
Graph and Flow-based Distributed Detection and
Mitigation of Botnet Attacks

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica

Corso di Laurea Magistrale in Engineering in Computer Science

Candidate

Alessio Izzillo
ID number 1710580

Thesis Advisor

Prof. Alessandro Pellegrini

Academic Year 2019/2020

Thesis defended on 21 January 2021
in front of a Board of Examiners composed by:

Prof. Daniele Nardi (chairman)
Prof. Roberto Capobianco
Prof. Francesca Cuomo
Prof. Alessandro De Luca
Prof. Daniele Cono D’Elia
Prof. Riccardo Lazzeretti
Prof. Domenico Lembo
Prof. Alessandro Pellegrini
Prof. Leonardo Querzoni
Prof. Giuseppe Santucci

Graph and Flow-based Distributed Detection and Mitigation of Botnet Attacks
Master’s thesis. Sapienza – University of Rome

© 2021 Alessio Izzillo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: izzillo.1710580@studenti.uniroma1.it

mailto:izzillo.1710580@studenti.uniroma1.it

ii

Contents

1 Introduction 1

2 Botnet Detection Techniques 3

2.1 What is a Botnet? . 3

2.2 Overview of botnet detection techniques 4

2.2.1 Signature-based Detection . 4

2.2.2 Anomaly-based Detection . 5

2.2.3 DNS-based Detection . 7

2.2.4 Mining-based Detection . 8

2.3 The Proposed Botnet Detection Approach 11

3 Real-Time Packet Inspection 13

3.1 eBPF . 14

3.1.1 eBPF Internals . 15

3.1.2 eBPF Registers . 17

3.1.3 eBPF Instruction set . 19

3.2 Maps . 23

3.3 Network traffic capture . 23

3.3.1 The eBPF Program . 24

3.3.2 Loading the eBPF Program 28

3.3.3 Header packet information fetching 29

4 The Detection and Mitigation Architecture 32

4.1 P2P Network . 33

Contents iii

4.2 Botnet Detection . 35

4.2.1 Flow-Based analysis . 36

4.3 Incremental Learning . 39

4.3.1 Graph-Based analysis . 40

4.4 Random Forest Classifier . 44

4.4.1 Random Forest algorithm . 44

4.5 Mitigation . 46

5 Experimental Assessment 49

5.1 Tested Botnets . 49

5.2 Tests description . 53

5.3 Experiment . 53

5.3.1 Tool usage details . 54

5.3.2 Results on known botnets . 55

5.3.3 Results on unknown botnets 66

6 Conclusions 73

Bibliography 74

1

Chapter 1

Introduction

N owadays, many organizations are constantly victims of several security threats

which may cause economic and reputation damages. Among the large variety

of malware which affects several systems and online services, we can found software

such as worms, viruses, spyware, trojans, key-loggers and botnets. Botnets are

one of the most dangerous type of cyber-attacks, which are used in a variety of

malicious campaigns such as email spam, financial theft, click fraud, distributed

denial-of-service (DDoS) attacks for taking online services offline, and for committing

cryptocurrency scams (using users’ processing power to mine cryptocurrency) [36].

According to the Federal Bureau of Investigation, "Botnets have caused over $9 billion

in losses to U.S. victims and over $110 billion in losses globally. Approximately

500 million computers are infected globally each year, translating into 18 victims

per second" [16]. The first official recognized Botnet named "EarthLink Spammer"

appeared in 2000: it was created to send phishing emails in large numbers, masked

as communications from legitimate websites. Over 1.25 million malicious emails

were sent to collect sensitive information. The botnet had downloaded viruses on

victims’ computers when they clicked on the links in the emails, and these viruses

remotely fed the information to the sender. In 2016, there was one of the largest

and most lucrative digital ad malware ever devised: Methbot. It acquired thousands

of IP addresses with US-based ISPs. The operators first created more than 6000

domains and 250267 distinct URLs that appeared to be from premium publishers

(such as ESPN and Vogue), and then, video ads from malicious advertisers were

2

posted on these websites which sent their bots “watch” around 30 million ads daily

[46].

Over the years, the Botnet technology has evolved making the detection and

mitigation of botnet attacks a very challenging problem. Many approaches have

been proposed (see chapter 2): signature-based, anomaly-based, DNS-based and

mining-based. As it will be discussed, each approach presents advantages and

disadvantages. The goal of this thesis is to use a hybrid analysis that relies on data

mining flow and graph based patterns which can identify malicious external hosts

which communicate with our hosts on which a distributed application of an online

service is deployed. The hybrid analysis of this approach is performed online in

order to mitigate the attacks. The process starts by capturing, in kernel space, some

fields of the packets by means of an eBPF filter and passing them to userspace for

grouping them in "batches" of a certain size, on which the hybrid analysis is carried

out (see chapter 4).

The eBPF filter in kernel space allows to inspect in real-time the packets in an

unobtrusive and effective way. In fact, in addition to collecting packets characteristics,

it is able to reject the packets coming from external hosts having IPs labeled as

malicious by the userspace analysis (see chapter 3).

3

Chapter 2

Botnet Detection Techniques

2.1 What is a Botnet?

As the word suggests, "botnet" is the union of "bot" which indicates an au-

tonomous program, and the word "net" (that is the diminutive of "network", repre-

senting an interconnection among devices called "hosts").

Nowadays, botnets are regarded as networks of malicious or compromised hosts

used mainly to perform several types of attacks with the aim of stealing data, sending

spam, denying services, or allowing the attacker to compromise additional devices

and their connection to expand the botnet itself.

The network of a botnet is composed of infected hosts (Bots) which are running

autonomous software controlled by a human (bot herder), via one or more controllers

(bot masters). The type of communication used by the bot master for communicating

with its bots is called "Command and Control" (C&C) that allows to send commands

and to receive responses by the infected hosts [33].

Botnets use two main types of architectures:

1. The "Centralized Architecture" is structured so that the Botmaster commu-

nicates, through one or more C&C servers, directly with all the bots to give

commands and receive responses. Generally, the servers use IRC, HTTP or

POP3 protocols to communicate with the bots and to send them the command

to perform a specific type of attack like DDoS attacks, spamming, spying, etc.

The centrality of this type of botnet causes a weakness because if the C&C

2.2 Overview of botnet detection techniques 4

Servers are disabled in some way or go down, then the botnet will cease to

exist [33].

2. The "P2P Architecture", in contrast to the previous type of botnets, does

not have a communication (within the botnet) fully dependent on the central

C&C Servers. In this case, P2P botnets use publish/subscribe systems to

communicate: a set of commands is defined in the P2P system, and all bots

subscribe to this set. Each bot of the network is able to launch an attack by

publishing a command on the P2P system and all the bots subscribed to that

command will be able to see it [33].

In addition to the previous main types of architectures, it can be added a third

hybrid type of architecture: it is composed by "servant bots" and "soldier bots".

The first ones communicate among them through a P2P protocol and behave like

a "Server community" which are responsible for controlling the "soldier bots" by

sending commands and receiving responses from them [54].

2.2 Overview of botnet detection techniques

Over the years, Botnets have become a significant cyber threat, and several

botnet detection techniques have emerged to overcome their spreading and mitigating

the damages. Each of these techniques are able to recognize a suspicious pattern in

the traffic of a host or performing an analysis of the packets content that, in the

newer botnets, is very often encrypted.

2.2.1 Signature-based Detection

Signature-based detection relies on signatures of the Botnets. For example, Snort

[48] is an open source intrusion detection system (IDS) that finds intrusions by

monitoring network traffic and looking for signs which identify a specific part of

the traffic as suspicious. As every IDS, Snort is set with some rules (obtained by

transforming the payload information of network traffic) which allow an immediate

detection and impossibility of false positives. The main drawback is that this

2.2 Overview of botnet detection techniques 5

approach can be only used for the detection of well-known Botnets, making this

technique mostly ineffective for unknown Botnets.

One of the most known signature-based and mining-based techniques is Rishi

[23] that is based primarily on finding suspicious IRC nicknames, IRC servers or

uncommon IRC server ports by analyzing IRC-based botnets traffic. The advantage

of Rishi is that it allows to detect bots which use uncommon communication channels

by performing an n-gram analysis and a scoring system. This feature makes it able to

detect bots which are not detectable by other classical Intrusion Detection Systems.

The disadvantage is that it cannot detect encrypted communications as non-IRC

Botnets and, as said before, it needs known nickname patterns to work [18, 58, 55].

2.2.2 Anomaly-based Detection

The Anomaly-based botnet detection approach, in contrast to the previous type

of approach, requires no apriori knowledge of bot signatures, botnet C&C protocols,

and C&C server addresses. It relies on network traffic anomalies such as high network

latency, high volumes of traffic, traffic on unusual ports, and unusual system behavior

that could mean that some malicious bots are present in the network.

The Anomaly-based detection systems can be divided in: Network-based and

Host-based [18, 3].

Network-based detection

This type of approach relies on monitoring network traffic to find Botnets. The

monitoring performed on the traffic by this approach can recognize it as malicious by

observing its behavior, patterns, response time, network load, and link characteristics.

Besides, the Network-based detection systems can perform an active monitoring

or a passive monitoring.

In active monitoring, test packets are injected into network, servers or applications

for measuring the reactions of network and detect malicious activities. Among all

works which have used this kind of approach, an interesting one is Botprobe [26]: it

injects well-crafted packets into the payload of network traffic with a client (that is

under monitoring) for finding suspicious patterns in the network activity caused by

2.2 Overview of botnet detection techniques 6

humans or bots. For example, it can participate to an IRC chatting session and can,

at a certain time, recognize a suspicious predetermined pattern that usually is used

to transmit command to non-humans bots by C&C Servers. The main advantage

of active monitoring is the response time, because it needs inspecting at most one

round of C&C interaction. The disadvantage of this technique is that it produces

extra traffic (for the injection of additional packets) causing an overhead in the

usual network traffic. Moreover, it is not easy to divide legitimate traffic from the

artificially injected traffic for anomaly detection, and this might raise privacy issues

and the disruption of the legitimate traffic.

In passive monitoring, specialized devices are used to analyze network traffic.

In contrast to active monitoring, in this case we have no increase of the traffic on

the network for inspection (because there is no injection of additional test packets).

One research that uses this approach is BotSniffer [28]: it is able to detect some

response similarities of bots belonging to the same Botnet by performing an analysis

allowing to detect spatial-temporal correlation in network traffic with a very low

false positive rate. Instead, the research work of Binkley and Singh [6] uses the

passive monitoring approach by combining TCP-based anomaly detection with IRC

tokenization and IRC message statistics for detecting client Botnets and even for

revealing bot servers. The drawback is that it requires long time to detect Botnets

because it needs multiple rounds of Botnet communications and activities to inspect.

Another drawback is that passive monitoring requires polling to collect data causing

an increase of the network payload. This increase will be enormous if the device

captures each packet for flow analysis; thus, it also causes security and privacy issues

[22, 35, 58].

Host-based detection

Host-based detection systems perform the monitoring and the analysis of the

internals of the computer system instead of network traffic (as it was the case

in Network-based detection systems). This method aims to check whether the

individual machine is infected by the bot or not by analyzing if bots have changed

registry structure, system calls, and system files of the infected machine. Among

2.2 Overview of botnet detection techniques 7

host-based tracking systems, we can find BotSwat [53]: it is a tool for monitoring

home operating systems (such as Windows XP, Windows 2000, and Windows 7).

Initially, it acts as a scanner which monitors the execution status of the Win32

library and observes run-time system calls created by the processor. Furthermore,

it analyzes the received network data from unreliable external sources and tries

to identify the remote behaviour of bots despite the particular C&C architecture,

communication protocols, or botnet structure. A drawback of this approach is the

lack of security for system calls. In addition, Botswat may cause non-negligible false-

positives and performance penalty [58, 35]. Liu et al. (2008) proposed BotTracer

[39]: this approach is able to detect the three life cycle phases of a botnet (startup,

preparation, attack). It attempts to discover the channels used by the bots to connect

with tge C&C network and after capturing them, it compares those channels with

the known properties of the C&C channels on which the botnet traffic is moving.

The disadvantage of BotTracer is the inability to detect the existence of virtual

machines; however, it is able to monitor vulnerabilities in the system calls for any

potential botnet activity. One advantage of using a host-based technique is that it

can easily prevent "download attacks" and attacks attempting at start-up. A host-

based approach characterized by this advantage, providing a real-time protection

of the system, is that proposed by Xu et al., in 2011, with DeWare [57]: a security

tool that enforces the dependencies between user actions and system events, such as

file-system access and process execution. This method, however, presents a security

concerns caused because user-level OS routines may be intercepted with kernel-level

routines, which may cause the OS to malfunction [35].

2.2.3 DNS-based Detection

DNS-based detection systems rely on the analysis of DNS information, originated

by the botnet: the bots usually start a connection with a C&C Server to get

commands. In order to establish a connection with the C&C Server, the bots

perform DNS queries to get the location of the Server that typically hosted by a

DDNS provider. In this phase, a DNS-based detection system analyzes DNS traffic

and tries to detect possible communication anomalies. There are some studies which

2.2 Overview of botnet detection techniques 8

use this approach to perform botnet detection relying on the "group activity" property

of botnet DNS traffic and using DNS redirection to monitor botnets. However, they

are easily evaded when a botmaster knows them that can disrupt this scheme by

applying massive fake DNS queries which leads to the creation of a number of false

alarms[18, 35].

An interesting study proposed by Choi et al. [11], in 2007, shows a particular

DNS-based technique that works regardless of the type of bot and botnet by using an

anomaly-based detection mechanism. This technique uses information of IP headers

and allows to detect botnets even though they uses channel encryption methods

(like SSH). In addition, it is able to detect also C&C Server migration because often

botnets change its C&C Server.

A research of Cranor et al. (2001) [13] have proposed a method that uses a

directed graph to trace DNS flows for identifying agents including clients, DNS

servers, and authoritative roots involved in DNS service provisioning. In this graph

the nodes represent the IP addresses of the DNS server machines and the edges

represent queries generally originated by clients. This technique is based on large-

scale trace analysis, and it is able to identify correctly those hosts involved in the

DNS based botnet communication [35].

Another study of Dagon (2005) [15] shows a method to identify botnet C&C

servers by detecting domain names with abnormally high or temporally concentrated

DDNS query rates. This method is not very strong because it could easily be evaded

by using faked DNS queries and, moreover, it produces many false positives caused

by the misclassification of legitimate domains that use DNS with short TTL [18].

One of the most common disadvantages of the techniques which use the DNS-

based approach is that it is possible to incur a large processing time in monitoring

the vast network traffic [18].

2.2.4 Mining-based Detection

Mining-based detection approaches include several techniques which identify

botnet C&C traffic by means of several data mining techniques like regression,

classification, and clustering. The mining techniques can be applied to features

2.2 Overview of botnet detection techniques 9

extracted from the received traffic. The main two groups of feature extraction

approaches used in the literature are: Flow-based and Graph-based.

Flow-based detection systems rely on the concept of "flow" that can be defined

in the following way: "if two different packets have the same source/destination

host/port and the same protocol, they belong to the same flow" [10]. So, the first

stage in this type of systems is to assign each received packet to a specific flow

identified with a "flow ID" and then to extract some features from packets belonging

to the same flow. These features are based on information present in the header of

the packets like timestamp, size, protocol. The header information of these packets

belonging to a certain captured flow are then aggregated to form the "flow features"

like Average Inter-Arrival-Time of the flow, Average size packet in the flow and so on.

Masud et al. (2008) [40] proposed an effective host-based botnet detection technique

that consists in mining the traffic flows obtained from multiple log files installed on

the host machines. This technique takes advantage of the fact that the the bots,

typically, respond more quickly than humans. It can be efficiently performed for

both IRC and non-IRC bots, because it does not impose any restriction on the

botnet communication protocol; moreover, it is payload-agnostic, therefore, it is

effective even if the C&C payload is encrypted or is not available [35, 18].

Instead, graph-based detection systems rely on "graph-based features", derived

from flow-level information, which reflect the true structure of communications

of hosts. This type of approach attempts to create a graph from the captured

traffic where the IP addresses are the nodes and individual packets are directed

edges [51]. For each node we can extract several features like: out-degree, in-

degree, out-neighbors, in-neighbors, PageRank centrality, betweeness centrality,

eigenvector centrality, authority and hub centralities, and local clustering coefficient.

The drawback of graph-based detection systems (compared to flow-based detection

systems) is the sheer amount of time it takes to extract features that it can be

very long sometimes, but "the most of the graph-based feature algorithms are easily

parallelizable, so making use of more cores would result in speed improvements"

[51]. Instead, the disadvantage of using the Flows features is that they are often

characteristic of specific protocol-based botnets, and are not generalizable to newer

2.2 Overview of botnet detection techniques 10

botnet varieties [51]. On the contrary, graph features ignore information data from

the packets, and focus on the topological structure of the communication among

hosts using centrality-based graph measures. A recent work of Daya et al. (2020)

[1] have propose a robust method named ’BotChase’: composed by a two-phased

graph-based bot detection system that leverages both unsupervised and supervised

machine learning. The first phase is intended to prune presumable benign hosts,

while the second phase performs an analysis to find with high precision bot hosts

among the remaining pruned host.

Another type of classification within mining-based detection systems is based on

the machine learning method used on the extracted features. The two main methods

are: supervised learning or unsupervised learning.

Supervised learning techniques use labeled training datasets to create models.

It is employed to learn and identify patterns in the known training data. Some of

supervised learning methods used in Botnet detection are: Support Vector Machines,

linear regression, naive Bayes, decision trees, k-nearest neighbor algorithm and Neural

Networks (Multilayer perceptron). In particular, the Random forest algorithm (as

shown in [10]) selects variables automatically during the model formation and

establishes the optimal discriminant model achieving a high detection rate having a

low false positive and false negative rates.

On the other hand, unsupervised learning uses unlabeled training datasets to

create models which discriminate between patterns in the data. Some of unsupervised

learning methods used in Botnet detection are: Self-Organizing Map and k-Means

[1]. A well-known work of Gu et al. (2008) using an unsupervised learning method is

Botminer [27]: it clusters similar communication traffic and similar malicious traffic;

then, it identifies the hosts that share both similar communication patterns and

similar malicious activity patterns by performing cross cluster correlation. The main

advantage of this method is that it is not affected by protocol and structure of the

botnets and can detect real-world Botnets (including IRC-based, HTTP-based, and

P2P Botnets) with a very low false positive rate [58].

2.3 The Proposed Botnet Detection Approach 11

2.3 The Proposed Botnet Detection Approach

The method proposed in this work relies on a distributed system which allows to

broadcast the host-captured traffic among the hosts belonging to that network such

that each host knows the traffic of any other host of the network and can exploit

this knowledge to improve the detection of Botnet attacks. Besides, it uses a hybrid

mining-based detection technique resulting in an analysis which is divided in two

parts: flow-based analysis and graph-based analysis.

Several studies in the literature have used hybrid methods and among them one of

the most important is Botmark [56]: this automated model is based on the extraction

of 15 flow-based features and 3 graph-based features to analyze the behaviour of

each host present in the capture traffic. After performing the flow-based analysis

(implemented with a "similarity-based algorithm" applied to the flow-based features),

graph-based analysis, and stability-based analysis (that measures the stability of the

flow, since the botnets are characterized by a relatively stability of the packets length

distribution), the results of these three detectors are ensembled to mark a host as

"bot" or "normal". More specifically, if more than two of these analyses identify the

specific host as a bot, the host is then marked as a bot. Otherwise, it will be marked

as normal.

The main difference of this proposed work with Botmark is the concept of

"distributed network traffic capture" and the use of incremental learning. In the

proposed work, the flow-based analysis is cyclically performed on a batch of captured

packets with a predetermined size, whereas the graph-based method performs the

analysis both on locally captured packets and shared packets which other hosts of

the distributed system have broadcasted. The sharing by each host of the own traffic

with other hosts of the distributed system allows each of them to construct a graph

with much more information that can lead each host to identify a malicious pattern

of an external host not only through the traffic exchanged with it (that can make

the graph-based method inaccurate for several types of attack) but also with the

"shared knowledge" identified by the traffic captured and broadcast by other hosts

of the distributed system. Flow-Based analysis is more responsive than graph-based

one (due to the lower amount of traffic to analyze) but it is less accurate at first.

2.3 The Proposed Botnet Detection Approach 12

The accuracy of the flow-based method will increase over time thanks to incremental

learning, that will improve and expand the training dataset of the flow-based method

by relying on the predictions of the graph-based method.

13

Chapter 3

Real-Time Packet Inspection

Monitoring the incoming and outgoing network traffic of a hosts is an important

element in computer networks. Over the time, the implementations designated for

this purpose revealed some problems:

• Overhead: caused by the slowness in filtering traffic.

• Awkward policy setting: packet filtering rules should be shipped by appli-

cation developers alongside their product, aiming to secure-by-default systems

while allowing techniques like port-knocking without root access.

• Centralized ruleset: the management of huge amounts of configuration files

that complicates the central policy implementation and verification. Policy

rules become simpler if only one application on a host at a time is considered;

moreover, a single unit composed by packet filtering and the actual application,

may avoid to unintentionally expose that application to the network.

• Performance: number of packets processed per second (Mbps) in relation to

the number of rules to apply.

In the past, the main solutions were based on a set of hosts’ packet filtering rules

installed in a specific location of the kernel. However, the old implementation of

kernel space filtering caused overhead since the received packet needed to be copied

to memory and to undergo basic processing. To overcome these problems, without

the need to use hardware support, it is possible to use a revolutionary technology

3.1 eBPF 14

named "eBPF". This technology allows to add application-specific eBPF-based

packet filters to sockets by using systemd’s socket activation allowing to set some

rules only for a specific application and simplifying the central system-level firewall.

[49]

3.1 eBPF

Traditionally packet filtering has been carried out through mechanisms running

in userspace, which meant that each received packets needed to be copied from

Kernel space before being filtered.

In 1992, a new technology for packet filtering appeared in a paper titled "The

BSD Packet Filter: A New Architecture for User-Level Packet Capture" [41]. This

paper described a new technology, named Berkeley Packet Filter (BPF), for filtering

network packet in Unix-like systems 20 times faster than the state of the art in

packet filtering at the time. BPF success was based on two big innovations:

• A new virtual machine (VM) designed to work efficiently with register-based

CPUs.

• The usage of per-application buffers that could filter packets without copying

all the packet information. This minimized the amount of data BPF required

to make decisions.

As a result, these new features improved packet filtering performance and all

Unix systems started to adopt BPF.

In September 2013, Alexei Starovoitov proposed a patchset named “extended

BPF” and in December 2013, Alexei was already proposing its use for tracing filters.

While it was still a proposal, Daniel Borkmann (a kernel engineer at Red Hat)

helped to include the new version of BPF in the Kernel and to replace the existing

version. Alexei and Daniel saw the patches that began to merge in the Linux kernel

by March 2014. The introduction of the BPF extension has led to rename the

original BPF as classic BPF (cBPF) to distinguish it from the new implementation,

the extended BPF (eBPF). The initial goal for this new implementation was to

optimize the internal BPF instruction set that processed network filters. At this

3.1 eBPF 15

point, BPF was still restricted to kernel-space, and only a few programs in user-space

could write BPF filters for the kernel to process, like tcpdump and seccomp. Today,

these programs still generate bytecode for the old BPF interpreter, but the kernel

translates those instructions to the much improved internal representation. In June

2014, JIT components were merged in Linux 3.15, and, in December 2014, the bpf()

syscall for controlling BPF was merged in Linux 3.18, allowing eBPF to be exposed

to user-space. Later additions in the Linux 4.x series added BPF support for kprobes,

uprobes, tracepoints, and perf_events.

eBPF also increased the number of registers and their size from two 32-bit

registers to ten 64-bit registers. This improvement with other new features allowed

the developers to write more complex programs and made the extended BPF version

up to four times faster than the original BPF implementation. The BPF programs

seem to work similarly to Kernel modules but with a better emphasis on safety and

stability. [9]

3.1.1 eBPF Internals

As we can see in Figure 3.1, the eBPF Subsystem is constituted by several parts.

The source code of a filter can be written in C and then compiled using LLVM

(or also GCC) allowing us to obtain a BPF bytecode that can be executed in the

kernel.

After the compilation, a second C program is used to load the previously eBPF

compiled program to kernel through the bpf() syscall. For loading a program, we

have to invoke bpf(BPF_PROG_LOAD, ...) passing the BPF program as parameter

within the user attributes union bpf_attr __user *uattr. The handler of the

syscall will call bpf_prog_load(), and this function will load the eBPF program from

userspace, and will then invoke the eBPF Verifier passing it the eBPF instructions

to execute.

The Verifier ensures that the eBPF program is safe to run by the kernel and

prevents to run code that might compromise the system (e.g. kernel crash).

If the eBPF instructions, are considered safe by the compiler, then the eBPF

program can be: either compiled through a just-in-time (JIT) compiler for eBPF

3.1 eBPF 16

Figure 3.1. eBPF internals

instructions which will transform eBPF bytecode into machine code avoiding overhead

at execution time, or passed to the “eBPF Interpreter” where it will be executed

with a bit of overhead.

Before the execution of the eBPF program, we must specify the execution point

in the kernel the program is attached to. We can associate the eBPF program to

several type of mechanisms for monitoring events inside the system: sockets, kprobes,

uprobes, tracepoints, user statically defined tracepoints (usdt).

The eBPF program can invoke a set of in-kernel functions called “helpers”

associated with its specific program type to work with the data that it receives, to

interact with the system or with eBPF maps, structures which are bidirectional (i.e.

they can be accessed from both sides, the kernel and userspace) to share data with

userspace. [25]

3.1 eBPF 17

3.1.2 eBPF Registers

As we can see from Table 3.1, more registers and more storage space were

introduced into the eBPF architecture with respect to the “classic” version, and the

register size switched from 32-bit to 64-bit.

The 64 bit registers have 32-bit subregisters. The operating mode is 64 bit by

default, the 32 bit subregisters can only be accessed through special ALU (arithmetic

logic unit) operations. The 32-bit lower subregisters zero-extend into 64 bits when

they are being written to. 32-bit architectures run 64-bit eBPF programs via

interpreter. Their JITs may convert BPF programs that only use 32-bit subregisters

into the native instruction set and let the rest being interpreted.

An eBPF program running in the the Kernel can call other in-kernel helper

functions. These functions are invoked by an eBPF program through the following

calling convention:

• R0: contains the return value from the helper function.

• R1 - R5: contain arguments to the helper function

• R6 - R9: they are callee-save registers that helper function will preserve

• R10: it is a read-only register that contains the frame pointer to access the

eBPF stack.

Classic BPF Extended BPF

Registers accumulator A, index register X R0 - R9, plus a read-only frame pointer

Register size 32 bits 64 bits

Storage 16 memory slots: M[0-15] 512 bytes of stack space, plus infinite "map" storage

Table 3.1. Comparison between cBPF and eBPF

This calling convention restricts the number of arguments from an eBPF program

to a helper in-kernel function to 5, and one register is used to return values from the

3.1 eBPF 18

R0 rax

R1 rdi

R2 rsi

R3 rdx

R4 rcx

R5 r8

R6 rbx

R7 r13

R8 r14

R9 r15

R10 rbp

Table 3.2. Mapping of the eBPF registers to the x64 registers

helper function. The register R0 is also the register containing the exit value for the

BPF program.

The registers R1 - R5 are "scratch registers", meaning that they are not preserved

across a helper function call, so they need the caller function (the eBPF program) to

either copy their content to the eBPF stack or to callee saved registers if the values

need to be reused.

Moreover, the eBPF calling convention maps directly to ABIs used by the kernel

on x86_64-bit architectures. For example, when the eBPF bytecode is passed to the

x64 JIT compiler (to translate it into native instructions), it will map one to one

the eBPF registers to the x64 registers as in Table 3.2.

In this way, the JIT compiler doesn’t need to emit extra move instructions

causing additional performance penalties. The function arguments will be in the

correct registers and the BPF_CALL instruction will be translated by the JIT compiler

to a call instruction. [50, 12]

3.1 eBPF 19

3.1.3 eBPF Instruction set

eBPF reused the opcode encoding of cBPF to simplify conversion of cBPF

programs to eBPF programs. Nowadays, the Linux kernel runs eBPF programs only,

so the cBPF bytecode is transparently translated into an eBPF representation in

the kernel and then executed in an interpreter or compiled by the JIT compiler to

run as native machine code.

The maximum instruction limit per program is restricted to 4096 BPF instruc-

tions, which, by design, means that any program will terminate quickly. For kernel

newer than 5.1 this limit was lifted to 1 million eBPF instructions.

The eBPF instruction format is modeled as two operand instructions, that makes

easier to map eBPF instructions to native instructions during the JIT compiling

phase.

The instruction encoding of a single 64 bit instruction is shown in Figure 3.2.

The element op is a 16 bit wide opcode that has a particular instruction encoded.

For arithmetic and jump instructions, the 8-bit op field is divided as shown in

Figure 3.3: where instruction class is the more generic instruction class (see

Table 3.3), operation code denotes a specific operational code inside that class

(see Table 3.4 and Table 3.5), and source specifies whether the source operand is

a register (1) or an immediate value (0). Instead, for load and store instructions,

the 8-bit code field is divided as shown in Figure 3.4: where size indicates the size

modifier which encodes size of the operation (see Table 3.6), mode indicates the mode

modifier which encodes how performs the operation (see Table 3.7). Both dst_reg

and src_reg correspond to the destination and source register operands (e.g. R0

- R9), respectively, to be used for the operation. off is used to provide a relative

offset in some types of instructions, for example: for addressing the stack or other

buffers available to BPF (e.g. map values, packet data, etc), or jump targets in

jump instructions. imm contains an immediate value.

An important difference between cBPF and eBPF regards the last two instruction

class codes in Table 3.3. In fact, unlike eBPF, cBPF uses the following instruction

class: BPF_RET with code 0x06 and BPF_MISC with code 0x07. So, cBPF wastes a

whole instruction class (BPF_RET) to represent a single ret operation, instead, eBPF

3.1 eBPF 20

Figure 3.2. Instruction encoding of a 64 bit instruction

Figure 3.3. ’op’ field of the arithmetic and jump instructions

Instruction class name Instruction class code Description

BPF_LD 0x00 load from immediate

BPF_LDX 0x01 load from register

BPF_ST 0x02 store immediate

BPF_STX 0x03 store value from register

BPF_ALU 0x04 32 bits arithmetic operations

BPF_JMP 0x05 jump operations

BPF_JMP32 0x06 unused, reserved for future use

BPF_ALU64 0x07 64 bits arithmetic operations

Table 3.3. Instruction classes

Figure 3.4. ’code’ field of the load and store instructions

3.1 eBPF 21

Operation name Operation code Description

BPF_ADD 0x00

BPF_SUB 0x10

BPF_MUL 0x20

BPF_DIV 0x30

BPF_OR 0x40

BPF_AND 0x50

BPF_LSH 0x60

BPF_RSH 0x70

BPF_NEG 0x80

BPF_MOD 0x90

BPF_XOR 0xa0

BPF_MOV 0xb0 eBPF only: mov reg to reg

BPF_ARSH 0xc0 eBPF only: sign extending shift right

BPF_END 0xd0 eBPF only: endianness conversion

Table 3.4. operation codes for arithmetic instructions (corresponding to the instruction

classes BPF_ALU or BPF_ALU64)

3.1 eBPF 22

Operation name Operation code Description

BPF_JA 0x00 BPF_JMP only

BPF_JEQ 0x10

BPF_JGT 0x20

BPF_JGE 0x30

BPF_JSET 0x40

BPF_JNE 0x50 eBPF only: jump !=

BPF_JSGT 0x60 eBPF only: signed ’>’

BPF_JSGE 0x70 eBPF only: signed ’>=’

BPF_CALL 0x80 eBPF BPF_JMP only: function call

BPF_EXIT 0x90 eBPF BPF_JMP only: function return

BPF_JLT 0xa0 eBPF only: unsigned ’<’

BPF_JLE 0xb0 eBPF only: unsigned ’<=’

BPF_JSLT 0xc0 eBPF only: signed ’<’

BPF_JSLE 0xd0 eBPF only: signed ’<=’

Table 3.5. operation codes for jump instructions (corresponding to the instruction classes

BPF_JMP or BPF_JMP32)

Size modifier name Size modifier code Description

BPF_W 0x00 word

BPF_SUB 0x08 half word

BPF_MUL 0x10 byte

BPF_DIV 0x18 eBPF only, double word

Table 3.6. Size modifiers

3.2 Maps 23

operation name operation code description

BPF_IMM 0x00 used for 32-bit mov in classic BPF and 64-bit in eBPF

BPF_ABS 0x20

BPF_IND 0x40

BPF_MEM 0x60

BPF_LEN 0x80 classic BPF only, reserved in eBPF

BPF_MSH 0xa0 classic BPF only, reserved in eBPF

BPF_XADD 0xc0 eBPF only, exclusive add

Table 3.7. Mode modifiers

performs this operation by using the BPF_JMP instruction class and setting the

operation code to BPF_EXIT. In addition, the BPF_MISC class is substituted with

BPF_ALU64 to perform arithmetic operations in 64 bit mode. [50, 12]

3.2 Maps

eBPF Maps are the means by which eBPF programs and user-space programs

can communicate with each other. Maps are efficient key/value stores that reside in

kernel space and can be shared with other eBPF programs or user space applications.

The Maps can be accessed by eBPF programs in order to keep state among multiple

eBPF program invocations, or can be accessed by user space programs by using file

descriptors. The eBPF Verifier includes several checks to ensure that the way used

for creating and accessing maps is safe. [50, 12]

3.3 Network traffic capture

"Network traffic capture" or "Packet capture" is the process of intercepting a

data packet that is crossing a specific point in a data network. The packets capture

in real-time are stored for a period of time so that they can be analyzed, and then

either be kept or discarded.

Our analysis is performed by an eBPF (see section 3.1) program written in C,

loaded in Kernel Space and attached to a specific created socket through the Python

3.3 Network traffic capture 24

framework BCC1 [29]. Captured packets are transferred to userspace for further

analysis, as we shall discuss in the next chapter.

3.3.1 The eBPF Program

The eBPF filter has two purpose:

• Retrieving incoming and outgoing traffic to send packet information to userspace

for the analysis (see chapter 4).

• Mitigating incoming and outgoing traffic with hosts considered ’suspicious’ by

the userspace analysis (as we shall discuss in section 4.5).

1 # include <bcc/proto.h>

2 # include <bcc/ helpers .h>

3

4 struct Packet {

5 u64 timestamp ;

6 u32 src_ip ;

7 u32 dst_ip ;

8 unsigned short src_port ;

9 unsigned short dst_port ;

10 unsigned int ethertype ;

11 unsigned char protocol ;

12 unsigned char tcp_Flags ;

13 unsigned short len;

14 unsigned short tcp_payload_len ;

15 unsigned short udp_len ;

16 unsigned char ttl;

17 };

18

19 BPF_QUEUE (queue , struct Packet , 1024);

20 BPF_HASH (suspicious_IPs , u32 , u32);

21 BPF_HASH (P2P_IPs , u32 , u32);

22

23 int ebpf_program (struct __sk_buff *skb) {

1BCC is a toolkit for creating efficient kernel tracing and manipulation programs, and includes

several useful tools and examples.

3.3 Network traffic capture 25

24 struct Packet packet ;

25 struct ethernet_t * ethernet = NULL;

26 struct ip_t *ip = NULL;

27 struct tcp_t *tcp = NULL;

28 struct udp_t *udp = NULL;

29 u8 * cursor = 0;

30

31 // ...

32 }

Listing 3.1. eBPF program structures

The Listing 3.1 shows the structures defined and initialized by an eBPF filter

which are used for the first aforementioned objective. The struct Packet structure

is used to keep information coming from the incoming/outgoing packet on the socket

the eBPF Program is attached to. These struct Packet structures are enqueued

in the map queue (in Listing 3.1 at line 19) that is a queue structure used to pass

struct Packet structures to Userspace for the actual Botnet analysis. Moreover,

as we will see in chapter 4, suspicious_IPs and P2P_IPs are hash maps used to

pass the IPs of the hosts identified as "suspicious" and the IPs of the peers belonging

to the P2P Network, respectively, to the eBPF filter.

In addition, as shown in Listing 3.3 at lines 25-28, pointers to BCC structures

are initialized to point to header contents of the packet retrieved by means of the

macro cursor_advance() (Listing 3.2). The fields of the packet header are then

used to fill the fields of the struct Packet structure, as shown in Listing 3.3 at

lines 8-43.

1 # define cursor_advance (_cursor , _len) \

2 ({ void *_tmp = _cursor ; _cursor += _len; _tmp; })

Listing 3.2. cursor_advanced implementation

1 int ebpf_program (struct __sk_buff *skb) {

2 // ...

3

4 ethernet = cursor_advance (cursor , sizeof (* ethernet));

5

6 __builtin_memset (& packet , 0, sizeof (packet));

3.3 Network traffic capture 26

7

8 packet . ethertype = ethernet ->type;

9

10 if (packet . ethertype == 2048){

11 ip = cursor_advance (cursor , sizeof (*ip));

12 packet . timestamp = bpf_ktime_get_ns ();

13 packet . dst_ip = ip ->dst;

14 packet . src_ip = ip ->src;

15 packet . protocol = ip ->nextp;

16 packet .len = ip ->tlen+ sizeof (* ethernet);

17 packet .ttl = ip ->ttl;

18 }

19 else{

20 bpf_trace_printk (" ALLOWED packet \n");

21 return -1;

22 }

23

24 if (packet . protocol == 6){

25 tcp = cursor_advance (cursor , sizeof (* tcp));

26 packet . src_port = tcp -> src_port ;

27 packet . dst_port = tcp -> dst_port ;

28 packet . tcp_Flags = 128* tcp -> flag_cwr +64* tcp -> flag_ece +32* tcp ->

flag_urg +16* tcp -> flag_ack +8* tcp -> flag_psh +4* tcp -> flag_rst +2* tcp ->

flag_syn +1* tcp -> flag_fin ;

29 packet . tcp_payload_len = ip ->tlen -(ip ->hlen+tcp -> offset *4);

30 packet . udp_len = 0;

31 }

32 else if (packet . protocol == 17){

33 udp = cursor_advance (cursor , sizeof (* udp));

34 packet . src_port = udp ->sport;

35 packet . dst_port = udp ->dport;

36 packet . tcp_Flags = 0;

37 packet . tcp_payload_len = 0;

38 packet . udp_len = udp -> length ;

39 }

40 else{

41 bpf_trace_printk (" ALLOWED packet \n");

42 return -1;

3.3 Network traffic capture 27

43 }

44

45

46 if ((packet . protocol == 6) || (packet . protocol == 17)){

47 if (P2P_IPs . lookup (& packet . dst_ip) != NULL){

48 if ((packet . src_port == 9020) || (packet . dst_port == 9020) || (

packet . src_port == 8000) || (packet . dst_port == 8000)){

49 bpf_trace_printk (" ALLOWED packet : 'dst_ip ' in 'P2P_IPs ' hash

and '(dst/src)_port ' used in P2P network \n");

50 return -1;

51 }

52 }

53 else{

54 if (P2P_IPs . lookup (& packet . src_ip) != NULL){

55 if ((packet . src_port == 9020) || (packet . dst_port == 9020) ||

(packet . src_port == 8000) || (packet . dst_port == 8000)){

56 bpf_trace_printk (" ALLOWED packet : 'src_ip ' in 'P2P_IPs '

hash and '(dst/src)_port ' used in P2P network \n");

57 return -1;

58 }

59 }

60 }

61

62 queue.push (& packet , BPF_EXIST);

63 }

64

65 // ...

66 }

Listing 3.3. Retrieving packet information and pushing them into BPF queue map

The first call to cursor_advance() (in Listing 3.3 at line 4) returns the point

of the beginning of the packet that is assigned to struct ethernet_t *ethernet:

this structure allows (through its attributes) to access the different fields of the

Ethernet header. The _cursor was moved forward by the length of the Ethernet

Header and a second call of cursor_advance() (in Listing 3.3 at line 11) allows to

read the next header belonging to the IP layer. Finally, the third and final invocation

of the macro cursor_advance() (in Listing 3.3 at lines 25,33) returns the pointer

3.3 Network traffic capture 28

to the L4 layer header (e.g. TCP, UDP).

The eBPF program considers (for the analysis) only IPv4 TCP or UDP packets,

and all the other type of packets are not considered for the analysis (Listing 3.3,

lines 10,24,32).

3.3.2 Loading the eBPF Program

The loading of the eBPF program is performed by a Python script and it is

shown in Listing 3.4.

1 global bpf

2

3 # Initialize BPF - load source code from file

4 bpf = BPF(src_file =os.path. dirname (os.path. abspath (__file__))+ \

5 "/eBPF/ eBPF_program .c", debug =0)

6

7 # ...

8

9 # Load eBPF program ebpf_program of type SOCKET_FILTER into the

10 # kernel eBPF vm.

11 function_ebpf_program = bpf. load_func (" ebpf_program ", \

12 BPF. SOCKET_FILTER)

13

14 # Create raw socket , bind it to interface and attach bpf program

15 # to socket created .

16 try:

17 BPF. attach_raw_socket (function_ebpf_program , interface)

18 except :

19 # ...

20

21 # Get file descriptor of the socket previously created inside

22 # BPF. attach_raw_socket .

23 socket_fd = function_ebpf_program .sock

24

25 # Create python socket object , from the file descriptor

26 sock = socket . fromfd (socket_fd , socket .PF_PACKET , socket .SOCK_RAW , \

27 socket . IPPROTO_IP)

28

3.3 Network traffic capture 29

29 # Set it as blocking socket

30 sock. setblocking (True)

31

32 # Get pointer to bpf map 'queue ' of type 'BPF_QUEUE '

33 bpf_queue = bpf['queue ']

34

35 bpf_hash_suspicious_IPs = bpf['suspicious_IPs ']

36 bpf_hash_suspicious_IPs .clear ()

Listing 3.4. Loading the eBPF Program

The BPF object is provided by the BCC framework and it allows to load an

eBPF program from a C file through the src_file argument. Then, the function

ebpf_program of the type SOCKET_FILTER into the C file is loaded into the kernel

eBPF Virtual Machine.

From the BPF object is possible to create a raw socket binding it to an Ethernet

interface and attaching the previously loaded eBPF program. Finally, the pointers

of the BPF maps queue and suspicious_IPs are get (as shown at lines 33,35 of

Listing 3.4).

3.3.3 Header packet information fetching

After initializing the BPF object and getting the BPF map pointers, the Python

script executes an infinite while loop for fetching the struct Packet structures one

by one from queue map, as shown in Listing 3.5.

1 from time import time

2

3 start_epoch = time ()

4 start = None

5 while 1:

6 n = 0

7 while n < n_packets :

8 try:

9 # Get element by queue map

10 k = bpf_queue .pop ()

11 except KeyError :

12 continue

3.3 Network traffic capture 30

13

14 if (start == None):

15 start = k. timestamp

16

17 # Compute the timestamp (in seconds) and add it to

18 # start Unix epoch

19 ts = (k.timestamp -start) /1000000000+ start_epoch

20

21 # Update the Dataframe of the captured packets

22 Packets .loc[len(Packets)] = [ts , k.src_ip , \

23 k.dst_ip , k.src_port , k.dst_port , k.ethertype , \

24 k.protocol , k.tcp_Flags , k.len , \

25 k. tcp_payload_len , k.udp_len , k.ttl]

26

27 n += 1

28

29 # Enqueue in TaskQueue BotnetDetection_Threads a new

30 # BotnetDetection thread

31 BotnetDetection_threads .put(BotnetDetection (Packets .copy (), \

32 IncrementalLearning_threads)

33 Packets .drop(Packets .index , inplace =True)

Listing 3.5. Map elements fetching

At each loop, one struct Packet is retrieved from the queue map and the

fields of the retrieved struct Packet structures are stored in the last line of the

DataFrame2 object Packets. After the DataFrame Packets reaches a certain size

(argument n_pkts), a new task is created with the BotnetDetection3 class and

it is pushed in the BotnetDetection_threads (Listing 3.5, line 31), a TaskQueue

structure.

TaskQueue is a Python subclass of threading.Thread whose purpose is to create

a queue of threads to execute sequentially. The implementation (shown in Listing 3.6)

is realized by defining a class variable taskqueue, that is initialized with a Queue

object (of the Python library queue), and by using a while loop to pop, at each
2DataFrame is a Python object defined in the pandas library.
3The BotnetDetection class in Listing 3.5, corresponds to the Botnet Detection Module described

in section 4.2.

3.3 Network traffic capture 31

iteration, a thread element from taskqueue and to execute it. The TaskQueue class

is used to create:

• a queue BotnetDetection_threads composed of BotnetDetection() threads

for performing the Flow-Based analysis (see section 4.2).

• a queue IncrementalLearning_threads composed of IncrementalLearning()

threads for performing the Graph-Based analysis and updating the training

dataset of the Flow-based analysis with the Graph-based analysis predictions

(see section 4.3).

1 import threading

2 from queue import Queue

3

4 class TaskQueue (threading . Thread):

5 def __init__ (self):

6 self. current_thread = None

7 self. taskqueue = Queue ()

8 threading . Thread . __init__ (self)

9

10 def run(self):

11 while not self. _stopper .isSet ():

12 if self. taskqueue .empty ():

13 if self. _stopper_when_empty .isSet ():

14 break

15 else:

16 continue

17 self. current_thread = self. taskqueue .get ()

18 self. current_thread .start ()

19 self. current_thread .join ()

20

21 def put(self , thread):

22 self. taskqueue .put(thread)

Listing 3.6. TaskQueue implementation

32

Chapter 4

The Detection and Mitigation

Architecture

The architecture (shown in Figure 4.1) is composed by three main parts:

• The eBPF filter: it runs in kernel space with the purpose of retrieving

incoming/outgoing packets, extracting their header information and passing

them to the userspace Botnet detection system. At the end, the results of the

botnet analysis performed by the userspace system are used to mitigate the

network traffic from/to detected suspicious external hosts (see section 4.5).

• The Botnet detection system: it runs in userspace and analyzes the header

packet information passed by the eBPF filter (by means of queue QUEUE

MAP) attempting to detect malicious hosts belonging to some type of Bot-

net and returning the predictions resulted from the Flow-based analysis

(executed through the Botnet Detection module) and the Graph-based

analysis (executed through the Incremental Learning Module) to the

eBPF filter.

– Flow-based analysis: a type of analysis which relies on features ex-

tracted from the flows of network traffic captured by a host.

– Graph-based analysis: a type of analysis based on constructing a graph

which reflects the true structure of communications, interactions, and

4.1 P2P Network 33

behavior of the host towards external hosts, and on extracting by this

graph some features which allow to determine the behaviour of each node

(host) with the other nodes.

• The P2P Network: it is a collection of hosts connected to each other (by

means of P2P Module) to allow the sharing of its own host-captured network

traffic. This makes aware all hosts belonging to this network of the traffic

captured by any other host in order to keep a complete knowledge to build a

graph which is going to perform an effective botnet graph-based analysis.

The Header packet information fetching shown in the Figure 4.1 has been

already explained in subsection 3.3.3. Instead, in the following sections, we will

analyze in depth the remaining several parts which compose the architecture.

4.1 P2P Network

The P2P module relies on Twisted: an event-driven networking engine written

in Python [19]. This module allows to start a "Peer to Peer" communication among

hosts which run the tool. In this way, each host is able to broadcast the received

header packet information of its own network traffic (acquired through the eBPF

Program) to all hosts which belong to the P2P Network and, at same time, to receive

from them their own network traffic. As a result, all peers know the whole network

traffic of the P2P Network towards external hosts; in this way, each peer is able to

build a graph based on this global P2P traffic and to extract several graph features

from it. The P2P module starts by initializing a twisted Server which listen on

the port 8000 for receiving PING and PONG messages in order to know active hosts

connected to the P2P network.

A host takes part to the P2P Network by connecting to an active peer of the

P2P Network. A PING message is sent by a host immediately after it is connected

to a peer of the P2P Network. The peer to which the host connects, forwards this

PING message to all the peers that it knows and decreases the Time to live field

(ttl) of the PING message. Then, the peers which receive the PING message, in

turn, forward it until the ttl is equal to 0. The structure of the PING message is

4.1 P2P Network 34

Figure 4.1. Botnet detection and mitigation architecture

4.2 Botnet Detection 35

the following: <msgID>&00&<ttl>&<port>&<src_IP>. In addition, the peers which

receive a PING message from a new active peer, send the src_IP of the PING message

to the eBPF filter. The IPs of the P2P Network peers are sent to the eBPF filter

by storing them into P2P_IPs HASH MAP (see Figure 4.1); in this way, as

shown in Listing 3.3, the network traffic exchanged among P2P peers will not be

pushed in the queue QUEUE MAP (see Figure 4.1) and therefore it will not be

considered in the botnet analysis. Moreover, the peers which receive the PING reply

with a PONG message. The PONG message is a response message to the sender of the

PING message, with the following structure: <msgID>&01&<ttl>&<port>&<src_IP>.

When the peer that has sent the PING receives the PONG message, it sends the src_IP

of the PONG message to the eBPF filter and forwards the PONG message to the other

peers after decreasing the Time to live field (ttl) of the message. This technique

allows each peer of the P2P Network to have a list (in P2P_IPs HASH MAP)

of the IPs of all the others peers.

Once a host joins to the P2P Network, the Packets information Server

starts listening on the port 9020 to receive objects (in the form of JSON messages)

containing the header packet information of the network traffic of the other peers

belonging to the P2P Network.

4.2 Botnet Detection

The Botnet Detection module is the one which starts the analysis of the

network traffic. As we saw previously (see subsection 3.3.3), the TaskQueue structure

is used to create a Queue of "Botnet Detection tasks" to analyze several batches of

fetched packets’ information passed by the eBPF filter located in Kernel Space (see

section 3.3).

Each Botnet Detection task performs the following operations:

• The first one is sending the packets information of its own traffic to the other

active peers of the P2P Network on port 9020 in form of JSON messages (see

section 4.1);

• The second step is performing the Flow-based analysis on the packets informa-

4.2 Botnet Detection 36

tion of its own network traffic;

• The third step consists in initializing a new Incremental Learning task (see sec-

tion 4.3) by passing, as arguments, the flow features of the packets information

of the previously flow-based analyzed "batch", the header packet information

on which to perform graph-based analysis and the flow-based training dataset

to update; then, this task is pushed into the related Incremental Learning

TaskQueue in order to be executed.

• The last action consists in updating the suspicious_IPs HASH MAP (see

Figure 4.1) with new IPs predicted as "suspicious" by the flow-based analysis.

4.2.1 Flow-Based analysis

The Flow-based analysis module is composed of the following sequential

actions:

• Extraction of flow features from the header packets information retrieved from

the queue QUEUE MAP (see Figure 4.1).

• Training the Random Forest Classifier (see section 4.4) to build a new

Classifier with the updated flow-based training dataset.

• Predicting the suspiciousness (the probability of being "suspicious") of the

flows (whose features have just been extracted) by using the previously trained

Random Forest Classifier. Then, it is possible to compute the average of

the suspiciousness of the several flows involving the same IP of an external

host to analyze. If the average suspiciousness associated to an external host

IP is greater than a specified threshold then that IP is labeled as "suspicious".

Flow Features Extraction

The extraction of flow features is performed by grouping the fetched pack-

ets information in "flows" labeled by a "Flow ID" with the following structure:

<IP_1-IP_2-Port_1-Port_2-Protocol>. In fact, according to [10], "if two different

4.2 Botnet Detection 37

packets have the same source/destination host/port and the same protocol, they

belong to the same flow".

Subsequently, every group of packet information belonging to the same flow is

passed to a function dealing with the actual extraction of several features. The

chosen flow features have been taken from [52, 10, 31, 5, 56] and are shown below.

• SrcIP and DstIp: Source and destination IP addresses are extensively used

in Botnet detection systems and they are needed to quantify the number of

distinct connections. Nevertheless, these features do not provide a definitive

conclusion, nevertheless they are complementary in the assessment of botnet

communication patterns and allow to carry out a simple blacklisting of known

IP addresses of C&C controllers [5].

• SrcPort and DstPort: the source/destination ports are largely employed for

detecting botnet traffic, although some types of attacks use a periodic change

of source-destination port combination making ineffective these two features

(for example, in the case of Nugache botnet) [5]. In other cases, botnets could

use ports often used by normal users (such as port 80 for HTTP and port 443)

in order to hide their traffic [31].

• Duration: this is the total time of the connection from beginning to the end

and it is one of the most used feature in botnet detection. This feature becomes

very useful for some types of botnets characterized by an unidirectional and

short connection followed by much longer communication sessions and other

types of botnets known to be ’chatty’ whose communication duration may

vary (e.g. Palevo botnet, IRC botnets) [31, 5].

• PX: the number of the exchanged packets is useful to detect some botnets

which send a large number of packets. For example, we can assume that a

botmaster needs to send many packets to manage the connections with the

bots in order to keep theme alive. So, counting the number of the exchanged

packets might be useful to identify this behavior [31, 5].

• NNP, NSP and PSP: these are the number of null packets (i.e. packets with

no payload), the number of small packets (i.e packets with length of 63-400

4.2 Botnet Detection 38

bytes) and the percentage of small packets over the total number of packets,

respectively. The small packets are commonly used in decentralized botnets

to probe their peers, or in IRC botnets by the bots to exchange small chat

messages whit C&C servers. Instead, the usage of null packets has not yet

been seen in recent researches [31, 5].

• IOPR: the ratio between the number of incoming packets over the number of

outgoing packets is a feature whose discriminatory power for detecting a botnet

behaviour hasn’t been fully proven yet [5]. Some studies as [34], have analyzed

backbone-traffic with respect to behaviour differences between inbound and

outbound Internet traffic for various protocols; an other research [2] has shown

that most of malicious flows over TCP are generally part of incoming traffic.

• Reconnect: some types of botnets apply a simple strategy to prevent detec-

tion which consists in randomly reconnecting as an established connection.

Therefore, this feature can be controlled by counting the number of SYN

packets sent by a suspicious host [31].

• FPS: the size of first transferred packet in the flow may be useful for detecting

specific types of botnets because it reveals some characteristics of the underlying

protocol which may identify a malicious behaviour [31, 5].

• The Flow size features characterize the length of the flow and are useful

to identify similar communication patterns. Typically, the botnet traffic is

generated by predefined bot actions and it is more uniform than traffic of

legitimate users that, due to variable length messages/commands, is quite

irregular. For example, this feature is very effective for detecting the malicious

traffic of the Weasel Botnet that uses fixed length commands [5, 21]. Below,

some flow size features are listed.

– APL: average payload packet length for time interval;

– DPL: total number of different packet size;

– PV: standard deviation of payload packet length;

4.3 Incremental Learning 39

– TBT: the total number of transmitted bytes is used to get similarities

out of botnet traffic, such as fixed length commands [31].

• As for the Flow size features, the average bits-per-second (BPS), the number

of packets-per-second (PS) and the average inter arrival time of the packets

(AIT), aim to characterize the similarity of network communication [5].

• MPL: Maximum of packet length in the flow [56].

• MP: Number of maximum packets [56].

Some of the above described features (as NNP and PX) consider also the case in

which the host performing our detection and mitigation method, belongs to a botnet

as bot. In this case, our method attempts to detect other bot hosts (belonging to

the same botnet) or the botmaster to mitigate the traffic exchanged with them.

4.3 Incremental Learning

As we have seen in section 4.2, the Incremental Learning module is invoked

by the Botnet Detection module with three main arguments: the batch of the

fetched header packet information to analyze, the flow-features extracted by the

batch, and the flow-based training dataset to update.

Once the Incremental Learning task is started, the header packet information

of the active P2P peers received through the Server listening on port 9020 (see

section 4.1) are added to the batch of the header packet information passed by the

eBPF filter program. In this way, the graph-based analysis is carried out on the

network traffic captured by the whole P2P network. After graph-based analysis has

been completed, the resulting predictions of the external host IPs are assigned to the

features (passed as argument) of the flows involving that IPs and the passed flow-

based training dataset is updated. Moreover, like Botnet Detection Module (see

section 4.2), the Incremental Learning module updates the suspicious_IPs

HASH MAP (see Figure 4.1) with new IPs predicted as "suspicious" by the

graph-based analysis.

4.3 Incremental Learning 40

4.3.1 Graph-Based analysis

The Graph-Based analysis starts extracting graph-based features from the

retrieved packets information of the traffic of the whole P2P Network. Then, the

resulting features are passed to the Random Forest for the classification. The Random

Forest Classifier for the Graph-based analysis (unlike the Flow-based analysis) is not

retrained for each header packet information batch to process, but it is trained only

once at the beginning, and then it is shared among all the Incremental Learning

tasks.

Graph Features Extraction

The Graph Features Extraction starts creating a Graph associated to the

packets information of the traffic of the whole P2P Network.

Let’s assume that the batch of packets information to analyze is a set P containing

7-tuples pi = (sipi, dipi, tsi, spi, dpi, ttli, nbi). sipi is the source IP address that

uniquely identifies a source host, dipi is the destination IP address that uniquely

identifies a destination host, tsi is the timestamp of the packet, spi is the source

port, dpi is the destination port, ttli is the Time to live and nbi is the number of

bytes of the packet. The system creates a graph G(V,E) where V is a set of nodes

and E is a set of directed edges ej,i from node vi. The set of nodes V is defined in

the following way [1]:

V =
⋃
∀px∈P

({sipx} ∪ {dipx}) (4.1)

For every px ∈ P , there exists directed edges ei,j and ej,i from vi to vj and vj to vi,

respectively, such that sipx = vi and dipx = vj . Therefore:

E =
⋃
∀px∈P

({(sipi, dipi, tsi, spi, dpi, ttli, nbi)}) (4.2)

After having creating the Graph G, the Graph features Extraction function

computes twelve Graph features from G.

• In-degree (ID) and Out-degree (OD): The in-degree, ID(v), and out-

degree, OD(v), of a node v ∈ V are the number of its ingress and egress edges,

4.3 Incremental Learning 41

respectively.

F(ei,j) =

1, if ei,j ∈ E

0, otherwise
(4.3)

ID(vi) =
∑

vj∈V, vi 6=vj

F(ej,i) (4.4)

OD(vi) =
∑

vj∈V, vi 6=vj

F(ei,j) (4.5)

As said previously in section 4.2.1, the malicious hosts may be detected

examining the amount of incoming and outgoing network traffic. Typically,

malicious hosts with a higher ID might mean an attempt to infect some

network; however, a high ID may not signify malicious activity as in the case

of a gateway, that being a central point of communication in a network, it has

a high ID but it is not necessarily a malicious endpoint. Instead, a high OD

occurs during the reconnaissance stage of the intrusion kill-chain where bots

select the targets, researches them and attempt to identify vulnerabilities in

the target network [1].

• Number of in-neighbors: number of the adjacent vertices of a vertex v

which have an edge to v.

• Number of out-neighbors: number of the adjacent vertices of a vertex v

which have an edge from v.

• Page Rank (PR): it is an algorithm that measures the “importance” of the

nodes in a graph by assigning to each node a rank. The value of PageRank of

vertex v, PR(v), is given iteratively by the relation:

PR(v) = 1− d
N

+ d
∑

u∈Γ−(v)

PR(u)
d+(u)

where Γ−(v) are the in-neighbors of v, d+(u) is the out-degree of u, and d is a

damping factor [24].

• Betweenness Centrality (CB): the betweenness centrality of a node v ∈ V ,

is a measure of the number of shortest paths that pass through it. It is defined

4.3 Incremental Learning 42

as

CB(v) =
∑

s 6=v 6=t∈V s 6=t

σst(v)
σst

(4.6)

where σst is the number of shortest paths from s to t, and is the number

of shortest paths from s to t that pass through a vertex v. The algorithm

to compute this feature has a complexity of O(V E) for unweighted graphs

and O(V E + V (V +E) log V) for weighted graphs. The space complexity is

O(V E) [24]. This feature, as explained in [1], "can alienate bots early on as

they attempt their first connections. This is when the bots exhibit low IDW and

ODW. Thus, it would be more favorable for the shortest paths in the network to

pass through the host. Likewise, when the IDW and ODW increase, the BC of

a node decreases immensely, as it is less favored for being included in shortest

paths".

• Closeness Centrality (C): in a connected graph, the closeness centrality of

a node v is defined as the reciprocal of the sum of the length of the shortest

paths between the node v and all other nodes in the connected graph. So,

C(vi) = 1∑
vj
d(vj , vi)

(4.7)

where d(vj , vi) is the distance1 between vertices vi and vj . If there is no path

between the two vertices, the distance is considered to be zero [24].

• Eigenvector Centrality (EC): the eigenvector centrality ci of a node vi is

defined as the weighted sum of the centralities of all nodes that are connected

to it by an edge, Ai,j . So,

ci = ε−1
n∑
j=1

Ai,jcj (4.8)

where c is the eigenvector associated to the eigenvalue ε of A (the adjacency

matrix with elements Aij defining the strength of the physical correlation

between nodes i and j). The EC is a measure of the number and the quality

of the connections of a node with other well-connected nodes in the graph: a
1In graph theory, the distance between two vertices in a graph is the number of edges in a

shortest path connecting them

4.3 Incremental Learning 43

vertex with a smaller number of high-quality contacts may outrank one with a

larger number of mediocre contacts [44, 24].

• Katz Centrality: Katz centrality is the measure of topological centrality

that helps to discover the relative influence of each node on the graph by

taking into account it’s immediate neighboring nodes as well as non-immediate

neighboring nodes that are connected through immediate neighboring nodes.

Te Katz centrality of a node vi is computed as:

CKatz(vi) = α
n∑
j=1

Aj,iCKatz(vj) + β (4.9)

where α is a constant called the damping factor, usually considered to be less

than the largest eigenvalue, γ i.e. α < 1/γ and β is a bias constant, also called

the exogenous vector, used to avoid the zero centrality values. With α ≥ γ,

the centrality tends to diverge [59].

• Authority Centrality and Hub Centrality: these two scores are computed

through the Hyperlink-Induced Topic Search (HITS) algorithm that assigns

hub and authority centralities to the vertices. Assuming h(v) and a(v) denoting

the hub and the authority score, we set, initially, h(v) = a(v) = 1 for all nodes

v. We also denote by v 7→ y the existence of an edge from v to y. The core of

the iterative algorithm is a pair of updates to the hub and authority scores of

all nodes given by Equation 4.10 and Equation 4.11, which capture the intuitive

notions that good hubs point to good authorities and that good authorities

are pointed to by good hub

h(v)←
∑
v 7→y

a(y) (4.10)

a(v)←
∑
y 7→v

h(y) (4.11)

Thus, the first line of Equation 4.10 sets the hub score of node v to the sum

of the authority scores of the nodes it links to. If v links to pages with high

authority scores, its hub score increases. The Equation 4.10 plays the reverse

role: if node v is linked to by good hubs, its authority score increases [43].

4.4 Random Forest Classifier 44

• Local Clustering coefficient (LCC): this features is characterized by a

computational overhead lower than CB and it quantifies the neighborhood

connectivity LCCi of a node vi ∈ V , such that

LCCi =
∑
vj ,vk∈Ni, vi 6=vj 6=vk

F(ej,k)
|Ni|(|Ni| − 1) (4.12)

where Ni is the neighborhood set for vi, ∀vj ∈ Ni | ei,j ∈ E ∨ ej,i ∈ E.

Typically, the hosts which have been successfully infected, exhibit a higher

LCC [1].

Other features (similar to flow features but per node instead of per flow) are

computed relying on the tuples pi ∈ P . They are: Average incoming packet size,

Max incoming packet size, Min incoming packet size, Average outgoing packet size,

Max outgoing packet size, Min outgoing packet size, Number incoming bytes, Number

outgoing bytes, Number source ports, Number destination ports, Average incoming

TTL, Max incoming TTL, Min incoming TTL, Average outgoing TTL, Max outgoing

TTL, Min outgoing TTL.

4.4 Random Forest Classifier

As we have seen in subsection 4.2.1 and in subsection 4.3.1, the classification of

network traffic is carried out through the Random Forest.

Unlike standard trees, the Random Forests add an additional layer of randomness

to bagging. In addition, each node is no longer split using the best split among

all variables but among a subset of predictors randomly chosen at that node. This

method is very powerful with respect to others type of classifiers like support vector

machines and neural networks, and it is characterized by a good robustness to

overfitting. The Random forests run relying on two parameters: the number of

variables in the random subset at each node and the number of trees in the forest

[38].

4.4.1 Random Forest algorithm

The algorithm of the Random Forest follows the steps below [38, 8].

4.4 Random Forest Classifier 45

1. Draw ntree bootstrap samples at random (but with replacement) from the

original data to create a subset of the total set.

2. For each of the bootstrap samples, create a tree: randomly choose a subset m

of variables and then, at each node, find in m a variable (and a value for that

variable) which optimizes the split. Each tree is grown to the largest extent

possible without applying any pruning.

3. Each created tree outputs a prediction. The Forest aggregates the predictions

of the ntree trees and chooses the classification having the most votes.

The Random Forest error rate depends on two factors [8]:

• The correlation between any two trees in the forest. The correlation is directly

proportional to the forest error rate.

• The strength of each individual tree in the forest. The strength is inversely

proportional to the forest error rate.

Moreover, m is directly proportional to correlation and the strength. The error rate

can be obtained relying on the training data, following these two steps [38]:

1. At each bootstrap iteration, predict the data not in the bootstrap sample (“out-

of-bag”, or OOB data) using the tree previously created with the bootstrap

sample.

2. Compute the OOB estimate of errorate by aggregating the previously obtained

OOB predictions.

In [8], Leo Breiman introduces two properties of the Random Forests: the strength

and the correlation. These two properties are defined through an upper bound of

the generalization error noted PE∗

PE∗ ≤ ρ̄(1− s2)
s2 (4.13)

where s is the strength and ρ is the correlation. From Equation 4.13, it can be said

that the lower the ratio ρ̄
s2 , the more chances to obtain a low error rate (i.e. a better

forest).

4.5 Mitigation 46

The margin function of a RF is defined by the following equation:

mr(x, y) = PΘ(h(x,Θ) = y)−max
j 6=y

PΘ(h(x,Θ) = j) (4.14)

where x is an input data, y its class, and where the subscripts Θ indicate that the

probability is over the Θk family of random vectors. The strength is then defined as

the expectation of this margin over the data space:

s = Ex,y[mr(x, y)] (4.15)

The raw margin function is defined as:

rm(Θ, x, y) = I(h(x,Θ) = ĵ(x, y)) (4.16)

where ĵ(x, y) is the index of the "best" class among the wrong classes, and it is

defined as:

ĵ(x, y) = arg max
j 6=y

PΘ(h(x,Θ) = j) (4.17)

The correlation is actually the statistical mean correlation between rm(Θ, x, y) and

rm(Θ′, x, y) over all pairs of (Θ,Θ′) [4].

4.5 Mitigation

The mitigation approach used in the proposed methodology, as we already saw

in section 4.2 and section 4.3, relies on the predictions passed from userspace to

kernel space through the suspicious_IPs HASH MAP (see Figure 4.1): a map

containing a set of IPs of external hosts which are considered "suspicious" after the

userspace botnet analysis performed on the header packet information (contained in

a struct Packet structure in Listing 3.5) received by the eBPF Program.

The policy adopted by the proposed methodology to update the map with new

detected suspicious IPs is the following:

• If the host executing the Botnet detection system is connected with other

peers in the P2P network (see section 4.1), the graph-based predictions have

more priority than flow-based ones. Different priorities are assigned to the

outcomes of the two types of analysis since the flow-based detection is more

4.5 Mitigation 47

responsive than graph-based one, but less accurate, so the graph-based analysis

can remove from the map the false malicious IPs resulting by the flow-based

analysis.

• If the host singularly runs the Botnet Detection system, it is necessary relying

only on flow-based analysis since the graph-based one, as already explained

in section 4.3, loses accuracy for lack of botnet network traffic got from other

peers of the P2P network. Moreover, the Incremental Learning allows to

enhance the accuracy of the flow-based analysis in order to perform quite well

during the future flow-based analysis executions on botnet traffic patterns

already analyzed.

Naturally, this "map update policy" is no longer effective if we have that the

graph-based analysis is less accurate than the flow-based analysis as a result of an

insufficient number of active peers in the P2P network that prevents the graph-based

analysis to be carried out properly. In fact, in this situation, the graph built by

a host with a very limited botnet network traffic will most likely not be able to

identify malicious hosts.

So, the eBPF program reads the IPs listed in the suspicious_IPs HASH

MAP and rejects all incoming/outgoing packets from/to those IPs (as shown in

Listing 4.1 at lines 28,32).

All the packets which are not present in suspicious_IPs HASH MAP and

all the packets coming from the IPs present in the P2P_IPs HASH MAP (see

Figure 4.1) and from ports involved by theP2PModule (see Figure 4.1), are allowed

through by returning the value -1 as we can see at lines 10,17,36 in Listing 4.1.

1 // ...

2 int ebpf_program (struct __sk_buff *skb) {

3

4 // ...

5

6 if ((packet . protocol == 6) || (packet . protocol == 17)){

7 if (P2P_IPs . lookup (& packet . dst_ip) != NULL){

8 if ((packet . src_port == 9020) || (packet . dst_port == 9020) || (

packet . src_port == 8000) || (packet . dst_port == 8000)){

4.5 Mitigation 48

9 bpf_trace_printk (" ALLOWED packet : 'dst_ip ' in 'P2P_IPs ' hash

and '(dst/src)_port ' used in P2P network \n");

10 return -1;

11 }

12 }

13 else{

14 if (P2P_IPs . lookup (& packet . src_ip) != NULL){

15 if ((packet . src_port == 9020) || (packet . dst_port == 9020) ||

(packet . src_port == 8000) || (packet . dst_port == 8000)){

16 bpf_trace_printk (" ALLOWED packet : 'src_ip ' in 'P2P_IPs '

hash and '(dst/src)_port ' used in P2P network \n");

17 return -1;

18 }

19 }

20 }

21

22 queue.push (& packet , BPF_EXIST);

23 }

24

25

26 if (packet . src_ip == localIP && packet . dst_ip != localIP &&

suspicious_IPs . lookup (& packet . dst_ip) != NULL){

27 bpf_trace_printk (" BLOCKED packet : 'dst_ip ' in 'suspicious_IPs '

hash\n");

28 return 0;

29 }

30 else if (packet . src_ip != localIP && packet . dst_ip == localIP &&

suspicious_IPs . lookup (& packet . src_ip) != NULL){

31 bpf_trace_printk (" BLOCKED packet : 'src_ip ' in 'suspicious_IPs '

hash\n");

32 return 0;

33 }

34 else{

35 bpf_trace_printk (" ALLOWED packet \n");

36 return -1;

37 }

38 }

Listing 4.1. eBPF program mitigation

49

Chapter 5

Experimental Assessment

In this chapter, we present a large number of experimental results obtained by

relying on traces obtained from real-world botnets. The goal of this experimental

study is twofold. On the one hand, we want to stress test the proposed approach, and

see whether it is capable of providing good detection results also while a botnet-based

attack is being carried out—we recall that this is the enabling factor to perform an

effective mitigation of the attack. On the other hand, we want to experimentally

assess what are the requirements from the distributed system to make our approach

viable and effective, and what could be possible lines of improvement to introduce

in future work.

5.1 Tested Botnets

The dataset used to train the Random Forest Classifiers of the Flow and Graph

based analysis has been taken from the University of New Brunswick [7]. From the

UNB pcap training dataset, the effective training datasets (for Flow and Graph based

detection) have been extracted: they have been created extracting the flow/graph

features from UNB pcap training dataset and storing in hdf5 files1.

In addition to the UNB pcap training dataset, the University of New Brunswick

provides also the UNB pcap testing dataset to test the botnet detection methodologies.
1In the case of the flow-based detection, the dataset is represented in Figure 4.1 as "Flow-based

Training dataset".

5.1 Tested Botnets 50

The first dataset, which has been used to create our "Flow-based Training dataset"

and "Flow-based Training dataset" files, contains samples from the following botnet:

• Neris: a botnet that uses an IRC C&C channel to communicate with its bots,

attempting to send SPAM for performing click-fraud using some advertisement

services [42].

• Rbot: an old-school IRC botnet that uses the "Rbot malware kit". It has

not the same scalability of other well-known botnets. The Rbot’s underlying

malware uses a backdoor to gain control of the infected machine (installing

keyloggers, viruses, and even stealing files from the machine) for sending spam

or performing DDOS attacks [30].

• Virut: a botnet which spreads by injecting code into any executable or

screensaver file that is accessed. It also injects malicious iframes into HTML,

PHP and ASP files. The distribution of this malware to additional devices

can be carried out by network shares, removable drives and "malvertising"2.

Moreover, it uses a domain generation algorithm and an encrypted protocol

with RSA signature verification for C&C signalling. After Virut establishes the

connection with victims machines, it instructs them to download a portable

executable file. This attempts to drop further payloads over HTTP, using the

user agent ’AdInstall’ [45].

• NSIS: a type of Trojan behaving as a P2P Botnet that targets Windows

platform. It instructs the infected machines to download and install additional

malware [20].

• SMTP Spam: it refers to some types of botnets which spoof a return address

and easily mail the same message to multiple recipients [14].

• Zeus: a financial malware which waits for infected machines to log into a list

of targeted banks and financial institutions, and then steals their credentials

by recording the keystrokes used to log in. Then, the malware sends these
2Malvertising is the insertion of malicious advertisements into otherwise legitimate webpages or

advertising networks.

5.1 Tested Botnets 51

information to a remote C&C server in real time. Zeus can appear in two

botnet forms: centralized and decentralized (P2P) (see section 2.1). In the

latter case, this botnet is already known as "GameOver Zeus" which, unlike

centralized Zeus version, has a peer-to-peer C&C infrastructure meaning that

the instructions to the infected computers can come from any of the infected

computers, making a takedown of the botnet more difficult [17, 37, 32].

From the second dataset, we have extracted a pcap file (which is a sub-selection

of the UNB pcap testing dataset) for each considered botnet. Each of these pcap

files contains the traffic of some normal hosts which communicate with a malicious

host infected by a specific botnets. The botnet considered for the test are divided

in two classes: known and unknown. The first class, unlike the second one, is

composed by samples of botnets present also in the "UNB training dataset" (which

were described above). The tested known botnets are: Neris, Virut and Zeus. The

unknown botnets are used to test the generalizability and the botnet-agnosticism of

our botnet detection methodology. The considered unknown botnets are:

• Menti: an IRC-based botnet. The main activities are to employ a custom

unencrypted protocol to connect to C&C server and to scan SMTP servers

(i.e., TCP port 25) [47].

• BlackHole: a P2P Botnet.

• Weasel: a botnet designed for providing an open-source platform for analysis

of botnet traffic. It is characterized by a realistic and secure communication

channel allowing a secure communication between bots and the botmaster.

The Weasel framework is composed of distinct modules. The bot module

can be viewed as a server which listens for socket connections from the C&C

module. The C&C subsystem is invoked on demand as the botmaster wishes

to send commands. Both the C&C and bot modules interact with a RESTful

Python web service, which contains functionality for updating bot status

and maintaining a history of sent commands. Weasel makes use of a shared

PostgreSQL database directly accessible from C&C modules, whereas the

bot has indirect access through the web service. Weasel provides an HTTPS-

5.1 Tested Botnets 52

Figure 5.1. Weasel communication overview [60].

encrypted web interface (that gives a read-only access to bot status information,

command history, and user accounts) whose access is controlled with the C&C

database account table, on the basis of client IP address and a password

such that information being transmitted within the bot network is visible to

only those hosts which the botmaster designates. When a bot starts up, it

executes a command from the botmaster, or shuts down, it issues an "activity

notification" (in form of HTTP GET request) to the C&C server such that the

botmaster knows if the bot is active or not. Moreover, to prevent hijacking

of the botnet, bots perform basic message authentication & validation: upon

receipt of a command from the botmaster, the bot sends a validation request

to the C&C server, containing the MD5 hash of the received command. The

server scans the history of commands issued within the past 10 seconds, and if

there is a match between the stored hash value and the hash value received

by the bot, the C&C server indicates that the command is valid by sending

to the bot a "validation indicator". The Weasel botnet can be used for DDoS

attacks, spamming, or even distributed computing. The communication stages

performed by the Weasel Botnet are shown in Figure 5.1 [60].

5.2 Tests description 53

5.2 Tests description

The tests performed are three:

• Single-host Test: this test is performed on a host without interacting with

other P2P hosts. In this way, it is possible to see the behaviour of our approach

running on a non-distributed system.

• P2P Test: this test is performed by running the tool on all P2P hosts at

same time. In this way, it is possible to see the behaviour of our approach

running on a distributed system.

• Incremental Learning Test: this test is performed after doing the P2P

Test by enabling only the flow-based analysis. In this way, it is to possible to

see the effects of the Incremental Learning of the P2P Test on the Flow based

analysis of this test.

The P2P tests will be compared to an "Oracle" which performs an graph-based

botnet detection all at once of the whole traffic exchanged by all peers of the P2P

network throughout the duration of the tests. The "Oracle", despite having an high

accuracy and a low time of execution, has no way of performing an online detection

and mitigation, as opposed to our approach.

5.3 Experiment

The results shown below have been obtained by developing the AntiBotnet

tool3: an implementation of our approach. The implementation has been tested on

Amazon Web Services EC2 t3.medium instances which allow to emulate a distributed

environment on a local network. The t3.medium instances have the following features:

• 1st or 2nd generation Intel Xeon Platinum 8000 series processor (Skylake-SP

or Cascade Lake) with a sustained all core Turbo CPU clock speed of up to

3.1 GHz. Additionally there is support for the new Intel Advanced Vector

Extensions 512 (AVX-512) instruction set, offering up to 2x the FLOPS per

core compared to the previous generation T2 instances.
3The source code is available at https://github.com/alessioizzillo/AntiBotnet.

https://github.com/alessioizzillo/AntiBotnet

5.3 Experiment 54

• 2 vCPUs (i.e. threads of a CPU core).

• Memory size of 4 GB.

• Network burst bandwidth of 5 Gbps.

• EBS burst bandwidth of 5 Mbps

The number of instances used for testing the implementation on each botnet, are:

5 for Neris, 5 for Virut, 5 for Zeus, 2 for Menti, 5 for Weasel and 4 for BlackHole.

The test pcap files extracted by the UNB pcap training dataset (see section 5.1)

are replayed on the host on which the tool (implementing our approach) runs in

order to emulate the attack of the botnets on these hosts. The replay of the test

pcap files related to some botnet have been carried out by replacing the IP of the

hosts which communicate with the malicious host, with the IP of the actual host

on which the tool runs. Moreover, in the Incremental learning Test, the original IP

of the bot hosts has been replaced with a fake IP. In this way, the bots which will

communicate with the hosts on which the tool runs, will appear as another host

in order to avoid a trivial botnet detection that succeeds only because the bot IP

matched exactly the one present in the flow-based training dataset (updated by the

graph-based detection in the previously executed P2P Test).

5.3.1 Tool usage details

The AntiBotnet tool can be launched through the "AntiBotnet.py" file by typing

the following command:

sudo python3 AntiBotnet.py mode interface n_pkts n_rf_est_fbd

n_rf_est_gbd test_pcap test_victim_IPs_file pos_victim_IP2replace

test_malicious_IPs_file P2P_IP

Below, there is the description of the arguments passed to the script through the

command above.

• mode (mandatory for both modes): the execution mode, "real-world mode"

or "test mode";

5.3 Experiment 55

• interface (mandatory for both modes): the Ethernet interface name from

which to capture the traffic to analyze;

• n_pkts (mandatory for both modes): the size of the batch of packets to

analyze;

• n_rf_est_fbd (mandatory for both modes): the number of estimators to

train the Random Forest Classifier in Flow-Based detection;

• n_rf_est_gbd (mandatory for both modes): the number of estimators to

train the Random Forest Classifier in Graph-Based detection;

• test_pcap (only for "test mode"): path of pcap file from which to replay the

packets for testing the tool;

• test_victim_IPs_file (only for "test mode"): path of the text file where all

the victim IPs which communicate with the malicious host are listed (one per

line);

• pos_victim_IP2replace (only for "test mode"): position (in the the file

"test_victim_IPs_file") of the victim IP to assign to the host where the tool

runs;

• test_malicious_IPs_file (only for "test mode"): path of the testfile where

malicious IPs of test pcap file are listed (one per line);

• P2P_IP (optional for both modes): IP of an active host of the P2P network

to connect to.

5.3.2 Results on known botnets

Considering the Neris botnet, we can see that in the Single-host Test, graph-based

detection (gbd) accuracy (Figure 5.2a) grows over the time and, after 150 seconds

of execution, it settles at 0.95. Instead, in the case of the flow-based detection

(fbd), the accuracy varies from 0.50 to 1.0. The P2P Test was performed with 5

peers communicating with the malicious host. Comparing its results (Figure 5.4a)

with those in Single-host Test, we can notice that the accuracy of the graph-based

5.3 Experiment 56

0 50 100 150 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

Neris_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 50 100 150 200
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Neris_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.2. Neris Botnet, Single-host Test.

0 50 100 150 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Neris_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.3. Neris Botnet, Single-host Test, True Positives

0 50 100 150 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Neris_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 50 100 150 200
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Neris_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.4. Neris Botnet, P2P Test.

5.3 Experiment 57

0 50 100 150 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m

be
r o

f T
ru

e
Po

sit
iv

es
 (a

ve
ra

ge
 o

f a
ll

ho
st

s)

Neris_P2P_TEST (True Positives)

FBD
GBD

Figure 5.5. Neris, P2P Test, True Positives

0 25 50 75 100 125 150 175
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Neris_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

0 25 50 75 100 125 150 175
Time (seconds)

0

1

2

3

4

5

6

7

8

9
Ex
ec
ut
io
n
tim
e
(s
ec
on
ds
)

Neris_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.6. Neris Botnet, Incremental Learning Test.

0 25 50 75 100 125 150 175
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Neris_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.7. Neris, Incremental Learning Test, True Positives.

detection is near to 1 since Time = 20s and, due to incremental learning, the

accuracy of the flow-based detection is higher. This means that the host’s knowledge

5.3 Experiment 58

of the network traffic exchanged among all peers of the P2P Network communicating

with the malicious host, as expected, gives better results in detecting the malicious

host. A further evidence of the incremental learning effectiveness is shown comparing

the Flow-based detection True Positives in the Single-host Test (Figure 5.3) with

those in Incremental Learning Test (Figure 5.7): in fact, the incremental learning

improves the accuracy of flow-based analysis on the samples of botnets already

analyzed in the past by updating everytime the flow-based training dataset. We can

perform another evaluation of our method comparing the results of the P2P Test

(Figure 5.4 and Figure 5.5) with the "Oracle" results. The accuracy of the Oracle

is nearly 0.991, the True Positives has a value of 1.0 and the Oracle detection is

performed in nearly 2.141 seconds. We can clearly state that the Oracle is more

accurate and responsive than our method in "P2P mode" (i.e. when it performs

the analysis communicating with others peers of the P2P Network) if we consider a

botnet the host has never seen before. Instead, as shown in Incremental Learning

Test results (Figure 5.6a and Figure 5.7), the analysis on samples of previously

analyzed botnets, causes an increase of flow-based method accuracy that overcomes,

due to the incremental learning, the graph-based accuracy of the Oracle. The

execution times of the graph-based analyses in the P2P test (Figure 5.4b) are slightly

lower than those of flow-based analyses in Incremental Learning Test (Figure 5.6b)

making the general approach slightly more responsive when analyzes samples of

already analyzed botnets.

Also for Virut, the P2P Test was performed with 5 peers communicating with

the malicious host. The difference between the accuracy of the Single-host Test

and P2P Test (Figure 5.8a and Figure 5.10a) is negligible both for graph-based and

flow-based detection, but the True Positives of the graph-based detection in P2P

Test (Figure 5.11) are considerably higher than those of the graph-based detection in

Single-host Test (Figure 5.9). This means, as said for Neris, that the host’s knowledge

of the network traffic exchanged by the all peers of the P2P Network communicating

with the malicious host, improves the capability to detect the malicious host. As in

the Neris case, also in Virut incremental learning improves the accuracy of flow-based

analysis on the samples of botnets already analyzed in the past by updating everytime

5.3 Experiment 59

50 75 100 125 150 175 200 225
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Virut_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

50 75 100 125 150 175 200 225
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on
ds
)

Virut_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.8. Virut Botnet, Single-host Test.

50 75 100 125 150 175 200 225
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Virut_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.9. Virut Botnet, Single-host Test, True Positives

50 100 150 200 250
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Virut_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

50 100 150 200 250
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Virut_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.10. Virut Botnet, P2P Test.

5.3 Experiment 60

50 100 150 200 250
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

Virut_P2P_TEST (True Positives)

FBD
GBD

Figure 5.11. Virut, P2P Test, True Positives

25 50 75 100 125 150 175 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Virut_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

25 50 75 100 125 150 175 200
Time (seconds)

0

1

2

3

4

5

6

7

8

9
Ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)
Virut_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.12. Virut Botnet, Incremental Learning Test.

25 50 75 100 125 150 175 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po

sit
iv
es

 (a
ve

ra
ge

 o
f a

ll
ho

st
s)

Virut_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.13. Virut, Incremental Learning Test, True Positives.

the flow-based training dataset, as we can see by comparing the True Positives of

the Single-Host Test (Figure 5.9) and those of the P2P Test (Figure 5.13). The

5.3 Experiment 61

Oracle of the Virut Botnet has an accuracy of 0.987, a True Positives value of 0.8

and an execution time of 3.189 seconds. This accuracy, unlike Neris, is not fully

achieved on samples of botnet already analyzed by the flow-based detection of the

Incremental Learning Test (Figure 5.12a), but it oscillates approximately between

0.50 and 1.0 and this irregularity can be seen also in the True Positives results in

Figure 5.13. So, in this case incremental learning is not very effective.

20 40 60 80 100
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Zeus_sample_1_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

20 40 60 80 100
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Zeus_sample_1_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.14. Zeus Botnet, Single-host Test.

20 40 60 80 100
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Zeus_sample_1_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.15. Zeus Botnet, Single-host Test, True Positives

Considering the Zeus botnet, we can see that in the Single-host Test, graph-based

detection (gbd) accuracy (Figure 5.14a), as in the case of Neris, slightly grows over

time and, approximately 80 seconds into the experiment, it settles between 0.85 and

0.90. Instead, in the case of the flow-based detection (fbd), the accuracy varies from

0.33 to 0.70. The P2P Test was performed with 5 peers communicating with the

5.3 Experiment 62

20 40 60 80 100 120
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Zeus_sample_1_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

20 40 60 80 100 120
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on
ds
)

Zeus_sample_1_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.16. Zeus Botnet, P2P Test.

20 40 60 80 100 120
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

Zeus_sample_1_P2P_TEST (True Positives)

FBD
GBD

Figure 5.17. Zeus, P2P Test, True Positives

20 40 60 80 100
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Zeus_sample_1_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

20 40 60 80 100
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Zeus_sample_1_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.18. Zeus Botnet, Incremental Learning Test.

5.3 Experiment 63

20 40 60 80 100
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po

sit
iv
es

 (a
ve

ra
ge

 o
f a

ll
ho

st
s)

Zeus_sample_1_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.19. Zeus, Incremental Learning Test, True Positives.

malicious host and comparing its results (Figure 5.16a) with those in the Single-host

Test, we can notice that the accuracy of the graph-based detection is near 0.95

since Time = 60s and, due to incremental learning, the accuracy of the flow-based

detection is generally higher due to some peaks achieving more than 0.85 at some

time. A further evidence of the incremental learning effectiveness is shown comparing

the Flow-based detection True Positives in the Single-host Test (Figure 5.15) with

those in Incremental Learning Test (Figure 5.19): in the first test, the malicious

host is not detected at any time, whereas, in the other test, we can notice that

the incremental learning has improved the accuracy of flow-based analysis on the

samples of botnets already analyzed in the past by updating everytime the flow-based

training dataset. We can perform another evaluation of our method comparing the

results of the P2P Test (Figure 5.16 and Figure 5.17) with the "Oracle" results. The

accuracy of the Oracle is nearly 0.956, the True Positives has a value of 0.4 and

the Oracle detection is performed in nearly 1.341 seconds. Unlike Neris, as shown

in Incremental Learning Test results (Figure 5.6a and Figure 5.7), the analysis on

samples of previously analyzed botnets, do not cause any significant increase of

flow-based method accuracy. Nevertheless, there is a small improvement introduced

by Incremental Learning in the True Positives results of the flow-based detection as

shown comparing Figure 5.15 with Figure 5.19.

5.3 Experiment 64

0 50 100 150 200 250 300 350
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Menti_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 50 100 150 200 250 300 350
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on
ds
)

Menti_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.20. Menti Botnet, Single-host Test.

0 50 100 150 200 250 300 350
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Menti_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.21. Menti Botnet, Single-host Test, True Positives

0 50 100 150 200 250 300 350
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Menti_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 50 100 150 200 250 300 350
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on
ds
)

Menti_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.22. Menti Botnet, P2P Test.

5.3 Experiment 65

0 50 100 150 200 250 300 350
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

Menti_P2P_TEST (True Positives)

FBD
GBD

Figure 5.23. Menti, P2P Test, True Positives

0 50 100 150 200 250
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Menti_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

0 50 100 150 200 250
Time (seconds)

0

1

2

3

4

5

6

7

8

9
Ex
ec
ut
io
n
tim
e
(s
ec
on
ds
)

Menti_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.24. Menti Botnet, Incremental Learning Test.

0 50 100 150 200 250
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Menti_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.25. Menti, Incremental Learning Test, True Positives.

5.3 Experiment 66

5.3.3 Results on unknown botnets

In the Menti botnet, we can see, as in the case of Neris, that the graph-based

detection (gbd) accuracy of the Single-host Test (Figure 5.20a) grows over the time

and, at 150 seconds, it settles at 0.95. Instead, in the case of flow-based detection

(fbd), the accuracy varies from 0.33 to 1.0. The P2P Test was performed with only 2

peers communicating with the malicious host and its results are very similar to those

of the Single-host Test. The accuracy of the Oracle is nearly 0.980 and the detection

is performed in nearly 3.632 seconds; but despite a high accuracy, the True Positives

value is 0.0. This is a clear indication that, if the number of peers composing the

network is too small, the capability to build a meaningful graph to detect the botnet

becomes a hard task, which is also an expected result from our proposal. Also, it

could be an indication that additional features might be included in our proposed

approach, to increment its detection capabilities. If we consider also the results of

the Incremental Learning Test (Figure 5.24a and Figure 5.25), we can see that the

Incremental Learning is not effective at improving the flow-based detection since the

graph-based detection is not able to detect the botnet as seen previously.

20 40 60 80 100 120 140 160
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Weasel_bot_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

20 40 60 80 100 120 140 160
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Weasel_bot_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.26. Weasel Botnet, Single-host Test.

Considering the Weasel botnet, we can see that in the Single-host Test, graph-

based detection (gbd) accuracy (Figure 5.26a) grows over the time and, at 120

seconds, it settles at 0.92. Instead, in the case of the flow-based detection (fbd),

the accuracy varies from 0.36 to 0.67. The P2P Test was performed with 5 peers

5.3 Experiment 67

20 40 60 80 100 120 140 160
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po

sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

Weasel_bot_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.27. Weasel Botnet, Single-host Test, True Positives

20 40 60 80 100 120 140 160 180
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

Weasel_bot_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

20 40 60 80 100 120 140 160 180
Time (seconds)

0

1

2

3

4

5

6

7

8

9
Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

Weasel_bot_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.28. Weasel Botnet, P2P Test.

20 40 60 80 100 120 140 160 180
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

Weasel_bot_P2P_TEST (True Positives)

FBD
GBD

Figure 5.29. Weasel, P2P Test, True Positives

communicating with the malicious host. Comparing its results (Figure 5.28a) with

those in Single-host Test, we can notice that the accuracy of the graph-based detection

5.3 Experiment 68

20 40 60 80 100 120 140
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

Weasel_bot_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

20 40 60 80 100 120 140
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on
ds
)

Weasel_bot_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.30. Weasel Botnet, Incremental Learning Test.

20 40 60 80 100 120 140
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

Weasel_bot_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.31. Weasel, Incremental Learning Test, True Positives.

is near 0.95 since Time = 20s and, thanks to incremental learning, the accuracy of

the flow-based detection is higher. This means, as already explained, that the host’s

knowledge of the network traffic exchanged by the all peers of the P2P Network

communicating with the malicious host, as expected gives better results in detecting

the malicious host. A peculiarity of the graph-based detection execution time in

P2P Test (Figure 5.28b) is that it grows rapidly over time compared to other type

of Botnet (for example, Neris). A further evidence of the incremental learning’s

effectiveness is shown comparing the Flow-based detection True Positives in the

Single-host Test (Figure 5.27) with those in Incremental Learning Test (Figure 5.31):

in fact, the incremental learning improves the accuracy of flow-based analysis on

the samples of botnets already analyzed in the past by updating everytime the

5.3 Experiment 69

flow-based training dataset. The only peculiarity is that the True Positives value

in Incremental Learning Test is high until Time ≤ 80. We can perform another

evaluation of our method comparing the results of the P2P Test (Figure 5.28 and

Figure 5.29) with the "Oracle" results. The accuracy of the Oracle is nearly 0.970,

the True Positives has a value of 0.6 and the Oracle detection is performed in nearly

2.664 seconds. We can clearly state that the Oracle is more accurate and responsive

than our method in "P2P mode" (i.e. when it performs the analysis communicating

with others peers of the P2P Network) if we consider a botnet the host has never seen

before. Instead, as shown in Incremental Learning Test results (Figure 5.30a and

Figure 5.31), the analysis of samples of previously analyzed botnets causes an increase

in the flow-based method accuracy that overcomes (until Time ≤ 80), thanks to

incremental learning, the graph-based accuracy of the Oracle. The execution time

of the graph-based analyses in the P2P test (Figure 5.28b) is slightly greater than

that of flow-based analyses in Incremental Learning Test (Figure 5.30b) making the

general approach slightly less responsive also when analyzing samples of already

analyzed botnets.

0 25 50 75 100 125 150 175
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

BlackHole_2_SINGLE_HOST_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 25 50 75 100 125 150 175
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

BlackHole_2_SINGLE_HOST_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.32. BlackHole Botnet, Single-host Test.

Considering the BlackHole botnet, we can see that in the Single-host Test, graph-

based detection (gbd) accuracy (Figure 5.32a) behaves very similarly to the Neris

Botnet growing over the time and, at 150 seconds, it settles at 0.95. Instead, in

the case of the flow-based detection (fbd), the accuracy varies from 0.40 to 0.75.

5.3 Experiment 70

0 25 50 75 100 125 150 175
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be

r o
f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge

 o
f a

ll
ho

st
s)

BlackHole_2_SINGLE_HOST_TEST (True Positives)

FBD
GBD

Figure 5.33. BlackHole Botnet, Single-host Test, True Positives

0 25 50 75 100 125 150 175 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu

ra
cy

BlackHole_2_P2P_TEST (Accuracy)

FBD
GBD

(a) Accuracy.

0 25 50 75 100 125 150 175 200
Time (seconds)

0

1

2

3

4

5

6

7

8

9
Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

BlackHole_2_P2P_TEST (Execution Time)

FBD
GBD

(b) Training Execution Time.

Figure 5.34. BlackHole Botnet, P2P Test.

0 25 50 75 100 125 150 175 200
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru
e
Po
sit
iv
es
 (a

ve
ra
ge
 o
f a

ll
ho
st
s)

BlackHole_2_P2P_TEST (True Positives)

FBD
GBD

Figure 5.35. BlackHole, P2P Test, True Positives

The P2P Test was performed with 4 peers communicating with the malicious host

and comparing its results (Figure 5.34a) with those in Single-host Test, we can

5.3 Experiment 71

0 20 40 60 80 100 120 140
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

BlackHole_2_INCREMENTAL_LEARNING_TEST (Accuracy)

FBD

(a) Accuracy.

0 20 40 60 80 100 120 140
Time (seconds)

0

1

2

3

4

5

6

7

8

9

Ex
ec
ut
io
n
tim

e
(s
ec
on

ds
)

BlackHole_2_INCREMENTAL_LEARNING_TEST (Execution Time)

FBD

(b) Training Execution Time.

Figure 5.36. BlackHole Botnet, Incremental Learning Test.

0 20 40 60 80 100 120 140
Time (seconds)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Nu
m
be
r o

f T
ru

e
Po

sit
iv
es

 (a
ve

ra
ge

 o
f a

ll
ho

st
s)

BlackHole_2_INCREMENTAL_LEARNING_TEST (True Positives)

FBD

Figure 5.37. BlackHole, Incremental Learning Test, True Positives.

notice that the accuracy of the graph-based detection is near 0.90 since Time = 26s

and, thanks to incremental learning, the accuracy of the flow-based detection is

higher at some time. A peculiarity is that the host’s knowledge of the network

traffic exchanged by the all peers of the P2P Network communicating with the

malicious host, gives irregular results in detecting the malicious host (True Positives),

as we can see in Figure 5.35. For this irregularity, Incremental Learning loses its

effectiveness compared to the Flow-based detection True Positives in the Single-host

Test (Figure 5.33) with those in Incremental Learning Test (Figure 5.37). The

accuracy of the Oracle is nearly 0.843, the True Positives has a value of 0.5 and

the Oracle detection is performed in nearly 1.058 seconds. We can notice that the

accuracy of the Oracle is lower than that of other Botnets and also the performance

5.3 Experiment 72

in detecting the malicious host is not high.

73

Chapter 6

Conclusions

In this work, we have shown an approach using flow-based and graph-based

methods in a distributed system, which complies with our objectives: online detection

and mitigation. As we have seen in chapter 5, the distributed approach gives good

results with some types of Botnets which attack a sufficient number of peers in

the P2P network, instead other types of Botnets which attack few peers, may be

difficult to detect. Another good result is about Incremental Learning: it allows to

detect properly some bots through the flow-based detection only if those bots have

already been previously detected by the graph-based detection which has updated

the flow-based training dataset. In future work, we can consider to improve the

approach making it able to detect more botnets than one simultaneously by detecting

the sub-graphs for each specific botnets from the main graph (built from the captured

total P2P traffic) through Machine Learning techniques like clustering. Moreover,

we can study more accurately the variation of the graph-based accuracy with respect

to flow-based detection in a variable P2P Network (where the peers may become

inactive over time). To this end, it is necessary to handle the ever increasing graph

on which to perform the graph-based analysis in order to improve the performance

of the approach.

74

Bibliography

[1] Abbas Abou Daya, Mohammad Salahuddin, Noura Limam, and R. Boutaba.

Botchase: Graph-based bot detection using machine learning. IEEE Transac-

tions on Network and Service Management, PP, 02 2020.

[2] Magnus Almgren and Wolfgang John. Tracking malicious hosts on a 10gbps

backbone link. In Tuomas Aura, Kimmo Järvinen, and Kaisa Nyberg, edi-

tors, Information Security Technology for Applications, pages 104–120, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[3] S. Arshad, M. Abbaspour, M. Kharrazi, and H. Sanatkar. An anomaly-based

botnet detection approach for identifying stealthy botnets. In 2011 IEEE

International Conference on Computer Applications and Industrial Electronics

(ICCAIE), pages 564–569, 2011.

[4] Simon Bernard, Laurent Heutte, and Sébastien Adam. A study of strength

and correlation in random forests. In International Conference on Intelligent

Computing, pages 186–191. Springer, 2010.

[5] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, and A. A. Ghorbani. Towards

effective feature selection in machine learning-based botnet detection approaches.

In 2014 IEEE Conference on Communications and Network Security, pages

247–255, 2014.

[6] James R Binkley and Suresh Singh. An algorithm for anomaly-based botnet

detection. SRUTI, 6:7–7, 2006.

Bibliography 75

[7] Botnet dataset, 2014. https://www.unb.ca/cic/datasets/botnet.html, last

accessed on 2021-01-13.

[8] Leo Breiman. Random forests. Machine Learning, 45:5–32, 10 2001.

[9] D. Calavera and L. Fontana. Linux Observability with BPF: Advanced Program-

ming for Performance Analysis and Networking. O’Reilly Media, 2019.

[10] Ruidong Chen, Weina Niu, Xiaosong Zhang, Zhongliu Zhuo, and Fengmao

Lv. An effective conversation-based botnet detection method. Mathematical

Problems in Engineering, 2017:1–9, 04 2017.

[11] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet detection by monitoring group

activities in dns traffic. In 7th IEEE International Conference on Computer

and Information Technology (CIT 2007), pages 715–720, 2007.

[12] Bpf and xdp reference guide, 2020. https://github.com/cilium/cilium/

blob/v1.9/Documentation/bpf.rst, last accessed on 2021-01-13.

[13] Charles D Cranor, Emden Gansner, Balachander Krishnamurthy, and Oliver

Spatscheck. Characterizing large dns traces using graphs. In Proceedings of the

1st ACM SIGCOMM Workshop on Internet Measurement, pages 55–67, 2001.

[14] Lorrie Faith Cranor and Brian A LaMacchia. Spam! Communications of the

ACM, 41(8):74–83, 1998.

[15] David Dagon. Botnet detection and response. In OARC workshop, volume 2005,

2005.

[16] J. Demarest. Taking down botnets, 07 2014. https://www.fbi.gov/news/

testimony/taking-down-botnets, last accessed on 2021-01-13.

[17] Gameover zeus botnet disrupted, 06 2014. https://www.fbi.gov/news/

stories/gameover-zeus-botnet-disrupted, last accessed on 2021-01-13.

[18] M. Feily, A. Shahrestani, and S. Ramadass. A survey of botnet and botnet detec-

tion. In 2009 Third International Conference on Emerging Security Information,

Systems and Technologies, pages 268–273, 2009.

https://www.unb.ca/cic/datasets/botnet.html
https://github.com/cilium/cilium/blob/v1.9/Documentation/bpf.rst
https://github.com/cilium/cilium/blob/v1.9/Documentation/bpf.rst
https://www.fbi.gov/news/testimony/taking-down-botnets
https://www.fbi.gov/news/testimony/taking-down-botnets
https://www.fbi.gov/news/stories/gameover-zeus-botnet-disrupted
https://www.fbi.gov/news/stories/gameover-zeus-botnet-disrupted

Bibliography 76

[19] Abe Fettig and Glyph Lefkowitz. Twisted network programming essentials. "

O’Reilly Media, Inc.", 2005.

[20] Nsis.botnet, 12 2017. https://www.fortiguard.com/encyclopedia/ips/

45139/nsis-botnet, last accessed on 2021-01-13.

[21] D. Garant and W. Lu. Mining botnet behaviors on the large-scale web ap-

plication community. In 2013 27th International Conference on Advanced

Information Networking and Applications Workshops, pages 185–190, 2013.

[22] Sebastián García, Alejandro Zunino, and Marcelo Campo. Survey on network-

based botnet detection methods. Security and Communication Networks,

7(5):878–903, 2014.

[23] J. Göbel and T. Holz. Rishi: Identify bot contaminated hosts by irc nickname

evaluation. In HotBots, 2007.

[24] graph-tool documentation. https://graph-tool.skewed.de/static/doc/

centrality.html, last accessed on 2021-01-13.

[25] B. Gregg. BPF Performance Tools. Addison-Wesley Professional Computing

Series. Pearson Education, 2019.

[26] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee. Active botnet probing

to identify obscure command and control channels. In 2009 Annual Computer

Security Applications Conference, pages 241–253, 2009.

[27] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Botminer: Cluster-

ing analysis of network traffic for protocol- and structure-independent botnet

detection. In Proceedings of the 17th Conference on Security Symposium, page

139–154. USENIX Association, 2008.

[28] Guofei Gu, Junjie Zhang, andWenke Lee. Botsniffer: Detecting botnet command

and control channels in network traffic. In Proceedings of the 15th Annual

Network and Distributed System Security Symposium, 2008.

[29] Yutaro Hayakawa. ebpf implementation for freebsd. In BSDCan 2018. The

BSD Conference, 2018.

https://www.fortiguard.com/encyclopedia/ips/45139/nsis-botnet
https://www.fortiguard.com/encyclopedia/ips/45139/nsis-botnet
https://graph-tool.skewed.de/static/doc/centrality.html
https://graph-tool.skewed.de/static/doc/centrality.html

Bibliography 77

[30] K. J. Higgins. The world’s biggest botnets, 11 2007. https://www.darkreading.

com/the-worlds-biggest-botnets-/d/d-id/1129117, last accessed on 2021-

01-13.

[31] Chien-Hau Hung and Hung-Min Sun. A botnet detection system based on

machine-learning using flow-based features. In Proceedings of the Twelfth

International Conference on Emerging Security Information, Systems and Tech-

nologies, SECURWARE, pages 122–127, 2018.

[32] Laheeb Mohammed Ibrahim and Karam H Thanon. Analysis and detection

of the zeus botnet crimeware. International Journal of Computer Science and

Information Security, 13(9):121, 2015.

[33] Muhammad Imam, Manjinder Paul Nir, and Ashraf Matrawy. A survey on

botnet architectures, detection and defences. International Journal of Network

Security, 17, 01 2014.

[34] Wolfgang John and Sven Tafvelin. Differences between in-and outbound internet

backbone traffic. In TERENA Networking Conference (TNC), 2007.

[35] Ahmad Karim, Rosli Bin Salleh, Muhammad Shiraz, Syed Adeel Ali Shah, Irfan

Awan, and Nor Badrul Anuar. Botnet detection techniques: review, future

trends, and issues. Journal of Zhejiang University SCIENCE C, 15(11):943–983,

Nov 2014.

[36] Kaspersky. What is a botnet? https://www.kaspersky.com/

resource-center/threats/botnet-attacks, last accessed on 2021-01-13.

[37] Zeus virus. https://www.kaspersky.com/resource-center/threats/

zeus-virus, last accessed on 2021-01-13.

[38] Andy Liaw and Matthew Wiener. Classification and regression by randomforest.

Forest, 23, 11 2001.

[39] Lei Liu, Songqing Chen, Guanhua Yan, and Zhao Zhang. Bottracer: Execution-

based bot-like malware detection. In International Conference on Information

Security, pages 97–113. Springer, 2008.

https://www.darkreading.com/the-worlds-biggest-botnets-/d/d-id/1129117
https://www.darkreading.com/the-worlds-biggest-botnets-/d/d-id/1129117
https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.kaspersky.com/resource-center/threats/botnet-attacks
https://www.kaspersky.com/resource-center/threats/zeus-virus
https://www.kaspersky.com/resource-center/threats/zeus-virus

Bibliography 78

[40] Mohammad M Masud, Tahseen Al-Khateeb, Latifur Khan, Bhavani Thurais-

ingham, and Kevin W Hamlen. Flow-based identification of botnet traffic by

mining multiple log files. In 2008 first international conference on distributed

framework and applications, pages 200–206. IEEE, 2008.

[41] Steven McCanne and Van Jacobson. The BSD packet filter: A new architecture

for user-level packet capture. In USENIX Winter 1993 Conference (USENIX

Winter 1993 Conference), San Diego, CA, January 1993. USENIX Association.

[42] Ctu-malware-capture-botnet-42, 2016. https://mcfp.weebly.com/

ctu-malware-capture-botnet-42.html, last accessed on 2021-01-13.

[43] I. C Mogotsi. Christopher d. manning, prabhakar raghavan, and hinrich schütze:

Introduction to information retrieval. Information Retrieval, 13:192–195, 04

2010.

[44] Christian FA Negre, Uriel N Morzan, Heidi P Hendrickson, Rhitankar Pal,

George P Lisi, J Patrick Loria, Ivan Rivalta, Junming Ho, and Victor S

Batista. Eigenvector centrality for characterization of protein allosteric pathways.

Proceedings of the National Academy of Sciences, 115(52):E12201–E12208, 2018.

[45] Virut botnet, 12 2018. https://digital.nhs.uk/cyber-alerts/2018/

cc-2829, last accessed on 2021-01-13.

[46] White Ops. 9 of history’s notable botnet attacks, 05 2018. https://

www.whiteops.com/blog/9-of-the-most-notable-botnets, last accessed on

2021-01-13.

[47] Abdurrahman Pektaş and Tankut Acarman. Botnet detection based on network

flow summary and deep learning. International Journal of Network Management,

28(6):e2039, 2018. e2039 nem.2039.

[48] Martin Roesch et al. Snort: Lightweight intrusion detection for networks.

In Proceedings of LISA ’99: 13th Systems Administration Conference, pages

229–238, 1999.

https://mcfp.weebly.com/ctu-malware-capture-botnet-42.html
https://mcfp.weebly.com/ctu-malware-capture-botnet-42.html
https://digital.nhs.uk/cyber-alerts/2018/cc-2829
https://digital.nhs.uk/cyber-alerts/2018/cc-2829
https://www.whiteops.com/blog/9-of-the-most-notable-botnets
https://www.whiteops.com/blog/9-of-the-most-notable-botnets

Bibliography 79

[49] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle.

Performance implications of packet filtering with linux ebpf. In 2018 30th

International Teletraffic Congress (ITC 30), volume 01, pages 209–217, 2018.

[50] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov. Linux socket

filtering aka berkeley packet filter (bpf). https://www.kernel.org/doc/

Documentation/networking/filter.txt, last accessed on 2021-01-13.

[51] Kapil Sinha, Arun Viswanathan, and Julian Bunn. Tracking temporal evolution

of network activity for botnet detection. arXiv preprint arXiv:1908.03443, 2019.

[52] M. Stevanovic and J. M. Pedersen. An efficient flow-based botnet detection using

supervised machine learning. In 2014 International Conference on Computing,

Networking and Communications (ICNC), pages 797–801, 2014.

[53] Elizabeth Stinson and John C Mitchell. Characterizing bots’ remote control

behavior. In International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment, pages 89–108. Springer, 2007.

[54] Ihsan Ullah, Naveed Khan, and Hatim A Aboalsamh. Survey on botnet:

Its architecture, detection, prevention and mitigation. In 2013 10th IEEE

International Conference on Networking, Sensing and Control (ICNSC), pages

660–665. IEEE, 2013.

[55] Jignesh Vania, Arvind Meniya, and HB Jethva. A review on botnet and

detection technique. International Journal of Computer Trends and Technology,

4(1):23–29, 2013.

[56] Wei Wang, Yaoyao Shang, Yongzhong He, Yidong Li, and Jiqiang Liu. Botmark:

Automated botnet detection with hybrid analysis of flow-based and graph-based

traffic behaviors. Information Sciences, 511:284 – 296, 2020.

[57] Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell. Detecting infection

onset with behavior-based policies. In 2011 5th International Conference on

Network and System Security, pages 57–64. IEEE, 2011.

https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

Bibliography 80

[58] H. R. Zeidanloo, Mohammad Jorjor Zadeh Shooshtari, Payam Vahdani Amoli,

M. Safari, and M. Zamani. A taxonomy of botnet detection techniques. In 2010

3rd International Conference on Computer Science and Information Technology,

volume 2, pages 158–162, 2010.

[59] Justin Zhan, Sweta Gurung, and Sai Phani Krishna Parsa. Identification of

top-k nodes in large networks using katz centrality. Journal of Big Data, 4(16),

05 2017.

[60] David Zhao, Issa Traore, Bassam Sayed, Wei Lu, Sherif Saad, Ali Ghorbani,

and Dan Garant. Botnet detection based on traffic behavior analysis and flow

intervals. Computers & Security, 39:2–16, 11 2013.

	Introduction
	Botnet Detection Techniques
	What is a Botnet?
	Overview of botnet detection techniques
	Signature-based Detection
	Anomaly-based Detection
	DNS-based Detection
	Mining-based Detection

	The Proposed Botnet Detection Approach

	Real-Time Packet Inspection
	eBPF
	eBPF Internals
	eBPF Registers
	eBPF Instruction set

	Maps
	Network traffic capture
	The eBPF Program
	Loading the eBPF Program
	Header packet information fetching

	The Detection and Mitigation Architecture
	P2P Network
	Botnet Detection
	Flow-Based analysis

	Incremental Learning
	Graph-Based analysis

	Random Forest Classifier
	Random Forest algorithm

	Mitigation

	Experimental Assessment
	Tested Botnets
	Tests description
	Experiment
	Tool usage details
	Results on known botnets
	Results on unknown botnets

	Conclusions
	Bibliography

