a) Push

CASTOP

(b) Pop

Figure 1.2: Visual representation of Treiber’s Stack procedures.

1.5.1 Treiber’s Stack

The Treiber’s Stack [16] is the first example in literature of a non-blocking algorithm.

A stack is a collection of elements that implements a Last-In First-Out policy. Two

primitives are defined, push and pop. In particular push routine add an element to

the stack and pop returns the last element added with a push. The stack consists in a

pointer to a node that represents the top (Figure 1.1). Each node contains a value and

a pointer to the successive element in the stack. push routine encapsulates the value

in a new node, which points to the current head of the stack, and then tries to swap

it with the new node using an atomic CAS (Figure 1.2(a)). The exchange is retried

until it succeeds. The pop procedure has to remove the current top. This is obtained

making the variable top to point its successor atomically with a CAS (Figure 1.2(b))

and repeating the operation in case of failure. In Figure 1.3 is shown the complete

algorithm.

Treiber’s Stack is a lock-free data-structure, because it guarantees that at least some

thread make progress. In fact if a procedure is blocked in a repeat-until loop, it means

that every attempt of performing a CAS fails. It follows that for each failed CAS there is

a successful one performed by another thread. The algorithm is not wait-free because a

procedure might perform an infinite number of attempts, thus without returning. The
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TreiberStack.push(Value v){
1: new ←TreiberStack()
2: new.key← v
3: repeat
4: new.top ← top

5: until CAS(&top, new.top, new)

}

Value TreiberStack.pop(){
1: repeat
2: tmp← top

3: new ← tmp.top
4: until CAS(&top, tmp, new) return

tmp.key

}

Figure 1.3: Treiber’s Stack algorithm.

HarrisSet{
pointer<Node> head;
pointer<Node> tail;

HarrisSet HarrisSet()

1: head←Node()
2: tail←Node()
3: head.next←tail

}

Node{
pointer<Node> next;
Value key;

Node Node(Value v)

1: new ←Node()
2: new.key← v return new

}

Figure 1.4: Harris’ Sorted Linked List object.

algorithm is also linearizable. As an informal proof, we can observe that if an history

is incomplete, it means that some procedure is stuck in the try-loop. Their execution

cannot modify the stack, so we can safely remove them from the history obtaining a

complete history. For each complete history we can always find a linearization point

in the CAS execution. In other words procedures appear to be executed atomically.

From scalability point of view, Treiber’s Stack has a sequential bottleneck in the top

field. In fact each thread competes to update the same field and at the same time they

cannot take advantage from cache usage, because the most access field is constantly

updated, leading to lower performances than locking alternatives. In [17], the authors

resolve this bottleneck introducing a backoff mechanism based on a front-end array

that allows to reduce collisions on the top variable.

1.5.2 Harris’ Sorted Linked List

A Linked List consists in a chain of nodes that contain an object. Each node stores

a pointer to the next node. Harris’ Sorted Linked List [18] implements the semantics
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(a) Insert

CAS
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2
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(b) Delete

Figure 1.5: Visual representation of Harris’ Sorted Linked List procedures.

of a set of keys on which exist a total order. Thus three procedure are defined: insert

add the key if it is not present in the set; delete remove a given key from the set;

find check if the set contains a given key. An empty set contains two sentinel nodes,

head and tail, and every node containing a key is inserted between them (Figure 1.4).

Procedures use a private routine search, that, given a key, it finds two valid adjacent

nodes such that the left node has a key strictly lower than the search key and the right

node has key greater than or equal to the search key.

The insert routine uses search in order to find left and right nodes of the search

key. After checking that the right node does not contain the key, the algorithm tries to

insert a new node between left and right ones by using a CAS on the next field of the left

node (Figure 1.5(a)). find simply calls search routine and checks if the right node has

a key equal to the search one. delete searches for a right node with the desired key and,

if it is present, it tries to logically remove it by marking the next field with a CAS. The

mark is stored on the least significant bit of the next field, which is a reference. Thus,

assuming a 2 bytes alignment (on 32-bit machines it is generally 4 bytes), we have

guaranteed that each reference has an even address value and consequently the default

value of the first bit is always zero. A marked node is a node such that its next field

has the first bit equal to one. Logically deleted nodes are physically removed during a

search execution. This routine finds two unmarked nodes that might be not adjacent,

because there are some marked nodes between them. In this case the algorithm tries

to make them adjacent by a CAS (Figure 1.5(b)).

Lock-freedom is guaranteed by the fact that the CASes disconnecting marked nodes

can be executed a number of times which is bounded by the number of logically removed

nodes. It means that eventually only CASes for marking and inserting a node will be
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HarrisSet.find(Value v)

1: 〈 , rightNode〉 ← search(v) return
rightNode 6= tail ∧ rightNode.key = v

boolean HarrisSet.insert(Value v)

1: new ← Node(v)
2: repeat
3: 〈leftNode, rightNode〉 ← search(v)
4: if

rightNode 6= tail ∧ rightNode.key = v
then return false

5: end if
6: new.next← rightNode
7: until CAS(&leftNode.next, rightNode,

new) return true

HarrisSet.delete(Value v)

1: repeat
2: 〈leftNode, rightNode〉 ← search(v)
3: if

rightNode 6= tail ∧ rightNode.key 6= v
then return false

4: end if
5: tmpNext← rightNode.next
6: until ¬ISMARKED(tmpNext) ∧

CAS(&rightNode.next, tmpNext,
MARK(rightNode))

7: if ¬CAS(&leftNode.next, rightNode,
tmpNode) then

8: search(v)
9: end ifreturn true

〈Node,Node〉 HarrisSet.search(Value v)

S1: tmp← head

S2: tmpNext← head.next
S3: repeat
S4: if ¬ISMARKED(tmpNext) then
S5: left← head

S6: leftNext← head.next
S7: end if
S8: tmp← UNMARK(tmpNext)
S9: if tmp = tail then
S10: break
S11: end if
S12: tmpNext← tmp.next
S13: until ¬ISMARKED(tmpNext) ∧

tmp.key ≥ v
S14: right← tmp
S15: if leftNext = right then
S16: if right 6= tail ∧

ISMARKED(right.next) then
S17: goto 1
S18: elsereturn 〈left, right〉
S19: end if
S20: end if
S21: if CAS(&left.next, leftNext, right) then
S22: if right 6= tail ∧

ISMARKED(right.next) then
S23: goto 1
S24: elsereturn 〈left, right〉
S25: end if
S26: end if

Figure 1.6: Harris’ Sorted Linked List algorithm.

executed. Supposing that each operation cannot terminate, this is possible if and only

if each CAS contained in each operation fails. Each operation when successful has at

most two successful CAS, one in the search execution and one for insert or delete. If

some thread cannot terminate it means that every CAS fails and consequently some

other thread executes a successful CASes. If those CASes are executed only in search

routine, no thread makes progress, but this is impossible because the number of marked

node is bounded by the successful delete operations. On the contrary if the number

of marked node increases it means that other threads are able to insert and to delete
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nodes, thus they have progress.

The Harris’ Sorted Linked List is a linearizable data-structure. As linearization

points we can use every successful CAS that inserts or marks a node. Finally considering

instants in which post-conditions of every successful search are satisfied, they impose

a real-time order for find invocations.

Under high contention, the linked list has a more scalable behavior than Treiber’s

Stack, because conflicts are more likely spread on all nodes in the list allowing a greater

number of operations to be successful at the same time. The complete algorithm is

shown in (Figure 1.6).

1.5.3 Lock-Free Dynamic Vector

A vector is a memory object that allows to maintain a collection of elements and to

access them by using an index. The capacity of a vector can be explicitly reserved

or dynamically increased and reduced when a new element is respectively added and

removed at the end of the array. Thus a vector specifies: push back adds an element

at the end; pop back deletes the last element; read at and write at access the element

at a given position; reserve which preallocates memory in order to guarantee that the

vector size is sufficient to contain a given number of elements; size that allows to query

the actual size of the vector.

In [19], the authors develop a lock-free implementation of a vector data type. In this

work every update that needs to modify more than one memory location is performed

through the usage of a descriptor, which contains every useful data to complete its

operation. In particular both push back and pop back can manipulate the last element

of the vector, increase or decrease the vector size and allocate new space for new

entries. Thus, they are descriptor-modifying operations. When a process tries to

perform a descriptor-modifying operation, it tries to exchange the current descriptor

by CAS with a new one. Before publishing its own descriptor, it checks if there is a

pending operation by analyzing the current descriptor and, if required, tries to complete

it. Non descriptor-modifying operations are served in a wait-free fashion. In particular

read at and write at perform a direct access to the vector element, while size retrieves

the current size from the current descriptor and returns it, decreasing the value if there
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Vector{
pointer<Descriptor> descriptor;
pointer<Value> memory[32];
integer init size;
integer fbit;

Vector Vector(integer start up size)

1: new ←Vector()
2: new.init size← start up size
3: new.fbit ← ibsr x86(start up size) return new

}

Descriptor{
pointer<WriteDescriptor> pending;
integer size;

Descriptor Descriptor(integer
size, WriteDescriptor write des)

1: new ←Descriptor()
2: new.size← size
3: new.write descriptor ←
4: write des return new

}

WriteDescriptor{
Value old;
Value new;
integer pos;
boolean pending;

WriteDescriptor WriteDescriptor
(Value o, Value n, integer p)

1: new ←WriteDescriptor()
2: new.old value ← o
3: new.new value ← n
4: new.pos ← p
5: new.pending ← true return new

}

Figure 1.7: Lock-Free Dynamic Vector List object.

is a pending write. The reserve routine checks that the current allocated space is

sufficient to contain the given number of elements and eventually it allocates a new

block, thus it is a non descriptor-modifying operation. The definition of descriptor and

vector are shown in Figure 1.7.

The most critical operation in a non-blocking array is the physical expansion. The

simplest solution consists in copying the array and exchanging its reference with a

CAS, but its hardly linearizable because already copied elements can be updated and

some process can still hold an old pointer to the array. It means that each cell of the

array has to contain a pointer to the value, thus we can copy and exchange the array

safely. This leads to increase space overhead by a factor, that can be significantly large

for primitive types (at least 2). Moreover accessing an element of the array requires

an additive memory access, because we have to read first the pointer to the value

and then we can access the value. To resolve this issue, the authors propose a vector
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implementation that never copies allocated memory, by using a two-level indexing. The

first level is a fixed size array such that each entry contains a pointer to a contiguous

block of memory which stores elements. When a resize is required, the algorithm

allocates a new memory block with size equal to the current one and its reference is

stored into the next free entry of the first level array. Finally the two-level indeces

are mapped to linear indeces in order to access the vector as if it were a contiguous

memory area. The mapping is computed efficiently by making the initial size of the

array a power of two and by doubling it at every expansion. In particular, let D be

the initial size of the array, thus it grows as 20D, 21D, . . . , 2nD. After each expansion

a new memory block wide as the previous size is allocated. For example after the

1-th expansion a new block of size D is added, during the 2-th one a 2D wide block

is allocated and so on. Each new block is stored sequentially in first level of the

bi-dimensional array. It means that the i-th element of the first array points to

a 2iD wide array and covers the linear indeces range [2iD, 2i+1D), or equivalently

[2i+d, 2i+d+1), where d = log2(D). An index I ∈ [2i+d, 2i+d+1) can be written as

I = 2i+d + R, thus it is mapped to the pair 〈i, R〉, where i = blog2 Ic − blog2Dc and

R = I − 2blog2 Ic and. This allows to take advantage from Bit Scan Reverse instruction

that returns the index of the more significant bit equal to 1, computing the discrete

logarithm in base 2. The complete algorithm is shown in Figure 1.8.

As explained above, non descriptor modifying operations are wait-free, because

they consist in one atomic operation (read, write or CAS), guaranteeing that each

one always completes. On the contrary, descriptor-modifying procedures are lock-free

because descriptor update is performed in a try-loop on the result of a CAS.

In order to keep the data-structure linearizable and efficient at the same time, the

authors impose that non descriptor-modifying operations on the bottom of the vector

have to be never executed concurrently with a pop back routine. If we consider a

pop back that completes before a concurrent read or write at the last element, we have

a non linearizable execution. The authors suggest two strategies for this problem.

The first one consists in making each operation descriptor modifying, thus reducing

efficiency and loosing wait-freedom for write and read routines. Alternatively they

define the following usage rule: “Non-descriptor modifying operations that access the
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Vector.pushBack(Value elem)

1: repeat
2: curDes ← descriptor

3: tmpSize ← curDes.size
4: completeWrite( curDes.pending )
5: bucket ← ibsr x86( tmpSize
6: + init size )
7: bucket← bucket − fibit

8: if memory[bucket] = null then
9: allocBucket(bucket)
10: end if
11: tmpV alue ← read( tmpSize )
12: writeop ← WriteDescriptor
13: ( tmpV alue, elem, tmpSize )
14: newDes ←
15: Descriptor(tmpSize+ 1, writeop)
16: until
17: CAS(&descriptor, curDes, newDes )
18: CompleteWrite(newDes.pending)

Value Vector.popBack()

1: repeat
2: curDes ← descriptor

3: CompleteWrite(curDes.pending)
4: elem ← At(curDes.size−1)
5: newDes ←
6: Descriptor(curDes.size−1, null)
7: until
8: CAS(&descriptor, curDes, newDes )

return elem

integer Vector.size()

1: des ← descriptor

2: size ← des.size
3: if des.writeop.pending then
4: size ← size − 1
5: end ifreturn size

Value Vector.read(integer i)
return atomic read(At(i))

Vector.write(integer i, Value elem)

1: atomic write(At(i), elem)

Vector.reserve(integer size)

1: i ← ibsr x86(descriptor.size +
init size−1) − fibit

2: if i < 0 then
3: i← 0
4: end if
5: while i <ibsr x86(size + init size−1) −

fibit do
6: i← i+ 1
7: allocBucket(i)
8: end while

Value Vector.at(integer i)

1: pos← i+ init size

2: hibit ← ibsr x86(pos)
3: idx ← pos xor 2hibit return &memory[hibit
− fibit][idx]

Vector.completeWrite(
WriteOperation writeop)

1: if writeop.pending then
2: CAS(At(writeop.pos), writeop.value old

, writeop.value new )
3: writeop.pending ← false

4: end if

Vector.allocBucket(integer bucket)

1: mem ← new Value[init sizebucket+1]
2: if ¬CAS(&memory[bucket], null, mem) then
3: free(mem)
4: end if

Figure 1.8: Lock-Free Dynamic Vector List algorithm.

tail should never be executed concurrently with descriptor modifying operations that

reduce the vector’s size”, but without suggesting how to satisfy it. It follows that read

and write operations do not provide bound checking. As a proof sketch of linearizability

we observe that for every operation it is possible to find a linearization point such

that it seems executed atomically and instantaneously. For non descriptor-modifying

operations the linearization point is the instant in which the atomic read or write is
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executed. On the contrary, descriptor modifying routines exchange the descriptor with

a CAS. When successful, it is a linearization point for pop back, while push back takes

its effect when the CAS of the corresponding write is performed.

1.6 Memory Reclamation For Non-Blocking

Dynamic Objects

In previous section we have mentioned the fact that we need a garbage collector when

implementing a dynamic non-blocking object. We try to make clear this need by using

an example execution on a Treiber’s Stack. Considering a pop procedure, if a thread

succeeds to perform the CAS, then disconnected node can no longer be accessed by other

threads. However this does not allow us to release the node. In fact, we have guaranteed

that no thread can read a reference to the node after the successful CAS, but some thread

can still hold it from a previous access. For example, a pop reads first the reference to

the current top, then it reads the top field and finally tries a CAS. If after the first read,

another thread disconnects and frees the node, the second read leads to dereference a

dangling pointer i.e., a pointer to memory that is reused or no longer allocated. Similar

patterns can be found in Harris’ Sorted Linked List and Lock-Free Dynamic Vector. In

general we can assume that procedures of a dynamic data structure manipulate a set

of smaller objects that are interconnected to each other. Routines can allocate, release,

connect and disconnect objects. The implementation of a data structure defines when

and how objects have to be allocated, connected and disconnected. Allocation and

release operations are implemented by a memory allocator. Finally a garbage collector

is responsible to detect when objects can be released safely. Moreover, using a garbage

collection mechanism allows to reuse memory without worrying about ABA problem.

Some reclamation techniques consist in identifying a grace period, i.e., a time

interval such that each object allocated before the interval can be released after that

interval. The start and end instant of the interval are discovered by making all threads

pass through a synchronization point. Quiescent State and Epoch Based Reclamation

fall in this category, while Hazard Pointers and Reference Counting use a protocol

before each usage of a reference that might point to a released memory. An extensive
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comparison of these reclamation strategies is given in [20], where there is not a clear

winner.

1.6.1 Quiescent State Based Reclamation

A Quiescent State [21] is an instant in which a thread does not hold any reference to

shared objects. Thus a time interval that contains at least one quiescent state of each

thread is a grace period. A simple method to implement this is using an atomic counter

and a flag. When a thread enters in a quiescent state it tries to set the flag in order to

publish the beginning of a grace period and then increments the counter if it has not

already done. After the increment, it checks if the counter has reached the number of

threads. If not the thread retries in the next quiescent state, otherwise it frees objects

that it has disconnected and decreases the counter if it has not already done. If the

counter reaches zero it tries to reset the flag. In order to use this reclamation strategy,

a developer has to explicitly define quiescent states, by calling a routine of the garbage

collector.

The Quiescent State Based Reclamation is a blocking algorithm. In fact if a process

is halted by a fault, grace periods can no longer exist and no thread can release memory,

leading the system to block on memory allocation eventually.

1.6.2 Epoch Based Reclamation

Epoch Based Reclamation [22] is similar to Quiescent State Based Reclamation, but

it applies a different strategy to compute the grace period. In particular it applies the

concept of epoch. We can distinguish local and global epochs. A new global epoch

starts when all threads, that are executing a non-blocking procedure, are in the same

local epoch equal to current global epoch. At a first level of approximation, a local

epoch is the last global epoch observed by a thread after it has performed a given

number of non-blocking procedures. Thus, a grace period is made of multiple global

epochs because when a thread enters in a new epoch it can observe objects from the

previous epoch. Due to the fact that a new epoch beginning depends on local epochs

of threads which are executing non-blocking procedures, a grace period spans at most
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three epochs. More precisely, if current global epoch is e, threads in non-blocking

regions are in epoch e or e − 1, thus they can observe pointers in e, e − 1 and e − 2

epoch. It means that a thread can safely release objects that were disconnected three

epochs before the current epoch.

In order to use Epoch Based Reclamation, developers have to signal the starting

and the ending of each non-blocking section in the code.

This algorithm is blocking, but it is more reliable than Quiescent State Based

Reclamation. In fact, only threads halted in the execution of non-blocking procedures

can block the release of memory, because global epoch cannot advance.

1.6.3 Hazard Pointers

The idea behind Hazard Pointers [23] is to publish every reference that is used or

going to be used by a thread, in order to prevent a premature release. The publishing

consists in inserting a reference in a data structure that is visible to all other threads.

When a thread disconnects an object, it checks that references to the object are not

contained in the set of hazard pointers of other threads. If it is not present, a thread

can safely release the object, otherwise it saves in a release-later list. The safety is

guaranteed by disconnection that makes the object unreachable. On the contrary, it

is possible that a thread holds a reference, but it has not updated its hazard pointers.

Thus before accessing an object, a thread has to set the hazard pointer and then to

check if the object is still connected. In order to perform this operation efficiently (e.g.

without traversing the whole data-structure), a thread has to publish every pointer

that is useful to reach the object. Considering a stack, one hazard pointer is sufficient,

while for linked list two hazard pointers are required: one for current node and one for

its predecessor.

The present solution is wait-free, in fact each thread only checks hazard pointers

with a scan and updates its own hazard pointers. Thus it guarantees that memory

is always released except for those objects that are addressed by hazard pointers of

halted threads.

Hazard pointers require that the developer is able to identify hazardous accesses

to shared objects accessed without lock and to individuate the minimal number of
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pointers required to protect them.

1.6.4 Reference Counting

Reference Counting is introduced in [24] and consists in incrementing a counter

associated with a reference before using it. The counter is decreased each time the

reference is not used anymore. It means that when an object is disconnected from the

data structure the counter can only decrease, thus when it reaches zero the object can

be released. Although it seems to be very simple and effective, if it is not implemented

carefully, it can perform worse than other reclamation schema [23].

In order to use reference counting, the developer has to modify every access to

shared objects in each non-blocking sections of code.
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Chapter 2

Pending Event Set Problem

Event-driven programming is used in a very wide range of fields that span from

video-games to military and medical applications. In particular, it is widely used

for implementing simulators that allow scientists to have a clearer knowledge of a

phenomenon and to test solutions for a given problem without implementing them.

This is extremely important during the design of a technology or before taking a

decision that could affect safety of humans, companies and nature.

In event-driven programming the computation is based on a model that describes

only system’s aspects of interest and the information needed to represent it with

the desired accuracy. This information is compound of variables that describe the

conditions of the system in a given instant of time and, taken together, define the state

of the system. If the system is made of several sub-systems, the system state is the

join of sub-systems states. The model also defines the events that emulate occurrences

in time of given conditions or signals. Each event is associated to a function, that

models the reaction to the event, which produces changes to the system state and

might generate new events. Thus, the evolution of the system is determined by the

occurrence of events. When the duration of events is impulsive, i.e., the time instant

of its beginning is the same of its ending, system variables can change only at points

in time at which events occur. Thus, between two consecutive events the system state

is untouched. Focusing resources on processing events that update the system state

allows event-driven programs to gain a natural responsiveness to asynchronous and

unpredictable environments.
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The execution of an event e0 can create new events e1, e2, . . . , en that causally

depend from the first one. Since the timestamp Te0 associated with the event e0

represent the time in which the event occurs, we have that Te1 ≥ Te0 . This guarantees

that executing an event cannot affect the past and the logical time can advance.

With logical time we mean the time in which events happen in the program and it

is opposed to wall-clock time, which is the time measured by humans that are waiting

for computation results. When the execution of current event is terminated, generated

events are enqueued in a data structure, called Pending Event Set. The next event

to be executed is retrieved with a dequeue procedure, which returns the event with

minimum timestamp in the set. Executing the minimum is fundamental because, if

events can be executed out-of-order, a causality error can occur. In fact, if an event ei

can be executed before an event ei−1 and Tei ≥ Tei−1
, the final state obtained by the

execution of ei−1 at logical time Tei−1
is dependent from something happened in future

at time Tei .

Generally, the data structure is a priority queue, i.e., a set of items associated

with a key. On the keys it is defined a total order that reflects the objective policy.

The next item to be dequeued is the one associated with the minimum key in the

queue. Manipulating the strategies to assign keys on items, we can obtain several

scheduling policy. The First-Input-First-Output (FIFO) policy consists in returning

first the oldest element. This can be achieved by assigning monotonically increasing

keys to items during the insertion. On the contrary, when it is required to return

first the last inserted element, we have a Last-Input-First-Output (LIFO) policy, that

can be obtained by using monotonically decreasing keys. In event-driven programs,

the objective policy is the “happened first” (denoted as →) relationship that reflects

the causal order on events. This is obtained using timestamps as priorities keys. The

notion of causality is captured by timestamps, in fact e→ e′ ⇒ Te ≤ T ′e. The converse

does not hold, in fact it is possible that an event e generates more events e′, e′′ with

same timestamp T ′e = T ′′e , that are unrelated. For this reason many implementation

of PES are based on a stable priority queue. A priority queue is stable if events with

identical priority are dequeued according to the order in which they are enqueued.

The management of the pending event set has a crucial role in performance, in
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Figure 2.1: Visual representation of a linear object.

fact, for each event execution, multiple enqueues might be required in order to insert

new events and one dequeue is needed to obtain the next event. The empirical study

in [25] shows that PES management might reach the 40% of the overall execution of a

Discrete Event Simulation, that is an instance of event-driven paradigm. This explains

the extensive research in priority queue, that have produced an enormous number of

different implementations. In following sections we introduce some examples of pending

event set implementations, focusing on strategies used to arrange events.

2.1 Linear Pending Event Set

A priority queue can be implemented by using a linked-list (Figure 2.1) in which

elements are stored in a chain that has to be traversed in order to reach a given

position. If elements in a linked list are unsorted we have to scan the whole list for

finding the minimum, while the enqueue can insert a new event at the beginning of the

list. This leads to O(n) steps for returning a minimum, where n is the number of items

stored, and a constant cost for inserting a new event. On the contrary, if events are

sorted according to the order defined on priorities space, a dequeue operation consists

in removing the head of the list and returning it giving a constant cost, while the

enqueue requires a scan in order to insert the new element at the correct position. In

the worst case this requires that the whole list is traversed leading to a O(n) cost. The

median-pointer linked-list [26] is an ordered linked-list with the addition of a pointer

to the node in the middle of the list. During an insertion, we can efficiently discover

if a new node has to be inserted in the first half of the list or the second one, but this

allows to skip n
2

events and the same amount of event has to be traversed. Thus the

asymptotic cost is still O(n).
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Figure 2.2: Visual representation of a tree-like object.

2.2 Tree Based Access Pending Event Set

A tree (Figure 2.2) is a data-structure based on nodes similar to the ones of the

linked-list. The difference is that each node maintains references to multiple nodes

called children. A node can appear only in the children list of one node, called parent.

A root node is a node without parent. A leaf is a node without children. The depth

of a node is the number of parents that has to be traversed from the root to the node.

The height of a tree is the maximum depth. A level of a tree is the set of all nodes

with a given depth. A complete tree is a tree in which leaves are on at most two levels

and those are in the last level are as far left as possible. When a node can have at most

two children, named left and right child, the tree is called binary. A binary tree can be

efficiently stored in an array where each node at position k has its children stored at

positions 2k and 2k+ 1. In this case we have an implicit binary tree. Finally, a binary

search tree is a binary tree in which, given a node, its left child stores a key lower than

or equal to its key and the right child contains a key greater than its key.

The implicit binary heap [27] is an implicit, complete binary tree with the heap

property, i.e., each children has a key greater than or equal to the parent key. The

insertion consists in adding the new key in a new leaf, maintaining the completeness

property. If heap property is violated, it is restored by exchanging the new node with

its parent recursively. It means that the minimum is always stored in the root. Thus

a dequeue consists in removing it and returning its value. Removing the root means

exchanging its key with the key of the rightmost leaf, removing that leaf and restoring

the heap property by recursively exchanging the key with one of a child. The number

of steps performed by enqueue and dequeue operations are at most equal to the height

of the tree, that is O(log n) where n is the number of nodes in the tree.

A binary search tree instead cannot guarantee an O(log n) upper bound. In fact,
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inserting a sorted sequence of keys makes nodes arranged as in a linked list, since

all nodes except the root are either left child or right child. In order to avoid this

behavior, a set of re-balancing operations should be performed to maintain the height

of the tree bounded to log n. The splay-tree [28] is a binary search tree in which it is

defined a splay operation that re-balances the tree. A dequeue consists in searching

the minimum, that is always found by traversing left nodes. When a node without left

child is found, it is the minimum, thus it is removed by connecting the right child to

the parent and then a splay operation is invoked on the parent. Enqueue operation

traverses the tree until the appropriate position is found in a leaf or in a node without

the right child, then it connects the key according to the definition of binary search

tree and finally applies a splay operation. The splay operation is a set of constant-time

rotations involving at most three nodes with the objective to move accessed nodes near

to the root. This guarantees that dequeue and enqueue operations are performed in

O(log n) steps on average.

An alternative to balanced search trees is the skip-list [29]. A skip-list is a linked-list

where nodes may maintain additional pointers to some successors that allow to skip

intermediate nodes during a traversal. The number of additional pointers defines the

level of the node. A node at level k maintains k pointers, where the i-th one points to

the following node of level j ≥ i. The level k of a node is chosen randomly during its

insertion with probability pk−1. This guarantees that 100% of nodes are at least at level

1, the p ·100% at least at level 2, the p2 ·100% at least at level 3 and p1−k ·100% at least

of level k. Therefore, reaching a given position depends mainly on the number of levels

climbed during the traverse of the skip-list. Since the expected maximum number of

levels is given by logp(n), the same upper bound is given for enqueue operations. On

the contrary, the minimum is always the first element of the list ensuring O(1) for its

retrieval.

2.3 Multi-list Based Pending Event Set

Multi-list based priority queues are generally implemented as a two-level data structure

(Figure 2.3). The first level is an array accessed by using an index computed directly
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Figure 2.3: Visual representation of a multi-list object.

from the event timestamp and, due to the fact that more events can collide on the

same index, a second-level data structure is used to resolve this conflict.

The calendar queue [30] is an array of ordered linked-lists, also called buckets. The

idea is to partition the time axis in slots and then to assign them to each bucket in

a circular fashion. In order to efficiently compute the minimum, it is paired with an

index C, that identifies the time-slot containing the minimum, and with a counter,

which maintains the number of events in the queue. Let B be the number of buckets

and BW be the slot size, enqueuing an event e with timestamp Te consists in inserting

it into the i-th list of the array, where i =
[
b Te

BW
c mod B

]
and then increasing the

counter of events. Finally, if b Te

BW
c < C, C is updated. The dequeue operation

consists in returning null if the counter is equal to zero, otherwise it checks the

c-th bucket, where c =
[
C mod B

]
. If the bucket is non-empty and the first event e

has timestamp Te ∈
[
C · BW, (C + 1) · BW

)
, it removes e, decreases the counter and

returns e, otherwise it increases C and repeats the check until an event is returned.

The number of steps performed by a dequeue is constant if the current bucket is

non-empty, otherwise a scan of the buckets is required. Since time slots are assigned

in a circular policy a single scan of the whole array is enough to find the bucket

containing the minimum, thus the search costs O(B). On the other hand, the number

of items per bucket can be n
B

, but if we assume that the farther event from the current

minimum is 75%B time-slots forward, most of the enqueues are served in a quite empty

bucket, leading to an O(1) enqueue operation. To maintain the cost of a dequeue

independent from the number of buckets B, the size of the array has to be changed

according to the number of items in the queue. In particular when the number of
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events is half the number of buckets, a new array half the previous size is allocated

and each event is moved from old buckets to new ones. On the contrary, when the

number of events is twice the number of buckets, the array is doubled. Anyhow, in

order to guarantee that events are spread uniformly on buckets, the length of the

time-slot is recomputed during a resize operation by observing the time separation

among consecutive events with smallest priority. Since resize operations require a

whole copy of all events, they perform O(n) steps, but, since each item has been added

paying a constant, the amortized cost is O(1) for all operations.

The lazy queue, presented in [31], also adopts a multi-list based approach. The lazy

queue consists in three data-structures: one sorted list (NF) for near-future events,

one dynamic array of unsorted list (FF) for far-future events, one sorted list (VF) for

very-far-future events. The idea is to split the time axis in three sections, each one

assigned to a sub-structure of the queue. The bind is made by specifying an interval of

time [TNF , TV F ] such that NF covers the time interval [0, TNF ), FF covers [TNF , TV F )

and VF covers [TV F ,+∞). Assuming that D is the size of the array, the time interval

covered by FF is split in D sub-intervals each one associated to a list. Given an event

e with timestamp Te, the enqueue operation:

• inserts into VF if Te > TV F ;

• inserts into the i-th list of FF if Te ∈ [TNF , TV F ], where i = bTe−TNF

D
c;

• inserts into NF if Te < TNF .

If the NF structure contains NNF events and VF contains NV F , insertion costs O(NNF )

and O(NV F ) respectively, since they are sorted lists. On the contrary inserting in FF

costs O(1), because we add the new event at the head of an unsorted list. Assuming

NNF << N and NV F << N , where N is the number of events into the queue, the cost

for the enqueue operation is O(1). The dequeue operation is quite more involved, in

fact, if the NF list is non-empty, its first element is removed and returned, otherwise

the first non-empty list of FF array is sorted and moved into the NF and TNF and TV F

are incremented by a factor equal to TV F−TNF

D
. This leads to a O(NFF logNFF ) bound

for dequeues, where NFF is the average number of events per list of the FF structure.

Thus under the assumption that NFF << N , dequeues are performed in O(1) steps. In
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order to maintain the O(1) bound for dequeue and enqueue operations, a set of resize

operations of FF is defined:

• halving or doubling the number of lists;

• halving or doubling the distance between TNF and TV F

Changing the number of lists requires that each item in the FF is moved into a new

FF leading to a O(1) amortized cost. On the contrary, updating the size of the interval

[TNF , TV F ] means inserting items in NF and VF. In order to do it efficiently the events

are sorted and connected to NF and VF. The sorting has a O(m logm) cost, where

m is the number of events moved from FF to NF or to VF, giving an average access

time of O(logm). Assuming m << N we can safely claim that every resize operation

requires O(1) steps in average.

The ladder queue [32] is an evolution of the lazy queue. It maintains the division

of the time in three sections, individuated by two thresholds TNF and TV F , and maps

them on three data-structures that the authors call Top, Ladder and Bottom. The Top

structure is an unsorted linked list, the Bottom is a sorted list and the Ladder is a set of

arrays of lists. The principle of operation is very similar to the lazy queue: the Bottom

list contains events that are going to be dequeued, events in the Ladder are partially

sorted, while the Top list contains unsorted very-far-future events. Differently from

the lazy queue, the advancing of time proceeds in epoch. In fact, when the Bottom list

is empty, the threshold TV F is untouched and only TNF is updated. TV F is increased

only when all events in [0, TV F ] are dequeued. Assuming that the queue is empty an

enqueue consists in connecting the new event in the Top list. The first dequeue moves

events from the Top to the Ladder and individuates the thresholds TV F and TNF in

the maximum and minimum timestamps of moved events. From this moment every

event e with timestamp Te > TV F will be connected to the Top list, otherwise either

into Ladder or into Bottom. The Ladder is a set of arrays, called Rungs, and each

list in a Rung is called a bucket. The idea of the Ladder is to focus resources on a

predetermined interval of time. The interval of time covered by Ladder is subdivided in

sub-intervals, that are processed one after the other. The first sub-interval is recursively

split in smaller intervals until the first one contains few events. When a set E of events
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is moved from Top to Ladder, the time between the minimum and maximum timestamp

in E is computed and subdivided in N = |E| intervals, each one associated to a distinct

bucket of the first Rung. Thus an event e ∈ E with timestamp Te is inserted into the

i-th bucket of the first Rung, where i = b Te·N
TV F−TNF

c. Then the first non-empty bucket is

searched and if it contains a number of events lower than a given threshold MaxR, its

events are sorted and inserted into Bottom. If more than MaxR events are contained

in the first non-empty bucket, a Rung with MaxR buckets is allocated and the time

interval covered by the bucket of the first Rung is divided in MaxR sub-intervals, each

one associated to a new bucket. The procedure is repeated until the first non-empty

bucket of the last allocated Rung contains fewer events than MaxR. At this point

they are moved into Bottom and a dequeue can remove and return the first event of

the Bottom list. A successive enqueue observes the intervals covered by the Top and

Bottom and decides where to insert the new event. Now inserting into Ladder requires

a recursive analysis of the Rungs in order to find a bucket in the appropriate Rung.

When the Bottom list is empty a new bucket is searched in the last allocated Rung.

If they are all empty, the bucket is searched into the previous Rung and eventually

it can be split with a new Rung. When Ladder and Bottom are empty an epoch

is ended and events in Top are moved into the Ladder restarting the whole process.

The authors explain that the number of Rungs is limited and dependent only on the

priority increment distribution. This guarantees that every operation requires O(1)

steps in order to complete. In fact, an enqueue, that inserts into Top, add the new

event at the head of the list. Insertion into Bottom requires a scan, but we can assume

that the items into Bottom are few. Finally inserting into the Ladder requires a number

of steps that is limited by the number of Rungs and inserting into a bucket cost O(1),

because it is an unsorted list. Finally a dequeue requires one step when the Bottom is

non-empty, otherwise events have to be moved among different Rungs, but, since the

number of Rungs is bounded and independent from the number of events, the operation

is performed in O(1) amortized constant time.
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2.4 Non-blocking Pending Event Set

In a parallel event-driven program the pending event set is shared among multiple

threads, thus its performance is more critical because it is a bottleneck for scalability.

In fact each thread that wants to update the PES has to take the ownership of

the whole data structure or of a part of it, blocking other threads. It means that

also an efficient implementation of a pending event set can perform poorly under

high contention. A strategy to resolve issues due to high contention is adopting

a non-blocking implementation. Harris’ Sorted Linked List presented in Section

1.5.2 can be used as a linear priority queue, but it guarantees an O(n) bound for

enqueues, thus, even if it is non-blocking and allows high concurrency, we expect that

is asymptotically inefficient for a significant amount of events. In [33], the authors

propose a linearizable lock-free implementation of skip-list structure, that is a valid

solution offering O(log n) bound for enqueue and O(1) for dequeue. However, it

can handle events with identical priority by using few bits of the key for achieving

uniqueness. On the contrary, the landscape of lock-free pending event sets, that

guarantee constant access for both enqueue and dequeue, seems to be desolate. To

our knowledge the unique result that tries to reach the goal is the work in [34], where a

lock-free implementation of a ladder queue is presented. The authors simply exchange

every list in the ladder queue with respective non-blocking counterpart. Anyhow we

believe that is a partial result, since some relevant details, such as stability and ensured

level of correctness, are omitted. For example, it is not explained if events are moved

among buckets preserving FIFO order or if it is possible that a slow thread can insert

an event in a bucket, whose events are just moved in a new Rung. In other words it

is not explained if operations that update the global status of the ladder queue are

lock-free, but, since the authors claim:

“We propose the replacement of unsorted lists in Top, Rungs and Bottom

with unsorted lock-free queues”

we assume that those operation are blocking. Moreover it is designed for systems that

can handle events returned out-of-order, limiting the possible usages.

In Figure 2.4 is proposed a resuming of discussed priority queues for the pending
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Implementation Enqueue Dequeue Stable Lock-free Linearizable

Sorted Linked List O(n) O(1) 3 3 3

Unsorted Linked List O(1) O(n) 3 3 3

Binary Heap O(log n) O(log n) 3 7 -

Splay Tree O(log n) O(log n) 3 7 -

Skip-List O(log n) O(1) 31 3 3

Calendar Queue O(1) O(1) 3 7 -

Lazy Queue O(1) O(1) 32 7 -

Ladder Queue O(1) O(1) 3 73 -

1Require using bits of the key for tie-braking.
2Require a stable sorting.
3We are assuming that operations on the global status in [33] are blocking.

Figure 2.4: Comparative table of discussed pending event set implementations.

event set problem.
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Chapter 3

Non-Blocking Priority Queue For

Pending Event Set

In this chapter we introduce a lock-free data-structure for Pending Event Set

management. Since we want to reach an amortized constant cost for each operation, we

have chosen a multi-list based approach (see Section 2.3) to arrange events. Moreover

this strategy offers a natural way to limit concurrency only on a subset of items stored

in the data structure. The time axis is subdivided in equal slots and each list, that

we call bucket, is associated with a particular time slot [a, b) and it is able to contain

only events with timestamp T ∈ [a, b). The length of time-slots is called bucket width

and generally should change over time in order to control the average number of items

per bucket. It means that also the number of buckets should be variable in order

to cover a fixed interval of time. In our solution we focus only on the second point,

because the optimal bucket width is related to a several number of factors, including

the number of buckets and the policy used to insert items into them. Moreover,

since we do not know a sequential implementation that can be easily transformed

in a non-blocking solution with constant time access, we cannot immediately take

advance from the extensive research on multi-list based priority queues. In fact

changing the bucket width means change the strategy used to refer buckets. In a

non-blocking solution this is hard, because, since we cannot block threads and change

the bucket width once for all, we have to support two or more bucket addressing at

the time. Therefore it is not necessary that optimal choices in a sequential execution
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Figure 3.1: Visual representation of our non-blocking priority queue.

are feasible in a non-blocking solution.

A visual representation of the whole data-structure is proposed in Figure 3.1. The

buckets are arranged in a dynamic array table in order to allow accesses based on

indeces. The queue uses some variables to keep in memory useful information:

• current stores the index of the bucket which contains the minimum timestamp;

• init size is the initial number of buckets in the queue;

• bucket width is the width of a bucket, i.e., the length of the time interval covered

by each bucket.

Since each bucket covers a fixed interval of time, at start-up the whole set of lists

covers a time interval equal to [0, bucket width · init size). In order to cover events

in [bucket width·init size,+∞), it is paired with an overflow data-structure pointed

by future and eventually by todo. For a more readable explanation, we call future

and todo the stack pointed by future or todo respectively. The overflow structure
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NBPQueue{
pointer<Stack> future;
pointer<Stack> todo;
pointer<HarrisSet> table[32];
integer current;
integer dequeue size;
integer init size;
double bucket width;

NBPQueue NBPQueue(integer
size, double width){

1: new ←NBPQueue()
2: new.todo←Stack(0)
3: new.future←Stack(size)
4: new.init size← size
5: new.dequeue size← size
6: new.bucket width← width return

new
}

Stack{
pointer<Node> top;
integer enqueue size;

Stack Stack (integer index)

1: new ←new Stack()
2: new.top ← null

3: new.enqueue size ← index return
new

}

Figure 3.2: Non-blocking priority queue object.

is a stack associated with a variable enqueue size representing the left limit of the

covered timestamps in [bucket width · init size,+∞). The array maintains, in a

variable dequeue size, the right limit of the time interval covered by all buckets.

todo is initially set to null. At start-up, we have init size = dequeue size =

enqueue size. The structure of our Pending Event Set is shown in Figure 3.2.

During the life of the queue, the following operating rules are maintained:

1. dequeues return an event with timestamp in [0, dequeue size);

2. the stack pointed by future contains events in [enqueue size,+∞);

3. enqueues can only decrease current;

4. dequeues can only increase current.

When an event e with timestamp Te is enqueued, its index is computed as

ie = b Te

bucket width
c and if ie < enqueue size the event is inserted into the corresponding

ie-th bucket, otherwise it is pushed in future. Finally if ie ≤ current, the index of

the current minimum is updated.

On the other hand, the dequeue procedure checks that the bucket at index

current is not empty. In this case the first node of the list is removed and then
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returned, otherwise current is incremented by one and the check is repeated until a

non-empty bucket is found or the value of current is equal to dequeue size. If the

last condition is true and future is empty, we can return null, because the queue

appears to be without events. Conversely, if the overflow structure has some items, it

contains the new minimum. Thus we have to move items from future into the array.

The first step consists in doubling the number of buckets in the queue. At this point

a new enqueue of an event e′, such that ie′ ≤ 2 · enqueue size, could be served by a

new allocated bucket. To allow this without blocking, we store the current future in a

temporary storage todo and we exchange the overflow structure with a new one, that

covers timestamps in [2 · bucket width · enqueue size,+∞). Clearly the new future

has an enqueue size that is the double of the previous one. Now new enqueues can

be served coherently, while dequeues have to move every event from todo into table.

When todo is empty, dequeue size is updated to its double and dequeues can restart

from current = dequeue size. At this point we have restored the initial condition

dequeue size = enqueue size.

3.1 Algorithm

The proposed algorithm is based on a set of linearizable and lock-free data-structures.

The building blocks are the Harris’ Sorted Linked List and Treiber’s Stack, to which

we have added some additional feature useful to our purpose.

Harris’ Sorted Linked List In order to support events with equal timestamps, we

have augmented the search routine of the linked list in order to retrieve a

right node such that has a key greater than or equal to the search key. This is

obtained by changing the condition on the right node of the search routine (line

S13). Anyhow we have left the capability to invoke the original search by adding a

parameter that allows us to switch between the two versions. In particular, given

a search key k, the original version can be used by invoking search(k, <) and it

return a right node with key greater than or equal to k. On the contrary, a right

node with timestamp strictly greater than k is obtained by using search(k, ≤).
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boolean Stack.tryPush(Node n){
1: tmp ← top

2: n.next← tmp return
3: ¬ISMARKED(tmp) ∧ CAS(&top, tmp, n)

boolean Stack.denyPush(){
1: repeat
2: tmp← top

3: until CAS(&top, UNMARK(tmp), MARK(tmp))

Value Stack.pop(){
1: repeat
2: tmp← top

3: tmpNoMark ← UNMARK(tmp)
4: new ← tmpNoMark.next
5: until CAS(&top, tmp, MARK(new)) return

tmp.key

}

Figure 3.3: Augmented Treiber’s Stack algorithm.

Treiber’s Stack We have added a new procedure denyPush, that denies any

enqueue to succeed. This is achieved by marking the top field as it is done

the for logical deletion in the Harris’s list. After that denyPush completes, any

push attempt fails to add an event and only pops are allowed. Consequently we

have defined a tryPush routine that tries to insert a node into the stack with a

CAS only if the top field is not marked and it returns true if and only if the swap

succeeds. This allows us to ensure that pop and tryPush cannot alternate each

other after a completed denyPush. Finally, our stack maintains the left limit of

the time interval that it covers in a variable enqueue size. A complete view of

the new implemented stack is shown in Figure 3.3.

As explained in the previous section, the number of buckets in the queue increases

over time. In order to maintain an indeces-based access, they are stored in a dynamic

array (table) that never moves already allocated blocks as in [19] and discussed in

section 1.5.3. Thus table is a two level array. The first array has a fixed size and

contains pointers to contiguous memory blocks, that contain the head node of buckets.

enqueue (Figure 3.4) works in two phases. The first phase consists in connecting

the node to the structure. The insert routine retrieves first the future stack and

checks the enqueue size in order to discover where the node has to be connected. If

it is greater than or equal to the linear index i of the event to be inserted, computed

as i = b timestamp
bucket width

c, then it attempts to connect the new item to the stack with a

tryPush and returns if it succeeds, otherwise it restarts from the beginning. The

try loop ends if either the tryPush succeeds or the condition i < enqueue size is
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NBPQueue.enqueue(event e)

1: index←
⌊

newNode.t
bucket width

⌋
2: newNode← new node(e)
3: insert(newNode, index)
4: flushCurrent(index)

NBPQueue.insert(node newNode, integer index)

1: repeat
2: tmp← future

3: tmpSize← tmp.enqueue size

4: if tmp.tryPush(newNode) then
5: return
6: endif
7: until index < tmpSize
8: bucket← table[h1(index)][h2(index)]
9: repeat
10: 〈leftNode, rightNode〉 ← bucket.search(newNode.t,≤)
11: newNode.next ← rightNode
12: until CAS(&leftNode.next, rightNode, newNode)

integer NBPQueue.h1(integer index)

1: return (ibsr(index) − ibsr(init size) + 1) & (-(index ≥ init size))

integer NBPQueue.h2(integer index)

1: returnindex & (∼ ( (index ≥ init size) << ibsr(index)))

NBPQueue.flushCurrent(integer n)

1: repeat
2: old← current

3: ind← old >> 32
4: if n > ind then return
5: end if
6: until CAS(&current, old, (n << 32) | ABAMark())

Figure 3.4: Non-blocking enqueue for pending event set.

true. In this case we compute the location of the i-th bucket and we insert the node

using the augmented search of the Harris’ Sorted Linked List. This guarantees that

events with same timestamps are inserted in a FIFO order into the list. At this point

the phase of insertion is completed and the event is connected either to future or to

table. The second phase guarantees that current points to the bucket containing

the minimum. This is done by flushCurrent procedure that tries to exchange the

current variable with a CAS until either it succeeds or i is strictly greater than the

current value of current.
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event NBPQueue.dequeue()

1: oldCur ← current

2: index← oldCur >> 32
3: min← table[h1(index)][h2(index)]
4: minNext← min.next
5: 〈 , right〉 ← search(min.t,min,<)
6: candidate← right
7: rightNext← right.next
8: index2← current >> 32
9: if candidate 6= tail then
10: if ¬ISMARKED(rightNext) ∧ index2 ≥ index ∧
11: CAS(&candidate.next, rightNext, MARK(rightNext)) then
12: return candidate.event
13: else
14: continue
15: end if
16: end if
17: index← index+ 1
18: tmpSize← dequeue size

19: if index = tmpSize then
20: tmpFut← future

21: eSize← tmpFut.enqueue size

22: if tmpSize = eSize ∧ index2 ≥ index− 1 ∧ tmpFut.next= null then
23: return null

24: endif
25: if ¬expandArray(tmpSize) then
26: continue
27: endif
28: endif
29: CAS(&current, oldCur, (index << 32) | ABAMark() )
30: goto 1

Figure 3.5: Non-blocking dequeue for pending event set.

dequeue (Figure 3.5) starts to search the minimum in the bucket corresponding

to current. The standard search offered by the Harris’ List is used by invoking

search(bucket width · current, <). This ensures that the left node is always the

head of the list, while the right node has the minimum key in the bucket. Once

the minimum is identified. dequeue restarts if the current is decreased by another

thread, otherwise it tries to logically remove the right node by marking it with a CAS.

If it succeeds, dequeue completes and returns after searching again the minimum in

the bucket in order to remove marked nodes. However, it possible that the bucket is

empty and then the right node is tail. In this case we have to update current with a

CAS, making it point to the next bucket. If the CAS fails, it means that some thread has

inserted a node in a bucket that precedes the next one, thus we start from beginning.
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Now four cases are possible:

a) current < dequeue size− 1 ;

b) current = dequeue size − 1, while future is empty and its

enqueue size = dequeue size;

c) current = dequeue size − 1, while future is non-empty and its

enqueue size = dequeue size;

d) current = dequeue size− 1, future has enqueue size 6= dequeue size.

Case a) implies that the next time interval is covered by table, thus the next

bucket is candidate to be checked for searching the minimum. This is achieved by

incrementing current with a CAS and restarting the operation.

Case b) means that we have passed all buckets in table that covers the interval

[0, dequeue size·bucket width) and no items are stored in the overflow data structure

associated with time interval [dequeue size · bucket width,+∞), thus we can safely

return null to indicate that the queue is empty.

Case c) occurs when current points to the last bucket in table and, at the same

time, the future is non-empty. It means that table can be expanded and every item in

future can be inserted into appropriate buckets. Before moving nodes, we verify that

the enqueue size associated with future is equal to the dequeue size read when the

operation is started. This avoids that two expansion can occur simultaneously. After

this check, we invoke the routine expandArray, that returns true if dequeue size

is doubled at the ending of its invocation. If it returns false then we restart from

the beginning, otherwise we are sure that the table covers the next time interval and

we can increment current with a CAS. Independently from the result of this CAS, we

restart from the beginning.

Case d) allows to detect whether an expansion is already occurring, thus

expandArray is executed in order to help any thread that is execution an expansion.

Finally dequeue completes only if it succeeds to mark a node or it meets the empty

condition (case b)).

expandArray (Figure 3.6) has two roles: extending table and moving the

elements from the overflow structure to table. The first phase occurs only if
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boolean NBPQueue.expandArray(oldSize)

1: tmpFut← future

2: if tmpFut.enqueue size = oldSize then
3: newBlock ← newarray[oldSize]
4: if ¬ CAS(&table[h1(oldSize)], null, newBlock)
5: delete newBlock
6: endif
7: tmpTodo← todo

8: if tmpTodo.enqueue size < oldSize then
9: CAS(todo, tmpTodo, tmpFut)
10: end if
11: tmpTodo.denyPush()
12: CAS(future, tmpFut, new future(2 · oldSize))
13: end if
14: while UNMARK(todo.next) 6= null do
15: node← todo.pop()
16: insert(node)
17: end while
18: CAS(&dequeue size, oldSize, 2 · oldSize)
19: return oldSize < dequeue size

Figure 3.6: expandArray routine algorithm.

enqueue size associated with the current future is equal to dequeue size of the

invoking queue. The expansion of the array is performed by allocating the new required

block and connecting it to the first level array with a single-shot CAS, because the old

value is null. Before the stack could be emptied, we have to communicate to all threads

that an expanding phase is occurring. This is obtained by making the reference todo

pointing to the current future with a single-shot CAS. The exchange is performed only

if enqueue size, stored in the stack currently pointed by todo, is strictly lower than

dequeue size seen when dequeue is invoked. This avoids that todo is reset to its

initial condition, while other threads are moving events. Now table is capable to

store items in an increased interval of time, but this information is not published yet.

Thus we exchange future with a new stack such that its enqueue size is equal to

2 · dequeue size. Since the size of the array is always increasing, it is ensured that

exactly one CAS can successfully update future, because new expansions cannot occur

until dequeue size is updated. When the new stack is installed, enqueue sees a wider

table than dequeue. After that this condition is met, the stack referred by todo can

be emptied with a sequence of consecutive pops, but we have to invoke denyPush

first. Preventing that tryPush can succeed allows to reach a stable condition in which
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the stack is empty. In fact, we have ensured that a very slow thread cannot succeed

to push an event after the stack is detected as empty. Finally, when this condition

is verified, the current dequeue size is doubled with a single-shot CAS, restoring the

condition enqueue size = dequeue size.

3.2 Guaranteed Properties

In this section we will show the guarantees that are provided by our data structure.

We start showing an event e cannot be lost. With the term lost we mean that an

enqueued event e either it is never dequeued or it requires an insertion of an event e′

such that T ′e ≤ Te, because the advancing of current has left behind e that will be

dequeued if and only if a new enqueue moves back current. Let D be the value of

current. If the timestamp Te associated to e is such that Te ≤ D · bucket width,

enqueue inserts e in table and cannot terminate until current is updated, ensuring

that the node will be dequeued. If Te > D, then it can be connected either to table

or to future. In the first case the node will be dequeued, because each bucket cannot

be skipped, since current is increased by one at a time. If an insertion in the current

bucket occurs after it is detected as empty, enqueue tries to update current even if

it is pointing to the same bucket. This ensures that either an increment of current

fails or the enqueue retries updating current. On the other hand, when a node is

connected to future, it can be lost if and only if todo is lost. In fact the augmented

stack allows a node to be enqueued until the first denyPush succeeds, thus a thread

that fails to connect for this reason, will retry to insert either in a new stack or into

table. After that it succeeds to insert the node into the overflow structure, it will be

moved into table when future will become a todo stack and it will be emptied. A

stack pointed by todo cannot be lost because it is exchanged once during an expansion

phase. This is guaranteed by:

• swapping the old todo if its enqueue size is strictly lower than the new one;

• the fact that only threads in dequeue procedure can participate to the

expansion;

• those threads cannot exit from expandArray until the current todo is empty.
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3.2.1 Linearizability

In order to show the assumptions that make our algorithm linearizable, we first give a

formal definition of the abstract PES and of our data structure (NBPQ).

Definition 3.1. A Pending Event Set is a set of events on which are defined two

procedures: Enqueue(e) (denoted as E) and Dequeue() (D). The state S(t) at time t

of a PES is the set of events in the structure at that time. Let Ot be a procedure in

{E,D} executed at time t; A : Ot, B be the semantics of an procedure execution where

A is the conditional state before Ot and B the resulting state. We have:

e 6∈ S(t−) : Et(e), S(t+) = S(t−) ∪ {e} (3.1)

e = min{S(t−)} : Dt() = e, S(t+) = S(t−) \ {e} (3.2)

S(t−) = ∅ : Dt() =⊥, S(t+) = S(t−) (3.3)

Definition 3.2. An event is said to be connected to NBPQ if and only if it is

encapsulated in an unmarked node that is stored either in one bucket or in the overflow

stack pointed by future or todo .

Definition 3.3. A state R of NBPQ is a pair 〈C,L〉 where C is the left limit of the

time interval of the bucket pointed by current and L is the set of connected events.

Lemma 1. Any state transition of NBPQ is atomic.

Proof. The operations that can change a given status R = 〈C,L〉 of a NBPQ are those

that modify either the overflow stack or a bucket or the current field. In particular

any change on current is executed by a successful CAS in a flushCurrent or in a

dequeueinvocation. This updating atomically changes the status R to R′ = 〈C ′, L〉,

where C ′ is the new value of current. The Harris’ Sorted Linked List is a linearizable

object, thus its insert and delete appears to be executed atomically in a linearization

point, that respectively adds an event e and or marks it. The new status after their

ending will be R′ = 〈C,L∪{e}〉 or R′ = 〈C,L \ {e}〉. A tryPush on the stack adds a

new event e with an atomic successful CAS. The new event cannot be lost, thus a new

NBPQ state R′ is created such that R′ = 〈C,L ∪ {e}〉. Since every new possible state

is created at an indivisible point in time, every state transition of NBPQ is atomic.
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Lemma 2. The dequeue of a node n, which has never been in an overflow stack,

appears to be executed atomically at the atomic read that individuates n.

Proof. A node n is dequeued by a dequeue d after it is marked with a CAS. Before

this operation, an atomic read r on the next field of the head node p is performed or,

equivalently, a CAS that make the head node and n adjacent succeeds. A concurrent

dequeue d′ can mark either a previous node of n and its read happens before the read

of d or a successor of n and its read happens after the read of d, since we know that

d has marked n. A concurrent enqueue i on the same bucket adds a node n′ with a

CAS. If this update happens in time before r, it follows that n = n′ since in r they was

adjacent, otherwise n′ is a successor of n. A concurrent enqueue in a bucket after the

current one is irrelevant since it is inserting an event with timestamp strictly greater

than the minimum. A concurrent enqueue j which inserts a node in a bucket k before

the current one completes only if current assumes a value lower than or equal to k.

Since d, before trying to mark n, checks that current is unchanged, j is still pending

when r occurs. Thus the dequeue d appears to be executed atomically at the read

r.

Lemma 3. The dequeue operation that returns null appears to be executed atomically

at the atomic read that has detected the last bucket as empty.

Proof. A bucket is empty when head and tail nodes are adjacent. The last bucket is

seen as empty with an atomic read from Lemma 2. After this read, a reference to

future is taken with a second atomic read. If future allows push operations, but,

it results empty and its enqueue size is equal to the dequeue size, the stack was

empty also at the first read, because events cannot be lost and after a denyPush, no

tryPush can succeeds and pop is invoked only after a successful denyPush.

It follows that the evolution of a NBPQ can be represented as a series of points on

the real-time axes.

Definition 3.4. Let P be the domain of NBPQ states, S be the domain of PES states,

R = 〈C,L〉. π : P 7→ S is a mapping function such that:

π(R) = {e ∈ L ∧ Te ≥ C} (3.4)
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Lemma 4. The state transition of a PES represented with the mapping function π

from states of a NBPQ are atomics.

Proof. Let R = 〈C,L〉 be the current state of REP and let S = π(R) be the state of

PES. We consider first the enqueue operation of an event e with timestamp Te. We

can distinguish two cases:

a) Te ≥ C: the node is connected with a CAS either to a bucket or to the top

of overflow stack, giving R → R′, where R′ = 〈C,L ∪ {e}〉. S = π(R) and

S ′ = π(R′), thus the successful CAS produces a state transition S → S ′ of PES,

that is atomic.

b) Te < C: the node is connected with a CAS giving R → R′, where the new state

R′ = 〈C,L ∪ {e}〉, but π(R) = π(R′). Then enqueue tries to update current

in order to point to the bucket Be containing the event e. Let Ce be the left limit

of the time interval associated with Be. The update of current is performed

with a CAS so atomically we have R′ → R′′ where R′′ = 〈Ce, L ∪ {e}〉. If more

than one enqueue E ′, E ′′, . . . , E(n) inserts respectively the events e′, e′′, . . . , e(n)

in the interval [0, C), they first connect their events with a CAS and then they

try to update the current with their Ce(i) . Let E(k) be the first enqueue that

successfully updates current with Ce(k) by a CAS c and d be the linearization point

of the first dequeue after this update. For any E(i), that has Ce(i) ∈ [0, Ce(k))

nothing is changed, thus they are recursively in case b). Those of the remaining,

that have connected their event after the point c, fall in case a). It means that

the considered enqueues have connected their events before point c and have

Ce(h) ∈ [Ce(k) , C). When c is performed, all E(h) are pending and the represented

PES skips atomically from the state S = L to S ′ = L ∪ {e′, e′′, . . . , e(n)} that

will be read by d. Since d occurs atomically from Lemma 2, it is always possible

to find a point p(h) between c and d for each considered enqueue E(h), such

that it appears to be executed atomically at p(h). The ordering of those point

is the same of the ordering in which the CASes, that have connected events, are

executed. This creates an order that is compatible with FIFO during dequeue

operations of events with identical timestamps.
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Finally, dequeue removes nodes only from the bucket pointed by C and, since every

dequeue is atomic from Lemma 2, the state transition is atomic.

Lemma 5. dequeue from a PES represented with the mapping function π on a NBPQ

returns always the minimum, until no expansions occur.
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Proof. Let R = 〈C,L〉 be the state of NBPQ. Every dequeue from a NBPQ returns an

event e with timestamp Te that is the minimum in the bucket associated to C. From

the definition of π, Te ≤ Tei , where Tei is the minimum timestamp of any ei ∈ π(R).

Theorem 1. Our representation is linearizable until no expansions occur.

Proof. Any operation appears to take effect at one point. Thus the realtime order

is preserved because: those points are between the invocation and the ending of any

routine; they take place in an atomic instruction that defines a realtime order on

concurrent procedures. Since every dequeue returns the minimum from Lemma 5,

every history is valid.

In order to be linearizable, we have to guarantee that any dequeue, which requires

an array expansion, returns events maintaining the realtime order. The proposed

algorithm considers the expansion as terminated when the overflow stack pointed by

todo is read as empty, i.e., the top variable is pointing to null. When this condition

is met, the dequeue size is updated and dequeue can continue and analyze the next

bucket. It means that, if a very slow thread A takes the last element from the stack,

making it empty, a very fast thread B can enqueue and dequeue an event before A has

inserted its event into table, violating real-time ordering. Moreover, if A is moving

a node inserted previously by B, sequential consistency is violated too, because B can

dequeue events with an order that is not compatible with its own history. The problem

arises, because “the overflow stack is empty” and “all events are into table” are two

separate conditions that happen at two distinct points in time, leading to a time window

of vulnerability. If we can guarantee that no expandArray can complete until every

element in the stack is inserted in table, we obtain a linearizable algorithm. This is

achievable by removing an event from the stack if and only if a copy is inserted in table.

Since inserting events in table requires a scan of all events with same timestamp into

the bucket, we can check if a copy is already inserted. The same test cannot be done

when moving objects from todo to future, leading to a waste of memory when an event

is copied multiple times on several futures. Moreover we can avoid this behavior by

setting a flag to useless replicas already inserted in future. In fact, when a thread

A successfully inserts a replica, then it executes a CAS on the top. If the exchange
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fails, it means that some other thread B has performed a successful CAS with a pop

(no push can succeed after denyPush) and thus it has successfully inserted a replica.

It means that the replica created by A is useless and its flag can be set safely. This

approach ensures that any dequeue cannot scan the first bucket of the new block until

all elements in todo are inserted into a new future or table.

3.2.2 Lock-Freedom

In order to show that our algorithm guarantees lock-freedom, we consider only

retry-loop sections. An enqueue consists in insert an event either in a bucket or in

a stack and then trying to update current. Inserting in a bucket is lock-free because

it is guaranteed by the Harris’ Sorted Linked List. Inserting in the stack is a lock-free

operation, because if it fails it means that someone have inserted an event and thus

makes progress, or it has performed a denyPush. If denyPush fails, it means that

some thread has inserted a node or has marked the top field. Finally, if it fails to insert

in the overflow stack, it succeeds to insert in the table eventually, since it covers an

ever increasing time.

The retry-loop in expandArray invoked by a dequeue, is lock-free because it

retries until the stack is empty, but after the first successful denyPush, no event can

be inserted, thus the number of events in the stack is bounded. When a dequeue

fails to mark a node, it means that someone makes progress by inserting a new event

or marking the node and thus completing a dequeue. The update on current is

performed by both enqueue and dequeue. If an update fails because of a successful

enqueue, this last one completes. Otherwise only dequeues make progress and thus

they eventually will meet the empty queue condition.

3.2.3 Asymptotic Cost

The enqueue operation consists of computing an index, inserting either in one bucket

of the array or in the overflow structure and updating a value. The overflow structure

is a stack with some augmented facility, but it guarantees O(1) cost per operation.

Inserting in a ordered list means that we have to scan the elements contained in it. Thus
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the worst case is O(n), but with a good choice of the bucket width, we aspect O(k) on

average where k is the average number of events in a bucket. The dequeue operation

costs O(1) when the bucket containing the last minimum is non-empty. Otherwise a

scan for the next non-empty bucket is performed, but the number of checks is unrelated

to the number of events in the queue. Finally, moving elements from the overflow data

structure to the array is performed in O(c · k) steps where c is the number of elements

to be moved. Each of the c elements was added paying a constant cost (insert in a

stack), that leads to an amortized constant cost for the whole operation.

3.2.4 Stability

Our implementation does not guarantee that events with the same timestamp are

dequeued with the same order in which they were enqueued. When an event e is

inserted in a bucket, the augmented search ensures that the right node is strictly

greater than the timestamp of e, while the left node can be equal. In this case the

events are inserted in same order in which the successful CASes appear in time. Since

dequeue returns the first event in a bucket a FIFO order is ensured, until no events

are connected to the overflow stack. In fact, when they are moved from the stack to a

bucket, ordering information is lost. A simple strategy to avoid this could be inserting a

counter into each node. When an event e is inserted in the overflow stack, the counter of

e is updated to the counter of current top plus one. Since a node is connected only if the

CAS is successful, it is ensured that counters increase monotonically over nodes. At this

point insertion order can be conserved among events contained in the overflow stack.

When events are moved from the stack to a bucket, those with identical timestamp are

inserted according to their counter, where an uninitialized counter equals to infinity.

3.3 Dealing With ABA Problem

As shown in section 1.2.1, CAS is not able to distinguish if a memory location is updated

with some previous value or it is unchanged and this can lead to an undefined behavior.

The augmented stack (Figure 3.3) is ABA safe because it is not possible to reinsert

a popped node, given that every tryPush fails after the first completed denyPush.
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However nodes in table and in a stack must be protected with some form of garbage

collection system in order to prevent a premature releasing. As shown in Section 1.6,

a garbage collector can protect algorithms from ABA problem resulting from memory

reusage. In Section 3.4 we present our memory reclamation system.

On the contrary, the current field must be protected with an appropriate

mechanism, because it is an index that could assume old values at any time. For

this reason, we rely on a 64 bit CAS, which is available on almost any machine, and we

use 32 bits for storing the index and the others 32 bits as a signature of the update.

The signature is generated using the bijective Cantor pairing function:

Cantor : N× N→ N

Cantor(a, b) =
(a+ b)(a+ b+ 1)

2
+ b

that maps two integers on a unique natural number. The parameters used are the

thread id tid and a private counter ctr that is incremented upon each successful update

of current. Clearly the counter and the result can overflow leading to a possible

collision, but their period should be long enough (about 232 iterations for the result

and 264 for the counter) to guarantee that also a very slow process has a more recent

version of the current.

3.4 Garbage Collection

As explained in Section 1.6, a non-blocking dynamic memory object requires a careful

strategy to safely reclaim the memory. Moreover, adopting a garbage collection

mechanism makes non-blocking objects ABA safe for free when reusing memory. Since a

Pending Event Set is a data-structure that handles a particular kind of objects, we have

implemented a simple garbage collector, which takes advantage from the association

between events and logical time. In fact, assuming that events are generated by a

stable system, values of timestamps should increase globally. This guarantees that

after a certain amount of wall-clock time, events before a given time instant T are

never enqueued. If it is true that no events with timestamp Te < T are inserted
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anymore, we can assume that all buckets i such that i · bucket width < T are no

longer accessed and thus no thread hold a reference to any event that was stored in

those buckets. When nodes are disconnected from our queue, they are inserted in a

thread private list, that is scanned by a procedure prune that reclaims every event

associated with a timestamp strictly lower than the threshold parameter T .
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Chapter 4

Experimental Evaluation

The objective of following discussion is to show the results of our work and to point

out its strengths and limitations in order to understand what should be the guidelines

to implement a non-blocking pending event set with constant time access, that does

not require an a priori knowledge of priority increment distributions.

Evaluation Program. The test program is a parallel one, in which each thread

repeatedly enqueues or dequeues an event with a given probability PE and PD

respectively, such that PE+PD = 1. Each thread maintains a local variable local time

representing the timestamp of the last dequeued event. A new event is associated with

a timestamp obtained by adding a value jump to local time. The jump represents

the priority increment and it is obtained according to three different probability

distributions with mean inter-arrival time E[T ] ∈ {1, 10, 50}. Increasing the mean

value allows us to understand the behavior of our solution for several choices of bucket

width.

The program ends when the total number of operations performed (which is

independent of the actual number of parallel threads) reaches a given threshold

#OPS = 1280000. This guarantees that every thread works for the whole experiment

with the highest concurrency. All tests are performed with a number of threads varying

from 1 to 32.

The used distribution are uniform, triangular and exponential ones, computed as

in Figure 4.1. The algorithm of our experiments is shown in Figure 4.2.
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Probability Distribution Formula

Uniform 2E[T ]·rand

Triangular 3E[T ]
2
·
√
rand

Exponential −E[T ] · ln(rand)

Figure 4.1: Probability Distributions used in evaluation tests and their formula given the
mean value E[T ].

experiment(Value v){
1: counters[i]← 0
2: for parallel i← 0 to N do
3: repeat
4: if rand(Uniform) ≤ pD then
5: local time ← dequeue()
6: else
7: enqueue(local time + rand(distribution))
8: end if
9: counters[i] + +
10: sum← 0
11: for j ← 0 to N do
12: sum← sum+ counters[j]
13: end for
14: until sum < #OPS
15: end for

}

Figure 4.2: Experiment algorithm.

The proposed non-blocking priority queue (NBPQueue) is initialized with a

bucket width equal to 1 and the init size equals to 32768. The prune routine

is invoked periodically by a thread every 5000 operations completed by itself. The

threshold used is the minimum of a shared array that contains the last dequeued

timestamp of each thread.

In addition to our priority queue, we have performed the same experiments on a

single ordered linked-list (LList) and on a calendar queue (CQueue), both protected

with a single spin-lock. Moreover, we have moved each invocation to the memory

allocator outside the critical section imposed by locks. The calendar queue has a

maximum number of buckets equal to 32768.
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Evaluation Platform The testing platform is a HP ProLiant server equipped with

four 2GHz AMD Opteron 6128 processors working at 64 bits. Each processor is an

octa-core, giving a total amount of 32 cores. Each core has a private 128 KB L1 cache

(64 KB data-cache and 64 KB instruction-cache) and a private 512KB L2 cache. The

last level of cache, having 5118 KB capability, is shared among four cores within a

single processor, for a total of 10236 KB within the same processor. The machine is

equipped with 64 GB of RAM arranged in 8 NUMA nodes of 8 GB. Each NUMA node

is close to one group of cores that share the last level of cache and far to the others.

The operating system is 64-bit Debian 8, with Linux Kernel version 2.6.32-5-amd64.

The code is written in C and the compiler is gcc 4.9.2 used with no optimization in order

to avoid the reordering of memory accesses. The memory allocator used is the standard

GNU malloc, ensuring that our results do not benefit from a non-blocking allocator.

The random generator used is the GNU drand48 r that guarantees thread-safety and

a period 248 long.

Metrics The measured metric are the user time, system time and real time obtained

from the Linux command time. The granularity of the command is 10ms leading

to 0.05% of error on the shortest execution. As derived metric we compute the

CPUtime =user time, that is the sum of time that each thread is scheduled in user.

Since our hardware was executing only the evaluation program and the operating

system, the CPU time captures the fact that in a blocking algorithm, a thread actively

waits in order to acquire a resource protected by a spinlock. Finally we compute the

average thread throughput as #OPS
CPUtime

.

Testing the correctness. In order to verify that our algorithm is correct, we have

implemented and tested several sanity checks. In particular we have developed an

alternative experiment algorithm, in which instead of stopping the execution when the

total amount of operations is completed, we continue to dequeue events until the queue

is empty. Then we verify that the number of enqueued items is equal to the dequeued

ones.

The second test is the emulation of a parallel event dispatcher in which the thread

holding the minimum timestamp is the one allowed to continue the execution. This
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Figure 4.3: CPU times for the experiment 1.

ensures that each thread takes from the queue events with timestamps monotonically

increasing and always greater than a global minimum.

Moreover during every run, prune verifies that there are no events with timestamp

lower than the threshold. These checks that every event it is not lost.

Test 1. In this first set of experiments, we have configured an equal probability

distribution for enqueue and dequeue routines PD = PE = 0.5. Although the mean

size of the queue should be zero, it is not empty all the time, allowing us to capture

the base cost of our algorithm and the effect of an inadequate bucket width.

In Figure 4.3 are shown the CPUtimes for all configurations of priority increment

distributions and mean values. The linked list and the calendar queue are indifferent

to these changes because the queue contains few elements. Thus, the steps performed

in the linked list are few, while the calendar queue is more efficient due to its indexed
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access that spread events in at least two buckets, reducing the number of items to

be traversed per insertion. Our algorithm performs better than alternatives, because

enqueues are fast and non-blocking, while the number of empty bucket is not critical

for dequeues, that are degenerated in incrementing a counter with a CAS. In fact,

detecting the empty condition is an expensive operation in our solution, because it

requires a scan of the whole table. This explains why our algorithm have same

performances in all the configurations. In order to verify this hypothesis, we have

repeated the test with 32 threads and init size equal to 2. This ensures that the

current index is near to table size for most of the time and thus detecting the queue

as empty requires fewer buckets to be traversed, obtaining a speed-up from 1.3x to

1.6x. The improvement is limited because we moved the contention from current

to the Treiber’s Stack pointed by future or todo, which has a similar behavior. A

possible solution to detect the queue as empty more efficiently could be the usage of

a counter updated with a fetch&add instruction, but we have not found a strategy to

embed this counter without losing linearizability.

Test 2. The idea is to pre-populate the queue and compare the steady state behavior

of the calendar queue against our solution. In [35], Rönngren explains that, for

considered distributions, the steady state access time is reached after a number of

operations that is five time the queue size. Thus we have imposed PD = 0.3 and

PE = 0.7 for the first 30% of the execution, giving an expected queue size about 153600,

and PD = PE = 0.5 for the remaining 760000 operations. In Figure 4.4 it is shown how

CQueue performance is indifferent to the used distributions (images from left to right)

and their respective mean values (from top to bottom), due to its capability to resize

the array and the bucket width. In fact this leads to an access time that is constant

with respect to the queue size. On the contrary the linked list has an increasing number

of items in a fixed interval, thus its execution time degenerates significantly also in the

sequential run and it becomes unreasonable in concurrent execution. Our algorithm

degenerates when executed with E[T ] = 1 (Figure 4.4(a), 4.4(d) and 4.4(g)), because

a single bucket contains half of pending events, making enqueue spend 99.9% of

execution time. This result confirms that the capability to variate the bucket width is
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Figure 4.4: CPU times for the experiment 2.

crucial when a very huge amount of consecutive insertions occurs in the same bucket.

Anyhow a ten times smaller bucket width (Figure 4.4(b), 4.4(e) and 4.4(h)) leads to

an execution time that is comparable with the calendar queue, while a fifty times finer

grid makes the non-blocking algorithm outperform the rival in all cases (Figure 4.4(c),

4.4(f) and 4.4(i)). It means that increasing the number of buckets is a proper way to

exploit the multitude of available core.

In Figure 4.5 it is shown the average ratio between the bucket width of our

solution (BucketWidthNBPQ) and the bucket width of the calendar queue at steady

state (BucketWidthCQ). When this ratio is near to 1, we have chosen a good

value for bucket width, since each bucket contains the same amount of events in

a bucket of the calendar queue (at least for uniform and triangular distributions).
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E[T ]
BucketWidthNBPQ

BucketWidthCQ

1 ≈ 15000

10 ≈ 1200

50 ≈ 200

Figure 4.5: Relative bucket
size of calendar queue.

The difference is that we allocate buckets linearly, while

calendar queue uses a circular array. However, when

the ratio is about 1:1000, the performance under high

contention is comparable. This is an interesting result,

because it shows that, in order to have a scalable queue

based on calendars and to perform as the blocking

algorithm, it is not required to guess an optimal width

of the bucket. In fact, we still need that buckets are short

enough to guarantee fast enqueues, but, since we are using non-blocking lists, their

length can be about 1000 times longer than blocking alternatives. To confirm that

we are handling more events per bucket than the calendar queue, consider the case

of uniform distribution with E[T ] = 10. We have BucketWidthCQ ≈ 1
1200

and the

calendar queue covers an interval of time of size Y ≈ 32768
1200

≈ 27. The maximum

distance in time between the current minimum and the event with maximum

timestamp is 20. It means that all events are contained in 20
27
≈ 75% of

buckets and the average number of items per bucket is NCQ ≈ 153600
32768·0.75 ≈ 6.

Conversely our solution has a bucket width fixed to 1, thus all events are contained in

20 buckets, each one containing NNBPQ ≈ 153600
20
≈ 7680 ≈ NCQ ·1200 events in average.

Similar considerations can be done for triangular and exponential distributions.

Assuming that we have p threads in the system, it should be clear why we can

handle a bucket p times longer. In fact when one thread is accessing the calendar

queue for a time k, others p−1 threads are waiting the same time k. Thus the average

access time of each thread is O(p · k). If we want a non-blocking priority queue fast as

the blocking calendar queue, we have to spend O(p · k) time per operation, choosing

a bucket p times wider than the optimal size. Since we are using p = 32 threads, this

explain a ratio significantly lower than the measured one. The reason is behind the

usage of spin-locks that makes threads in critical section run slower by a factor that is

dependent from the contention [36]. Since we have p− 1 threads that are spinning, the

thread holding the lock runs O(p) times slower. It means that a thread completes an

operation after O(p2k) time. Thus in order to have a comparable execution times with

p threads, our algorithm have to run O(p2) times slower by processing more elements in
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Figure 4.6: Thread throughputs for the experiment 2.

the enqueue operation. In other words increasing the sequential work for enqueue

is not a dramatical choice provided that we can handle more enqueues at a time and

these are in buckets that do not contain the minimum. dequeues are indifferent to the

bucket width until it is not required a scan to find the next non-empty bucket. In fact a

dequeue from a non-empty bucket consists in trying a CAS on the first unmarked node,

but, in case of unsuccessful exchange, we can restart from the beginning of the bucket.

On the contrary the search for a non-empty bucket takes advantage from an increased

width, because it allows dequeues to scan a lower number of buckets. Moreover, even

if we are executing fast as the calendar queue, we are in a preferable situation since

the throughput of each thread is increasing (Figure 4.6(a), 4.6(b), 4.6(c)), suggesting

that we can exploit more processors if available. On the contrary a bucket 200 times

larger than the optimum makes the throughput of each thread stable, showing that

our algorithm is working to its maximum capability.

Finally, having an increasing number of processors allows us to choose a bucket width

distant from the optimum. This simplifies the design of a non-blocking and linearizable

algorithm for bucket resize, since it should focused on reducing the number of items

per bucket rather than guessing the time distance between two consecutive events.
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Chapter 5

Conclusions

In this work we have proposed a non-blocking implementation of a priority queue for

Pending Event Set management. Starting from the study of lock-free data structures

and of the current state of the art in Pending Event Set problem, we have designed

and implemented a priority queue that provides lock-free and constant time accesses

for both enqueue and dequeue operations. Our data structure arranges events in a

multi-list structure by using lock-free objects, that are well established in the literature.

This allowed us to take advantage from their correctness and inherently scalability.

At the best of our knowledge, the proposed solution is the first result that is able to

break down the O(log n) barrier for lock-free priority queues and, at the same time, to

ensure linearizability and stability, fundamental proprieties in concurrent environments.

We have also proved the scalability of our approach by implementing the proposed

algorithm and testing it with an experimental evaluation on highly parallel hardware.

Results have shown that our solution scales well with respect to the number of available

cores and can run 5 times faster than a blocking calendar queue under high contention.

We believe that our implementation will be a reference for future works on priority

queues, since we have found out lock-free and linearizable solutions to common issues

of multi-list approach, that is the basis for each one of the already known priority

queues that guarantee constant time accesses.
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