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Abstract

Speculative parallel processing is a well known means to deliver high per-

formance and scalability when executing discrete event simulation models.

Nevertheless, it requires the runtime support to restore the application’s

state to some past (consistent) image. Traditionally, the recoverability sup-

port has been realized via proper software layers. However, although a lot

of optimizations have been provided in literature for making software-based

recoverability highly efficient, its relative overhead may still represent an im-

pairment to performance in case of (very) fine grain applications. This work

presents an innovative runtime support for speculative parallel processing of

discrete event simulation models on multi-core architectures, which exploits

Hardware-Transactional-Memory (HTM) facilities, nowadays offered by off-

the-shelf processors, for the purpose of state recoverability. In this thesis, the

speculative updates on the state of the simulation model are executed as con-

current HTM-based transactions that are also in charge of detecting whether

the update is consistent with the advancement of logical-time along model

execution. This is achieved by including in the HTM-based transactional

code-block both the activation of the application layer in charge of process-

ing the simulation event, and the execution of housekeeping tasks aimed at

determining the safety (in terms of causal consistency) of the executed trans-

action. This proposal is fully transparent to the application code. Hence,
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this HTM-based run-time support can host conventionally developed discrete

event models relying on the concept of event-handlers to be dispatched by

an underlying simulation engine. Experimental data show that this proposal

provides 75% to 92% of the ideal speedup on an Intel Haswell based plat-

form (equipped with 4 physical cores and HTM support) for discrete event

models with event granularity ranging between 2 and 12 microseconds. The

data also show that these same models cannot be executed efficiently on top

of a last generation parallel discrete event simulation platform employing

software-based recoverability.



Chapter 1

Introduction

The recent trend in computing architectures has shown that multi-/many-

core machines have become the reference platforms to provide a continuous

increase of computing power [1]. In the context of Parallel Discrete Event

Simulation (PDES) [2], speculative execution of simulation models, incar-

nated by the Time Warp synchronization protocol [3] (or variants of it), has

already been proven to be able to exploit the scaled-up computing power

offered by such platforms (see, e.g., [4]) in order to speedup the execution of

very large and complex models.

In Parallel Discrete Event Simulation (PDES) [2], the simulation model

is partitioned into simulation objects, historically referred to as Logical Pro-

cesses (LPs), that are allowed to be dispatched for event processing along

concurrent worker-threads. This allows for exploiting hardware parallelism

with the aim at speeding up model execution. The simulation object is

usually implemented as a set of data structures to be updated via a call-

back (representing the application entry point), which is dispatched by the

underlying PDES platform (see, e.g., [5, 6, 7]). The dispatch operation cor-

responds to the processing of a timestamped event at the simulation object,

3



CHAPTER 1. INTRODUCTION 4

and causally consistent execution is typically based on forcing any simulation

object to process its input events in non-decreasing timestamp order, includ-

ing those produced by other objects as the result of processing activities they

carried out. In fact, although recent approaches provide alternative object-

interaction methods (see, e.g., [8, 9]), the cross-scheduling of events across

simulation-objects is the basic approach adopted in PDES in order to model

the interactions occurring between the entities belonging to the simulated

system/scenario.

In speculative PDES [3] there is no preliminary assessment of causal con-

sistency of the events, rather they are dispatched for execution on whichever

simulation object as soon as they are available. This leads to high exploita-

tion of the intrinsic parallelism in the simulation model, since causally un-

related portions of the simulated state trajectory can be processed with no

a-priory synchronization of the execution of the different simulation objects.

However, if the updates occurring along a computation path are eventually

detected to be inconsistent (i.e. they occurred out of timestamp order), roll-

back mechanisms need to be actuated so as to restore the application state

to a consistent (past) snapshot from which forward computation can be re-

sumed.

Although simple in principle, state recoverability of the simulation objects

poses problems on the side of both performance and application transparency.

In fact, the more efficient the recoverability support, the lower its overhead.

On the other hand, application-transparent state restore typically demands

more operations from an underlying recoverability layer, which further bi-

ases the tradeoff away from pure performance optimization. Literature stud-

ies have (jointly) addressed performance and transparency aspects in state

recoverability of simulation objects via disparate checkpointing techniques
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[10, 11] that, except for a few proposals based on (either conventional or

non-conventional) hardware support [12, 13], rely on software implementa-

tions of the checkpointing support. Although most of these proposals also

entail overhead minimization techniques (e.g. via tuning of the parameters

driving both checkpointing and–consequently–state recovery operations), for

the case of very fine grain simulation models, namely models based on events

that require a few microseconds of CPU-time for being processed, the over-

head can still represent an impairment to performance. A way to cope with

this issue is the alternative recoverability technique based on reverse comput-

ing [14], where the forward application code is coupled with a (in some cases

automatically generated [15]) reverse code version that is used to undo the

state updates that are eventually revealed to be inconsistent. This solution

pays off especially in contexts where, beside having fine grain reverse (hence

forward) events, the portion of the state trajectory to be undone (namely

the so called rollback length) is short, which leads to a reduced number of

reverse events to be processed per rollback operation.

Another aspect that plays a relevant role in case of speculative PDES

with very fine grain models is the cost associated with cross-simulation-

object scheduling of events, which may become predominant. This is typi-

cally achieved via message exchange (managed at the level of the underlying

PDES platform), and the classical approach to undo the notification of an

event that has been scheduled as a result of the processing of another event

that is then detected to be non-consistent is to send a negative copy of it

(the so called anti-message). Beyond potentially triggering a rollback op-

eration at the recipient (in case the original copy of the message—namely

event—was already processed) anti-messages lead to doubling the communi-

cation cost per-incorrect-scheduled events. To cope with this issue, literature
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Fig. 1.1: Speedup for PHOLD while varying event granularity and number

of threads

approaches have been proposed in order to reduce the number of message

exchange operations, such as the ones based on message aggregation [16] or

lazy-cancellation (lazy-antimessages) [17].

In any case, despite the existence of a bunch of literature results on op-

timizing speculative PDES systems, executing simulation models with very

fine grain events on top of these systems in a performance-efficient manner

is still a non-trivial achievement. Just to provide some empirical evidence,

is reported in Figure 1.1 the speedup achievable by running the classical

PHOLD benchmark for PDES systems [18] (in a configuration with 2048 sim-

ulation objects) on top of the ROOT-Sim last generation speculative PDES

platform (1) hosted on a 32-core off-the-shelf HP ProLiant machine, with re-

spect to the sequential simulation of the same benchmark (same code) on a

calendar-queue scheduler (still executed on the same machine). In the plot,

1https://github.com/HPDCS/ROOT-Sim
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the CPU-demand by PHOLD events is varied from a few to some tens of

microseconds. The plotted curves show that speedup is unacceptable (it is

a slow-down) for minimal CPU-requirements by the events, and is anyhow

non-competitive (vs the employed number of threads) even when events last

tens of microseconds.

In this thesis I cope with the issue of speculatively running PDES appli-

cations with (very) fine grain PDES applications efficiently on top of multi-

core machines, which is achieved by exploiting the Hardware-Transactional-

Memory (HTM) support that is nowadays offered by off-the-shelf processors

(such as the Intel Haswell). Overall, my proposal is suited for contexts where

conventional speculative PDES engines based on software recoverability (even

the most advanced ones) fail to provide speedup just due to the excessively

fine granularity of the simulation events (as we have shown in Figure 4.1).

With this proposal we speculatively execute an event as an HTM-based

transaction that includes the actual buffering of any newly produced event

destined to whichever simulation object (in case the transaction is success-

fully committed), and which entails a code-block that is used to explicitly

detect whether the transaction (hence the processed event) is causally con-

sistent, so that a commit is issued only in case consistency is verified. On the

other hand, if the transaction is not guaranteed to be causally consistent, it

simply issues an abort command that allows: (A) automatically undoing the

updates issued on the state of the simulation object and (B) automatically

discarding any new event produced as a result of incorrect event process-

ing. Both these targets are achieved with no intervention by any software

layer thanks to the fact that the HTM transactional cache keeping the state

updates and the newly produced events is simply squashed upon the abort

of the transaction. A secondary effect by our approach is that we allow
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intra-simulation-object concurrency in the speculative processing scheme, as

opposed to traditional PDES engines where a single event at a time can be

CPU-scheduled for a specific simulation object. Specifically, in our approach

two worker-threads operating within the PDES environment are allowed to

concurrently execute two different events targeting the same simulation ob-

ject (just depending on how the overall set of events destined to the different

simulation objects is clustered along the simulation time axis). If the two

events are actually independent (given that their read/write sets are disjoint,

which means that they touch different portions of the simulation object state)

then they are both committable in our execution model. This leads our sys-

tem to implement the so called weak-causality model [19], just in the form

of parallelization of the execution of events within the same simulation ob-

ject. As a last note, this approach is application transparent given that the

application layer can still be designed as a set of event-handlers touching

application specific data structures, as it commonly occurs in reference spec-

ulative PDES environments (see [5, 6, 7]) not relying on HTM facilities and

sequential simulators as well.

This thesis also reports the results of an experimental study based on

running our system, and specific test-bed applications, on top of a machine

equipped with 2 quad-core (hyper-thread) Intel(R) Xeon(R) 3.5 GHz proces-

sors (with HTM support) and 24 GB RAM, running Linux Ubuntu 12.04.2

LTS, kernel version 3.5.0-23-generic. By the data, the presented HTM-based

simulation engine allows achieving 75% to 92% of the ideal speedup and a

performance gain of up to 10x vs the last generation ROOT-Sim speculative

PDES platform relying on software-based recoverability support. Overall,

the approach presented in this thesis opens the possibility to efficiently par-

allelize the speculative execution of discrete event simulation models that are
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de-facto not efficiently parallelizable by relying on state of the art speculation

and software-based recoverability techniques.



Chapter 2

Discrete Event Simulation

This thesis is framed within the context of simulation, namely the imita-

tion of the evolution of a real system or process along time. A first step

to simulate something requires the development of a model, that represents

the main characteristics of the functions/behaviours of the simulated envi-

ronment. The model represents the system, meanwhile the simulation repre-

sents the execution over time. The simulation is used to predict the effects

of alternatives conditions and actions [20].

The Event Based Simulation is a simulation methodology where, to de-

scribe the execution, a sequence of events distributed over time is exploited.

Each event is located in time and brings changes in the state of the system.

In particular, this work is focused in Discrete Event Simulation (DES). An

event is considered discrete because it is characterized by an impulsive dura-

tion, then it begins at a time instant and it is considered to end in the same

instant (the begin coincides with the end). Between two consecutive events,

no changes in the systems occur, it is therefore possible to jump from one

event to the next. This means that the execution, during the simulation,

advances according to the timestamp of each event.

10
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This approach differs from continuous simulation in which the execution

is characterized by events with a duration, then in each instant of time (small

time slices) it has to consider the set of activities happening concurrently.

Since discrete-event simulations have not to simulate every time slice, they

are typically faster.

There are two principal approaches for DES, one based on a formalism to

model and analyze discrete-event systems, and another one based on a set of

methodologies and tools to support the execution of a simulation model. Both

the approaches will be presented, underlining weaknesses and strenghts [21].

In the end the original sequential approach will be extended with a parallel

version built to run on shared memory multi-/many-cores architectures, so

called Parellel Discrete Event Simulation (PDES), which will be considered

in this thesis with the aim of improving it.

2.1 Formal Definition of DES Models

It is possible to rely on Discrete Event Systems Specification (DEVS) to

give a formal definition of simulations model [22, 23]. DEVS, introduced

for the first time in the 1976 [24], is a hierarchical and modular formalism

to analyze and model general systems, that represents an extension of the

formalism of the Moore machine [25]. In the Moore machine formalism we

have a finite state automaton the output of which is determined only by its

state. Differently, DEVS output depends directly from the input. Moreover

DEVS assigns a duration to each state and provides hierarchical concept with

an operation, called coupling.

Essentially, DEVS provides a formalism utilized either to have a general

understanding of discrete-event systems and to design hierarchically decom-
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posable discrete event models, uncoupling them from the models generated

by the computer. At the same time offers a framework to generate models

and execute them by its abstract simulator concepts. In the classic DEVS

formalism, coupled DEVS describes the structure of the system, while atomic

DEVS captures its behaviour.

The formalism defines the atomic model as a 8-tuple:

M = 〈X,S, s0, Y, δint, δext, λ, ta〉 (2.1)

Where

• X is the set of external input events;

• S is the set of sequential states (called set of partial states). The

definition of the state can be extended with the state variable σ, which

represents the maximum time spent in a state before triggering an

internal transition, if no external events are received;

• s0 is the initial state of the simulation;

• Y is the set of output events;

• δint : S → S is the internal transition function which defines how a state

of the system changes internally (to which state the system transits),

when a lifetime period is passed without external events arrived;

• δext : Q×X → S is the external transition function which defines how

the arrive of an external input event changes the state of the system,

where Q = {(s, e)| ∈ S, 0 ≤ e ≤ ta(s)}, and e is the elapsed time since

the last event;
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• λ : S → Y φ is the output function that defines how a state of the

system generates an output event when the elapsed time reaches the

lifetime of the state;

• ta : S → R0→∞ is the time advance function, which is used to determine

the lifespan of a state; when the time assigned to the event is finished, a

trigger starts a new transition; when σ is present, its value is returned.

A model designed following the DEVS formalism, according to the Equa-

tion 2.1, transits along the states in S following its transition functions. When

no events come, the time of the model progresses according to the function

ta that is applied to the current state. Starting by the old state, a new state

is determined by the function δint. The output events are generated by the

system before an internal transition takes place. If an external event occurs,

the function δext produces a state transition, starting by the old state, based

on the external event itself and the time spent in the old state.

As mentioned before, the structure of the system is defined by the coupled

model as follow:

DN = 〈Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select〉 (2.2)

Where

• Xself is the set of external input events handled by the coupled model;

• Yself is the set of output events handled by the coupled model;

• D is the name set of sub-components, i.e the name set ;

• {Mi} is the set of sub-components such that ∀i ∈ D : Mi can be either

an atomic or a coupled DEVS model, i.e. a model definition;
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• {Ii} is a set such that ∀i ∈ D ∪ {self} : Ii are the influences of i, i.e.

the external input coupling;

• {Zi,j} is a set such that ∀j ∈ Ij : Zi,j is the translation of the ouput

from i to j, i.e. a function that maps the events generated by a model

in D to another model in D;

• select : 2D → D is the tie-breaker function, which defines the way to

select one event from all the simultaneous events.

In the end, the just defined structure is subject to the constraints that,

for ∀i ∈ D, the corresponding model is defined according the Equation (2.1),

like:

Mi = 〈X i, Si, si0, Y
i, δiint, δ

i
ext, λ

i, tai〉 (2.3)

and that:

• Ii ⊆ D ∪ {self}, i /∈ Ii, i.e. the influences of i have to come from the

available model definition, and i can not be influenced by itself

• Zself,j : Xself → Xj, i.e. input events handled by the coupled DEVS

model can be mapped to input event for the model j ∈ D;

• Zi,self : Yi → Yself , i.e. output events that are generated by any sub-

component structure i ∈ D can be managed by the coupled DEVS

model;

• Zi,j : Yi → Xj, i.e. output events generated by any sub-components

structure i ∈ D can be mapped into external input events for any

sub-component model j ∈ D.
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Fig. 2.1: Sample DEVS model: Producer/Consumer

Then, a coupled DEVS model, defines how to connect the different sub-

components of the model together to generate a new model. The new gen-

erated model is a DEVS model itself (thanks to the closure property under

coupling [22]), and then can be a new component to employable in a bigger

coupled model. This means that the components structured in {Mi} can

be defined according to both Equation 2.1 and Equation 2.2. This is the

hierarchical aspect of model composability mentioned at the begin.

Now it is possible to provide an example to deeply understand the con-

cepts expressed so far. The diagram in Figure 2.1 represents a DEVS model

description of a consumer-producer system. The behaviour of the system is

described by external and output events. In this example the external events

are ?consumed and ?produced, and the output events are !consume and

!produce. The consumer has the states Consume and Wait, and starts the

simulation in the second one. The producer has the states Produce and Wait,

and starts the simulation in the first one. Both Produce and Consume take

0.1 seconds to respectively, produce an item, for the producer, and consume
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it for the consumer. Starting by the Produce state of the producer, when

0.1 seconds have passed, an item is produced, and then the output event

!produce is triggered. In the same way, starting from the Consume state of

the cosumer, when 0.1 seconds have passed, the item is consumed and the

output event !consume is triggered.

The aim of this simulation is to connect two models (the consumer and

the producer) to create a bigger simulation model. First of all we have

to formalize the individual atomic DEVS models for the producer and the

consumer, following the formalism expressed in Equation 2.1:

Producer = 〈XP , SP , sP0 , Y
P , δPint, δ

P
ext, λ

P , taP 〉 (2.4)

where

XP = {?consumed}

Y P = {!produced}

SP = {(d, σ)|d ∈ {Produce,Wait}, σ ∈ [0,∞]}

sP0 = (Produce, 0.1)

taP (s) = σ,∀s ∈ S

δPext(((Wait, σ), te), ?consumed) = (Produce, 0.1)

δPint(Produce, σ), te) = (Wait,∞)

δPint(Wait, σ), te) = (Produce, 0.1)

δP (Produce, σ) = !produce

δP (Wait,∞) = ∅
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and in the same way:

Consumer = 〈XC , SC , sC0 , Y
C , δCint, δ

C
ext, λ

C , taC〉 (2.5)

where

XC = {?produced}

Y C = {!consumed}

SC = {(d, σ)|d ∈ {Consume,Wait}, σ ∈ [0,∞]}

sC0 = (Consume, 0.1)

taC(s) = σ,∀s ∈ S

δCext(((Wait, σ), te), ?produced) = (Consume, 0.1)

δCint(Consume, σ), te) = (Wait,∞)

δCint(Wait, σ), te) = (Consume, 0.1)

δP (Consume, σ) = !consume

δP (Wait,∞) = ∅

The resulting final simulation model, can be then composed merging to-

gether the two atomic models expressed by the Equations 2.3 and 2.4 as a

new coupled model expressed according Equation 2.2:

DN = 〈Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select〉 (2.6)

where

Xself = {}
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Yself = {}

D = Producer, Cosumer

{MProducer,MConsumer} defined according the equations 2.3 and 2.4

Ii = {}

Zi,j = {(Producer.!produce, Consumer.?produced),

(Consumer.!consume, P roducer.consumed)}

The use of this formalism to describe also simple models, introduces two

great advantages.

First, this formalism allows to automate the process of verification and

validation, in order to check if it is credible and accurate [26, 27]. This factor

is very important because a model is only an imitation of what actually

happens in the real world and therefore can not reproduce it in the exact

same way. Thus, it should be validated and verified to the extent necessary

depending on the purpose of the application. Second, the so defined model

can be exported into a computer model, that can be processed by a simulation

algorithm. In this way the execution of the model can be automated, with

all the advantages that follow.

For the first point, when the DEVS model is an extension like Finite and

Deterministic DEVS (FD-DEVS) [28], or Schedule-Preserving DEVS (SP-

DEVS) [29], or still Finite and Real-Time DEVS (FRT-DEVS) [30], it has

been proved an isomorphic finite structure can be obtained starting from the

original infinite structure of the model. In this way a reachability graph can

be obtained starting from the structure, allowing, for example, to decide if

there are dead-locks or live-locks in the model [28, 30, 31], and, in the case
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of SP-DEVS, which are the maximum and the minimum execution bounds

in time for the selected model [29].

About the second point, to translate the formal definition of the model

in a computer simulation, the atomic and the coupled models are handled by

DEVS in different way. The simulation of an atomic model is performed by

a simulator. The simulation of a coupled model is performed by a coordina-

tor. In fact the main role of the coordinator is to manage the simulation of

the different atomic models: it enforces time synchronization, controlling the

advancement of the simulation time in the different atomic models, keeping

them always aligned; it supports message propagation between the different

simulators, transmitting the input and output messages between the associ-

ated coupling, defined in the coupled model.

In the end, one of the most important advantages of this formal approach

to the discrete event simulation is that, in this way, the simulation model

exists regardless of its actual implementations. This allows the analysts to

study its properties and produce the simulation model before its implemen-

tation, without particular knowledges about the used tool-kit. The analysis

of the model can be very difficult, then is better to decouple the formal

construction of the model and its translation to a computer simulator.

2.2 Systemic approach to DES

The systemic approach to DES faces the topic of discrete event simulation

more pragmatically, focusing much more on the supports for the development

on the model and the effective implementation of the software that takes care

of simulation, normally called simulation core or simulation kernel. Also if

the attention is focused on different issues, many aspects are taken directly
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from the DEVS formal definition of the model. However, the main effort

has been focused in the development on the techniques of simulation with

the goal to maximize the overall throughput of the execution. In this new

scenario a model is composed by:

• the joint union of simulation states, where the variable that are used

to keep track of the evolution of the studied system are stored;

• the set of events E, that corresponds to the phenomenons of the real

world studied and that with their execution modify the state of the

simulation model;

• a transition function σ(s, e) : S × E → S that, at the time when

an event e ∈ E occurs, determines the transition from the previous

simulation state s to the new simulation state s′.

As seen before, each discrete event e corresponds to a time Te during the sim-

ulation run, and the execution of the event itself makes the global simulation

time to advance until its time. In fact, during the execution of a discrete

event simulation, the simulation time (ST) does not have a homogeneous

progression, but advances following the sequence of events; this describes

a logical time that is associated with the simulation model and can be ex-

pressed in different time units according to the type of simulation described

by the model (e.g. milliseconds, seconds, years). In this context is very im-

portant to distinguish this conceptual notion of time from the wall clock time

(WCT), that differently describes the time as perceived by the human be-

ings in the real world. Then, the simulation time describes the advancement

of the time inside the simulation, meanwhile the wall clock time gives us a

feedback about the speed of the simulation executed.
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The implementations of DES traditionally used, are directly inherited

from the event driven programming paradigm. This paradigm is very impor-

tant in the computer programming field, especially in graphic user interface

and other applications that are centred on performing an action as the re-

sponse to some input. In this paradigm the flow of the application is driven

by receiving events (e.g. mouse click), in a way similar to the interrupts in

operating systems.

This paradigm has proven to be useful in the context of event simulation

for their intrinsic affinities: in fact a DES model can be seen as a set of

event handlers (an asynchronous callback used to pass control to the relative

model’s code) that capture events, in this case produced by the application

itself, and, depending on the type of the event, produce effects on the sim-

ulation state. In fact, the set of event handlers are nothing more than the

aforementioned transition function σ(s, e), that, taken the current state and

the received event, produces the new state for the simulation.

At the begin of the simulation, one or more events are inserted to allow

the begin of the simulation. Subsequently, during the execution of individual

events, new events are generated by these, thus allowing the perpetuation

of the simulation. It is very important the fact that is the same event to

generate the new ones, because this produce causality relations between the

operations. Formally, if an event e during its execution generates an event

e′, it means that the generated event e′ causally depends on e. This implies

that, for the nature of the causal order between events located in time, if

an event e with time Te generates an event e′ with time Te′ , it follows that

Te′ ≥ Te. Looking to the progression of the execution, this means that an

event in the present can not have effects in the past.
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An important point is also that, as it happens in the formal DEVS ap-

proach, in the systemic one is possible to divide the simulation in two main

components: on one side the simulation model, and on the other the sim-

ulation kernel on which the model is executed. Moreover there not exist a

definition of the standard components of the kernel, rather an indication of

a set of base components that are required. Furthermore, as ithappens in

event based programming, the whole execution of the simulation relies on a

simulation loop which advances cyclically the simulation.

Since one of the functionalities of the simulation kernel is to handle event

received by the system, every time that the simulation model has to schedule

a new event, this is traditionally done using a provided ad-hoc interface.

Thus, if during the execution of an event e are generated two new events,

namely e′ with timestamp Te′ and e′′ with timestamp Te′′ , and with Te′ = Te′′ ,

there is no order between the two events and then the simulation kernel has to

decide which event to deliver before to the respective handler. The problem

of events with same timestamp can be faced through the use of a tie breaking

function, as happens in the DEVS formalism, but this is not trivial since it

can affect the behaviour of the simulation model [32].

2.2.1 Basic Components of a Discrete-Event Simula-

tion

In addition to the logic of what happens when events occur, DES includes

the following components:

Simulation State The current state of the simulation is shown by its state.

A simulation state is a set of variables that capture the main properties of

the system studied, explicitly defined in the model code, and altered during
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the execution. In fact, as seen before, the state of the simulation is modified

during the execution, transiting between states, according to a transition

function in the form of σ(s, e) : S ×E → S. The simulation state represents

a snapshot of the simulation and it is necessary for a DES model.

Events The evolution of the whole simulation system is carried out by the

succession of events. In DES an event is impulsive, then the begin of the event

coincides with its end (the duration of the event is zero). All the events that

occur inside a simulation have to be defined, and the simulation model have

to define a logic associated with each event. This means that for each event

received, the simulation model has defined an operation to perform (that is

the event handler). Then, the simulation model has to define a closed set

of events E, that can be generated/received during the execution and ,for

each event e ∈ E, there is an associated event handler defined in the system.

Since DES is executed sequentially, all the global variables associated with

the simulation state S can be accessed.

At the begin of the simulation, generally one event (called INIT) is in-

jected in the system to allow the begin of the simulation. When this event

is scheduled, generally it takes care of the set up of the simulation model,

defining the initial condition, and then injects the new events to be processed

by the system. Normally the INIT event is generated automatically by the

simulation core, but since it is closely connected to the individual model,

the programmer has to explicitly manage and define its behaviour inside the

system.

Clock A simulation model describes the main aspects of a phenomenon

in the real world that evolves over time, then the model has to keep track

of the passage of time. As seen before, the simulation clock keeps track
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of the time inside the simulation, that is completely disjoint by the WCT,

thus, due to the discrete nature of the events, its progression during the

execution is not homogeneous, but jumps forward from the timestamp Te of

the current executed event e, to the timestamp Te′ of the event e′ next in

order. Generally the simulation clock is kept by a global variable, usually

updated by the simulation core, which tracks the temporal evolution. Due

to the ordered execution and the causal order between the executed event,

this variable never decreases.

Event Queue During its execution, an event e can generate through the

simulation model an arbitrary amount of new output events, following the

logic of the model. Moreover, since the discrete (instantaneous nature of

events, activities that have a duration in the time are modelled as a sequence

of event related to the different phases of the single activity (i.e. the begin

and the end), which are generated or all together by a previous event, or one

by one, during the execution. To keep the generated events, the system needs

a data structure. Often this structure is also called pending event set because

it keeps the events that are pending as a result of the previous executions

but have yet to be processed.

Since which each event is associated a timestamp, and since the execution

has to schedule the events in time order, the event queue is typically organized

as a priority queue, ordered according to event time [33]. Regardless the

order in which the events are added to the queue, to determine the next

event to process it is sufficient to take the event at the head of the queue,

since this is always the one with the lowest timestamp. In case the event e

with timestamp Te is taken after an event e′ with timestamp Te′ and Te < Te′ ,

it means that the execution has failed. This type of error takes the name
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causality error.

The event queue can be implemented in different ways since the more

efficient solution depends on the nature of the simulation model. Obviously

the aim is to reduce the time needed to insert and get events by the queue.

Some of the most diffused solution adopted are linked list, skip list [34], splay

tree [35], calendar queue [36], or ladder queue [37].

Simulation Objects This aspect is not necessary for a DES model, then

is possible to define simulation models also without simulation objects. How-

ever, the use of simulation objects represents a useful extension that gives

more semantic capability to the model writer, then the majority of the avail-

able simulation kernels support this interesting feature. A simulation object

is used to describe a portion of the model, that can be an agent (in agent-

based simulations), or a spatial portion (e.g. a portion of a room, or the

cell covered by an antenna). In this way, for the model writer is possible to

describe the whole world, concentrating on individual portions, linking them

together only at the end, using interconnection events (e.g. the transition of

a mobile from a cell to another can be modelled like an event sent by the

first cell to the second).

Ending Condition Usually simulation models describe phenomena end-

less and thus could continue their run continuously (e.g chemical reaction,

car traffic, network traffic and so on). Moreover, often the models involve

stochastic processes to study the evolution of a kind of system, in order to

predict how the simulation will evolve. Thus, it is important to well define

the moment in which the execution of the simulation has to stop, in order to

get meaningful statistics from the experiment. For this reason it is important

to define a particular end condition that is verified after each execution of
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an events, in order to decide if the simulation has reached its end or goal.

The ending condition can be defined in different ways, e.g. it can be a time

range of interest for the experiment, or the reaching of a particular value in

the simulation state.

Statistics A simulation is carried out to make a prediction and then collect

results about its execution. For this reason typically a simulation keeps track

of the statistics of the system, which give a feedback on the aspects of interest.

2.2.2 Simulation Kernel’s Basic Logic

As seen before, the simulation kernel has the task to carry out the simulation,

keeping track of the state of the simulation. First of all the simulation kernel

has to set up the environment to start the simulation (done generating the

INIT event) and has to manage the generation and the execution of the fol-

lowing events. The structure of a simulation kernel is represented by a main

loop, that with each iteration processes the next event in the pending queue.

The algorithm of the basic structure, without facilities and optimizations

given by the specific implementation, is shown in Algorithm 1.

The skeleton of the Simulation Kernel is composed by two main proce-

dures. The first one is the INIT procedure, executed at the begin of the

simulation, which:

1. First of all sets the flag End to false, that means that the simulation

will continue until the ending condition is verified and then the flag is

setted to true.

2. Initializes the state of the simulation, that implies the allocation of

the memory if this is required by the implementation of the simulation

kernel.
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Algorithm 1 DES Skeleton

procedure INIT

End← false

initialize State, Clock

schedule INIT

end procedure

procedure SIMULATION-LOOP

while End == false do

Clock← next event’s time

process next event

Update Statistics

end while

end procedure

3. Initializes the clock used by the simulation, setting its value to zero,

otherwise to the initial time of the simulation.

4. Schedules the first event of the simulation, INIT. This operation can

be performed either placing the INIT event into the queue, letting its

execution to the main loop, or directly executing it. With this operation

the initialization procedure ends.

The second procedure, called SIMULATION-LOOP, starts right after the end

of the initialization, and is composed by two main parts:

1. The first one gets from the event queue the event emin with the smallest

timestamp Tmin, keeping the causal order.

2. The second part updates the value of the clock with the timestamp Tmin

relative to the event emin, in order to keep track of the advancement
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of the simulation time. Next, the event is passed to the event handler

that processes it according to the logic implemented in the model.

As seen before, an important building block of a simulation model is rep-

resented by the collection of statistics, then, at the end of the execution of an

event, it is possible to perform the statistic update, that e.g. logs information

about the performance of the run, or data related to the simulation state.

This last point can be intrinsically implemented in the simulation model.

2.3 Parallel Discrete Event Simulation

Discrete event simulation is used to make a prediction of a phenomena in

the real world, and often it is used to anticipate the event before it happens.

For this reason is useful to reach the end of the simulation soon as possible,

then there is the necessity to speed-up it. In this direction, in 1979 Chandy

and Misra [38] developed the approach of Parallel Discrete Event Simula-

tion (PDES) [2]. PDES is about the execution of a single DES program

on a parallel and/or distributed system, transforming the first one in a new

PDES program, that has to give the same results. Since a DES program

is already formed by a kernel and a model, it is possible to do this passage

by making just few modification on the model (imposing few restrictions),

against substantial alterations in the simulation kernel. This means that,

once redesigned the kernel, is possible to port a DES model to PDES, just

verifying that it respects the imposed restrictions.

The Simulation Objects, that in DES are used as a non mandatory ex-

tension, here take the name of Logical Processes (LP) and acquire a great

importance for the parallelization, since each LP represents a disjoint por-

tion of the simulation. Thus, in PDES it is possible to say that a simula-
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tion is composed by a set of N LPs, each one disjoint from the others and

labeled by an unique integer identifier in the range [0, N − 1], and called

LP0, LP1, ..., LPN−1. Each LP has a private variable to keep its simulation

time. This variable takes the name Local Virtual Time (LVT). Its value is

different across the LPs and corresponds to the last event executed on each

of them.

As hinted before, to develop a model for PDES, we have to impose some

restrictions. The most important is about the usage of shared variables: the

whole state S of the simulation model has to be divided in sub-portion Si

of the state, assigned as private variables across the LPs (where Si is the

sub-portion of state assigned to LPi), following the property:

S =
N−1⋃
i=0

Si ∧ Si ∩ Sj = ∅, ∀i 6= j (2.7)

Equation 2.7 tells that, dividing the simulation state in sub-portions of it,

the whole state is in the sub-states and, thus, there are no more global vari-

ables. Moreover, each LP can only access its variables, thus, the interactions

between the different LPs are allowed only by exchanging events.

In some scenario, the elimination of global variables can appear imme-

diate, like in queueing network simulations [39], but it is not so simple in

others. An example can be given by the simulation of the movements of

people in a room, divided in sub-portions. A variable of the simulation is

the number of people in each portion, that changes when someone from a

portion to another. To keep track of this variable one can rely on the use of

a matrix representing the amount for each portion. However, the update of

the corresponding cells of the matrix, can be replaced by an event sent from

the starting portion of the room to the one of arrival.

In Figure 2.2 we show a classical distributed architecture for a PDES
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Fig. 2.2: Parallel Discrete Event Simulator Classical Architecture

Simulation kernel. Basically each simulation kernel instance, that runs on

a processor as a different user space process, takes care of the execution of

a set of LPs. The different simulation kernel instances can be located on

different machines and, in this case, are interconnected through a network.

While the different instances that runs on the same machine can communicate

through different facilities, like shared memory or inter-process communica-

tion provided by the operating system, the remote ones can rely on the use

of the distributed memory paradigm, and on message passing primitives, e.g.

Message Passing Interface protocol (MPI) [40]. As seen before the communi-

cation between the different LPs happens through exchange of events, then

at each message corresponds one event. For this reason, the event exchange

mechanism often is referred as message exchange.

However, during the last years, after the fail of the Moor’s Law, multi-

core machines have seen a wide spread. To react to this change, and then

exploit the available resources given by this new trend in architectures, new
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Fig. 2.3: Parallel Discrete Event Simulator Multithread Architecture

paradigms have been studied. A recent research trend, has reshuffled the

traditional PDES architecture, moving to a new approach based on a new

multi-thread simulation kernel [41, 42, 43]. This will be the reference archi-

tecture for this thesis.

This approach, that no more constraints the LP to the single core through

a single simulation kernel instances, is shown in Figure 2.3.This new type of

architecture has no more a single simulation kernel instance for each process-

ing unit, but each one can run on top of more cores, reducing the number

of simulation kernel instances for each machine. To reach this result, the

simulation kernel instances are developed using the worker thread paradigm.

Each thread, similarly to the traditional DES, executes a simulation main

loop. The messages, used to carry events, exchanged between the LPs on the

same machine, are implemented using the user space, then without the use of

external libraries. This new type of approach looks to be more complex and

difficult to implement, but has been proven to introduce an improvement in
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scalability and performance if compared to the classical PDES implementa-

tion [44].

In order to fully exploit the locality of data, it can be very useful to

associate symmetrically the management of the LP to a single worker thread.

This concept is called binding [45, 46]. To do this, are defined temporal

windows inside which a thread is statically associated to a local available LP.

The duration of this window can last for the whole execution, with a static

binding implementation. Otherwise, the duration of this windows can be

variable during the execution, recomputing them periodically, e.g. with the

aim to balnce the workload across the worker threads. This technique take

the name of load sharing [44, 45, 46], different from the load balancing, used

in the traditional PDES to migrate an LP from an instance of the kernel to

another one.

As seen before, each worker thread executes a main simulation loop and

maintains its local state variables, including the local time reached by the

simulation on each single LP. This allows a parallel execution of each worker

thread regardless the other ones. Let’s see what can actually happen in this

scenario. Let’s consider the situation at a given wall clock time of a single

simulation kernel instance. Let’s consider a logical process LPi, bound to

the worker thread k0 with simulation time LV Ti = 3, and a logical process

LPj, bound to the worker thread k1 with simulation time LV Tj = 9. Relying

on the most common implementations of simulation kernels that make use

of multiple queues following Algorithm 1, both of them will get respectively

the minimum events eimin and ejmin as next events. Assuming that the events

eimin and ejmin have respectively timestamps Teimin
= 6 and Tejmin

= 12, the

processing of these will bring the local virtual time of the LPs respectively to

LV Ti = 6 and LV Tj = 12. Now, if the execution of the event eimin generates
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Fig. 2.4: Example of Event Causality Violation

a new event enew with timestamp Tenew = 9 with destination LPj, what

happens is that LPj, that has clock equal to LV Tj = 12, receives and has to

execute an event with a timestamp lower than the current time. The event

enew takes the name of straggler message and represents a causal violation

introduced by the parallel nature of PDES. This scenario is represented in

Figure 2.4.

2.3.1 Synchronization Problem

As shown in Figure 2.4, the parallel LPs in PDES can produce causality

errors due to their asynchronus execution. This problem takes the name of

synchronization problem.

To face this problem, with the aim to guarantee the correctness of the

execution independently of the behaviour of the different LPs, are available

different type of approaches [47, 34], divided in three main categories: con-

servative [48, 38, 49], optimistic [3] or hybrid [50, 51] approaches. The con-

servative approach faces the problem simply avoiding a-priori the possibility
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of a causal violation, executing an event only when it is considered safe, then

if it is definitely the next one to execute. The optimistic approach instead

allows the execution to go ahead, verifying a-posteriori if there are some vi-

olations and, in this case corrects the error introduced. The third approach

makes use of both the conservative and optimistic approaches, using at each

time the best suited approach for the single situation.

2.3.1.1 Conservative Approach

The conservative approach was the first synchronization approach developed

to guarantee the causal order in PDES systems. This is a pessimistic ap-

proach because prefers slowdown the execution rather than trying to execute

some unsafe events. However this is also the simplest to implements. In facts,

the goal of this approach is to decide if the event taken from the pending

queue of an LP is safe with respect the others LPs. This means that the ex-

ecution progresses by processing the event emin with the smallest timestamp

[52].

A first approach [48, 38] compelled the model writer to specify explicitly

where each LP communicated with the others, defining statically the commu-

nication channels. This means that each LP has more than a channel, seen

as a FIFO, and with each one is associated a timestamp. The timestamp

associated to a queue is, the timestamp of the first message of the queue

(the smallest one), or the timestamp of the last event executed (if the queue

is empty). Each LP gets the next event to be processed by the queue with

the smallest timestamp, or, if the queue that has the smallest timestamp is

empty, waits until it receives an event in the selected queue.In this last situ-

ation the LP waits for a new event in the empty queue because, if it takes an

event from another queue with larger timestamp, it may eventually receive a
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Fig. 2.5: Deadlock in Conservative Synchronization

smaller event in the queue with the minimum timestamp, not violating the

FIFO order of the queue itself, but violating the causal order of the whole

execution. Thus, the waiting approach is a necessary and sufficient condition

to guarantee the correctness about the causal scheduling of the events.

However, this approach can easily lead to deadlocks. Let’s assume a

simulation model that follows the scheme in Figure 2.5. LP1 has a channel

of communication with LP3 that, in turn, has a channel of communication

with LP2 that has a channel with the first, and each one of the three LPs

has another channel of communication. As in the schema, all the queues

associated to the three channels are empty, then there is a deadlock situation.

This happens because, also having an additional queue that continues to

store incoming messages from others LPs, the algorithm continues to check

the empty queues because it has the lowest timestamp.

This deadlock situation can be avoided by using null messages. These
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are messages that are sent to the others thread but that do not carry events

to deliver. When a null message with timestamp Tnull is received, this means

that the sender will send no next message with timestamp T < Tnull. In this

way the system is able to determine that LPi will not receive any event ek

with timestamp LV Ti ≤ Tk ≤ Tnull and then has the possibility to execute

any event ej from a different queue with a timestamp LV Ti ≤ Tj ≤ Tnull

since it is considered safe.

Another important aspect that can have non-negligible effects on the

performance of the system, is the amount of minimum simulation time that

elapses between an event and the one generated from it [53]. This value

takes the name of lookahead and can be used to determine which events can

be concurrently executed. Considering that LPi has reached the minimum

simulation time LV Ti in the whole system (i.e. the minimum clock between

all the LPs of the simulation), it can execute all the events e with a timstamp

Te such that LV Ti < Te < LV Ti + L. At the same time, each other LPj

that has reached a clock LV Tj such that LV Ti < LV Tj < LV Ti + L can

execute any event e′ with timestamp Te′ such that LV Tj < Te′ < LV Ti +

L. This obviously implies that, larger values of the lookahead entail an

higher probability that an event is considered safe and then can be executed

without being the smallest timestamp one. However, the lookahead can not

be randomly setted, then can not be big as we want, but has to be exactly

calculated and included by the model writer. In fact a value too big could

affect the correctness of the simulation.

On the other hand, a value too small, or even zero, for the lookahead,

introduces a significant slowdown of the execution, removing the gain given

by the usage of one or more multi-/many-core machines. In [54] can be

found a proposal studied with the goal to increase the lookahead value, pre-
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computing a section of the pending events chain, and analysing at the end

of this computation if the resulting state is still consistent.

The conservative synchronization approach provides three main advan-

tages:

• Aggressiveless : the simulation is executed in manner that in each time

of the simulation the state is consistent. This is done ensuring that the

execution of each single event does not cause error conditions;

• Riskless : the results entered in the system are ever related to a consis-

tent part of the simulation execution, then all the data sent to other

components of the model are correct;

• Minimal Synchronization among LPs: the simulation, differently by

the optimistic synchronization approach, strictly increase, because the

execution is never rewound. In this way, to detect the global time

reached by the simulation it is ever a simple task to execute and do not

incurs in high cost operations.

However, the conservative synchronization approach in most cases is not

able to fully exploit the parallelism provided by a multy-/many-core architec-

ture or distributed system. In fact, taken two events e1 and e2 in the system,

the conservative approach will verge to a sequential execution of these also

if there is not any correlation between the two events.

For this reason, during the last years, the research in the parallel paradigm

of the simulation has focused on the developments of optimistic approaches.

The idea of this kind of approach is that, instead of waiting for the assessment

of event safety, it makes a bet choosing the likely correct path to follow. For

this reason this technique is referred also as speculative approach. My thesis
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uses this type of approach to exploit the facilities given by a particular type of

hardware. In the next chapter we detailedly decribe the speculative approach

(i.e. optimistic synchronization) used to develop Speculative Parallel Discrete

Event Simulation platforms.



Chapter 3

Speculative PDES

As seen at the end of the previous chapter, the adoption of a conservative

synchronization policy can lead to limited exploitation of the resources given

by the underlying architecture. For this reason during the last years the

research in parallel discrete event simulators has focused on the development

of optimistic protocol implementations. The optimistic synchronization is

based on the speculative processing approach. This technique is used in

many context, especially where there are resources unused due to some wait

periods. One of the most important example is given by the pipelining used

in the processing units [55] where the speculation is used to fully exploit

all the components of a CPU without waiting the result of the previous

instructions. Other important examples are given by file prefetching [56],

and by the concurrency control in transactional systems [57].

This technique is based on the idea that, if there are resources that are

available, rather than leaving them unused, these should be used to execute

tasks that are likely correct or/and useful. Basically there is a bet done

before on the fact that this work can be really useful, discovering only later

if it was actually needed, then if the gamble paid off. In case that later the

39
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work done is discovered to be not useful or incorrect, the results obtained are

discarded and the execution continues its correct flow. The main advantage

of this approach is due to the fact that the resources used to do the extra

work related to the speculation would be not used otherwise. Differently,

waiting to know the result of the previous executions to decide what to do

might introduce a delay in the execution of the whole task. If the speculation

done is correct this delay is eliminated. On the other hand, if the speculation

is wrong, the system needs to discard the results of the part of work related

to the speculation.

In PDES environment, this technique was introduced for the first time,

under the name of optimistic synchronization, in the work published in [58]

, where was introduced the mechanism called Time Warp. The optimistic

synchronization, differently from the conservative synchronization, on each

simulation kernel instance and for each worker thread, selects locally the

smallest event in the queue as the next event to be processed independently

from its safety. In this way, it is obvious that the guarantees given by the

conservative approach about the correctness are lost, and then the simulation

can fall into an inconsistent state. In fact, as shown in the previous example

in Figure 2.4, now the simulation can follow a trajectory affected by a causal

violation, reaching in this way an inconsistent simulation state.

3.1 Recoverability

In the speculative approach then, the execution is carried out choosing at each

time an event with the smallest timestamp from the local queue, without

considering possible causal violations. This requires a mechanism able to

detect a-posteriori the reception of a out of order message (i.e. which has
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Fig. 3.1: Rollback Operation

a timestamp smaller than the local clock) with the relative occurrence of a

causal violation, to temporarily stop the execution on the simulation model,

to go back until a previous consistent simulation state is found the simulation

time, and then to resume the the normal execution flow starting from the last

received message that has triggered this mechanism. This operation takes

the name of rollback operation, and is shown in Figure 3.1.

In the example it is possible to see that executing a rollback operation,

gives rise to another problem. In particular, when LPj receives straggler

message estr associated with timestamp Tstr = 8, its clock is LV Tj = 15.

Therefore, it rollbacks the execution to the simulation time LV Tj = 6, i.e.

it then discards the changes of the simulation state due to the events with

timestamp T = 9 and T = 15. This operation is sufficient to restore a

consistent state for LPj, since the portion Sj, that is a part of the global

state, is correctly rolled back to time T = 6 that is consistent, also with

respect the new message received. However, during the execution of the
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event flagged with timestamp T = 9, LPj has sent a message associated

with an new event with timestamp T = 11 to LPk. This message, that

was considered correct until the reception of the event estr, is now revealed

as wrong result of an incorrect simulation trajectory, given that it was sent

by LPj without considering the flow of LPi. Since LPj has rollbacked to

the previous time LV Tj = 6, it is possible that the execution of the new

message estr changes the trajectory of the simulation and then, may be that

the message with timestemp T = 11 should have not be generated and sent,

or it should carry a different information. Then, the situation is:

• LPi at LV Ti = 6 has sent the straggler message estr to LPj;

• LPj rollbaks to simulation time LV Tj such that Tstr > LCTj > Temax ,

where Temax is the event already processed with the largest timestamp

before estr;

• this implies to discard the event processed by LPj which has caused

the generation of a new event sent to LPk.

Then the rollback operation that has involved LPj, produces in turn an

inconsistent simulation state also for LPk. Then it is needed that LPj notifies

to LPk the changes due to the rollback. This means that the system has

to support a mechanism to notify to LPk that an event received by LPj

is no more in place, than that its execution might carry the system to an

inconsistent path in the trajectory of the simulation. This operation is done

using antimessages. An antimessage e is the negative version of an already

sent message e, sent by some LP to another one.

Then, in the moment that LPj has to rollback, it checks if it has sent

some positive messages during the interval [LV T ′j , LV Tj], where LV Tj is

the simulation time reached when the struggler event estr is received, and
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LV T ′j is the simulation time to which the simulation is restored. For each

message produced in this interval, an associated negative message is sent to

the respective LP.

When LPk receives an antimessage, there are two possible scenarios:

1. the message e associated with the antimessage e has a timestamp Te

such that Te > LV Tk. This means that the message e has still not

processed (otherwise the simulation time LV Tk would have been equal

or larger than Te). In this case the only effect of the processing of

the antimessage is to annihilate the positive message, then e is simply

removed by the pending queue of LPk;

2. the message e associated with the antimessage e has a timestamp Te

such that Te ≤ LV Tk. This means that the message e has already been

processed by LPk, and then LPk has executed an inconsistent path of

the simulation trajectory, reaching an inconsistent simulation state.

In this last case we have that LPk has to rollback to a consistent simula-

tion state (as happens in the example given by Figure 3.1). The fact that the

rollback of some LP might cause the rollback of other LPs, is called cascading

rollback and can affect multiple LPs.

It is important to say that the rollback operation can be a feature im-

plemented entirely in the simulation kernel. In fact, if the simulation kernel

knows the location in memory where the simulation states Si of the various

LPs are stored, it can manage the rollbacks operation without the need to

modify the simulation model. However, the programmer has to explicitly

indicate where is located the simulation state in memory.

In literature there exist two main approaches to support rollback oper-

ations. The first one relies on the concept of save state & restore, and it
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is the original rollback approach proposed in [58]. The second one relies on

the concept of reverse computation of the simulation events executed, and

assumes that, starting from an event, it is possible to generate a negative

event, able to completely execute the same operation of the original event,

but in reverse order and with inverse effects. Now it is important to dis-

tinguish the concepts of antimessage, used by an LP to notify to another

one that an event sent has to be completely annihilated (both if processed

or not), from a negative event, that may be triggered on the reception of an

antimessage. and that undoes the effects of the execution of an event on the

simulation state.

Before discussing the two aspects it is important to introduce the concept

of progress condition in the speculative approach and how to prove it.

Global Virtual Time (GVT) If on one hand it is easy to prove that

the rollback operation is correct [59], on the other hand it is not so easy to

prove the progress condition of the whole system, due the presence of the

rollback operations themselves. Moreover, since the events to be executed

might be part of a trajectory that will be discovered later to be inconsistent, it

becomes difficult to decide when and how to check when the ending condition

has been reached. Still, can be very difficult to handle error conditions and

I/O operations.

The original proposal in [58] proposes to keep track of the progress in the

whole system execution, using a global mechanism to control the evolution

of the whole simulation time, based on the concept of Global Virtual Time

(GVT). The GVT is a property of the system in an instantaneous snapshot

of the global system, taken at time t of the wall clock time and so defined:

Definition 3.1.1. (Global Virtual Time). GVT(t) is the minimum times-
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tamp of any unprocessed message or anti-message flowing in the system at

WCT t.

Definition 3.1.1 tells that the value associated with the GVT can be com-

puted at any WCT t just controlling the timestamp of all the event not jet

processed, included the ones still carried by messages, but it does not tell

where these events are and how to do it. And while could be easy to get the

minimum timestamp from the messages stored in the pending queues of each

simulation kernel, it is not so much easy to inspect the transiting messages,

then the ones sent by LPj to LPi but not yet received (e.g. due to transmis-

sion latency between two remote simulation kernel instances). This last kind

of message takes the name of in-transit message, and has to be considered

as well as the ones stored in the queues.

This is not the only definition of GVT, other ones are referred to different

implementations, depending on the different simulation scenario. However, in

all the different scenarios, computing the GVT value is an essential aspect of a

distributed PDES, since it is required to define the commitment horizon of the

simulation. Then, taken the GVT(t) at the instant t of WCT, corresponding

to the timestamp of the smallest event in the system not yet processed, it is

clear that no execution can generate a new event e′ such that Te′ < GV T (t).

Then this property tells that at an instant t of WCT, no rollback operation

can bring any LPi to a simulation time LV Ti < GV T (t). This means that all

the the executions of events with timestamps T such that T < GV T (t) can

be considered committed, and then can be used to verify the ending condition

of the simulation.
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3.1.1 Rollback Supports

As mentioned before, to support the rollback operation there exists two main

approaches: save state & restore and reverse computation

State Save & Restore

This approach was proposed for the first time in [58] with the presentation of

the Time Warp protocol. This technique relies on the idea that can be taken

a snapshot of the simulation state of LPi (i.e. a copy in a different buffer

of the memory regions that contain the private state variables associated

with the sub-state Si), associating it with the timestamp of the last event

executed. This operation can be done in a transparent way by the simulation

kernel, or can be performed with the support of the programmer that has to

specify the portion of memory region where the simulation state Si is stored,

depending on the programming model used by the simulation kernel.

In the moment that a rollback operation is triggered, it is defined the

simulation time Trollback, and then the restoration of the previous correct state

can be simply done by retrieving the snapshot of the state Si associated with

the timestamp Ts = Trollback, and replacing the current values of the selected

sub-state. It is important to note that, when a straggler message is received,

to reach the state at time Trollback, it is possible to select any simulation

snapshot such that T ≤ Trollback, since it represents a correct state with

respect to the new received straggler message. However, taking the most

recent snapshot with timestamp smaller than or equal to Trollback will waste

minimal work.

Take a complete snapshot of the simulation state of an LP is a costly

operation, since it requires both an high amount of memory and time to be

performed. From the side of memory footprint, to reduce the amount of state
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saved, it is possible to rely on the previous description of the GVT as given

in Definition 3.1.1. Since the states stored are used only to support rollback

operations, starting from the Definition 3.1.1 we know that at WCT t it is

possible to rollback only up to a previous simulation state such that Trollback ≥

GV T (t). This means that at each WCT t it is possible to discard all the saves

snapshots of simulation state s such that Ts < GV T (t), in a way to free

the used memory buffers so as to reuse them in the future. This operation

is referred to as fossil collection [60] and can be executed periodically to

recover memory. Obviously the fossil collection operation can be performed

after a new GVT value is computed. Then, the frequency with which the

GV T (t) value is computed, and consequently the fossil collection operation

is performed, can be manually introduced by the model programmer, or can

be computed depending on the hardware architecture used to perform the

simulation [61]. However, since the computation of the GVT requires non

negligible effort by the whole simulation system, incurring in decrease of the

simulation throughput, the frequency of fossil collection is performed has to

be balanced with respect to the throughput of the system and the memory

usage.

On the other hand, to reduce the cost in taking a new snapshot, it is

possible to change the grain with which this operation is performed. At the

same time, reducing the frequency of the state saving operation, leads to re-

ducing memory usaged. Another measure that can be taken to face both the

problem of the execution cost and memory usage, is to change the amount of

information stored during a state saving operation. In fact, often the most

part of the simulation state is not touched and then it is possible to save only

a portion of the state, then a snapshot can be full or incremental.
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This is the solution that I followed during my thesis, focusing on small

events, trying to reduce as much as possible the amount of data stored,

exploiting facilities offered by transactional hardware.

Reverse Computation

While the save state & store can be considered a static and discrete approach,

since it relies in a periodical copy of the simulation state, the reverse computa-

tion [14] gives a completely different solution to support rollback operations.

This approach relies on the concept of reverse event to restore a previous

simulation state. The idea is that, with the help of compiler techniques, it

is possible to automatically create, for each (positive) event, a reverse event

that executes in reverse order operations able to undo the effect of the cor-

responding forward operation. In this way, executing a reverse event we can

undo the effect of the correspondent one. Thus, to rollback the simulation

state LPi that has simulation time LV Ti to a simulation time Trollback, the

rollback operation has to execute in backward order all the reverse events

from LV Ti to Trollback.

With a simple approach, a reverse event can be seen as a copy of the

regular event, which executes the inverse of the same operations but in reverse

order. An example of a simple reverse event is given in [14] where the authors

model a transition on an ATM multiplexor model:

1 i f ( q len > 0) {

2 qlen−−;

3 sent++;

4 }

The generated reverse event should be:
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1 i f ( q len ”was” > 0) {

2 sent−−;

3 qlen++;

4 }

It is possible to note that, while generating a reverse instruction of an arith-

metic operation can be simple to do, this is not the case for branching condi-

tions, since it implies to check an old variable that is no more available when

the reverse event is processed.

Then, to face this problem, bit variables are used to modify regular events.

These are added transparently to the events to notify if a branch is taken

or not during the regular execution of the event. Then the previous code

snipped becomes:

1 i f ( q len > 0) {

2 b=1;

3 qlen−−;

4 sent++;

5 }

Now, the bit variable is set to 1 only if the branch condition is verified, then

the reverse event can rely on this value to verify this and then execute or not

the reverse body of the branch:

1 i f (b == 1) {

2 sent−−;

3 qlen++;

4 }

This kind of approach, introducing a new variable for each branches, in-

creases the size of the simulation state of log(#branches), but, on the other
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hand, the introduction of this bit, simplifies the management of condition

branches in reverse events. Moreover, the bit variables can be used to man-

age switch/case constructors.

Another problem is represented by the fact that unfortunately not all the

operations are reversible. For example there are operations that destroy all

the information on the original value, referenced as disruptive operations, e.g

= or %=, that have to be managed using the state save technique. More-

over, since these operations are characterized by a fine granularity, and since

the original simulation model’s executable is instrumented to modify it to

support the generation and the execution of reversible event, is possible to

do this by relying on the approach in [62] cited above, where the changes

are tracked generating an incremental fine-grain snapshot for each memory

update.

The loops can be simply managed by executing n time the reverse code

inside the loop, taking the information about the number n of iteration in

the original execution, that is very important in case of exit loop condition,

like with the while statement.

However, the management of jump instructions (e.g. break, goto or

continue instructions) or call to functions require the use of some bit vari-

ables to remember the flow of the original execution. Then the execution

of the reverse events can rely on a set of auto-generated switch/case to be

able to reproduce the reverse execution flow. However, the insertion of this

new portion of code can give rise to a non negligible increase of the state

size, depending on the execution flow of the simulation model and on the

complexity of the event’s code.

An additional important part that deserves particular attention in reverse

computation is about pseudo-random number generator. To guarantee a



CHAPTER 3. SPECULATIVE PDES 51

deterministic execution of the flow, there is the necessity that multiple calls to

the random number generator, relative to the same logical invocation, return

the same value. This means that, if the same portion of simulation is executed

multiple time, starting from the same initial situation (i.e. if is considered

an execution rollbacked multiple times without introducing changes in the

flow), the results have to be ever the same. This can be done applying the

mechanism used to generate reverse events also to the code of the random

number generator, assuming that there is no loss of information due to lossy

floating point operations.

Anyway, reverse computation can give an important reduction in the

time needed by rollback operations, especially if the state to be rolled back

is near to the actual logical time of the LP, and it is done adding a limited

overhead. On the other hand, if the simulation code executes a large number

of disruptive operation, it can fall back in the case of fine-grain state saving,

but still maintaining a lower overall performance.

3.1.2 Additional Components of Speculative PDES

In the previous Section 2.2.1 the most important components of DES have

described, but now it is obvious that to support a parallel version of DES

these are not enough, especially considering the use of optimistic synchro-

nization approach. In fact, while the conservative approach can relay on one

or more event queues, the Time-Warp based simulation kernel has to store,

in addition to all pending events, also all processed events (since there is the

possibility that the kernel has to execute again a portion of the processed tra-

jectory), and simulation states. The essential building blocks of a reference

architecture to support the speculative synchronization protocol are shown

in Figure 3.2.
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Fig. 3.2: Reference Architecture for Optimistic Simulation Systems

Input and Output Queues As sad, in the Time-Warp based approach,

it is necessary to keep track also of the processed events, then, in addition to

the (input) pending event queue, we find an output queue, in order to store

old messages with the relative destinations (that is mandatory since during

the rollback of an single LP, it has to send antimessages to annihilate the

effect produced by the inconsistent trajectory). Many implementations, to

keep the information about the destination, rely on multiple output queues,

one for each other LP, in a way that, when scanning the output queue to

generate antimessages, the LP has to check only the relative timestamp since

the destination is identified by the queue itself.

Messaging Subsystem While in sequential DES implementations the sin-

gle simulation kernel is obviously stored in a single machine, PDES gives the

possibility to distribute the simulation kernel across more machines. This
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means that LPs are hosted not only locally, but also on remote simulation

kernel instances, introducing the need for a routing subsystem that takes

care of messages. The use of a sophisticate message routing system gives

to the model the possibility for LPs to communicate without taking care of

the location of the relative kernel instance, then using simply uniform API

for messages’ scheduling. It is the message subsystem, that is a part of the

simulation kernel, that will determine where to send the message. Moreover,

the management of the output event queue is often assigned to the message

subsystem, such that the antimessage-sending procedure can be decoupled

from the execution of rollback operations.

State Queue & State Management Subsystem The original technique

to implement the rollback operation was the statesave&restore one. This

technique relies on a buffer to save states during the simulation. To fulfil this

task a state queue data structure is exploited.

The state queue data structure is handled by the state management sub-

system, which takes care of:

1. maintaining an ordered list of stored states organized following the

timestamp of the snapshot, and adding the new snapshot taken by the

system;

2. performing the rollback operations determining the state to restore

from the queue, or also performing reverse event until the rollback

time;

3. performing cost forward operation (snapshots are periodically taken

then, once one is loaded, the system has to re-execute some events to

reach the exact point in the local simulation time);
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4. performing fossil collection operations (i.e. periodically has to compute

the GVT(t) and delete events and state logs belonging to the already

committed portion of simulation, in order to recovery memory).

GVT Subsystem The Global Virtual Time subsystem periodically queries

the message queues and the messaging subsystem (to not lose transiting

messages) in order to execute a global reduction across the whole simulation

system to compute the new GVT value and then correctly define the commit-

ment horizon. Moreover this subsystem has also the task to check whether

the termination condition is verified and then the end of the execution is

reached. This task is performed by this subsystem since the check has to

be done on the commitment horizon. In addition, as said in the previous

paragraph, the fossil-collection operation has to be performed upon GVT

calculation, then also this task is assigned to the GVT subsystem.

Event Scheduler A central problem is related to the CPU-scheduling ap-

proaches used to select which LP, in the set of the ones kept by a given

simulation kernel instance, has to be scheduled to process its event. As sad

before, the common choice is to follow the Lowest-Timestamp-First (LTF)

algorithm [63]. This approach selects the LP that has to execute the event

with the smallest timestamp between the ones hosted by the same kernel.

With this approach the possibility to generate an event that violates the

causal order between the LPs hosted on the same kernel is avoided. This

happens because the LPs are dispatched following what would happen in a

sequential simulation engine. This means that rollbacks can be generated

only by events received from LPs hosted by others kernel instances.
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Random-Number Generator The optimistic synchronization, in both

its approaches, requires that the values produced by a pseudo random num-

ber generator are deterministically produced. For this reason the simulation

kernel has to provide a random number generator able to support rollback

operations and , if rollbacked itself, to produce the same sequence of ”ran-

dom” values. This can be done either storing the seed associated with a

snapshot (then, each time a snapshot is taken, also the value reached by the

random number generator has to be stored), or implementing a generator

able to undo the internal state of the random generator itself.

3.2 Software Solutions

The majority of the solutions proposed to implement PDES platforms and

face the recoverability problem are entirely based on software facilities. In

this section we provide an overview of the most relevant solutions. The

attention will be focused on state saving & restore techniques, since this is

the branch of recoverability followed by my thesis.

3.2.1 State Saving & Restore

As mentioned, state saving & restore is a technique used in speculative PDES

to address the problem of the recoverability of a previous consistent state.

As seen in Section 3.1.1, there are different ways to take snapshot of the

state (and consequently restore it), with different performance in terms of

time and space.
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Fig. 3.3: Copy State Saving Approach

3.2.1.1 Copy State Saving (CSS)

This is the first solution proposed to face this problem in [3], and this is also

the simplest idea to implement. As show in Figure 3.3, CSS takes a complete

snapshot of the state Si just before the execution of a new event.

This operation is done for each event processed then, to restore a consis-

tent state at simulation time Trollback, CSS has simply to take the snapshot

Si corresponding to a Ts such that Trollback > Ts and there is no executed

event e such that Trollback > Te > Ts.

However, takeing a snapshot before each event, is not a tenable approach

in terms of computing power and memory usage. Moreover, this lead to the

need for increasing the frequency of the fossil collection operation (together

the GVT computing), reducing even more the whole performance.
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Fig. 3.4: Sparse State Saving Approach

3.2.1.2 Sparse State Saving (SSS)

To face the problem associated with the previous technique, various ap-

proaches have been proposed, all gathered together under the class of Sparse

State Saving (SSS). The idea of SSS is to decrease the frequency with which

the snapshots are taken, rather than performing this operation at each event.

Namely the snapshot are sparsely [64] taken, as shown in Figure 3.4.

The period between two consecutive snapshots can be fixed, and this is

the case of Periodic State Saving (PSS), or variable, as happens in Adaptive

State Saving (ASS).

Now we have no more a snapshot for each event, so, when a rollback

operation is performed, there are two possible cases:

1. There is a snapshot s associated with timestamp Ts that corresponds

exactly to LV Trollback, and then it is sufficient to restore it, as it happens

in CSS.

2. There is no snapshot that corresponds exactly to the timestamp of the
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recovery point.

In the second case, it is restored a state s associated with timestamp Ts

such that Ts < LV Trollback, and after intermediate events are executed un-

til LV Trollback is reached. This last operation is referred to as costing for-

ward. Since the rollback operation has to be performed only until LV Trollback,

the system has to send antimessages only for the events e such that Te >

LV Trollback. This means also that the system has not to send again message

produced during the coasting forward, since these events have already been

processed and the produced messages have been already sent. The execution

of events without the production of output messages is called silent execution.

Moreover, since during coasting forward the system re-executes events

belonging to the original (correct) trajectory, it is important to have a de-

terministic behaviour in their execution, then all the random operations or

probabilistic distributions have to follow the same logic, so as to produce the

same result. A different result would be wrong either for the logic of the

simulation and for message based interactions. Then, in the moment that

LPi reaches the straggler message, it must have rebuilt exactly the same sim-

ulation state before performing estraggler. This behaviour is called piece-wise

determinism (PWD).

If on one hand SSS reduces the memory consumption (and the relative

operations), on the other hand it increases the overhead due to the coasting

forward operation. These two aspects are strictly linked to the frequency

with which checkpoints are taken, i.e. the checkpointing period χ.

In the ASS approach this problem is faced using a run-time fine-tuning

of the variable χ to follow the changes in the dynamics of the system, with

the goal to maximize the whole performance.
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3.2.1.3 incremental State Saving (ISS)

However, to face the problem of the excessive memory usage in state saving,

regulating the checkpointing interval is not the only available approach. SSS

aims to reduce the time needed to perform a rollback operation, without con-

sidering that the store/load operation itself can be heavy due to the amount

of data that compose a state Si. Moreover, often between two checkpoint the

really modified informations is only a small portion of all the overall states,

then a lot of time is spent to copy redundant data.

Incremental state saving aims to reduce the size of the single snapshot by

storing only the modified portion of the state, reducing also the execution

time to perform the save and restore operations.

Incremental state saving was introduced for the first time in [65]. The

approach proposed in this first dissertation relies on events extended with

some additional informations:

• The value of state variable modified after the event is executed;

• The value of state variable modified before the event is executed;

• The simulation time Tgen, that is the timestamp of the event that gen-

erated it;

• The simulation time Texe, that is when the event must be performed,

with Texe > Tgen.

Then a new queue is used to store the modification introduced by events

executions. The elements of this queue are linked to the corresponding events

that caused the changes in the state. To this new approach to store the

old states of the simulation, we associate a new way of restoring the state.

When LPi receives a straggler message estraggler with timestamp Tstraggler,
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the system scans all the processed events such that LV Ti ≥ Texe ≥ Tstraggler,

and restores the correspondent state variable when modified (taking care to

replace each variable once).

This approach is not transparent, since the model writer must have knowl-

edge about rollback and state saving concepts, and has to access structures

of the kernel to save state variables before modifying them. This is necessary

since the kernel does not know where the state is stored, and which variables

are being updated.

For this reason, many solutions have been studied to develop approaches

able to provide transparency to the model writer.

The work in [62], studied for x86 architectures, provides transparency of

the state saving operations using software instrumentation. This approach

starts by the assembly code of the simulation model and, parsing it, each

time an instruction that performs a memory update is found, it adds a call

to a module that makes a copy of the old value stored in. When a straggler

event arrives triggering a rollback operation, the chain of updates is backward

scanned, realigning the memory to the previous consistent state. This tech-

nique is completely transparent for the programmer that has not to modify

the original model, since this mechanism is automatically supported by the

simulation kernel.

Also the approach discussed in [66] is based on the instrumentation of

the assembly code of the application. However, this time the old value of

the updated memory portion is not directly saved. This approach relies on

a dirty bitmap, that is a structure where, each time that a memory region

is updated, the corresponding bit is setted to 1, to state that this region is

dirty. Consulting the bitmap, a (periodic) checkpoint only saves the memory

areas updated with respect to the last checkpoint. In turn the checkpoiting
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policy will follow one of the aforementioned techniques to choose the interval

χ.



Chapter 4

Moving to Hardware Based

Recoverability

State recoverability is one of the most important mechanisms to be supported

by speculative PDES platforms.

Even if simple in concept, state recoverability of the simulation objects

rises enormous problems on the side of both performance and application

transparency. In fact, the more efficient the recoverability support, the lower

its overhead. On the other hand, application-transparent state restore typi-

cally demands more operations from an underlying recoverability layer, which

further affects the tradeoff away from pure performance optimization.

Literature studies have jointly addressed performance and transparency

aspects in state recoverability of simulation objects via multiple checkpoint-

ing techniques [10, 11] that, except for a few proposals based on (either

conventional or non-conventional) hardware support [12, 13], rely on soft-

ware implementations of the checkpointing support. Most of these proposals

also entail overhead minimization techniques (e.g. via tuning of the parame-

ters driving both checkpointing and, consequently, state recovery operations).

62
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Nevertheless for the case of very fine grain simulation models, namely

models based on events that require a few microseconds of CPU-time for be-

ing processed, the overhead can still represent an impairment to performance.

A way to cope with this issue is the alternative recoverability technique based

on reverse computing [14], where the forward application code is coupled with

a (in some cases automatically generated [15]) reverse code version that is

used to undo the state updates that are eventually revealed to be inconsis-

tent. This solution pays-off especially in contexts where, beside having fine

grain reverse (and hence forward) events, the portion of the state trajectory

to be undone (rollback length) is short, which leads to a reduced number of

reverse events to be processed per rollback operation.

Another aspect that plays a relevant role in case of speculative PDES with

very fine grain models is the cost associated with cross-simulation-object

scheduling of events, which may become predominant. This is typically

achieved via message exchange (managed at the level of the underlying PDES

platform), and, as discussed, the classical approach to undo the notification of

an event that has been scheduled as a result of the processing of another event

that is then detected to be non-consistent is to send a negative copy of it (the

so called anti-message). Beyond potentially triggering a rollback operation

at the recipient (in case the original copy of the message, namely event, was

already processed) anti-messages lead to doubling the communication cost

per-incorrect-scheduled events. Literature approaches have been proposed in

order to reduce the number of message exchange operations, such as the ones

based on message aggregation [16] or lazy-cancellation (lazy-antimessages)

[17].

Despite the existence of a bunch of literature results on optimizing specu-
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Fig. 4.1: Speedup for PHOLD while varying event granularity and number

of threads

lative PDES systems, executing simulation models with very fine grain events

on top of these systems in a performance-efficient manner is still a non-trivial

achievement.

Just to provide some empirical evidence, in Figure 4.1 the speedup achiev-

able by running the classical PHOLD benchmark for PDES systems [18] is

reported (in a configuration with 2048 simulation objects) on top of the

ROOT-Sim last generation speculative PDES platform (1) hosted on a 32-

core off-the-shelf HP ProLiant machine, with respect to the sequential sim-

ulation of the same benchmark (same code) on a calendar-queue scheduler

(still executed on the same machine). In the plot, the CPU-demand by

PHOLD events is varied from a few to some tens of microseconds. The plot-

ted curves show that speedup is unacceptable (it is a slow-down) for minimal

CPU-requirements by the events, and is anyhow non-competitive (vs the em-

1https://github.com/HPDCS/ROOT-Sim
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ployed number of threads) even when events last tens of microseconds.

In this thesis the issue of speculatively running PDES applications with

very fine grain events efficiently on top of multi-core machines, is achieved

by exploiting the Hardware-Transactional-Memory (HTM) support that is

nowadays offered by off-the-shelf processors (such as the Intel Haswell). Over-

all, this approach is suited for contexts where conventional speculative PDES

engines based on software recoverability (even the most advanced ones) fail to

provide speedup just due to the excessively fine granularity of the simulation

events (Figure 4.1).

4.1 Framing the HTM based proposal within

literature

As discussed in the previous chapter, most of the state recoverability propos-

als in speculative PDES are based on software approaches. Since the classical

software supports seems to completely fail in case of simulation models with

very fine grain events, to search a most suitable technique the attention

is turned to hardware solutions, in particular exploiting the transnational

memory one.

In this section an overview of all the results studied to implement the

recoverability relying on hardware support is provided. Some of these results

will be used to support our proposal, while others will be shown to emphasize

their cons and pros, underlining the different directions that have been take

in this thesis.

First of all, a software proposal that exploits transactional memory is
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described in [67]. Here the possibility to speculatively execute discrete event

simulation applications in parallel on top of shared-memory multi-core sys-

tems by exploiting the TM paradigm for state recoverability is discusses.

However, this work is still bound to software based recoverability, and does

not attempt to exploit the innovative HTM-support provided by mainstream

processor, as instead is done in our proposal. As a consequence, the path

followed by [67] does not result particularly suited for very fine grain models,

which is instead the scenario targeted by this thesis. However is possible to

find some interesting checkpointing solutions oriented to speculative PDES

based on hardware level facilities.

The really first hardware-based solution to state recoverability was pub-

lished in 1992 [12]. This proposal introduces a special purpose device, called

rollback chip. This device is used in this approach to keep the live state of

the simulation object and gives the capability to perform the restore of past

values. Then this solution require an additional hardware that is not part

of the common hardware. Compared to this scheme, our proposal does not

require specialized hardware, rather it is based on off-the-shelf general pur-

pose HTM facilities.

The work described in [13] proposes an alternative way to use hardware

support for state recoverability in speculative PDES. In this solution the

checkpointing operation performed to copy the current state in the check-

point buffer is realized in non-blocking manner via software managed DMA

engines. In our proposal is preserved the same non-blocking advantage. The

before image of the simulation object state is implicitly guaranteed to be

available even when the simulation object is CPU-dispatched, thanks to the
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underlying hardware transactional cache used to host the after image associ-

ated with event processing. In fact, the original memory remains untouched,

while the updates are performed in the just mentioned transactional cache.

On the other hand, in our proposal to restore the before image does not

require software intervention, such that that aborting the transaction asso-

ciated with the incorrectly processed event all the updates stored in cache

are eliminated and leaving unchanged the original state. Differently the ap-

proach in [13], relies on software modules used to access the log and copy

back the snapshot to be restored into the live state region.

Others hardware supported synchronization in PDES have been studied

in [68, 69]. Both these proposals exploit hardware level facilities to determine

the commit (or committable) horizon of a parallel PDES run, and hence to

evaluate the safety of processed events (or of those to be still processed).

These solutions are orthogonal to the one described in this thesis, since they

do not use hardware level facilities to guarantee recoverability of the sim-

ulation model state trajectory. Moreover, the proposal in [68] stands as a

theoretical design, given that it relies on an hardware component, that imple-

ment the reduction across threads that calculates the commit horizon, that

has not been physically realized, rather it has only been evaluated via simu-

lation. Instead, our engine is based on real off-the-shelf hardware facilities.

The recent proposal studied in [70] tackles the issue of exploiting the HTM

support for speculative PDES. However, in this proposal the facilities offered

by HTM are used as means for the atomic management of the event pool by

the concurrent threads operating within the PDES platform. In particular in

this approach the HTM-based transactions are used to encapsulate the con-
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current accesses to the event pools. Rather, this thesis exploit HTM as the

means for state recoverability while processing the events, which is achieved

via the innovative algorithms provide, where ad-hoc data structures for de-

termining the safety of speculatively processed events are managed within

the transactional context.

As hinted before, approaches explicitly tailored to fine grain speculative

PDES include those oriented to reduce the communication overhead, thus

ultimately improving the computation to communication ratio. In [17] it is

proposed a lazy-cancellation schema where an anti-message is sent out only

after the assurance that the corresponding message to be cancelled would

never been recreated. In [16] it is studied the message aggregation approach

where messages are sent after batching them so as to amortize the send-

setup cost. In [71] it is described the zero-copy message passing where the

number of data copies along the path from source to destination is reduced

to a minimum. In [72] it is presented the risk free synchronization schema

where produced messages (events) are sent out only after having determined

the consistency of the corresponding source event. Compared to these ap-

proaches, our proposal implicitly pursues similar objectives given that in

our solution only committed output events (those produced by a committed

transaction, namely a committed event execution) are actually flushed to

memory. Hence is not allowed any non-committed newly produced output

to live out of the hardware transactional cache, thus do not require sending

anti-messages, given that only the output by committed events is reflected

into memory.

Finally, compared to the reverse computing approach [14], which can
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be considered as a means to reduce the state recoverability cost in case of

fine grain events (where software based checkpointing would induce exces-

sive CPU-time/memory overhead), our approach provides a different tradeoff

given that our HTM-based speculative PDES engine guarantees state con-

sistency with no intervention by the software. In fact our proposal do not

rely on reverse events, rather on squashing the hardware transactional cache

in the underlying HTM system, which leads the latency of the state restore

operation to be independent of the length of rollback (as instead it does not

occur in reverse computing schemes). On the other hand, our proposal allows

for a speculative trajectory that has a number of speculative (uncommitted)

steps bounded by the number of CPU-cores (namely the number of HTM

caches available in the system), while reverse computing can be employed in

contexts where the speculative chain of processed events does not undergo

any specific constraint. In other words, in the approach described in this

thesis optimism is limited by the available hardware resources, in terms of

HTM caches, which is not the case for reverse computing.

4.2 Hardware Transactional Memory (HTM)

Before explaining the engine of this HTM-based approach to speculative

PDES, can be useful to take a quick overview of the basic tools. Transactional

memories are created with the aim to simplify concurrent accesses to shared

variables, allowing a set of load/store instructions to be executed in atomic

way. Even if this behaviour can be obtained by using locking primitives,

the use of transactions can provide a simplest and efficient way to manage

concurrency. The goal of a transactional memory system is to transparently

support the definition of portion of code considered a transaction, providing
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atomicity, consistency and isolation.

Nowadays transactional memories are available via software and hard-

ware implementations. A Software Transactional Memory (STM) provides

transactional memory semantics embedded in a runtime library, and requires

minimal hardware support (e.g. compare and swap (CAS)) available on all

modern architectures. While this approach give the possibility to use trans-

actional memory on common machines, software implementation usually im-

plies performance penalty, especially compared with hardware one.

Hardware Transactional Memory (HTM) systems support the execution

of transactional portion of code relying on hardware support given by the pro-

cessor. The compare and swap (CAS) instruction hinted before, or still the

load-link/store-condition (LL/SC) one, can be viewed as basic trans-

actional memory support, however, designed to manage the size of a single

native machine word.

During the experimentation phase of this thesis we have used a machine

equipped with two Intel Haswell processors, that is the first mainstream

architecture to include hardware support for transactional memory.

From a user side, to use the transactional memory support on a HTM-

equipped machine, is enough to encapsulate the portion of code to be exe-

cuted in transactional way:

1 r e t r y :

2 i f ( xbeg in ( ) == 0) {

3 /∗∗ c r i t i c a l s e c t i o n ∗/

4 xend ( ) ;

5 }

6 e l s e {

7 goto r e t r y ;

8 }
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xbegin() is the instruction used to mark the begin of the transactional por-

tion of code, while xend() is used to end the transaction trying to commit it.

A transaction execution might fails for different reason during its execution

(e.g. cache full, nested transaction, or also by using xabort() instruction)

or might abort during the commit phase, if the transaction itself produces

conflict in memory. In any case, if the transaction go in abort, the execution

flow is rolled backward until the begin of the transaction, returning this time

an error value. In this way, if the transaction go in abort, the application

writer can choose what to do, e.g. retrying to execute the transaction.

On the other side, during a transaction, the hardware keeps track of which

cache lines have been read from and which have been written to. When the

program try to commit the transaction, the hardware checks if the memory

portion read or written have been modified and if so goes in abort, otherwise

commits the transaction and, in atomic way, writes data in memory. Thus,

if two transactions concurrently read the same memory portion, there is no

problem. Otherwise if at least one of the two transactions modifies a memory

portion read from the others, there is a conflict and one of the transaction

will abort (based on the commit time). This means that two thread are able

to concurrently work on the same memory region and both the transactions

will commit unless of read/write or write/write operations on the same data.

Moreover, if a conflict occurs, at least one of the two transaction will commit.

In the end, the use of hardware transactional memories to support roll-

back operation in speculative PDES, seems to be extremely natural since the

optimistic concurrency, namely the speculation, is the basic mechanism used

to implements transaction.
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4.3 HTM-based Speculative PDES

As hinted, this thesis describes an HTM-based engine developed to efficiently

perform recoverability in speculatively running PDES applications with very

fine grain events on top of multi-core machines.

In this approach the simulation kernel is slightly different due the nature

itself of the problem and the hardware exploited.

First of all this solution is developed to work on a single multi-core ma-

chine due to the size of events and the transactional support. In fact, in

this engine, the optimism in the speculation is constrained by the number of

(real) cores available on the machine since each core is able to support only

one transaction per time. This happens for two reasons: first, if a thread

is descheduled to left the core to another one (then if the engine uses more

threads per core), the context switch should invalidate the cache, aborting

the transaction; second, if one thread tries to execute more events before

commits, the cache could fill, aborting the transaction. Thus, since the ex-

ecution in the future are limited to a finite number of events, and since the

execution time of very fine grain events is negligible compared to network de-

lays, introduce remote communication with other simulation kernel instances

would entail an heavy decrease of performance.

Moreover, since the events that can be executed speculatively are con-

strained in number, in this solution we have decided to not tie an LP to

a specific thread. In this way each thread will execute the event not yet

performed with the smallest timestamp in all the system, regardless the re-

cipient LP. This gives us the possibility to think the pending event queue

with a different point of view.

Additionally, since each thread can manage only one event per time, this

carries on the event until its commit, removing the necessity to keep a queue
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for the processed events.

In the end, all these aspects, linked to the underlying hardware support,

give the possibility to develop a lighter and dynamic simulation kernel, that

is what we need to manage very fine grain events.

4.3.1 Structures

In the classical PDES approach, as many pending event queues are used as

there are the number of LPs used by the simulation. In our approach the

schema to manage the events to be processed has be redesigned to reflect

the lightweight and dynamic of the models addressed. Since the LPs are

no more tied to a single thread, we consider a scenario where all the events

that have been scheduled, including the simulation startup events, destined to

whichever simulation object, are kept together in a single pool. In particular,

the structure used to keep events to be processed is a modification of the

classical calendar-queue [36].

This structure represents the behaviour of a typical cyclic desk calendar.

One schedules an event by simply writing it on the appropriate page with the

relative time and year2. The time at which the event is scheduled represents

the priority, while the year says if the event has to be processed now or at

the next turn. In its implementation each page of the calendar queue is an

ordered linked list and an array containing one entry for each day of the year

is used to point the relative list. The struct keeps the information about the

current entry of the array. When is performed a dequeue from the calendar

queue, one check the year of the first event in the list: if it is the current one,

2In the real implementation there is only the information about the timestamp of the

event and an additional information in the structure that say which is the limit of time to

be considered in the current year.
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the event is taken, otherwise skips to the next entry of the array. When is

reached the end of the array, the research starts again from the first entry.

The length of the array is chosen to be long enough that most event will be

scheduled for no more that a year, then the length of a year and of a day are

adjusted if this condition is no more in place.

The calendar queue seems to be good for our purpose since, to insert

an element is enough to point the right entry of the array (with a module

operation) and search the correct position in the list, then with a complexity

linear in the size of the day, while to get an event in most of the cases is enough

to take the first element of the current day, providing average constant-time

O(1) performance.

However, the classical calendar queue is constrained by the fact that the

new events inserted in the queue, as in a real calendar, have to be associated

with a timestamp greater than the last event dequeued. In our solution this

is not acceptable since, due the concurrence, can happen that is inserted an

event with a timestamp smaller than the last extracted. Let’s consider a

quick example: a first thread gets an event e1 with timestamp Te1 , while a

second thread gets the next event e2 with timestamp Te1 greater than Te1 . At

this point, the execution of e1 might generate an event e3 with timestamp Te3

such that Te3 < Te3 ≤ Te3 that violates the constraint imposed by the classical

calendar-queue. Thus, the classical implementation of the calendar-queue is

modified in order to allow it to be filled with an event e whose timestamp T (e)

is such that T (e) < Tmin, where Tmin represents the minimum timestamp of

all the events. This is done by simply moving the current day to the one of

the event inserted out of order, and recalculating the period of the year.

In this engine, the sorting of the elements into the calendar-queue is

based on event timestamps, but the event records also entails information
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determining what simulation object is the target of an event (since we have a

single pending queue for all the system), and the actual event type/payload,

as typical of PDES environments.

All the events kept in the calendar-queue are schedule-committed, with

the meaning that they will never be retracted (e.g. via negative copies). In

fact, in this approach events scheduled during the execution of an HTM-

supported event are flushed to the calendar-queue only if the transaction

associated with the processing of the event successfully commits. This, in its

turn, implies that the event is no longer rollbackable, therefore the output

events it produced will never be retracted.

This implies also the need for a private pool for each thread to keep the

output event generated during the execution of the event. This pool normally

is constrained by a very small size. In fact, for discrete event models that

reach steady state behavior while being processed, it is classical to have an

average number of newly produced events per any individual event execution

which is of the order of one unit. If this behaviour were unattended, we would

experience an unbounded growth of memory requested for keeping scheduled

but not yet executed events while the run is in progress.

We target the scenario where the maximum number of worker-threads em-

ployed in the speculative platform is upper bounded by the number of avail-

able CPU-cores, say N . This is a classical configuration avoiding interfer-

ence by deschedule/reschedule operations in parallel applications[73, 74, 75]

at least for cases where the platform is temporarily dedicated to a specific

application.

The calendar-queue data structure is coupled with an array of N entries,

named processing[]. This structures is the core of all the synchronization

mechanism since it is used to decide when an event can be considered safe.
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Fetch event (if any) from  
calendar-queue 

Flush new events 
(if any) to calendar-queue 

Free 
(default initial state) 

Busy 

Fig. 4.2: State diagram for the generic worker-thread WTi

In other words, this structure is used to compute at each time the GVT

value. Differently by the common solution, this operation can be performed

quickly thanks to the organization of the whole engine. The i-th entry of

this arrays is used to keep data, say a timestamp value, related to the status

of the i-th worker-thread operating within the speculative PDES platform,

which we denote as WTi.

At the startup of the simulation this array is initialized in such a way

to keep in all the entries the special value ∞. This value means that the

relative thread has not event to process. At the same time, the calendar-

queue is initialized in such a way to keep the initial events that, depending

on the simulation model configuration, will fire any initial state transition in

the model execution on whichever simulation object.

4.3.2 Basic Engine

Now is possible to go on to discuss the behaviour of the engine during its

execution. During the simulation, each worker-thread WTi lives in the state

diagram shown in Figure 4.2.
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Algorithm 2 Fetch operation - worker-thread WTi
1: procedure FETCH [atomic]RETURNS: event

2: e ← GetMinimumTimestampEventFromCalendarQueue

3: if e = NULL then

4: processing[i] ← ∞

5: else

6: processing[i] ← T (e)

7: end if

8: return e

9: end procedure

At the startup each thread is in the free state. This means that, when

the system is started, all the threads still have not pending simulation event

(to be executed) yet assigned.

When a thread is in the free state, it tries to get an event to process by

asking to the calendar-queue the next event to process. Thus, WTi leaves

the free state and enters the busy one upon performing a FETCH operation

that leads to the actual extraction of some event to be processed from the

calendar-queue. The FETCH operation executes the actions described in

Algorithm 2.

In particular, first, it atomically try to extract the event e with minimum

timestamp that is currently registered into the calendar-queue (if any), and

records the extracted timestamp value into the entry processing[i] asso-

ciated with WTi. Atomicity is necessary, since it avoids that two different

worker-threads take care of processing the same pending event. Moreover, if

two worker-threads, say WTi and WTj execute the FETCH operation con-

currently, and the two operations are serialized in such a way that the two

threads extract from the calendar-queue, respectively, the event e and then

the event e′, it is guaranteed that T (e) < T (e′) (3). Hence it is also guaran-

3Here we implicitly assume that no simultaneous events will ever exist. However, the

case of simultaneous events, where T (e) may be equal to T (e′), will be explicitly dealt
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teed that processing[i]<processing[j], given that the two array entries

are updated according to the established serialization order.

It is important to note that the FETCH operation can be executed

in constant-time average performance, since the calendar-queue guarantees

O(1) average-performance. Hence, the usage of a conventional spin-lock to

achieve atomicity of the FETCH operation should not represent a scalabil-

ity impairment, at least at the CPU-core count that currently characterizes

processors offering HTM support (4).

If no actual event is extracted from the calendar-queue by WTi while

executing the FETCH procedure (i.e. the calendar-queue is found to be

empty upon being accessed), the entry processing[i] is set to the default

initial value ∞. In the main loop of simulation processing, this scenario will

simply lead to retry the FETCH operation, leaving the worker-thread in the

free state, given that no job to perform has been assigned to it. Moreover,

setting processing[i] to ∞, the worker thread WTi notifies to others that

it has no event to process and there are not other event to be processed in

the future, then it can be ignored in the computation of the safety to commit

an executed event.

When WTi has reached the end of the execution of the current event(that

happens in the busy state), tries to commit it. If the commit is allowed, the

thread flushes any speculative operation (e.g. memory update) associated

with event processing, which it kept at the level of the HTM cache, is al-

lowed to be flushed to memory for making it visible. In fact, as hinted before,

during the transactional execution of an event, the update in memory are not

with later in the article.
4For scaled-up CPU-core counts, as we may expect it will be the case for next-generation

HTM-equipped machines, we can envisage the reliance on wait-free algorithms rather than

lock-based ones [76, 58].
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Algorithm 3 Flush operation - worker-thread WTi
1: procedure FLUSH [atomic](event set E)

2: ∀e ∈ E: InsertInCalendarQueue(e)

3: end procedure

visible, but are done in a private cache, with the aim to copy it in memory

only when the transaction reaches correctly the end. However, has hinted

before, the newly scheduled events (possibly produced by the current event

execution) produced during the execution of the HTM-based transaction, are

stored into a thread-private buffer, such that the buffer content is made vis-

ible only upon committing the HTM-based transaction. Hence, right after

committing the event processing phase, these events can be flushed (out-

side of the transactional code-block) from the thread-private buffer to the

calendar-queue, making these available to be processed.

The set of all the activities carried out by any worker-thread WTi right

after the commit phase, is referred as FLUSH procedure. This phase is

depicted in Algorithm 3. As is possible to see, also this operation is executed

in atomic way, in particular relying on the same spin-lock used in the FETCH

operation, and simply inserts all the newly produced events (if any) into

the calendar-queue. As an additional note, the FLUSH operation may be

requested to atomically insert into the calendar-queue more than one event,

but, as seen before, a well designed model produce an average of at most one

new event. As a results, in most of the scenarios we can expect constant-time

average performance also for the FLUSH operation.

Upon executing this procedure, the worker-thread switches back to the

free state.

At this point the flushed events will be eventually extracted from the

calendar-queue by any thread that will (re)transit into the free state, via

the execution of FETCH operations. As seen before, a new event e′ that is
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flushed to the calendar-queue might be associated with a timestamp T (e′)

such that T (e′) < T (e), where e is an event previously fetched by some

worker-thread WTj (namely, the one with minimum timestamp across those

stored in the calendar-queue at the time of the FETCH operation). In this

case, the newly scheduled event e′ stands in the past of e, which plays a role in

the determination of event safety (causal consistency) within the speculative

processing scheme.

As hinted, the array processing[] is a pivot structure to guarantee con-

sistency in the simulation. In fact, the values registered in the entries of

this array are used to define the order according which the events currently

handled by worker-threads are committed. In particular, they establish the

order according to which the HTM-based transactions implementing the pro-

cessing of the events need to be committed. Hence, the entries of this arrays

are used in a manner similar (at least in spirit) to what is done by Lam-

port’s bakery algorithm [77], which is classically used for defining the order

according to which concurrent threads can access a same critical section.

In this approach the condition that tells whether a worker-thread WTi

can safely commit the event it is handling is expressed as:

∀j 6= i : processing[i] < processing[j]

This condition indicates that the (possibly speculatively) executed event

is associated with the current lower bound timestamp across all the not yet

(or just) processed events in the system. Thus, if the condition is verified,

this means that the timestamp of this event represents the commit horizon,

and then the event can be safely executed or (in case of already carried out

speculative execution) safely committed. In other words, if a timestamp

Ts verify the above condition, it means that Ts is the current GVT. The

pseudo-code implementing the safety-check is provided in Algorithm 4.



CHAPTER 4. MOVING TO HW BASED RECOVERABILITY 81

Algorithm 4 Safety-check - worker-thread WTi
1: procedure SAFE RETURNS: BOOLEAN

2: T̂ ← MIN∀j 6=i(processing[j])

3: if (processing[i] < T̂ ) then

4: return TRUE

5: else

6: return FALSE

7: end if

8: end procedure

As the reader may observe, the SAFE procedure does not require to be

executed atomically. This is due to the fact that when any worker-thread

WTj executes the FLUSH procedure, it leaves processing[j] untouched.

Could happen that some values are modified during the execution but, for

the natural ascending order given by the execution of subsequent events, the

new value will be ever greater than the minimum between all the events.

Then, starting from the above algorithms is possible to construct the

basic engine of the simulation kernel. The execution loop of any worker-

thread WTi is the one reported in Algorithm 5.

The first operation of the main-loop is the FETCH, performed to get the

event with the smallest timestamp from the pending queue. This operation

in retried until an event is got.

Right after is carried out the check-safety to choose the way (speculative

or not) in which the event e currently assigned to WTi needs to be processed.

If the safety-check at line 7 is verified, then the event can be executed with no

need to start an HTM-based transaction for recoverability purposes, since the

effects produced by its execution are safe and no other thread can invalidate

them. In other words, the timestamp of the event is already known (prior to

the actual processing of the event) to correspond to the commit horizon of the

speculative run. Otherwise, if the safety-check at line 7 is not verified, WTi
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Algorithm 5 Main loop
1: procedure MainLoop

2: while ¬endSimulation do

3: e ← FETCH( )

4: if e = NULL then

5: retry from line 3

6: end if

7: if Safe then

8: event set New events ← ProcessEvent(e)

9: FLUSH(New events)

10: else

11: BeginTransaction( )

12: event set New events ← ProcessEvent(e)

13: if Safe then

14: CommitTransaction( )

15: FLUSH(New events)

16: else

17: AbortTransaction( )

18: retry from line 7

19: end if

20: end if

21: end while

22: end procedure

processes the event speculatively within an HTM-based transaction (hence in

a recoverable manner, given that the transaction can be aborted, if needed).

If the event is executed speculatively, after the processing phase, the

safety-check is re-executed. Now, if the event has become committable

(namely, it now lies on the hopefully advanced commit horizon) then the

actual commit takes place, with installation of the event side effects that

become visible. In the negative case, the whole process of safety-assessment

and safe vs speculative execution is retried, resuming from line 7, right after

the fetch operation. Unfortunately, if the check-safety in line 13 fails, the

transaction has to be aborted and the event re-executed. In fact, is check-

safety fails, this means that the thread has read at least an entry of the array
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with a value smaller than its current time and now, if the thread wants to

retry the control, to be safe should read some different values in the array,

which would fail the transaction, due a read/write conflict.

When a worker thread complete correctly the execution of an event re-

sulting safe in one of the two controls, is performed the FLUSH operation

that injects the new produced events in the system and switches back the

thread to the free state.

In the end, the structure of Algorithm 5 leads any worker-thread WTi to

be able to execute its currently assigned event in safe mode or in speculative

mode. In the latter case, we have chances that, at the end of the speculative

processing phase, the event has became committable, thanks to the previous

commit of events that stand in its past, and the absence of newly injected

events still standing in its past.

4.3.3 Optimizations

This approach has to be able to manage events quickly, reflecting the nature

of the models addressed. Moreover, since the consequences due to the per-

forming the check-safety on an unsafe transaction, it is important to choose

the the right moment to perform it. In this section will be presented some

optimizations studied to take full advantage of the hardware provided.

4.3.3.1 Handling Simultaneous Events

The safety condition discussed above is based on having some worker-thread

WTi in the busy state that is in charge of processing (or has speculatively

processed) the event with the current absolute minimum timestamp within

the whole system. As hinted, this condition might never be verified with

simultaneous events, namely events marked with the same identical times-
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tamp. If simultaneity of events would be admitted in the simulation model,

then Algorithm 5 would give rise to live-lock.

Guaranteeing progress in speculative PDES systems in the presence of

simultaneous events is a well understood problem that has been extensively

studied in literature [53], which is not specifically bound to this proposal.

Hence different literature solutions for tie-breaking simultaneous events (see,

e.g., [78]) can be exploited for integration with our HTM-based speculative

PDES system. A baseline approach could consist in comparing (for safety

assessment) both timestamp values and worker-thread identifiers, according

to the philosophy underlying Lamport’s bakery algorithm [77].

In this engine is used a baseline variant for safety-assessment (of the event

currently handled by any worker-thread WTi) in case the simulation model

admits simultaneous events, which is based on the adoption of the following

predicate:

∀j 6= i : processing[i] ≤ processing[j] AND i < j

This variant does not consider (possible) causal relations across simultaneous

events, since the tie-break is exclusively based on worker-threads’ identifiers.

However, the achievement of liveness with simultaneous events, while jointly

guaranteeing causality across them, could be reached in our scheme by relying

on causal-timestamps (see, e.g., [79]). Hence the entries of the processing[]

array could be simply setup to keep causal-timestamps rather than classical

ones if a scenario with causal simultaneous events would need to be dealt

with.

4.3.3.2 Non-zero Lookahead

From the PDES literature it is well known that the simulation model looka-

head can play a important role on the efficiency of synchronization. The
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lookahead is a value, assigned to the simulation model by the model write,

that represents the minimum interval between two consecutive events. In

other words, when the execution of an event e with timestamp Te produce a

new event e′, this must have a timestamp Te′ such that Te′ ≥ Te + L, where

L is the lookahead assigned to the discrete model. Hence e will not give rise

to causality dependencies up to time Te + L. Overall, the lookahead is the

ability to predict that nothing will occur in logical time up to a virtual time

point that is a function of the current time.

Although it plays a major role for conservative PDES [2], since in this

kind of approach this is the only way to allow the execution of concurrent

events, it can play such a role also in speculative PDES systems. However, the

traditional way the lookahead is used is to determine (a-priori for conservative

PDES vs a-posteriori for speculative PDES) the safety of the events that are

executed by a simulation object when assuming that the object is a sequential

entity.

In this approach, objects are no longer sequential entities, given that

two different worker-threads can contemporaneously reside in the busy state

by having fetched two events destined to the same simulation object. Let us

indicate with Te and Te′ the timestamps of these two events and assume, with

no loss of generality, that Te < Te′ . Suppose, still with no loss of generality,

that the simulation model has lookahead L, such that Te +L > Te′ and then

e will not generate event to be executed before e′. In such a scenario, we

cannot assert that the event e′ is safe (which might lead it to commit before

e is committed), given that it may need to access the simulation object

snapshot that has been produced by e. Overall, event safety calculation on

the basis of the lookahead can be still adopted for scenarios where the event

in the past, say e in our example, is associated with a simulation object
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different from the one associated with the event in the future, say e′. In such

a scenario, the condition T (e) + L > T (e′) leads to the fact any new event

produced by the source simulation object, the one processing e, will not be

causally related to e′, thus also if e will produce an event to be processed on

the same simulation object of e′ this will occur only after e′.

Hence, the overall HTM-based speculative PDES engine organization can

be modified to support the lookahead. This is done by including an additional

array destination[], with N entries, such that, in case WTi is in the busy

state, destination[i] keeps the identifier of the simulation object that is

the target of the event to be processed by WTi. This way we can distinguish a

priori whether different events that are concurrently handled by two worker-

threads operate on disjoint portions of the simulation model. By exploiting

this new array, and the lookahead value L (if any), the safety of the event to

be processed by WTi can be assessed according to the following condition:

∀j 6= i such that destination[j] 6= destination[i] :

processing[i] < processing[j] + L

AND

∀j 6= i such that destination[j] = destination[i] :

processing[i] < processing[j]

The above logic can increase concurrency with a double effect. First, it

allows the concurrent execution of more than one thread in safe mode. Sec-

ond, allows the speculatively processed events (via HTM-based support) to

be committed in non-strictly increasing values of their timestamps, as instead

it needs to occur when relying on the condition adopted by the SAFE pro-

cedure in Algorithm 4. Further, the above predicate can be still integrated

with the aforementioned logic for managing simultaneous events based on
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worker-thread identifiers. As a last note, such a predicate is fully indepen-

dent of the actual interaction graph across the simulation objects. This is a

choice aligned with the classical objectives of speculative PDES synchroniza-

tion, which does not require a-priori knowledge of the (potential) interactions

across the concurrent simulation objects.

4.3.3.3 Throttling

Another optimization introduced in this section is related to line 13 of Al-

gorithm, where the SAFE procedure is called while being in HTM-based

transactional contexts. As hinted, it is not useful to call the check-safety

control multiple times inside the same transaction while handling event e,

thus following a polling approach for safety-assessment. This is because any

update occurring onto the array checked by SAFE leads to the abort of the

HTM-based transaction associated with the processing of e in case the safety-

check was previously invoked within the same transaction and the array was

updated via FETCH operations by concurrent worker-threads. For this rea-

son, if the SAFE control fails the first time, the algorithm forces it to abort,

without reach the end. Then, the aim is to make the SAFE control when it

is more likely to return true. Thus, in order to increase the likelihood that,

in case e has become a safe event along its speculative processing interval,

we can actually detect its safety upon calling the SAFE procedure in line

13 of Algorithm 5, it is devised a throttling approach (which is a classical

technique for reducing the likelihood of rollbacks in speculative PDES, see,

e.g. [51]).

In particular, the procedure SAFE is modified to return to the invok-

ing worker-thread WTi currently handling event e, the number of entries

of the processing[] array which keep timestamps that are lower than the
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timestamp kept by processing[i]. Denoted with K this number, which

corresponds to the minimum number of events that need to be committed

before a speculative run of the event e bound to WTi can be committed.

It is the minimum, not the exact value, because K does not account for

events with timestamps lower than processing[i], if any, which might have

been already inserted into the calendar-queue, but that might have not been

fetched for processing.

Clearly, when calling SAFE in line 7 of Algorithm 5, K is zero if the event

bound to WTi is safe, while K is different from zero in case the event is not

detected to be safe. However, in case the event e is not yet safe when calling

the SAFE procedure in line 7 of Algorithm 5, K provides an indication of

the minimum number of events from which e may causally depend, which

need therefore to be committed before committing any speculative run of e.

Thus, to improve the Algorithm 5 with the throttling schema, is inserted

a delay before the SAFE procedure. This delay is implemented as CPU-busy

loop, since operating system sleep cannot be used, given that it would lead

to aborting HTM-based transactions because of a mode-change along thread

execution.

In particular, the throttling delay is computed as:

δ ×K × α (4.1)

where:

• δ is the average event granularity for the executed simulation model;

• α is a parameter falling in the interval [0,1], depending on the current

execution.

The parameter α is a variable introduced to follow dynamically the system

behaviour, since is determined following a classical hill-climbing approach,
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Speculative engine type

classical HTM-based

suitability for very fine-grain events no (or limited) yes

unbounded chain of speculative events yes no

intra-simulation-object parallelism no yes

suitability for very large scale platforms generally yes no

Table 4.1: Summary of HTM-based vs classical speculative PDES.

similar to the one adopted in [80] for tuning the checkpoint interval to the

value that optimizes performance. In this hill-climbing approach the metric

used to dynamically set α is the number of committed events per wall-clock-

time unit. In fact, if on one side delaying the SAFE control increases the

likelihood of success, on the other hand, increasing too much this interval is

possible to reduce the benefit given by the parallel execution. Moreover, if

the transaction is too long, is also increased the probability of abort due to

the arrival of an interrupt. In other words, throttling is regulated in such a

way to increase the likelihood of performing useful work while the worker-

threads reside in the busy state. Is also included an ε-greedy scheme to avoid

stalling in local maxima.

4.4 HTM-based vs

Classical Speculative PDES: a Summary

In this section is provided a comparison of the main differences (as evaluated

by relying on four reference indices) between our HTM-based approach and

classical speculative PDES, as shown in Table 4.1.

The latter allows for (ideally) unbounded chains of speculatively pro-

cessed events along the execution path of each individual simulation object
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(it may only depend on memory limits for keeping speculatively executed

event-buffers), while the HTM-based approach allows for up to N (number

of CPU-cores) speculative events to stand out, given that recoverability relies

on the hardware transactional cache. However, this seems to not be a big

problem since, using a single pending queue, all the event in processing are

”near” to the commit horizon and then they can be committed in a short

time, allowing the threads to get a new event to process.

On the other hand, the HTM-based approach allows intra-simulation-

object concurrency while classical speculative PDES does not allow for it. In

fact, the hardware transactional memory automatically resolves data conflicts

arising while processing in parallel events destined to the same simulation ob-

ject (this leads to squash/retry of the corresponding HTM-based transactions

in case some conflict materializes). This means, after all, that even with a

smaller number of simulation objects, the performance would remain similar,

differently by the classical approach where, due to the exclusive use of the

simulation object, the performance are strictly related to the size of LPs set.

As for usefulness when parallelizing very fine grain models, the HTM-

based approach fully fits it, while the traditional approach may provide lim-

ited usefulness. On the other hand, the classical approach has been already

shown to scale to very large computing platforms (see, e.g., [4]), while our

solution is intrinsically targeted at limited scale machines (e.g. because of

the atomicity requested in manipulating the shared calendar-queue across

the worker-threads, or the shared arrays of meta-data).

However, at current date, machines with HTM support show relatively

limited number of cores. Hence our approach looks suited for current HTM

platforms. Also, for very fine grain models, significant reduction of the com-

pletion time can be achieved even with limited (but well exploited) amounts
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of CPU-cores, which is one target we achieve, as shown by the experimental

data provide in the following section.

Concluding, as hinted in Section 4.1, in literature there are not valid ap-

proaches to carry on parallel simulation of fine-grain discrete event, and this

HTM-based approach represents a valid solution as proved by the experi-

mentation shown in the next section.



Chapter 5

Experimental evaluation

This chapter is dedicated to the analysis of our approach. The experimenta-

tions carried aim to evaluate the benefit given by this approach in different

contexts. In particular the tests are done on two different models, varying

the requirements by the events, both in terms of duration and memory usage.

5.1 Hardware Setup

The reference computing platform is an HTM-equipped machine which en-

tails two 4-core Intel(R) Xeon(R) CPU E3-1275 v3 3.5 GHz processors with

hyper-threading support and 24 GB RAM. During the tests we have not

used the hyper-threading (hence the whole available set of 8 cores) in or-

der to avoid interference by different threads on transactional-cache portions

that are shared across hyper-threaded cores. In fact, during the tests we

noticed that, going over 4 threads (i.e. 4 physical disjointed cores, with sepa-

rate caches), the ratio of occurrences of abort due to cache full has increased

sharply, leading HTM-based speculative processing of events to abort due

to phenomena that are not directly imputable to our speculative processing

92
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support. This hardware has been used only to perform simulation during all

the tests, then the results reflect a scenario where the machine is completely

dedicated to high performance simulation.

The Operating System used by the machine is 64-bit Ubuntu 12.04.2 LTS,

with Linux Kernel version 3.5.0-23. The linking and compiling tool used is

gcc 4.8.1.

5.2 Benchmark Applications

PHOLD Is a model used to benchmarking simulation kernels with the pos-

sibility to vary the duration of events. In this benchmark, each simulation

object executes sham events with the only purpose of advancing the local

simulation clock to the event timestamp [81]. Each time an event is exe-

cuted, a new sham event is scheduled, destined to whatever object inside the

simulation, with the timestamp incremented following an exponential distri-

bution. The execution of an event has included a busy loop (which emulates

a specific CPU time for event processing, and hence a specific event gran-

ularity). In our case, varying the number of iterations of the loop we can

benchmark our new approach with very fine grain events.

Terrain-Covering Ant Robots (TCAR) This is an exploration and

mapping agent based simulation model developed on the basis of the results

in [82]. Specifically, in this model a group of agents (i.e. ant robots) is

set out into an unknown space, with the goal to fully exploring it, while

acquiring data from sensors (e.g., cameras, lasers, . . . ) which are used to

map the environment. Whenever a robot has to make a decision about

which direction should be taken to carry on the exploration, it is done by

relying on pheromones count : each subregion is assigned a counter which
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gets incremented whenever any robot visits it, i.e. tracks the number of

pheromones left by ants, to notify other ones of their transit. To decide

what direction to take, ant robots adopt a greedy approach, so that when a

robot is in a particular subregion, it targets the neighbour with the minimum

trail count. A random choice takes place if multiple subregions have the same

(minimum) trail count. The terrain is represented by an undirected graph,

then any agent is able to go from one cell to another one. This mapping is

done by representing the terrain as a matrix composed by hexagonal cells.

At the beginning of the simulation, the agents are disposed on two opposed

border spots. In our implementation of this model, each simulation object

models an hexagonal subregion of an overall region to be explored.

5.3 Results

We initially tested our HTM-based speculative PDES system by relying on

PHOLD benchmark described in Section 5.2. We included 2048 simulation

objects in the simulation model, each one scheduling events for itself or for

the other objects. Specifically, upon processing an event, the probability to

schedule a new event destined to another simulation object has been set to

0.2, which is representative of scenarios with non-minimal interactions across

the different objects. Also, the initial population of events has been set to

1 event per simulation object, while the timestamp increment determining

the actual timestamp of newly scheduled events has been set to follow the

exponential distribution with mean value equal to one simulation time unit.

The model lookahead has been set to a minimal value computed as the 0.5%

of the average timestamp increment. For this benchmark configuration, we

varied the CPU-demand for processing the events in the interval between
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2 and 12 microseconds, which has been done by appropriately setting the

classical busy-loop characterizing PHOLD event processing steps. Hence

we studied the system behavior when moving from very fine to fine grain

event configurations. We have run this benchmark by varying the number

of employed threads from 1 to the maximum number of physical CPU-cores,

say 4, in the underlying HTM-equipped machine. For the case of single-

thread runs, the execution time values are those achieved by simply running

the application code on top of the calendar-queue scheduler, while for all the

other settings of the number of threads we relied on the HTM-based parallel

implementation we presented (1). We have also run the same identical model

by relying on the last generation ROOT-Sim speculative PDES engine, which

offers a pure software-based support for recoverability.

The results obtained are shown in Figure 5.1 where is reported the ob-

served speedup values versus the single-thread execution time. Each reported

value is the result of the average over 5 different samples. The data clearly

show how our HTM-based proposal definitely outperforms the traditional

style PDES engine. Particularly, our solution allows achieving speedup that

ranges between 1.5 and 3.6, with the highest values achieved when the gran-

ularity of the events increases towards 12 microseconds. Also, with 4 threads

it provides speedup above 3 as soon as the event granularity is of at least 4

microseconds.

Instead, the traditional PDES engine only provides slow-down, which

again confirms the unsuitability of the classical software-based recoverability

support for speculative execution of models with very reduced event granu-

larity.

To complement the above data, we report in Figure 5.2 the number of

1This is available as open source at https://github.com/HPDCS/htmPDES.
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Fig. 5.1: Speedup values for PHOLD

transaction aborts due to negative safety-check of speculatively processed

events. By the data we can see how the number of aborts tends to decrease

while increasing the event granularity. On the other hand, the speedup ob-

served for lower event granularity values is higher than the one observed for

coarser grain events. This is a reflection of the fact that with very fine grain

events, a higher number of event processing retries pay-off, which is essen-

tially due to the fact that recoverability tasks are extremely light, thanks

to the HTM-based support. On the other hand, recoverability is still light

with coarser grain events, but the retry of coarser granularity events does

not favor performance to the same extent we get for the case of finer grain

ones.

In Figure 5.3 we report an additional set of data showing how the HTM-

support for event speculation influences the execution dynamics. In particu-

lar, we show the probability that some event gets eventually committed after

having been executed speculatively within an HTM-based transaction. The
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Fig. 5.2: Aborted transactions

data show an interesting trend where for lower levels of parallelism (say 2

threads) the HTM support does not influence speculation (and its perfor-

mance effects) significantly. In fact, the likelihood for a committed event to

have been executed within an HTM-based transaction is very low, indicat-

ing how the most important contribution to parallelism in the execution is

provided by the exploitation of the lookahead, which allows for processing

events in a safe mode outside any transaction. On the other hand, when

increasing the level of parallelism, the HTM-based support starts to play a

relevant role, given that the probability for a committed event to have been

processed speculatively within some HTM-based transaction increases up to

(slightly less than) 0.2. Also, the clear increase of the usefulness of HTM-

based speculative processing when moving from 2 to 4 threads indicates a

potential for scalability of our approach to HTM-equipped machines with
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Fig. 5.3: Usefulness of HTM-based speculation

larger numbers of physical cores.

Interesting results are given by the comparison between the speedup ob-

tained using the throttling mechanism versus the results obtained by dis-

abling it. In particular, the throttling mechanism allow speedup improve-

ments that grow up to about 20% (see the configurations with 2 and 4 mi-

croseconds event granularity). Also, the gain by throtling appears when the

number of concurrent threads is grater than 4 (say 6 or 8), which is some-

how expected given that for lower numbers of threads the risks of rollback

thrashing within the optimistic HTM-based processing scheme are lower. On

the other hand, throttling does not pay-off for slightly larger event granular-

ity values. In fact, the configuration with 12 microseconds event granularity

shows about 10% better speedup when throttling is excluded. This is due

to the fact that with larger grain events, throttling (that induces a delay in

the safety check of speculatively processed events, which tends to be pro-

portional to the event granularity according to the hill climbing dynamically
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selected factor) does not pay-off. On the other hand, the same hill climb-

ing scheme tends to shrink the value of the factor n to zero, hence limiting

(as said to 10%) the performance degradation by throttling. Overall, the

throttling mechanism look to play a core role in the HTM-based speculative

engine especially for extremely reduced event granularity values (say event

granularity of a few microseconds).

Another set of experiments has been carried out by relying on a multi-

robot (multi-agent) exploration and mapping simulation model, shown in

Section 5.2. In our implementation of this model, each simulation object

models a squared subregion of an overall region to be explored. We considered

2025 subregions, that are explored in parallel by 16 robots, modeling the

scenario of a relatively reduced number of high-qualified agents in charge of

the exploration. Each robot has a mean residence time within a subregion of 5

minutes, and for physical constraints it cannot pass though a subregion in less

than 30 seconds, a value that determines the lookahead of the model (since

a new arrival event in any subregion cannot occur before 30 seconds have

elapsed since the arrival in the currently visited subregion). This simulation

is aimed at determining the coverage time, depending on the choices that

are performed while determining what new subregion to enter. This model is

still very fine grain (with 6 microseconds of average event granularity), given

that mobility events only entail determining what direction to choose. The

results for this application are presented in Figure 5.4. By the data we can

see how the HTM-based solution is able to deliver maximum speedup of the

order of (slightly less than) 3.5, just when using 4 threads. Also, it provides

super linear speedup when employing 3 threads.

Further, the traditional style PDES engine did not provide any reason-

able speedup also for this case study, rather a slow-down. This additionally
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supports the relevance of our HTM-based proposal.

Finally, in Figure 5.4 we also report a speedup curve achieved while run-

ning the HTM-based engine using (at the engine level) a lookahead for event

safety detection that has been set to 50% of the actual lookahead of the sim-

ulation model. By the data we see that this configuration still provides good

speedup, which for the case of 4 threads is slightly less than the 80% of the

value observed when employing the real lookahead of the application. This

is an additional indication of the usefulness of HTM-based speculation, espe-

cially for larger number of threads (as we have already noted for the PHOLD

benchmark). Finally, these data show how the HTM-based approach can

provide resilience to performance failures in scenarios where the lookahead

managed at the level of the simulation engine is an under-estimation of the

real one. This might help setting up the engine in scenarios where the deter-

mination of the precise lookahead of the application can be a time consuming

job (e.g. when not relying on automatic approaches to lookahead extraction

[83]).
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Chapter 6

Conclusions

In this thesis we explored the idea of relying on Hardware-Transactional-

Memory (HTM) support provided by current off-the-shelf processors in or-

der to improve the execution speed of very fine grain parallel discrete event

simulation applications. This is done by exploiting hardware supported in-

memory transactions to implement the speculative execution of simulation

events. If they are not ensured to be causally consistent at the time of com-

mitting the transaction, the rollback operation can be executed at reduced

cost by simply squashing the transactional hardware cache. A set of opti-

mizations are included in this proposal, among which an explicit throttling

mechanism aimed at improving the chance for a transaction (namely a specu-

latively executed event) to be positively committable upon the corresponding

causal consistency check occurring in the final execution phase of the trans-

action. Experimental results show that this approach pays off in reducing

the relative overhead of the classic software based recoverability support (e.g.

software implemented checkpointing) for speculative parallel discrete event

simulation. As a result, our scheme allowed to achieve speedup in the par-

allel execution of discrete event models with event granularity of the order
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of a few microseconds, a configuration typically non-effectively addressable

via classical speculative parallel discrete event simulation engines relying on

software based recoverability.
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