
Faculty of Engineering

Master’s thesis in

MASTER OF SCIENCE IN ENGINEERING IN COMPUTER SCIENCE

Proactive Workload Management in
Cloud Environments in the Presence

of Software Aging

Candidate Thesis Advisor

Luca Forte Prof. Bruno Ciciani

Co-Advisors

Eng. Pierangelo Di Sanzo

Eng. Alessandro Pellegrini

Academic Year 2014/2015

Keep calm and...turn the power off then on!

Contents

1 Introduction 1

2 Related work 4

3 Software Aging 7

3.1 Causes and effects . 9

3.1.1 Anomalies . 9

3.1.2 Effects . 10

3.1.3 Systems’ availability 12

3.2 Management . 14

3.2.1 Time based Software Rejuvenation 15

3.2.2 Load based Software Rejuvenation 16

4 PCAM Framework 17

4.1 Framework architecture . 18

4.2 F2PM . 21

4.3 On-line Control Loop . 25

5 Proactive Workload Management in Multi-Cloud Environ-

ment with PCAM 28

5.1 Goals . 29

ii

5.1.1 Load Balancing technique based on

region MTTF . 30

5.2 System Architecture . 31

5.3 Load Balancing strategy . 34

5.4 Components characterization 41

5.4.1 Controller . 42

5.4.2 Load Balancer . 57

5.4.3 VM . 68

5.4.4 User . 72

6 Experimental evaluation 73

7 Conclusions 80

8 Bibliography 82

9 Ringraziamenti 86

Chapter 1

Introduction

The software aging is a well-known phenomenon that plagues many systems

leading to degradation in performances and in higher response time[1]. In

particular, it affects systems that have to run for a long period, due to the

accumulation of the anomalies. These anomalies are often caused by errors

in software development, as shown in [2]. They can be categorized into two

classes of bugs: Bohrbugs and Mandelbugs[3]. The first ones are easily iso-

lated and predictable while the latter ones are often unpredictable, and it is

hard to reproduce them in a deterministic way, like the aging-related bugs as

memory leaks, unterminated threads, unreleased locks and file fragmentation.

The presence of these anomalies leads the system to fill all the free memory

available for the processes, or to use more CPU than the needed, then lead-

ing the system either to an unusable condition or to work in a degradation

mode. The main effect is a decrease in the system availability. Due to their

nature, Mandelbugs are hard to seek and fix, so one of the better techniques

to manage them is the rejuvenation [4]. It consists in leading the system in a

clean-state, namely a state where the system is without bugs (or bugs occur

with a low rate): a common rejuvenating procedure could be the reboot of the

1

CHAPTER 1. INTRODUCTION 2

system. Rejuvenation is a management technique that can be executed either

in a reactive manner or in a proactive manner, that is, in the first case when

a fault is detected, then the rejuvenation procedure is triggered, while, on the

other hand, it is possible to monitor some system features to predict when a

system is leading towards a fault, acting in a user-chosen moment (e.g. when

the workload is low/null). This work will rely on a Machine Learning(ML)-

based framework for Proactive Client-server Application Management in the

cloud, called PCAM[5], to perform a proactive software rejuvenation into a

cloud region in a multi-cloud environment, where a distributed application

is deployed. PCAM is able to predict the remaining time to the occurrence

of some unexpected event on a virtual machine hosting a server instance,

through optimized ML-based models product by a Framework for building

Failure Prediction Models (F2PM)[6] and continually measuring the system

features. This work will present an innovative framework to perform a proac-

tive workload management in multi-cloud environment exploiting the results

in [6] and [5]. Respect to the two above mentioned works, this framework

has to work with a distributed application on the cloud, where each cloud

segment could be served by a different provider or a private infrastructure.

Starting from previous results, this work will extend the previous intuitions

to this more complicated scenario, showing how the system availability in-

creases and the response time decreases when the framework is working on

hybrid cloud systems too. To obtain the mentioned results, this work will

exploit the Mean Time To Failure (MTTF) value, to decide which is the best

cloud segment to serve an incoming request (i.e. the region with the lowest

MTTF values) relying on the results provided by a leader in the system, and

the Remaining Time To Failure (RTTF) to decide, into a cloud region, if a

machine is approaching to a fault, then rejuvenate it to transparently switch

CHAPTER 1. INTRODUCTION 3

the incoming traffic towards another active machine. Respect to previous

works, this framework can be used with the most common applications, in

which a user exploits the closest entry point to get a service by an application,

but its request will be forwarded to a server in another geographical region.

While previous works provide a method to predict the RTTF value for a

virtual machine, an innovative balancing strategy will be used to forward

the incoming traffic, using values computed by the leader (elected using the

leader election algorithm presented in [7]) to define how many requests are

supported by a particular region over the time. This framework was tested

on a geographically distributed hybrid cloud, composed of VMs hosted on

the Amazon EC2 service (in Ireland and in Frankfurt), and VMs hosted on

a private server in Munich. The distributed application chosen to evaluate

the framework is the TPC-W web benchmark[8].

The remainder of this work is structured as follows. In Chapter 2 it will

be discussed related work. In Chapter 3 presents the problems related to

the software aging. Chapter 4 discusses the ML-based frameworks used in

this works. The design and the implementation choices of this framework

are discussed Chapter 5. Chapter 6 shows the experimental evaluation and

the Chapter 7 draws the conclusions.

Chapter 2

Related work

In the context of management of resources for cloud computing environments,

several proposals have been presented in order to manage the accumulation

of anomalies via proactive software rejuvenation [9]. Nevertheless, this work

stands as an innovative solution, because it can manage any number of VMs,

even geographically distributed, without any constraint on the topology of

the distributed deploy of the application.

Specifically in the context of hybrid cloud environments, the work in [10]

proposes a hybrid cloud computing model to make the best use of public cloud

services along with privately-owned data centers. The paper presents as well

a workload factoring service designed for proactive workload management.

In [11], a resilient hierarchical distributed loop self-scheduling algorithm able

to cope with VMs crashes is presented. Contrarily to these works, in this

proposal it is enforced proactive rearrangement of the cloud organization,

and it is further able to redirect incoming requests to different geographical

areas, so as to reduce the impact of software rejuvenation of availability of

the system.

A work similar in spirit to this proposal is the one in [12]. This paper

4

CHAPTER 2. RELATED WORK 5

proposes a capacity allocation algorithms which can coordinate multiple dis-

tributed resource controllers operating in geographically distributed cloud

sites, coupled with a load redirection mechanism which distributes incoming

requests among different sites. Nevertheless, the main focus of the proposal

in [12] is to reduce the cost of allocated resources. In [13], custom interfaces

for implementing policies and provisioning techniques for allocation of VMs

under inter-networked Cloud computing scenarios are presented. Compared

to these works, it is offered a transparent deploy of virtualized applications on

a geographical scale, offering at the same time an increase in the availability

of the system.

In [14], workload forecasting and optimal resource allocation is studied.

This is done by illustrating a model-predictive algorithm for workload fore-

casting that is used for resource auto scaling. Similarly, the work in [15]

presents a provisioning technique that automatically adapts to workload

changes related to applications for facilitating the adaptive management of

system and offering end-users guaranteed Quality of Services (QoS) in large,

autonomous, and highly dynamic environments, using an analytic model.

As well, in [16] Markovian Arrival Processes are used for the same purpose.

Statistical models, for the same goal, are presented in [17]. Differently from

these proposal, this work offered a complete framework which, being based

on ML techniques, allows for the integration with any virtualized application.

In particular, transparent deploy at a geographical scale, with self-tuning ca-

pabilities and proactive management of the workload are specific differences

with these proposals.

In [18], the authors present a simulation framework for online capacity

planning of cloud-based in-memory data stores. This work relies as well on

ML methods, but only to determine network latency, while other aspects

CHAPTER 2. RELATED WORK 6

proper of the application are predicted using a simulative/analytic model.

Contrarily, this work broaden the applicability of this proposal to any kind

of application, not only in-memory data stores. Furthermore, this work relies

only on ML techniques, which can capture hidden dynamics of the applica-

tion.

Chapter 3

Software Aging

In computing systems, Software Aging is the name given to a phenomenon

empirically observed in many software systems: as the runtime period of

the system or process increases, its failure rate in a given time interval in-

creases too. A failure may be an incorrect service (e.g. erroneous outcomes),

no service (e.g. halt and/or crash of the system), or partial failure (e.g. in-

crease in response time)[19]. These failures are caused by the presence of

software faults. They can be categorized into two classes: Bohrbugs and

Mandelbugs [3]. The first ones are easily isolated and manifest themselves

consistently under well known conditions, typically it is simple to manage

them. The latter ones show an apparent not-deterministic behavior, ap-

pearing chaotic, because of their fault activation. In most cases restarting a

process it is possible that not recur the already seen faults. Because of their

nature, generally they are difficult to manage.

A famous citation[1] help us to better understand of what we are talking

about:

“Programs, like people, get old. We can’t prevent aging, but we can un-

derstand its causes, take steps to limit its effects, temporarily reverse some

7

CHAPTER 3. SOFTWARE AGING 8

of the damage it has caused, and prepare for the day when the software is no

longer viable.. . . (We must) lose our preoccupation with the first release and

focus on the long term health of our products”. [cit. D.L. Parnas]

In most cases, Software Aging affects systems that are running for a long

period due to the accumulation of errors over the time, often related to

software development, then to software faults. Natural consequence of it, is

that after a certain time t, the system could be unusable for a user, in terms

of response time and reliability, as shown in Figure 3.1, and if maintenance

is needed, in term of system’s availability too.

Fig. 3.1: Degradation in performance over the time

Above mentioned maintenance could be the reboot of the system, it is

just one of possible solutions to handle this problem, another way could be

locate the guilty processes, that are causing performance degradation, and

handle just them. Of course, a tradeoff exists, and often locate the processes

and especially manage the code is not trivial even if it could avoid losing the

CHAPTER 3. SOFTWARE AGING 9

current work session.

In the following section will be presented an overview on the main possible

causes for the Software Aging problem. Again, some kinds of anomalies will

be showed, focussing on their effects on the use of the operating system

resources then on their effects on the system’s availability.

3.1 Causes and effects

There are some kinds of faults that lead to degradation in performances of

the system, they may be of different nature, but in this context, a particular

kind of Mandelbugs are considered: the aging-related bugs. They are anoma-

lies like memory leaks, unreleased locks, unterminated threads, fragmentation.

Each of these anomaly produces, over the time, some effects to the system

different from the effects produced by another one, but the occurrence of any

of them, affects the system performances.

Just to provide a scenario of what an aging-related bugs could do, during

the Gulf War, in February 1991, 25 US military were killed and 97 were

injured when the Patriot missile-defense system in Dhahran, Saudi Arabia,

failed to intercept an incoming Scud missile. It was due to a software fault

in the system’s weapons-control computer because of the increase in failure

occurrence rate with the system runtime[20].

3.1.1 Anomalies

To better understand how these aberrations act, it will be provided a more

detailed description of what they are.

CHAPTER 3. SOFTWARE AGING 10

• Memory leak: it incurs when a process incorrectly manages memory

allocation. In particular, when memory that is no longer needed is not

released (e.g. programming in C language, it could be happen missing

a free call after a malloc call).

• Unterminated thread: it incurs when multi-thread programs need

to start new threads never releasing them at the end of their life (e.g.

programming in C language, it happens if a pthread exit call is forgot-

ten at the end of the thread execution).

• Unreleased lock: it incurs when a process needs to work in a critical

section. The natural way is to take the control of a shared memory area

through lock primitives, then this lock could be released to allow the

others to work, unfortunately it is not what always happens, causing

this anomaly (e.g. programming in C language, it happens missing an

unlock primitives after a lock call).

• Fragmentation: it is typical in system that are running for a long

period. The objects tend to become spread out in the heap, forming a

lot of small unused memory regions.

3.1.2 Effects

System’s performances decrease when presented anomalies occur, as already

seen in Figure 3.1. One of the affected components into the system is the

memory. Due to the memory leaks, especially in machines that have to run

for a long period, they cause the exhaustion of the free memory, forcing

the system to resort in swapping operations. Tipically swap space is kept in

secondary memory devices (e.g. disks) slower than the main memory, creating

a bottleneck in memory access performing a lot of I/O operations. They lead

CHAPTER 3. SOFTWARE AGING 11

the system to quickly reduce its performances when swap is needed, and the

processes are not able to get free main memory to compute their routines. If

the system is not able to reduce the memory used by current processes, the

used swap memory will grow reducing the system’s response time towards

the total uselessness of it. Figure 3.2 shows when swap operations start due

to the not available free memory.

Fig. 3.2: Infos about OS’s memory

Besides the memory problem just showed, also the CPU performances

may be affected by the presented anomalies. It is proved that an aver-

age percentage of 40% of anomalies being due to errors in the software

development[2]. One of the most frequent anomaly is the unterminated

threads. It causes an increase in CPU use due to the schedule operation to

perform threads. If a thread that had already finished its life is live yet, even-

tually it will be scheduled by the Scheduler even if it will have no operations

to perform, causing wasting in CPU time for other threads that are waiting.

This behavior causes an increase in the process response time. If there are a

lot of hang threads, the response time could be exceed a threshold that bring

CHAPTER 3. SOFTWARE AGING 12

the system to be unusable.

Even if the just presented anomalies are accused of being the main causes

of software aging[3], unreleased locks and file fragmentation give their con-

tribute to foster this problem. The first one causes an incorrect behavior

in the process execution. If a shared memory area is locked, all the other

processes that want to access that particular area, must wait until the lock is

released. A bad manage of lock primitives could cause deadlocks in the worst

case compromising the expected process execution. The latter anomaly is a

well known problem in Operating Systems. In a nutshell files instead of to

be stored continously in memory, are separated by little gaps, often too little

to be fill with other files. Over the time, access became slower because of the

files spreaded on the disk. Figure 3.3 reports an example of file fragmentation

on disk.

Fig. 3.3: Example of file fragmentation

3.1.3 Systems’ availability

The discussed anomalies effects impact the system availability. First of all,

it will provided a definition of what Availability is for a system, introducing

MTTF and MTTR notions:

• MTTF (Mean Time To Failure): given a fixed time interval, it

measures average time before a failure occurs.

CHAPTER 3. SOFTWARE AGING 13

• MTTR (Mean Time To Repair): given a fixed time interval, it

measures average time to repair a faulty component.

• Availability (A): using the first two definitions, it represents the per-

centage value that the system is able to provide services given a fixed

time interval, formally:

A =
MTTF

MTTF +MTTR
(3.1)

The Figure 3.4 shows MTTF and MTTR over the time. A is just the

relation between the MTTF and the total time MTTF +MTTR.

Fig. 3.4: MTTF and MTTR over the time

Memory leaks, unterminated threads, unreleased locks and file fragmenta-

tion impact on MTTF. Expected behavior in the presence of these anomalies

is that MTTF drecreases as the occurrence of them increases. If a lot of

memory leaks occur, they impact on the memory, reducing the free available

memory and leading the system to work in a degradation mode until all the

memory and the swap space will be filled. Of course, a failure will occur ear-

lier than memory leaks did not occur, then MTTF decreases respect to an

CHAPTER 3. SOFTWARE AGING 14

ideal behavior (i.e. without anomalies). Equation 3.1 shows how decreasing

MTTF, the system availability A decrease too. It means that focussing the

attention on the MTTF trend, there is a first overview of what is happening

inside a system, revealing the presence of possible anomalies. As explained

in [1], even if a software design cares about software aging, it is impossible to

avoid totally above mentioned anomalies effects, so the natural consequence

was that software and system design thought ways to face them in proactive

and reactive manner.

3.2 Management

Following the definition of Availability, a management technique should be

able either to increase the MTTF or to reduce the MTTR. Generally to

reduce the MTTR, some recovery techniques are exploited organizing them

on different levels[3]. Most of the bugs are quickly fixed by faster recovery

techniques while more serious bugs are delegated to slower but more effective

recovery techniques. All these techniques can act in two main ways:

• Reactive approach: when a failure is detected then a manage rou-

tine starts. The maintenance starts only if a failure will be detected

otherwise the system continues to run even if in degradation mode.

• Proactive approach: this approach is smarter then the previous one.

Collecting some useful infos by the system, proactive management tech-

niques are able to execute a recovery before the system crashes, allowing

to establish some fixing points of interest. It should be when the work-

load is below a particular threshold while an observed feature is above a

critical threshold (e.g. arrival rate in web services is below a particular

threshold and the used swap space is above a critical threshold).

CHAPTER 3. SOFTWARE AGING 15

The main reactive management technique is the replication of software.

It is useful in non – aging related Mandelbugs, because of their unpredictable

nature so they cannot be anticipated and must be react to. To face this bugs

it is important to design management routines acting as fast as possible.

On the other hand, aging – related bugs are such that they can cause a pre-

dictable increasing failure rate and degraded performance while the system is

up and running. This is the case in which a proactive management technique

is preferred to the reactive one.

The most important and well known proactive management technique is

the Software Rejuvenation[4]. Proactive Software Rejuvenation cleaning the

system internal state and resetting the system runtime may effectively reduce

the failure rate and improve performance. It can be performed rebooting

some modules, processes or, in the worst case, the entire system too. A

drawback is that, even if it can be performed at different granularities, costs

are incurred in terms of scheduled downtime for at least some part of the

system.

3.2.1 Time based Software Rejuvenation

Before the system is deployed, there is a phase for collecting parameters,

based on the past experience. Infos about time to failure have to be got

due to aging related failures. During the system run, time to failure data

are collected and used to parameterize the model. Using them, a software

rejuvenation can be executed at ”fixed time”, adapting these fixing points to

observed time to failure data, optimizing the schedule. In this case, actions

are performed independently of the actual working state of the system.

CHAPTER 3. SOFTWARE AGING 16

3.2.2 Load based Software Rejuvenation

This kind of Software Rejuvenation does not need time to failure inputs. It

is performed just monitoring system resources at run-time and predicting

the time to exahustion of resources. Predict a single resource exahustion

was trivial, the challenge was to predict a system failure based on a complex

combination of more resources. On the other hand, benefits of proactive

management can be significant, in terms of both system service downtime

and system performance.

More recent works, show that proactive management of software anoma-

lies can efficiently exploit Machine Learning (ML) algorithms to predict the

time to crash of applications. The system is trained until crashing in the

presence of anomalies, and some system feature have been collected. After

that, values of system features are fed to a ML algorithm for building a model

to predict the Remaining Time To Crash (RTTC) of the system[21]. The

benefits in using this approach are that a recovery action can be performed

before the predicted failure time or even before that the system performance

goes below a given level. Again, in [6] is showed that using ML-based ap-

proach can be predicted the occurrence of both system crashes and other

events (e.g. violations of performance thresholds), also in the presence of

different kinds of software anomalies.

Chapter 4

PCAM Framework

In this section a ML-based framework will be presented for Proactive Client-

server Application Management (PCAM)[5] in the cloud. In a nutshell, the

PCAM framework is able to predict the remaining time to the occurrence

of some unexpected event of a virtual machine hosting a server instance,

through optimized ML-based models and continually measuring system fea-

tures. In particular, PCAM exploits models produced by the ML framework

presented in [6], called F2PM.

The framework works with replicated server instances, assuming that they

are deployed on virtual machines (VMs) provided by a cloud IaaS (Infras-

tructure as a Service). The instances can be added or removed at run-time

to dinamically scale the server pool according to the system workload. Of

course, anomalies can affect VMs execution, lead them to fail or to work in

degradation mode over the time. PCAM is able to detect these situations

then to act in recovering VM on the basis of the run-time predictions of its

Remaining Time To Failure (RTTF) and on monitored VM performances.

The RTTF is the time when a failure condition is expected to be true. The

failure condition stays for a crash or for a violation of user-defined perfor-

17

CHAPTER 4. PCAM FRAMEWORK 18

mance thresholds. Using PCAM allows to work on complex common ap-

plication deployment, with replicated server instances on different machines

where different kinds of anomalies can occur.

The goal of this framework is to improve the system availability, over-

coming the drawback shown in Section 3.1.3, and the system performance.

It has the advantage to be not tied to specific applications because it has

just to retrieve system parameters at hosting machines and operating system

level, so it acts in a completely application-agnostic way.

Exploiting the ideas in [21], PCAM extends the set of possible ML algo-

rithms and, because of its reliance on F2PM, it can face both a differentiated

set of anomalies and user-defined rules to identify failure point. Again, now

the framework is able to work on a set of distributed VMs in the cloud and

not only with a couple of VMs.

A client-server application model is considered. Clients requests are

served by a set of replicated servers running on VMs of a cloud IaaS. PCAM

acts when a VM is detected to approach the failure condition. It uses sofwtare

rejuvenation to bring the VM in a clean state. Software rejuvenation is

performed simply rebooting the machine, but the framework provides the

possibility to set other custom techniques following the user will.

4.1 Framework architecture

The PCAM architecture is designed to have a VM acting as a controller,

called VMC. A k couples of VMs act as replicated servers. Inside a couple,

a VM is taken as active anche the other one is taken as stand-by.

VMC needs the following components:

CHAPTER 4. PCAM FRAMEWORK 19

• Communication Unit (CU): it has to communicate with all the

replicated VMs.

• Prediction Unit (PU): it returns the computed RTTF of a VM.

• Load Balancing Unit (LBU): it forwards remote clients requests to

active replicated VMs.

• Managing Unit (MU): it manages all the VMs. It processes the

incoming VMs messages and decides when a VM has to be rejuvenated.

On the VMs composing the replicated servers, the following components

are installed:

• Communication Unit (CU): it has to communicate with the VMC.

• Measurement Unit (MeU): it collects the local value for a VM’s

system features.

• Local Managing Unit (LMU): it sends collected features to VMC

and waits for commands from the VMC to start the VM rejuvenation.

To better understand how this architecture appears, the following Fig-

ure 4.1 is provided.

CHAPTER 4. PCAM FRAMEWORK 20

Fig. 4.1: PCAM architecture

MU knows the couples of VMs. At the start up, the MU activates one VM

for each couple marking it as active, then marking stand-by the other one.

Remote client requests are forwarded only to the active VMs passing through

LBU. In the Figure 4.1, dotted lines represent infos exchanged among VMs

and VMC. VMC is able to implement an On-line control loop receiving values

about the VM features and sending it the rejuvenation command.

As already seen, PU provides RTTF as a response to a query executed by

the MU. The prediction unit has to rely on ML-based model to compute this

result. In the following section the Framework for building Failure Prediction

Models (F2PM) used by PCAM, will be presented.

CHAPTER 4. PCAM FRAMEWORK 21

4.2 F2PM

The F2PM framework is able to build up prediction models starting from a

dataset of system features collected on VMs that are running in the pres-

ence of anomalies[6]. This framework exploits the client-server paradigm.

In particular the Feature Monitor Client (FMC) and the Feature Monitor

Server (FMS) are respectively installed on the client VM (to collect the sys-

tem features) and on the VM that acts as a server. FMS has to collect

continuosly system features incoming from the monitored VMs (e.g. client

VMs). In particular, when a VM reach a failure condition, the failure event

will be registered and the VM will be restarted. A database will contain all

the collected data over the time. One of the main feature of F2PM is the

possibility to choose a subset of monitored system features having stronger

impact on the RTTF prediction. Using Lasso Regularization[22], increasing

the λ parameter, the amount of data to be sent from LMUs of VMs to MU

of VMC can be significantly reduced, in order to reduce the training time.

In addition to the selected features, other infos are considered, such as

the slope[6]. It represents a simple approximation of a derivative function,

catching the dynamics of the system relating to the selected features. For-

mally:

slopej =
xendj − xstartj

n
(4.1)

where xendj and xstartj represents respectively the value of the feature j of

the first and the last original datapoint falling in the time interval. Thanks

to the slope, the evolution of a particular resource usage on VMs can be

captured more accurately, again, the impact of the monitored resource can

be related to the RTTF trend on the VMs.

CHAPTER 4. PCAM FRAMEWORK 22

Fig. 4.2: RTTF prediction accuracy using MP5 algorithm

Finally the dataset is used by WEKA[23] to generate the RTTF predic-

tion models exploiting several ML techniques like: Linear Regression, M5P,

REP-Tree, Lasso as a Predictor, Support-Vector Machine (SVM), and Least-

Square Support-Vector Machine[6]. The Figure 4.2 shows the accuracy in

predicting the RTTF using the MP5 algorithm. The real RTTF is repre-

sented by the green line while the predicted RTTF is represented by the red

line. Again, x-axis shows the real RTTF values while the y-axis shows the

predicted RTTF values. The plot shows how, close to the failure point (at

time 0), the prediction becomes more accurate.

Finally, once the RTTF prediction model is generated, F2PM provides

some indicators of each model, used by PCAM to allow the user to select the

most accurate model to compute the RTTF estimation. The selected model

will be used at run-time by PU in PCAM framework. The framework allows

the user to select interested features to be monitored, in this context, the

CHAPTER 4. PCAM FRAMEWORK 23

following features are considered:

• nth is the number of active threads in the system.

• Mused is the amount of memory used by applications.

• Mfree is the amount of free memory in the system.

• Mshared is the amount of used memory in buffers shared by applications.

• Mbuff is the amount of memory used by the underlying OS to buffer

data.

• Mcached is the amount of memory used for caching data.

• SWused is the amount of used swap space.

• SWfree is the amount of free swap space.

• CPUuser is the percentage of CPU time spent by normal processes

executing in user mode.

• CPUni is the percentage of CPU time spent by high priority processes

executing in user mode.

• CPUsys is the percentage of CPU time spent by processes executing in

kernel mode.

• CPUiow is the percentage of CPU time spent by processes waiting for

I/O to complete.

• CPUst is the percentage of CPU time spent by processes waiting for

services of other processes.

• CPUid is the percentage of CPU idle time.

CHAPTER 4. PCAM FRAMEWORK 24

Of course, PCAM use the same system features to build the prediction

models.

Just for the sake of clearness, Figure 4.3 shows the entire F2PM architec-

ture and a short description of it will be provided.

Fig. 4.3: F2PM architecture

From the top, aggregated datapoints are generated on the basis of user-

defined time interval. A more detailed description of this phase can be found

in [6], it is irrelevant for the purpose of this work. More interesting is the

CHAPTER 4. PCAM FRAMEWORK 25

management of the Training Data Set. As already seen, a user may set a

λ value to create a new training data set as a subset of all the monitored

system features. In both cases (e.g. applying or not Lasso Regularization), a

Training Process is applyed to the data set, towards an ML model validation.

Finally the architecture provides the prediction models used by PCAM to

estimate the RTTF on the VMs.

4.3 On-line Control Loop

The final step for PCAM is to perform the on-line control loop. It consists in

a certain number of steps in order to switch machines from active to stand-

by (and viceversa) when the VM predicted RTTF is below a thresholdT . In

particular PCAM executes the following steps:

1. The LMU of an active VM has to collect the local measurements of the

system features and then send them to VMC.

2. Once MU on VMC has received the measurements from the LMU, it

queries the PU using them, getting the predicted RTTF. Only if the

predicted RTTF is smaller then a threshold T , the MU performs the

following actions:

(a) Each MU has a list of VMs. In this list it marks the monitored

VM as stand-by and another one as active.

(b) It communicates to the LBU the new list of active VMs.

(c) It sends to the just switched in stand-by VM the rejuvenate com-

mand to start the rejuvenation procedure.

(d) Finally, it starts to receive measurements from the new activated

VM.

CHAPTER 4. PCAM FRAMEWORK 26

When a VM receives the rejuvenate command, it does not start immedi-

ately the rejuvenation procedure but it has some extra time to finish pending

request. The MU sends the rejuvenation command only after it switched the

VMs state, to avoid the case in which incoming client requests can be lost.

In this way new incoming requests are forwarded directly to the new acti-

vated VM while the other VM manage pending requests before to execute

the rejuvenation procedure.

The Figure 4.4 illustrates how is the rejuvenation for a couple of VMs.

Fig. 4.4: Rejuvenation policy for a couple of VMs

The above mentioned threshold T can be tunable by the user. It simply

represent a time value used to manage the rejuvenation procedure. In partic-

ular this safety value is used by PCAM to determine the time instant when

a VM has to be rejuvenated before the predicted failure time. It is exactly

the time in which a VM can execute pending requests. T should be set in

the same magnitude order of the request response time and it would be used

to reduce the effect of MTTF prediction error on the system availability. If

the value of T is low, a VM is rejuvenated a few time before the predicted

failure time, then even a very small overstimation of MTTF could prevent

CHAPTER 4. PCAM FRAMEWORK 27

PCAM from rejuvenating a VM before the actual failure time. For high value

of T , a VM may be rejuvenated early it can continue to run in acceptable

conditions.

Chapter 5

Proactive Workload

Management in Multi-Cloud

Environment with PCAM

In this section, a proactive workload management in multi-cloud environment

will be presented, exploiting the PCAM framework presented in Chapter 4,

in the presence of software aging. As already seen in Section 3.2, one of the

most well-known technique to overcome the issues related to the accumula-

tion of anomalies is the Software Rejuvenation, in particular, the Proactive

Rejuvenation allows to preventively force the application or hosting system

to a clean state before a time when a crash is predicted to occur (i.e. a state

where the system/application is known to work whithout the presence - or

with reduced number - of anomalies). Results in [6] and [5] have shown how

proactive software rejuvenation allow to increase the availability and reduce

the response time of virtualized (web) applications. This work considers a

more complicated multi-cloud scenario, where the same application is repli-

cated in differentiated cloud regions (even at a geographical scale), possibly

28

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 29

managed by different providers, and possibly organized as a hybrid cloud

infrastructure. In this context it was considered a geographically distributed

hybrid cloud, composed of VMs hosted on Amazon EC2 service (in Ireland

and in Frankfurt), and VMs hosted on a private server in Munich.

A more detailed architecture will be presented in Section 5.2.

5.1 Goals

This work want to build up an innovative framework to increase the avail-

ability of the application and to reduce the response time seen by the users,

at the same time. Being in a distributed environment, this framework ad-

dresses the following scenarios: on the one hand, the management of VMs in

a single cloud region is performed using ML-based prediction models, which

allow to act software rejuvenation in case of the accumulation of anomalies,

on a single VM scale; on the other hand, the framework is able to redirect

requests by remote users to different cloud regions so that (on a global basis)

the response time is kept below a given threshold, and the rejuvenation rate

of the VMs is minimized.

The application is replicated on any number of VMs whose state and

execution behavior is managed by a set of distributed controllers (hosted in

different virtual machines), which are in charge of controlling the effects of

accumulation of anomalies. Each controller has to make an online prediction

of the RTTF using ML algorithms of any managed VM. The RTTF prediction

models allow to the system administrator to select a set of rules to establish

when, during the training phase, an ML algorithm can consider a VM as

failed.

Overall, the framework allows an easy deploy and management of a repli-

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 30

cated client/server (web) application on a hybrid cloud. In particular it is

easy to activate new instances (e.g. when the workload increases from remote

users), and trigger the rejuvenation process to contrast the effects of software

aging on each VM.

Finally, the main goal of the distributed application is to allow to trans-

parently redirect user incoming connections towards any region, depending

on the current load and state of accumulation of anomalies, in all the cloud

regions by relying on MTTF value.

5.1.1 Load Balancing technique based on

region MTTF

The controller of the cloud region monitors the MTTF of each VM into its

own cloud segment. The MTTF is used to determine when additional VMs

should be activated to serve incoming requests. The MTTF can be seen as a

value telling if the current computing power, that is the set of VMs working

within the region, is sufficient to manage the current workload, and if the

generation rate of anomalies determines a too frequent rejuvenation of active

VMs. The idea is that adding new VMs can locally distribute the incoming

workload then reduce the rejuvenation rate.

In this way the framework is able to simulate most common client/server

applications, in which a client can decide to connect to a specific region either

by a-priori knowing the IP addresse of regions’ entry points (e.g. a list of IP

addresses is cabled into the client’s code), or by retrieving the IP of any

region by relying on an additional directory service (e.g. public DNS). Most

of cases one cloud region may receive more requests than other, affecting a

decrease in the average MTTF of the region, that is the average MTTF of all

VMs in the region. The controllers of different regions share this knowledge,

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 31

and by exploiting a distributed algorithm, they decide upon a shared policy

to redirect local requests to remote regions. In turn, this levels the MTTF

of all regions, and therefore prevents the activation of additional VMs in

overloaded ones. Thus, the framework is able as well to reduce the cost

associated with the activation of unnecessary additional VMs, exploiting the

already-available computer power located in geographically different cloud

regions.

5.2 System Architecture

As mentioned, the cloud resources can be distributed over the services offered

by different cloud providers, and/or over services offered by the same cloud

provider in different geographically locations, and/or over private cloud in-

frastructures. The VMs hosted in a given region by one single cloud provider

is referred as a cloud region. Each cloud region has to contains at least the

following set of VMs:

• Controller (CON): it is the VM that has to supervise the execution

of the VMs in the cloud region.

• Load Balancer (LB): The Load Balancer is the VM that receives

remote user connections to redirect them either to specific VMs in the

cloud region or towards remote cloud segments. It represents the entry

point of the distributed system from the outside world and it receives

from CON information about which are the currently available VMs.

• Computing nodes (CN): they represents the VMs that are hosting

a copy of the application. As already presented in [5] each of them can

be either in the ACTIVE state or in th STAND BY state. When a

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 32

CN is in the ACTIVE state, it is processing requests form the remote

clients, while when it is in STAND BY state it is just waiting for the

activation command from CON when the system needs its activation.

Switching to the ACTIVE state, it begins to process incoming requests.

The activation command is received by the VM in STAND BY state

when a currently ACTIVE VM has to be rejuvenated or whenever

CON decides that a higher number of VMs are necessary to manage

the incoming requests, given the current load of the system.

The whole system is composed of any number of cloud regions. The frame-

work does not mind if they are hosted by both public providers and private

infrastructures, making it viable in the case of public, private and hybrid

cloud environments. Again, it is important that they can be geographically

distributed: the system is resilient as well to partitioning or disasters.

Figure 5.1 shows the system architecture. Each cloud region is represented

from a cloud (i.e the set of CNs), a LB and a CON. They are connected by

an overlay network, and the clients can communicate directely only with the

closest LB, the entry point for the distributed application.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 33

Fig. 5.1: System architecture

Last step before the description of the Load Balancing strategy in the

system, the overlay network features will be descibed. In particular, to allow

the exchange of knowledge among the controllers, they must rely on reliable

communication system, and due to the fact that remote clients’ requests

are redirected to other VMs hosted in other cloud regions, the framework

must ensure that redirecting a request does not affect its response time. The

overlay network is designed to allow communication among different cloud

regions. Each of them has to run two proxy agents (one transmission agent

and one reception agent) handling overlay traffic of all virtual machines of its

cloud. The agents are hosted into the LBs, that are in the middle between

remote users and the CNs in the system, and act as ”connection proxies”

among all the different LBs. The agents’ purpose is to constantly monitor

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 34

the information used to determine the optimal path in the network to each

possible destination, that is all the other LBs in the distributed environment.

Whenever a transmission agent is requested to deliver a packet to any LB

in the system, the information is sent to the destination agent following

the optimal path. Finally, thanks to the overlay network, each CON-CON

communication is directed towards it. It is sure that the communication

among controllers is guaranteed even in the case of network partitions. Again,

the remote client requests are redirected to other regions with the minimal

latency offered by the current state of the network.

5.3 Load Balancing strategy

The core underneath the proactive workload management in multi-cloud en-

vironment is the load balancing strategy. In this section it will be described

how it works in order to provide a clear knowledge about the relation between

all the components composing a cloud region and the logical steps executed

by the framework.

First of all, the controllers have to take coherent decision. To do that, a

leader election algorithm is required, in order to elect, among all the CON

nodes, one leader. The presence of a leader is necessary, indeed it is the only

one that can collect usage data from other controllers and can decide what

is the best (global) policy to keep the MTTF of the system above a certain

threshold. Keeping the MTTF greater than a critical threshold it allows to

keep the response time below a given threshold and the rejuvenation rate of

all the VMs into the distributed application can be minimized.

In this context, it was chosen the leader election algorithm presented in

[7]. It is an efficient algorithm which can scale to any number of participants

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 35

(thus, ensuring scalability of the framework to any number of cloud regions)

and which is highly resilient to changes in the network of participants. Specif-

ically, by relying on this algorithm, the framework is able to enforce dynamic

network reconfiguration, even in case of multiple node and link failures in

high-speed networks with arbitrary topology. In particular, CON nodes keep

routing tables which allow to store information about the participating nodes

(that is, the other controllers) and they asynchronously update their content,

namely these routing table are incrementally generated/updated during the

lifetime of the distributed application.

Essentially, each CON uses its public IP as its ID number. When the

application starts (or whenever controllers suspect the current leader to be

failed) each CON node must exchange information about its ID only with

neighbour CONs, in order to determine what is the (non-failed) CON node

with the highest ID. This is the node which is distribudetly elected as the

leader.

The final goal of the load balancing strategy, is to distributed the (new)

incoming connections from remote clients of the (general) application hosted

by the virtual cloud infrastructure to the cloud regions which are currently

less loaded.

Let’s start analyzing one single cloud region, just for the sake of simplicity.

Each cloud region has several ACTIVE VMs and others in the STAND BY

state. The ML-based prediction models presented in [6] can be used to

etimate the (current) RTTC. The predicted values are generated using both

measured features (i.e. the current state of some measures of interest, such as

used memory or user CPU usage) and derived metrics. In particular, in this

context, the derived metrics are used differently from the actual prediction

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 36

way in which they are used to compute RTTF by the controllers. The slopes

represent the effect of the current clients’ request rate λ, due to the fact that

derived metrics represent how far the system is approaching the rejuvenation

point given both the current workload and the anomaly accumulation rate

of a given (set of) virtual machines.

To estimate the capacity of the regions, the framework exploits the ML

models generated during the learning phase according to the results in [6].

These above mentioned models are used by the controllers to perform the

proactive rejuvenation in VMs, in a given cloud region, according to result

in [5]. Given a prediction model, to compute the estimated capacity, the

current slopes are passed as inputs beside the measured system features after

the rejuvenation of a VM. Thus, the ML-based prediction model returns how

much time is estimated for a VM to reach the rejuvenation point from the

beginning of its (current) execution. By using the prediction model in this

way, the Mean Time To Failure (MTTF) of a given VM is provided. By

supposing that there are V currently-active VMs, the same evaluation is

performed for each v ∈ V , using different prediction models too. Once the

framework knows the MTTF value, it is able to compute the rejuvenation

rate for that particular machine, as shown in Equation 5.1.

f v
R =

1

MTTFv

(5.1)

More interesting is the average rejuvenation rate f s
R for a single cloud

region s ∈ S:

f s
R =

∑
v∈V

1
MTTFv

|V |
(5.2)

Each controller in the distributed system computes its own region

MTTFi, then each LB has to communicate to its CON the current clients’

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 37

arrival rate λs for that region. Finally the controller is able to send to the

current leader the couple < f s
R, λs >, then the current leader can compute

the global average rejuvenation rate using the all the couples received by the

other controllers, as shown in Equation 5.3

fR =

∑
s∈S f

s
R

|S|
(5.3)

and the global clients’ arrival rate as shown in

λ =

∑
s∈S λs

|S|
(5.4)

All the just computed values are necessary in the load balancing strategy

to compute the probability according to which each incoming connection

from any client is redirected towards a given cloud region i . In particular the

current leader computes the probabilities as shown in the following equation:

pi =

1
fs
R∑

s∈S
1
fs
R

(5.5)

Now that all the values are computed, the leader is able to calculate the

estimated capacity of a given region in the following way:

ci = λi · pi (5.6)

Controllers communicate with the leader every T seconds. Only after the

leader has collected the values from all the currently active controllers, can

make a decision on what is the amount of incoming connections λi that each

load balancer shoul redirect towards other regions.

Practically, the leader election computes the above mentioned amount

solving a fractional multi-knapsack algorithm (F-MKP). The algorithm uses

a set of n items and a set of m knapsacks (where m ≤ n), furthermore:

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 38

• pj is the profit ot item j.

• wj is the weight of item j.

• ci is the capacity of knapsack i.

F-MPK selects m disjoint subsets of items such that the profit of the

selected items is maximum and each subset can be putted in a knapsack

having at least the capacity equal to the total weight ot items in the subset.

It can be formally represented as follows:

maximize
m∑
i=1

n∑
j=1

pjxij

subject to
n∑

j=1

wjxij ≤ ci , i ∈M = 1, . . . ,m

m∑
i=1

xij ≤ 1 , j ∈ N = 1, . . . , n

0 ≤ xij ≤ 1

(5.7)

The portion of the item j that is assigned to the i -th knapsack is referred

in this linear problem as xij. In this framework, i -th load balancer serving the

i -th region is mapped to a knapsack with ci representing the region capacity.

The items are the remote user connections and for each item j the weight

is equal to cost (wi = pi). The multi-knapsack problem is hard to solve

in relation to resource usage, then the Dantzig’s approximation of knapsack

is exploited to overcome this issue. It guarantees to keep the error in the

approximation result below a 30% threshold.

When the leader computed the fraction of the workload to redirect to-

wards each cloud region, it has to communicate these values to all other

participating controllers. Now, each region controller, must communicate to

load balancer this information, that keeps the just received results in a flow

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 39

control matrix. This matrix respresents the global view of the forwarding

probabilities for each load balancer in the system. The algorithm tries to

forward all the incoming user requests to the local VMs, if it is not enough

to serve all the requests, with a certain probability the remaining connections

are forwarded to remote cloud segments. A more detailed description will be

provided in the Section 5.4.1.

It is clear that the activation period T according to which the controllers

exchange their workload data can be critical. In case of very dynamic work-

load, a too large value for T would not allow the controllers to capture it,

while on the other hand a very small value for T in case of a slowly-changing

workload would be a waste of network and computing resources. Therefore,

to autonomically capture this, it is used Hill Climbing[24], organized in a

set of operational states, which are referred to the operation applied to T ,

namely multiplication, division, and no-operation. In general, hill climbing

is an iterative algorithm that starts with an arbitrary solution to a prob-

lem, then attempts to find a better solution by incrementally changing a

single element of the solution. If the change produces a better solution, an

incremental change is made to the new solution, repeating until no further

improvements can be found.

Each time that the leader has computed the fractions of workload to be

redirected, he tries to increase/decrease the value of T by multiplying/divid-

ing it by a number in the interval [1,2]. The leader then sends back to all

controllers the new value T’, and all controllers install it, so that they are

aligned to the new activation period.

The leader keeps track of T, T’, the operation applied to T (multiplication

or division) and the fraction of workload to be redirected. At the next round,

when the leader recomputes again the workload redirection fractions, the

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 40

leader can check whether the change from T to T’ has produced some effect.

In particular, if the applied operation was a multiplication and the fractions

have not changed much (namely, the difference is ≤ 10%), then the new value

T’ is accepted and the algorithm is iterated. Rather, if the fractions have

changed too much, it means that we are facing a change in the workload.

Therefore T’ is discarded, and the operation to be applied is switched from

multiplication to no-operation.

On the other hand, in case the applied operation was a division, the checks

made by the algorithm are the other way round. In particular, if the fractions

change much (i.e their difference is ≥ 10%), it means that we are facing a

workload change and it is meaningful to continue shrinking the interval T.

Therefore, T’ is accepted and the algorithm iterates. On the other hand, if

the variation is not substantial, T’ is descarded and it is switched back to

no-operation.

When in the no-operation state, the system has found a value of T which

is good for the current dynamics. In this case, the leader does not modify

T (namely, is applies the no-operation) until the variation in the fractions

is higher than 10%. In that case, the system starts applying multiplica-

tion/division depending in the state from which it came to the no-operation

one. Specifically, if before reaching the no-operation state the algorithm was

applying multiplication, then it leaves the no-operation state reaching the

division one, and vice versa.

With an ε probabiity, the algorithm can jump from the multiplication to

the division and vice versa, even if the above described conditions are not

met.

There are certain circumstances when simply redirecting the load is not

sufficient to ensure availability of a system. As an extreme example, a peak

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 41

of connections might increase the rejuvenation rate of virtual machines in

one or multiple regions to an extent so high that the whole systems become

unavailable, simply due to the high number of rejuvenations.

As a countermeasure to this issue, each region’s controller monitor the

MTTF values shown in Equation 5.2. If this value becomes less than a given

threshold (which can be specified at configuration time), then the controller

decides to activate new spare VMs. Specifically, this can be easily done by

sending a control message to a VM in the pool which is currently in the

STAND BY state, so that this VM is brought to the ACTIVE state even if

no rejuvenation action is taking palce.

It can be noted that if the number of spare VMs is low, this solution can be

complemented with services offered by cloud service providers, which allow to

create and start new VMs from the system image. Newly instantiated VMs

in this framework immediately connect to the region’s controller to notify

their presence, and they join the pool in the STAND BY state.

In Chapter 6 it will be showed the experimental evaluation of the pre-

sented proactive workload management to support the choice of the load

balancing strategy just mentioned.

5.4 Components characterization

In this section, the main parts of the implementation of all components will

be presented. It helps to better understand how the components communi-

cate among them and how the load balancing strategy can be spread in the

cloud. The implementation is executed in ANSI C language, on unix based

OS. It allows to monitor system features directly retrieving their values from

the system’s files (e.g. /proc/meminfo, /proc/cpuinfo,. . .). There is a tran-

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 42

sition period in which the system is reaching a full-speed state, where all the

components are working and they are communicating among them. The con-

troller is the first component that must be launched to wait the connection

from its own balancer. Once they are communicating, the system is able to

accept the VMs dedicated to serve user requests. More detailed description

will be provided for each component.

5.4.1 Controller

The controller is the component that has to supervise the execution of the

VMs in the cloud region. Again, the controller may be either a Leader or

not. If it is, it means that each other not-Leader controller must send infos

about its own region (i.e. region arrival rate and region mttf) to it, in order

to allow the computation of the global system features by the leader. Using

these informations, the leader is able to computes the forwarding probability

for each load balancer in the distributed system, then it communicates to

each of them the respective probability. It follows a step-by-step description

of the most interesting parts in the controller’s implementation.

Once a controller is started, first of all, it has to wait for its own load

balancer connection. Load Balancer has to establish two different connections

with the controller: the first one for exchanging infos about of the VMs’ status

in its cloud region and the other one for infos about the arrival rate λ. Only

after this preliminary logical connection, a new thread is created to manage

infos incoming from the load balancer.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 43

Listing 5.1 reports the code:

1 // F i r s t connect ion

i f ((a c c ep t l o ad ba l an c e r (sock fd ba lance r , pthread custom attr , &

so ck fd ba l anc e r)) < 0)

3 e x i t (1) ;

5 i f (sock read (sock fd ba lance r , my balancer ip , 16) < 0) {

pe r ro r (”Error in read ing ba lancer pub l i c ip address : ”) ;

7 }

p r i n t f (”Balancer c o r r e c t e l y connected with pub l i c ip address %s \n” ,

my balancer ip) ;

9

//Second connect ion

11 i f ((a c c ep t l o ad ba l an c e r (s o c k f d b a l a n c e r a r r i v a l r a t e , pthread custom attr ,

&s o c k f d b a l a n c e r a r r i v a l r a t e)) < 0)

e x i t (1) ;

13

// Star t new thread f o r a r r i v a l r a t e i n f o s

15 p t h r e a d a t t r i n i t (&pthread custom att r) ;

p th r ead c r ea t e (& t i d b a l a n c e r a r r i v a l r a t e , &pthread custom attr ,

g e t r e g i o n f e a t u r e s , (void ∗) (long) s o c k f d b a l a n c e r a r r i v a l r a t e) ;

Listing 5.1: Load Balancer connections

Inside the dedicated thread, the controller waits for infos from its own load

balancer. In particular when it receives the arrival rate, it is able to compute

the regional MTTF. Due to the fact that the controller may be either the

leader or not, if it is not, it has to send the couple < MTTF, λ > to the

leader, then it has to wait for the forwarding probabilities from the leader.

If it is the leader, it uses the special position 0 in a global data structure, to

store itw own features, then it computes the global arrival rate and the global

MTTF. Finally, in both the cases, it can communicate computed probabilities

to its own load balancer.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 44

The code is the following:

void ∗ g e t r e g i o n f e a t u r e s () {

2 . . .

s t r cpy (r eg i on . i p ba l ance r , my balancer ip) ;

4 whi le (1) {

i f (sock read (sockfd , &a r r i v a l r a t e , s i z e o f (f l o a t)) < 0)

6 pe r ro r (”Error in read ing in a r r i v a l r a t e t h r e a d : ”) ;

pthread mutex lock(&mutex) ;

8 compute reg ion mtt f () ;

. . .

Listing 5.2: Receiving arrival rate from LB

1 . . .

// I f i am not the l eader , send my f e a t u r e s to the l e ade r

3 i f (! i am l eade r) {

memset (reg ions , 0 , NUMBERREGIONS ∗ s i z e o f (s t r u c t r e g i on)) ;

5 get my own ip () ;

s t r cpy (r eg i on . i p c o n t r o l l e r , my own ip) ;

7 r eg i on . r e g i o n f e a t u r e s . a r r i v a l r a t e = a r r i v a l r a t e ;

r eg i on . r e g i o n f e a t u r e s . mttf = reg i on mtt f ;

9 //Send i n f o s to the l e ade r

i f (s o ck wr i t e (socke t cont ro l l e r communica t i on , ® ion ,

11 s i z e o f (s t r u c t r e g i on)) < 0) {

pe r ro r (”Error in sending r eg i on f e a t u r e s to l e ade r : ”) ;

13 }

//Waiting f o r the p r o b a b i l i t i e s

15 i f (sock read (socke t cont ro l l e r communica t i on , ® ions ,

NUMBERREGIONS ∗ s i z e o f (s t r u c t r e g i on)) < 0) {

17 pe r ro r (”Error in r e c e i v i n g p r o b a b i l i t i e s from l eade r : ”) ;

}

19 //Send p r o b a b i l i t i e s to my own load ba lancer

i f (s o ck wr i t e (sockfd , ® ions ,

21 s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) < 0) {

pe r ro r (”Error in sending r e g i on s to my own load ba lancer : ”) ;

23 }

}

25 . . .

Listing 5.3: Sending features if the controller is not the leader

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 45

1 . . .

// I f i am leader , update my own va lues

3 e l s e {

// Store i n f o s in the s p e c i a l p o s i t i o n 0

5 r e g i on s [0] . r e g i o n f e a t u r e s . a r r i v a l r a t e = a r r i v a l r a t e ;

r e g i on s [0] . r e g i o n f e a t u r e s . mttf = reg i on mtt f ;

7 s t r cpy (r e g i on s [0] . i p ba l ance r , my ba lancer ip) ;

upda t e r e g i on wo rk l o ad d i s t r i bu t i on () ;

9 i n t i ;

//Use the g l oba l matrix to r e t r i e v e my own load ba lancer forward ing

p r o b a b i l i t i e s

11 f o r (i = 0 ; i < NUMBERREGIONS; i++) {

r e g i on s [i] . p r obab i l i t y = g l oba l f l ow mat r i x [0] [i] ;

13 }

//Send p r o b a b i l i t i e s to my own load ba lancer

15 i f (s o ck wr i t e (sockfd , ® ions ,

s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) < 0) {

17 pe r ro r (”Error in sending r e g i on s to my own load ba lancer : ”) ;

}

19 }

pthread mutex unlock(&mutex) ;

21 }

Listing 5.4: Sending features if the controller is the leader

For the sake of completeness, it follows the code to compute the regional

MTTF and the code to compute the global MTTF and the probabilities:

1 void compute reg ion mtt f () {

. . .

3 f o r (index = 0 ; index < vm l i s t s i z e (vm l i s t) ; index++) {

s t r u c t v i r tua l mach ine ∗vm = get vm by pos i t i on (index , vm l i s t) ;

5 i f (vm−>s t a t e == ACTIVE && vm−>mttf > 0) {

mttfs = mttfs + vm−>mttf ; number active vms++;

7 }

}

9 r eg i on mt t f = mttfs / number active vms ;

. . .

11 }

Listing 5.5: Compute the regional MTTF

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 46

1 void upda t e r e g i on wo rk l o ad d i s t r i bu t i on () {

f l o a t g l oba l mt t f = 0 . 0 ;

3 f l o a t g l o b a l a r r i v a l r a t e = 0 . 0 ;

i n t index ;

5 i n t number o f r eg ions = 0 ;

f o r (index = 0 ; index < NUMBERREGIONS; index++) {

7 i f (s t r n l e n (r e g i on s [index] . i p c o n t r o l l e r , 16) != 0

&& ! i snan (r e g i on s [index] . r e g i o n f e a t u r e s . mttf)) {

9 g l oba l mt t f = g l oba l mt t f + r eg i on s [index] . r e g i o n f e a t u r e s . mttf ;

g l o b a l a r r i v a l r a t e += reg i on s [index] . r e g i o n f e a t u r e s . a r r i v a l r a t e ;

11 }

}

13

f o r (index = 0 ; index < NUMBERREGIONS; index++) {

15 i f (s t r n l e n (r e g i on s [index] . i p c o n t r o l l e r , 16) != 0) {

i f (i snan (r e g i on s [index] . r e g i o n f e a t u r e s . mttf)) {

17 r e g i on s [index] . p r obab i l i t y = 0 ;

} e l s e i f (i s i n f (r e g i on s [index] . r e g i o n f e a t u r e s . mttf)) {

19 r e g i on s [index] . p r obab i l i t y = 1 ;

} e l s e {

21 r e g i on s [index] . p r obab i l i t y = r eg i on s [index] . r e g i o n f e a t u r e s . mttf

/ g l oba l mt t f ;

23 }

}

25 }

. . .

Listing 5.6: Compute global values

. . .

2 //Compute the g l oba l f low matrix

f l o a t f [NUMBERREGIONS] , p [NUMBERREGIONS] ;

4 memset (f , 0 , s i z e o f (f l o a t) ∗ NUMBERREGIONS) ;

memset (p , 0 , s i z e o f (f l o a t) ∗ NUMBERREGIONS) ;

6 f o r (index = 0 ; index < NUMBERREGIONS; index++) {

i f (g l o b a l a r r i v a l r a t e != 0

8 && ! isnan (r e g i on s [index] . r e g i o n f e a t u r e s . mttf)) {

f [index] = r eg i on s [index] . r e g i o n f e a t u r e s . a r r i v a l r a t e

10 / g l o b a l a r r i v a l r a t e ;

p [index] = r eg i on s [index] . p r obab i l i t y ;

12 }

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 47

}

14

memset (g l oba l f l ow mat r i x , 0 ,

16 s i z e o f (f l o a t) ∗ NUMBERREGIONS ∗ NUMBERREGIONS) ;

c a l c u l a t e f l ow ma t r i x (g l oba l f l ow mat r i x , f , p , NUMBERREGIONS) ;

18 p r i n t f (”−−−−−−−−−−−−−−−−−\nGlobal Flow Matrix :\n”) ;

p r in t mat r i x (g l oba l f l ow mat r i x , NUMBERREGIONS) ;

20 p r i n t f (”−−−−−−−−−−−−−−−−−\n”) ;

22 }

Listing 5.7: Calling the function to compute global flow matrix

The code represented in Listing 5.7 calls the core function for the load

balancing strategy. In the following Listing 5.8 it is provided the whole entire

code of the algorithm to compute the global flow matrix (Section 5.3). The

matrix represents the source load balancers LBS
i on the rows, and the des-

tination load balancers LBD
i on the columns. The cells matrix[i][i] represent

the probability that an incoming user request is directely managed in the

local cloud region. The cells matrix[i][j] with i 6= j, represent the probability

that an incoming user request will be forwarded to LBD
j . The algorithm

tries to forward all the incoming user requests to the local VMs, represented

by the matrix diagonal. If it is not enough to serve all the requests, with a

certain probability the remaining connections are forwarded to remote cloud

segments. In particular the leader computes the global flow matrix, then

it will send to each load balancer its own probability, and each of the load

balancer must follow the received values to forward the incoming traffic.

void c a l c u l a t e f l ow ma t r i x (f l o a t ∗M, f l o a t ∗ f , f l o a t ∗p , i n t s i z e) {

2 i n t i =0, j =0, cur r ent =0;

f l o a t r e s i dua l , sum ;

4 f l o a t ∗ f r e s i d u a l = (f l o a t ∗) mal loc (s i z e o f (f l o a t) ∗ s i z e) ;

memcpy(f r e s i d u a l , f , s i z e o f (f l o a t) ∗ s i z e) ;

6 memset (M, 0 , s i z e o f (f l o a t) ∗ s i z e ∗ s i z e) ;

f o r (i =0; i<s i z e ; i++) {

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 48

8 i f (f [i] <= p [i]) {

M[i ∗ s i z e+i]= f [i] ;

10 f r e s i d u a l [i]=0;

} e l s e {

12 M[i ∗ s i z e+i]=p [i] ;

f r e s i d u a l [i] = f [i] − p [i] ;

14 }

}

16 f o r (i =0; i<s i z e ; i++) {

cur rent =0;

18 whi le (f r e s i d u a l [i]>0) {

i f (i != cur rent) {

20 sum=0;

f o r (j =0; j<s i z e ; j++) {

22 sum+=M[j ∗ s i z e+cur rent] ;

}

24 r e s i d u a l=p [cur rent]−sum ;

i f (r e s i dua l>f r e s i d u a l [i]) {

26 M[i ∗ s i z e+cur rent]+= f r e s i d u a l [i] ;

f r e s i d u a l [i]=0;

28 } e l s e i f (r e s i dua l >0) {

M[i ∗ s i z e+cur rent]+=r e s i d u a l ;

30 f r e s i d u a l [i] −= r e s i d u a l ;

}

32 }

cur rent++;

34 }

}

36 f o r (i =0; i<s i z e ; i++)

i f (f [i] != 0) {

38 f o r (j =0; j<s i z e ; j++){

M[i ∗ s i z e+j] /= f [i] ;

40 }

}

42 }

Listing 5.8: Compute global flow matrix function

The next step in the controller implementation is to manage either the

relation with the other controllers (if it is the leader), or with the leader.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 49

The latter case is easy, it has just to prepare the connection with the leader,

as showed in the Listing 5.9.

. . .

2 //Connect to the l e ade r i f i am not the l e ade r

e l s e {

4 s t r u c t sockaddr in c o n t r o l l e r ;

c o n t r o l l e r . s i n f am i l y = AF INET ;

6 c o n t r o l l e r . s i n addr . s addr = ine t addr (l e a d e r i p) ;

c o n t r o l l e r . s i n p o r t = htons ((i n t) GLOBALCONTROLLERPORT) ;

8 i f (connect (socke t cont ro l l e r communica t i on ,

(s t r u c t sockaddr ∗) &c on t r o l l e r , s i z e o f (c o n t r o l l e r)) < 0) {

10 pe r ro r (”Error in connect ion to l e ade r c o n t r o l l e r : \n”) ;

}

12 . . .

}

Listing 5.9: Connect to the leader if the controller is not

If the controller is the leader, it must be able to handle the connections

incoming from other not-leader controllers. A new thread is dedicated for

this purpose, it has to accept the new incoming connections from the other

controllers, then it has to launch a new thread to manage the communication.

1 void ∗ cont ro l l e r communica t i on thread (void ∗ v) {

. . .

3 whi le (1) {

i f ((sock fd = accept (socke t cont ro l l e r communica t i on ,

5 (s t r u c t sockaddr ∗) &incoming con t r o l l e r , &addr l en)) < 0) {

pe r ro r (”Error in accept ing connect i ons from other c o n t r o l l e r s : ”) ;

7 }

9 p t h r e a d a t t r i n i t (&pthread custom att r) ;

p th r ead c r ea t e (&tid , &pthread custom attr , upda t e r e g i on f e a tu r e s ,

11 (void ∗) (long) sock fd) ;

}

13 }

Listing 5.10: Accept incoming connections from controllers

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 50

When the connection is established between the leader and one other

controller, it has to collect the features incoming from the not-leader con-

troller. Again, once the features are received, the leader has to compute the

global values, then the global flow matrix and finally it has to communicate

the right probabilities (i.e. using the loop index) to the not-leader controller.

The Listing 5.11 shows the code, where the function to compute the global

flow matrix is the same already showed in the Listing 5.6 and Listing 5.7.

1 void ∗ upda t e r e g i on f e a tu r e s (void ∗ arg) {

. . .

3 whi le (1) {

i f (sock read (sockfd , &temp , s i z e o f (s t r u c t r e g i on)) < 0) {

5 pe r ro r (

”Error in read ing from c o n t r o l l e r in upda t e r e g i on f e a tu r e s : ”) ;

7 }

pthread mutex lock(&mutex) ;

9 f o r (index = 1 ; index < NUMBERREGIONS; index++) {

i f (! strcmp (r e g i on s [index] . i p c o n t r o l l e r , temp . i p c o n t r o l l e r)

11 | | (s t r n l e n (r e g i on s [index] . i p c o n t r o l l e r , 16) == 0)) {

s t r cpy (r e g i on s [index] . i p c o n t r o l l e r , temp . i p c o n t r o l l e r) ;

13 s t r cpy (r e g i on s [index] . i p ba l ance r , temp . i p ba l an c e r) ;

r e g i on s [index] . r e g i o n f e a t u r e s . a r r i v a l r a t e =

15 temp . r e g i o n f e a t u r e s . a r r i v a l r a t e ;

r e g i on s [index] . r e g i o n f e a t u r e s . mttf = temp . r e g i o n f e a t u r e s . mttf ;

17

upda t e r e g i on wo rk l o ad d i s t r i bu t i on () ;

19

i n t i ;

21 f o r (i = 0 ; i < NUMBERREGIONS; i++) {

r e g i on s [i] . p r obab i l i t y = g l oba l f l ow mat r i x [index] [i] ;

23 }

i f (s o ck wr i t e (sockfd , ® ions ,

25 NUMBERREGIONS ∗ s i z e o f (s t r u c t r e g i on)) < 0) {

pe r ro r (

27 ”Error in sending the p r o b a b i l i t i e s to a l l the other

c o n t r o l l e r s : ”) ;

}

29 break ;

}

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 51

31 }

pthread mutex unlock(&mutex) ;

33 }

}

Listing 5.11: Update the region features

After that the backbone network is created to pass all the needed infor-

mations, finally the controller can start to accept incoming CNs. A function

is executed in an infinite loop to always listen for new incoming CNs’ con-

nections.

. . .

2 //Accept new c l i e n t s

whi l e (1) {

4 a c c ep t n ew c l i e n t (sockfd , pthread custom att r) ;

}

6

. . .

Listing 5.12: Accepting new VMs

When a new VM is accepted some preliminary operations have to be

executed before start getting the system’s features values of the monitored

VM. First of all, the thread has to check if the number of active VMs is

below a given threshold, then if the check failed, it put the VM in ACTIVE

state and notify the choice to the load balancer, otherwise it put the VM in

STAND BY state. In both the cases the VM has to be added in a global data

structure to take trace of the region composition. Only after this important

control, a new thread is activated to allow the dedicated communication

between the controller and the VM.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 52

1 void a c c ep t n ew c l i e n t (i n t sockfd , p t h r e ad a t t r t pthread custom att r) {

. . .

3 // s t o r e here i n f o s from CNs

s t r u c t vm serv ice s e r v i c e ;

5

s t r u c t sockaddr in c l i e n t ;

7 addr l en = s i z e o f (s t r u c t sockaddr in) ;

9 // get the f i r s t pending VM connect ion reque s t

i f ((socke t = accept (sockfd , (s t r u c t sockaddr ∗) &c l i e n t , &addr l en))

11 == −1) {

pe r ro r (” a c c ep t n ew c l i e n t − accept ”) ;

13 }

. . .

15 // increment number o f connected CNs

pthread mutex lock(&mutex) ;

17

// Store the VM' s i n f o s

19 s t r u c t v i r tua l mach ine ∗ new vm = (s t r u c t v i r tua l mach ine ∗) mal loc (

s i z e o f (s t r u c t v i r tua l mach ine)) ;

21 s t r cpy (new vm−>ip , i n e t n t oa (c l i e n t . s i n addr)) ;

new vm−>socke t = socket ;

23 new vm−>port = ntohs (c l i e n t . s i n p o r t) ;

25 // I f a new ACTIVE machine i s nece s sa ry . . .

i f (ge t number o f ac t ive vms (vm l i s t) < number of act ive vm) {

27 s t r cpy (vm op . ip , i n e t n t oa (c l i e n t . s i n addr)) ;

vm op . port = htons (8080) ;

29 vm op . s e r v i c e = s e r v i c e . s e r v i c e ;

vm op . op = ADD;

31 send command to load balancer () ;

new vm−>s t a t e = ACTIVE;

33 } e l s e {

new vm−>s t a t e = STAND BY;

35 }

37 add vm(new vm , &vm l i s t) ;

// make a new thread f o r each VMs

39 p t h r e a d a t t r i n i t (&pthread custom att r) ;

i f (p th r ead c r ea t e (&tid , &pthread custom attr , communication thread ,

41 (void ∗) new vm) != 0) {

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 53

pe r ro r (”Error on pth r ead c r ea t e whi l e accept ing new c l i e n t ”) ;

43 }

pthread mutex unlock(&mutex) ;

45 }

Listing 5.13: Accepting new VMs function

Finally the main thread starts to collect all the informations to compute

the MTTF and RTTF related to a particular active VM. If the VM is in

stand-by, the controller will not analyze its features but it will send always the

”CONTINUE” command. In particular the controller wait for the features

from the VM. Once it has received, it is able to predicte the MTTF and the

RTTF. This latter value it is used to decide if a VM has to be rejuvenated

or it can continue its job. Of course, it could happen that a connection

with a VM will be lost (e.g. reset by peer). In both cases (i.e. rejuvenation

procedure, connection lost) some operations has to be executed. The socket

will be closed and the controller has to notify to the load balancer that the

VM is not more available for the application. The main thread dies when

one of these just mentioned cases happen. The following Listing 5.14 reports

the main thread code:

1 void ∗ communication thread (void ∗ v) {

3 s t r u c t v i r tua l mach ine ∗vm = (s t r u c t v i r tua l mach ine ∗) v ;

. . .

5 whi le (1) {

f f l u s h (stdout) ;

7 bzero (r e cv bu f f , BUFSIZE) ;

// Co l l e c t the f e a t u r e s

9 i f ((numbytes = sock read (vm−>socket , r e cv bu f f , BUFSIZE)) == −1) {

p r i n t f (” Fa i l ed r e c e i v i n g data from vm %s with sock id %i \n” , vm−>ip ,

11 vm−>socke t) ;

pe r ro r (” sock read : ”) ;

13 i f (e r rno == EWOULDBLOCK | | errno == EAGAIN) {

p r i n t f (”Timeout on sock read () whi l e wa i t ing data from VM %s \n” ,

15 vm−>ip) ;

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 54

}

17 break ;

} e l s e i f (numbytes == 0) {

19 p r i n t f (”vm %s i s d i s connected \n” , vm−>ip) ;

break ;

21 }

// I f the VM i s in the ACTIVE s t a t e

23 i f (vm−>s t a t e == ACTIVE) {

25 f f l u s h (stdout) ;

// Store the f e a t u r e s

27 g e t f e a t u r e (r e cv bu f f , &cu r r e n t f e a t u r e s) ;

29 // f i l l i n i t f e a t u r e s only the f i r s t time

i f (! f l a g i n i t f e a t u r e s) {

31 memcpy(& i n i t f e a t u r e s , &cu r r en t f e a t u r e s ,

s i z e o f (s y s t em f ea tu r e s)) ;

33 f l a g i n i t f e a t u r e s = 1 ;

}

35 // at l e a s t 2 s e t s o f f e a t u r e s needed

i f (vm−>l a s t s y s t em f e a t u r e s s t o r e d) {

37 f l o a t mean t ime t o f a i l = g e t p r ed i c t ed mt t f (ml model ,

vm−>l a s t f e a t u r e s , c u r r e n t f e a t u r e s , i n i t f e a t u r e s) ;

39 vm−>mttf = mean t ime t o f a i l ;

f l o a t p r ed i c t e d t ime t o c r a s h = g e t p r e d i c t e d r t t c (ml model ,

41 vm−>l a s t f e a t u r e s , c u r r e n t f e a t u r e s) ;

43 // I t RTTC i s below the REJ thresho ld , then re juvenate

i f (p r ed i c t e d t ime t o c r a s h < (f l o a t)TTCTHRESHOLD) {

45 vm−>s t a t e == REJUVENATING;

pthread mutex lock(&mutex) ;

47 sw i t ch ac t ive mach ine (vm) ;

pthread mutex unlock(&mutex) ;

49 break ;

}

51 }

}

53 //Send the CONTINUE command to VM

s t o r e l a s t s y s t em f e a t u r e s (&(vm−> l a s t f e a t u r e s) , c u r r e n t f e a t u r e s) ;

55 vm−>l a s t s y s t em f e a t u r e s s t o r e d = 1 ;

// sending CONTINUE command to the VM

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 55

57 bzero (send buf f , BUFSIZE) ;

s end bu f f [0] = CONTINUE;

59 i f ((send (vm−>socket , s end buf f , BUFSIZE , 0)) == −1) {

i f (e r rno == EWOULDBLOCK | | errno == EAGAIN) {

61 p r i n t f (”Timeout on send () whi l e sending data by VM %s \n” ,

vm−>ip) ;

63 f f l u s h (stdout) ;

} e l s e {

65 p r i n t f (”Error on send () whi l e sending data by VM %s \n” , vm−>ip) ;

f f l u s h (stdout) ;

67 }

break ;

69 }

s l e e p (1) ;

71 }

// I f something wrong , do t h i s ” e x i t ” ope ra t i on s

73 i f (c l o s e (vm−>socke t) == 0)

p r i n t f (”Connection c o r r e c t l y c l o s ed with VM %s \n” , vm−>ip) ;

75 e l s e

p r i n t f (”Error whi l e c l o s i n g connect ion with vm %s \n” , vm−>ip) ;

77 pthread mutex lock(&mutex) ;

remove vm by ip (vm−>ip , &vm l i s t) ;

79 p r i n t vm l i s t (vm l i s t) ;

// Not i fy to LB

81 i f (vm−>s t a t e == ACTIVE) {

s t r cpy (vm op . ip , vm−>ip) ;

83 vm op . port = htons (8080) ;

vm op . op = DELETE;

85 send command to load balancer () ;

}

87 //Active new machine i f nece s sa ry

i f (ge t number o f ac t ive vms (vm l i s t) < number of act ive vm) {

89 act ivate new machine () ;

p r i n t vm l i s t (vm l i s t) ;

91 }

pthread mutex unlock(&mutex) ;

93 pth r ead ex i t (0) ;

}

Listing 5.14: Main thread

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 56

Two important functions used in the main thread need to activate new

VMs. In particular Listing 5.15 reports the code to rejuvenate a VM then to

activate a new VM kept in stand-by.

void sw i t ch ac t i ve mach ine (s t r u c t v i r tua l mach ine ∗vm) {

2 . . .

// Not i fy to LB the r e juvena t i on

4 s t r cpy (vm op . ip , vm−>ip) ;

vm op . port = htons (8080) ; //TODO

6 vm op . op = DELETE;

send command to load balancer () ;

8 //Look f o r a ready VM

fo r (index = 0 ; index < vm l i s t s i z e (vm l i s t) ; index++) {

10 s t r u c t v i r tua l mach ine ∗vm = get vm by pos i t i on (index , vm l i s t) ;

i f (vm−>s t a t e == STAND BY) {

12 vm−>s t a t e = ACTIVE;

p r i n t f (”Act ivated vm with ip : %s \n” , vm−>ip) ;

14 s t r cpy (vm op . ip , vm−>ip) ;

vm op . port = htons (8080) ;

16 vm op . op = ADD;

send command to load balancer () ;

18 break ;

}

20 }

vm−>l a s t s y s t em f e a t u r e s s t o r e d = 0 ;

22 //Send the REJUVENATE command to the VM

bzero (send buf f , BUFSIZE) ;

24 s end bu f f [0] = REJUVENATE;

i f ((send (vm−>socket , s end buf f , BUFSIZE , 0)) == −1) {

26 pe r ro r (” sw i t ch ac t ive mach ine − send”) ;

p r i n t f (”Clos ing connect ion with VM %s \n” , vm−>ip) ;

28 // compact vm data set (vm) ;

c l o s e (vm−>socke t) ;

30 } e l s e {

p r i n t f (”REJUVENATE command sent to machine with IP address %s \n” ,

32 vm−>ip) ;

f f l u s h (stdout) ;

34 }

}

Listing 5.15: Switching VMs

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 57

The second function follows the idea of the just mentioned function with

the difference that it is used when a connection with a VM is lost by the

controller. It does not need to notify to the load balancer that a VM is

crashed because it is performed by the main thread, it has just to activate a

new VM and to notify to the load balancer that a new VM is now ready to

receive the incoming user’ requests. The Listing 5.16 reports the code:

1 void act ivate new machine () {

i n t index ;

3 char s end bu f f [BUFSIZE] ;

5 f o r (index = 0 ; index < vm l i s t s i z e (vm l i s t) ; index++) {

s t r u c t v i r tua l mach ine ∗vm = get vm by pos i t i on (index , vm l i s t) ;

7 i f (vm−>s t a t e == STAND BY) {

vm−>s t a t e = ACTIVE;

9 s t r cpy (vm op . ip , vm−>ip) ;

vm op . port = htons (8080) ;

11 vm op . op = ADD;

send command to load balancer () ;

13 p r i n t f (”Act ivated vm with ip : %s \n” , vm−>ip) ;

r e turn ;

15 }

}

17 p r i n t f (”No vms ava i l a b l e to be a c t i v e t ed \n”) ;

}

Listing 5.16: Active new VM

5.4.2 Load Balancer

The Load Balancer is the VM that receives remote user connections to redi-

rect them either to specific VMs in the cloud region or towards remote cloud

segments. It represents the entry point of the distributed system from the

outside world and it receives from CON informations about which are the

currently available VMs. The Load Balancer acts like a slave, following the

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 58

decisions of the controller and forwarding messages from remote users to a

specific VM (or remote cloude region) and vice versa. It lives in the middle

between the users and the VMs.

Once the controller is run, it waits for an incoming connection from its

own load balancer, then the first step for the load balancer is to connect it to

the controller and build up all the needed routines to manage the communi-

cation. First of all, two connections are necessary: one to receive infos from

the controller related to the management of the VMs in the cloud region and

another one to pass to the controller the arrival rate in the cloud region.

i n t main (i n t argc , char ∗argv []) {

2 . . .

// CONNECTION LB − CONTROLLER VMs MANAGEMENT

4 i f (connect (s o c k i d c o n t r o l l e r , (s t r u c t sockaddr ∗) &c on t r o l l e r ,

s i z e o f (c o n t r o l l e r)) < 0) {

6 pe r ro r (”main : c o nn e c t t o c o n t r o l l e r ”) ;

e x i t (EXIT FAILURE) ;

8 }

// Send to c o n t r o l l e r ba lancer pub l i c ip address

10 get my own ip () ;

i f (s o ck wr i t e (s o c k i d c o n t r o l l e r , my own ip , 16) < 0) {

12 pe r ro r (

”Error in sending ba lancer pub l i c ip address to i t s own c o n t r o l l e r :

”) ;

14 }

16 // Once c l i e n t s o c k i d i s created , bu i ld up a new thread to implement the

exchange o f messages between LB and Cont r o l l e r

p t h r e a d a t t r i n i t (&pthread custom att r) ;

18 pthr ead c r ea t e (&tid , &pthread custom attr , c on t r o l l e r t h r e ad ,

(void ∗) (long) s o c k i d c o n t r o l l e r) ;

20

// CONNECTION LB − CONTROLLER ARRIVAL RATE

22 . . .

i f (connect (s o c k i d upda t e r e g i o n f e a t u r e s , (s t r u c t sockaddr ∗) &

c on t r o l l e r ,

24 s i z e o f (c o n t r o l l e r)) < 0) {

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 59

pe r ro r (”main : c o nn e c t t o c o n t r o l l e r a r r i v a l r a t e ”) ;

26 e x i t (EXIT FAILURE) ;

}

28

memset (reg ions , 0 , s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) ;

30 // Once c l i e n t s o c k i d i s created , bu i ld up a new thread to implement the

exchange o f messages between LB and Cont r o l l e r

p t h r e a d a t t r i n i t (&pthread custom att r) ;

32 // Star t the t imer to eva luate the a r r i v a l r a t e

t ime r s t a r t (u pd a t e l o c a l r e g i o n f e a t u r e s t im e r) ;

34 pthr ead c r ea t e (& t i d upda t e r e g i o n f e a t u r e s , &pthread custom attr ,

upda t e r e g i on f e a tu r e s ,

36 (void ∗) (long) s o c k i d upda t e r e g i o n f e a t u r e s) ;

Listing 5.17: Connect to Controller

The first thread manages the communication CON-LB to add and remove

VMs, in order to correctely redirect the incoming user requests. In fact, the

Load Balancer has to know the active VMs so that it is able to coherently

redirect the connections. Listing 5.18 shows how the load balancer acts when

a new operation is received from the Controller.

void ∗ c o n t r o l l e r t h r e a d (void ∗ v) {

2 . . .

whi l e (1) {

4 // Wait f o r i n f o by the c o n t r o l l e r

i f ((numbytes = sock read (socket ,&vm op , s i z e o f (s t r u c t

v i r tua l mach in e ope ra t i on))) == −1) {

6 . . .

}

8 . . .

// Choose what I ' ve to do

10 i f (vm op . op == ADD) {

s t r u c t v i r tua l mach ine ∗ vm = (s t r u c t v i r tua l mach ine ∗) mal loc (s i z e o f (

s t r u c t v i r tua l mach ine)) ;

12 memcpy(vm−>ip , vm op . ip , 16) ;

p r i n t f (”Adding vm %s \n” , vm−>ip) ;

14 pthread mutex lock(&mutex) ;

add vm(vm, &vm l i s t) ;

16 p r i n t f (”−−−−−−−−−−−−−−−−−\nNew vm l i s t :\n”) ;

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 60

p r i n t vm l i s t (vm l i s t) ;

18 pthread mutex unlock(&mutex) ;

} e l s e i f (vm op . op == DELETE) {

20 p r i n t f (”Removing vm %s \n” , vm op . ip) ;

pthread mutex lock(&mutex) ;

22 remove vm by ip (vm op . ip , &vm l i s t) ;

p r i n t f (”−−−−−−−−−−−−−−−−−\nNew vm l i s t :\n”) ;

24 p r i n t vm l i s t (vm l i s t) ;

pthread mutex unlock(&mutex) ;

26 } e l s e i f (vm op . op == REJ) {

p r i n t f (”Removing vm %s \n” , vm op . ip) ;

28 pthread mutex lock(&mutex) ;

remove vm by ip (vm op . ip , &vm l i s t) ;

30 p r i n t f (”−−−−−−−−−−−−−−−−−\nNew vm l i s t :\n”) ;

p r i n t vm l i s t (vm l i s t) ;

32 pthread mutex unlock(&mutex) ;

} e l s e {

34 // something wrong , opera t i on not supported !

p r i n t f (”Received not supported opera t i on from c o n t r o l l e r \n”) ;

36 }

}

38 }

Listing 5.18: Thread to communicate with the Controller

The second thread manages the connection CON-LB to send the arrival

rate computed by the balancer. The arrival rate λ is computed considering

a fixed time interval, defined as a macro, as shown in Listing 5.19. The

load balancer has to wait for the forwarding probability sent from the leader,

according to the code already seen in Listing 5.11. Finally the timer is

restarted.

void ∗ upda t e r e g i on f e a tu r e s (void ∗ sock) {

2 . . .

whi l e (1) {

4

// Compute the a r r i v a l rate , then send i t

6 double time = t imer va lu e s e conds (u pd a t e l o c a l r e g i o n f e a t u r e s t im e r) ;

f l o a t l o c a l r e g i o n u s e r r e q u e s t a r r i v a l r a t e = (f l o a t) lambda

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 61

8 / (f l o a t) time ;

i f (s o ck wr i t e (sockfd , &l o c a l r e g i o n u s e r r e q u e s t a r r i v a l r a t e ,

10 s i z e o f (f l o a t)) < 0)

pe r ro r (”Error in wr i t i ng l o c a l a r r i v a l r a t e to c o n t r o l l e r ”) ;

12 memset (temp regions , 0 , s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) ;

14 // Wait f o r the p r obab i l i t y from the l e ade r

i f (sock read (sockfd , &temp regions ,

16 s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) < 0) {

pe r ro r (”Error in read ing p r o b a b i l i t i e s from the l e ade r ”) ;

18 }

// pthread mutex lock(&mutex) ;

20 memcpy(® ions , &temp regions ,

s i z e o f (s t r u c t r e g i on) ∗ NUMBERREGIONS) ;

22

// Restart the t imer and r e s e t the a r r i v a l r a t e va lue

24 t im e r r e s t a r t (u pd a t e l o c a l r e g i o n f e a t u r e s t im e r) ;

lambda = 0 ;

26

// Wake me up a f t e r UPDATE LOCAL REGION FEATURE INTERVAL

28 whi le (t ime r va lu e s e conds (u pd a t e l o c a l r e g i o n f e a t u r e s t im e r)

< UPDATE LOCAL REGION FEATURE INTERVAL) {

30 s l e e p (1) ;

}

32 }

}

Listing 5.19: Sending the arrival rate value

The next step allows to the load balancer to process incoming requests

from remote cloud regions. As already seen, the main goal of this distributed

application is to allow to transparently redirect user incoming connections

towards any region, depending on the current load and state of accumulation

of anomalies in all the cloud regions by relying on MTTF value. So, the

load balancer has to accept for remote load balancer requests, and it has to

manage these incoming connections as they are its local connections.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 62

1 void ∗ ac c ep t ba l anc e r s (void ∗ v) {

whi le (1) {

3 . . .

c l i e n t s o c k i d = accept (socke t r emote ba lance r ,

5 (s t r u c t sockaddr ∗) &c l i e n t , &addr l en) ;

. . .

7 // Set non b lock ing the socke t

se tnonb lock ing (c l i e n t s o c k i d) ;

9

s t r u c t a rg thread ∗ vm c l i en t = (s t r u c t a rg thread ∗) mal loc (

11 s i z e o f (s t r u c t a rg thread)) ;

13 // Manage the new incoming r eque s t s

vm cl ient−>socke t = c l i e n t s o c k i d ;

15 s t r cpy (vm cl ient−>i p addre s s , i n e t n t oa (c l i e n t . s i n addr)) ;

vm cl ient−>port = ntohs (c l i e n t . s i n p o r t) ;

17 // Mark t h i s connect ion as r e c e i v ed from a remote LB

vm cl ient−>use r type = 1 ;

19

// Manage the connect ion USER−VM

21 r e s t h r e ad = c r ea t e th r e ad (c l i e n t s o c k i d t h r e a d , vm c l i ent) ;

}

23 }

Listing 5.20: Accepting load balancer remote requests

In the just showed Listing 5.20, it is introduced a thread function to man-

age the communication between users and VMs. This thread is invoked by

both the leader and by the main thread using two different values for repre-

senting the kind of connection. In particular, if a connection is received from

a remote load balancer, the load balancer has to exclude the user request in

computing the arrival rate. On the other hand, when an incoming connection

is directely received by the load balancer, the user request has to be included

in the computation. Listing 5.21 reports the differences just mentioned in

invoking the thread to manage the connection among users and Vms.

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 63

1 . . .

s t r u c t a rg thread ∗ vm c l i ent = (s t r u c t a rg thread ∗) mal loc (s i z e o f (s t r u c t

a rg thread)) ;

3 vm cl ient−>socke t = c l i e n t s o c k i d ;

s t r cpy (vm cl ient−>i p addre s s , i n e t n t oa (c l i e n t . s i n addr)) ;

5 vm cl ient−>port = ntohs (c l i e n t . s i n p o r t) ;

vm cl ient−>use r type = 0 ;

7

r e s t h r e ad = c r ea t e th r e ad (c l i e n t s o c k i d t h r e a d , vm c l i ent) ;

9 . . .

Listing 5.21: Manage incoming user requests

Finally the code implements the last step for the load balancer: allow the

communication between users and VMs that are providing a service. Initially,

it has to be got the sockets for the user and for a VM. They are used to create

a descriptor set monitored by a select function. Listing 5.22 shows the select

function signature.

1 i n t s e l e c t (i n t nfds , f d s e t ∗ r e s t r i c t readfds , f d s e t ∗ r e s t r i c t wr i t e fd s ,

f d s e t ∗ r e s t r i c t e r r o r f d s , s t r u c t t imeva l ∗ r e s t r i c t t imeout) ;

Listing 5.22: Select function signature

The implementation of the load balancer needs non-blocking sockets that

have to be monitored simultaneasly. The Select() system call examines the

I/O descriptor sets whose addresses are passed in readfds, writefds, and er-

rorfds to see if some of their descriptors are ready for reading, are ready for

writing, or have an exceptional condition pending, respectively. The first

nfds descriptors are checked in each set; i.e., the descriptors from 0 through

nfds-1 in the descriptor sets are examined. The framework puts both the

sockets (e.g. client socket and vm socket) in a descriptor set monitored both

for reading and for writing operation. Select() returns the number of ready

descriptors that are contained in the descriptor sets, or -1 if an error oc-

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 64

curred. If the time limit expires, select() returns 0. In this context, a socket

may be ready for a reading operation and for a writing operation at the same

time. To avoid a deadlock, when the select returns, it is checked if the set

contains the client socket, then it is checked if there are some bytes ready

for the client and they are written to the client. To avoid the above men-

tioned deadlock, a read operation is always tried and the incoming bytes are

appended to an aux buffer until another write operation will be permormed.

The same for the vm socket. To better understand how the code works, see

the Listing 5.23.

1 void ∗ c l i e n t s o c k i d t h r e a d (void ∗ vm c l i en t a rg) {

. . .

3 // Assign the so cke t s

i n t c l i e n t s o c k e t = vm c l i en t . socke t ;

5 i n t vm socket = c r e a t e s o c k e t (vm c l i ent . i p addre s s , vm c l i ent . port ,

vm c l i en t . u s e r type) ;

. . .

7 // We never f i n i s h forward ing data !

whi l e (1) {

9 . . .

// Setup a timeout

11 t imeout . t v s e c = 1 ;

timeout . tv u s e c = 0 ;

13

r eadsocks = s e l e c t (h ighsock + 1 , &socks , &socks , (f d s e t ∗) 0 ,

15 &timeout) ;

. . .

17 } e l s e {

19 // Check i f the c l i e n t i s ready

i f (FD ISSET(c l i e n t s o c k e t , &socks)) {

21 // F i r s t o f a l l , check i f we have something f o r the c l i e n t

i f (b y t e s r e a d y t o c l i e n t > 0) {

23 i f ((t r a n s f e r r e d by t e s = sock wr i t e (c l i e n t s o c k e t ,

b u f f e r t o c l i e n t , b y t e s r e a d y t o c l i e n t)) < 0) {

25 pe r ro r (” wr i t e : sending to c l i e n t from bu f f e r ”) ;

}

27

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 65

by t e s r e a d y t o c l i e n t = 0 ;

29 bzero (b u f f e r t o c l i e n t , FORWARD BUFFER SIZE) ;

}

31

// Always perform sock read , i f i t r e tu rn s a number g r e a t e r than

zero

33 // something has been read then we ' ve to append aux bu f f e r to

prev ious bu f f e r (po i n t e r s)

t r a n s f e r r e d by t e s = sock read (c l i e n t s o c k e t ,

35 aux bu f f e r f r om c l i e n t , FORWARD BUFFER SIZE) ;

. . .

37

i f (t r a n s f e r r e d by t e s > 0) {

39 append buf f e r (b u f f e r f r om c l i e n t , a ux bu f f e r f r om c l i e n t ,

&by t e s r e ady f r om c l i e n t , t r an s f e r r ed by t e s ,

41 ×) ;

}

43

// Increment the number o f incoming r eque s t s ! Used to compute the

a r r i v a l r a t e

45 i f (b y t e s r e ady f r om c l i e n t > 0) {

i f (! vm c l i ent . u s e r type)

47 lambda++;

}

49

}

51 // Check i f the VM i s ready

i f (FD ISSET(vm socket , &socks)) {

53 // F i r s t o f a l l , check i f we have something f o r the VM to send

i f (by t e s r e ady f r om c l i e n t > 0) {

55 i f ((t r a n s f e r r e d by t e s = sock wr i t e (vm socket ,

b u f f e r f r om c l i e n t , b y t e s r e ady f r om c l i e n t)) < 0) {

57 pe r ro r (” wr i t e : sending to vm from c l i e n t ”) ;

}

59 by t e s r e ady f r om c l i e n t = 0 ;

bzero (bu f f e r f r om c l i e n t , FORWARD BUFFER SIZE) ;

61 }

63 // Always perform sock read , i f i t r e tu rn s a number g r e a t e r than

zero

// something has been read then we ' ve to append aux bu f f e r to

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 66

prev ious bu f f e r (po i n t e r s)

65 t r a n s f e r r e d by t e s = sock read (vm socket , a u x bu f f e r t o c l i e n t ,

FORWARD BUFFER SIZE) ;

67 . . .

69 i f (t r a n s f e r r e d by t e s > 0) {

append buf f e r (b u f f e r t o c l i e n t , a u x bu f f e r t o c l i e n t ,

71 &by t e s r e ady t o c l i e n t , t r an s f e r r ed by t e s , ×) ;

}

73 }

}

75 }

}

Listing 5.23: Thread to manage the connections

For the sake of clearness, the following code shows how the function to

append to a buffer works.

void append buf f e r (char ∗ o r i g i n a l b u f f e r , char ∗ aux buf f e r ,

2 i n t ∗ by t e s o r i g i n a l , i n t bytes aux , i n t ∗ t imes) {

4 i f ((∗ b y t e s o r i g i n a l + bytes aux) >= FORWARD BUFFER SIZE) {

p r i n t f (”REALLOC: STAMPA TIMES: %d\n” , ∗ t imes) ;

6 o r i g i n a l b u f f e r = r e a l l o c (o r i g i n a l b u f f e r ,

(∗ t imes) ∗ FORWARD BUFFER SIZE) ;

8 (∗ t imes)++;

}

10 memcpy(&(o r i g i n a l b u f f e r [∗ b y t e s o r i g i n a l]) , aux buf f e r , bytes aux) ;

∗ b y t e s o r i g i n a l = ∗ b y t e s o r i g i n a l + bytes aux ;

12 bzero (aux buf f e r , FORWARD BUFFER SIZE) ;

}

Listing 5.24: Append buffer function

Due to the fact that the Load Balancer has to rely on the probabilities

received from the leader, it follows that ad-hoc manner is implemented to

forward the incoming user connections either towards the VMs in the region

or towards a remote load balancer. In the following two Listings 5.26 and 5.27

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 67

it is represented the forwarding policy relying on the probabilities.

1 i n t c r e a t e s o c k e t (char ∗ i p c l i e n t , i n t p o r t c l i e n t , i n t u s e r type) {

i n t s o ck i d = socket (AF INET , SOCK STREAM, 0) ;

3 . . .

s t r u c t sockaddr in saddr = g e t t a r g e t s e r v e r s a dd r (i p c l i e n t , p o r t c l i e n t ,

5 use r type) ;

i f (connect (sock id , (s t r u c t sockaddr ∗) &saddr , s i z e o f (saddr)) < 0) {

7 pe r ro r (”Error whi l e connect ing socke t f o r new c l i e n t ”) ;

r e turn 0 ;

9 }

s e tnonb lock ing (s o ck i d) ;

11 r e turn s o ck i d ;

}

Listing 5.25: Aux function to create the client side connection

s t r u c t sockaddr in g e t t a r g e t s e r v e r s a dd r (char ∗ ip , i n t port , i n t

u s e r type) {

2 . . .

switch (us e r type) {

4

case 0 : // from a user

6 probab i l i ty sum = 0 ;

random = (f l o a t) rand () / (f l o a t) RANDMAX;

8 index = 0 ;

probab i l i ty sum = reg i on s [index] . p r obab i l i t y ;

10 whi le (random > probab i l i ty sum && index < NUMBERREGIONS) {

index++;

12 probab i l i ty sum += reg i on s [index] . p r obab i l i t y ;

}

14 i f (! strcmp (r e g i on s [index] . i p ba l ance r , my own ip) | | index ==

NUMBERREGIONS) {

t a r g e t s e r v e r s a dd r = s e l e c t l o c a l vm add r () ;

16 r e turn t a r g e t s e r v e r s a dd r ;

} e l s e {

18 t a r g e t s e r v e r s a dd r . s i n addr . s addr = ine t addr (r e g i on s [index] .

i p ba l an c e r) ;

t a r g e t s e r v e r s a dd r . s i n p o r t = htons (por t r emote ba lance r) ;

20 r e turn t a r g e t s e r v e r s a dd r ;

}

22

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 68

case 1 : // from a remote ba lancer

24 t a r g e t s e r v e r s a dd r = s e l e c t l o c a l vm add r () ;

r e turn t a r g e t s e r v e r s a dd r ;

26 }

}

Listing 5.26: Choose forwarding strategy

1 s t r u c t sockaddr in s e l e c t l o c a l vm add r () {

s t a t i c i n t c u r r e n t r r i n d e x = 0 ;

3 s t r u c t sockaddr in target vm saddr ;

target vm saddr . s i n f am i l y = AF INET ;

5 i f (vm l i s t s i z e (vm l i s t) == 0)

re turn target vm saddr ;

7 i f (c u r r e n t r r i n d e x >= vm l i s t s i z e (vm l i s t))

c u r r e n t r r i n d e x = 0 ;

9 s t r u c t v i r tua l mach ine ∗vm = get vm by pos i t i on (cu r r en t r r i nd ex , vm l i s t)

;

c u r r e n t r r i n d e x++;

11 target vm saddr . s i n addr . s addr = ine t addr (vm−>ip) ;

target vm saddr . s i n p o r t = htons (VM SERVICE PORT) ;

13 r e turn target vm saddr ;

}

Listing 5.27: Local forwarding

5.4.3 VM

The VM represents a machine that is hosting a copy of the application, in this

context it is the TPC-W transactional web benchmark[8]. In this framework

the application runs beside a process for getting the system features. In par-

ticular a connection between the controller and the VM has to be established,

in which the mentioned process has to communicates the read measurements.

It does not know anything about the read system values, but it has to wait

from the controller the command to either continue or rejuvenate the current

session. Due to this fact, the only interesting function in the VM is to get

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 69

the features, as shown in the Listing 5.28 and 5.29.

void g e t f e a t u r e s (char ∗ output) {

2 . . .

// Monitored system f e a t u r e s

4 i n t mem total , mem used , mem free , mem shared , mem buffers , mem cached ;

i n t swap tota l , swap used , swap f r ee ;

6 unsigned long cpu user1 , cpu nice1 , cpu system1 , cpu iowait1 , cpu s t ea l 1

, cpu id l e1 , dummyA1, dummyB1, dummyC1, dummyD1;

unsigned long cpu user2 , cpu nice2 , cpu system2 , cpu iowait2 , cpu s t ea l 2

, cpu id l e2 , dummyA2, dummyB2, dummyC2, dummyD2;

8 f l o a t cpu user , cpu nice , cpu system , cpu iowait , cpu s t ea l , c pu i d l e ;

f l o a t cpu to t a l ;

10 s t r u c t t imeva l cu r r t ime ;

12 char num th [1 2 8] ;

FILE ∗pof , ∗ f s t a t , ∗fmem ;

14

// Get number o f a c t i v e threads

16 pof = popen (”ps −eLf | grep −v defunct | wc − l ” , ” r ”) ;

i f (pof == NULL)

18 abort () ;

20 f g e t s (num th , s i z e o f (num th)−1, pof) ;

p c l o s e (pof) ;

22

// Get timestamp

24 gett imeofday(&curr t ime , NULL) ;

s p r i n t f (output , ”Datapoint : %f %s” , (double) cur r t ime . t v s e c −

i n i t i a l t i m e . t v s e c + (double) cur r t ime . tv u s e c / 1000000 − (double)

i n i t i a l t i m e . tv u s e c / 1000000 , num th) ;

26

// Get memory and swap usage (us ing /proc /meminfo)

28 t = fopen (”/proc /meminfo” , ” r ”) ;

i f (t == NULL) {

30 pe r ro r (”FOPEN ERROR MEMINFO ”) ;

e x i t (EXIT FAILURE) ;

32 }

index = 0 ;

34 bzero (aux buf f e r ,BUFSIZE) ;

whi l e ((ch = f g e t c (t)) != EOF) {

36 aux bu f f e r [index++] = ch ;

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 70

}

38 f c l o s e (t) ;

s s c an f (aux buf f e r , ”MemTotal : %d kB MemFree : %d kB Buf f e r s : %d kB Cached :

%d kB” , &mem total , &mem free , &mem buffers , &mem cached) ;

40 mem used = mem total − mem free ;

mem shared = 0 ;

42 s p r i n t f (output , ”%sMemory : %d %d %d %d %d %d\n” , output , mem total ,

mem used , mem free , mem shared , mem buffers , mem cached) ;

p o i n t e r b u f f e r = s t r s t r (aux buf f e r , ”SwapTotal : ”) ;

44 s s c an f (p o i n t e r bu f f e r , ”SwapTotal : %d kB SwapFree : %d kB” , &swap tota l , &

swap f r ee) ;

swap used = swap tota l − swap f r ee ;

46 s p r i n t f (output , ”%sSwap : %d %d %d\n” , output , swap tota l , swap used ,

swap f r ee) ;

Listing 5.28: Get the system features - Memory

// Get CPU Usage (us ing /proc / s t a t)

2 f s t a t = fopen (”/proc / s t a t ” , ” r ”) ;

i f (f s t a t == NULL) {

4 pe r ro r (”FOPEN ERROR FIRST /PROC/STAT ”) ;

e x i t (EXIT FAILURE) ;

6 }

i f (f s c a n f (f s t a t , ”%s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu ” , \&cpu\

user1 , \&cpu\ n ice1 ,

8 \&cpu\ system1 , \&cpu\ i d l e 1 , \&cpu\ i owa i t1 , \&dummyA1, \&dummyB1, \&

cpu\ s t e a l 1 , \&dummyC1, \&dummyD1) == EOF) {

e x i t (EXIT\ FAILURE) ;

10 }

f c l o s e (f s t a t) ;

12 s l e e p (1) ;

f s t a t = fopen (”/proc / s t a t ” , ” r ”) ;

14 i f (f s t a t == NULL) {

pe r ro r (”FOPEN ERROR SECOND /PROC/STAT ”) ;

16 e x i t (EXIT\ FAILURE) ;

}

18 i f (f s c a n f (f s t a t , ”%s %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu ” , \&cpu\

user2 , \&cpu\ n ice2 ,

\&cpu\ system2 , \&cpu\ i d l e 2 , \&cpu\ i owa i t2 , \&dummyA2, \&dummyB2, \&

cpu\ s t e a l 2 , \&dummyC2, \&dummyD2) == EOF) {

20 e x i t (EXIT\ FAILURE) ;

}

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 71

22 f c l o s e (f s t a t) ;

cpu\ t o t a l = (f l o a t) (cpu\ use r2 + cpu\ n i c e 2 + cpu\ system2 + cpu\ i d l e 2

+ cpu\ i owa i t 2 + dummyA2 + dummyB2 + cpu\ s t e a l 2 + dummyC2 + dummyD2) ;

24 cpu\ t o t a l −= (f l o a t) (cpu\ use r1 + cpu\ n i c e 1 + cpu\ system1 + cpu\

i d l e 1 + cpu\ i owa i t 1 + dummyA1 + dummyB1 + cpu\ s t e a l 1 + dummyC1 +

dummyD1) ;

26 cpu\ u s e r = (f l o a t) (cpu\ use r2 − cpu\ use r1) ∗ 100 .0 / cpu\ t o t a l ;

cpu\ system = (f l o a t) (cpu\ system2 − cpu\ system1) ∗ 100 .0 / cpu\ t o t a l ;

28 cpu\ n i c e = (f l o a t) (cpu\ n i c e 2 − cpu\ n i c e 1) ∗ 100 .0 / cpu\ t o t a l ;

cpu\ i d l e = (f l o a t) (cpu\ i d l e 2 − cpu\ i d l e 1) ∗ 100 .0 / cpu\ t o t a l ;

30 cpu\ i owa i t = (f l o a t) (cpu\ i owa i t 2 − cpu\ i owa i t 1) ∗ 100 .0 / cpu\ t o t a l ;

cpu\ s t e a l = (f l o a t) (cpu\ s t e a l 2 − cpu\ s t e a l 1) ∗ 100 .0 / cpu\ t o t a l ;

32

s p r i n t f (output , ”%sCPU: %f %f %f %f %f %f ” , output , cpu\ user , cpu\ n i ce ,

cpu\ system , cpu\ i owa i t , cpu\ s t e a l , cpu\ i d l e) ;

34 r e turn ;

}

Listing 5.29: Get the system features - CPU

Based on this features, the controller may be decide to rejuvenate the

VM, in this case the machine is rebooted after a certain time to allow to the

machine to serve the pending requests.

1 . . .

i f (r e c v bu f f [0]==REJUVENATE) {

3 //wait f o r complet ing pending r eque s t s

p r i n t f (”Command REJUVENATE re c e i v ed \n”) ;

5 p r i n t f (”Waiting %d seconds f o r complet ing pending r eque s t s be f o r e

r e juvena t i on . . . \n” , TIME FOR COMPLETING PENDING REQUESTS) ;

f f l u s h (stdout) ;

7 s l e e p (TIME FOR COMPLETING PENDING REQUESTS) ;

p r i n t f (”Executing reboot . . . \n”) ;

9 f f l u s h (stdout) ;

system (” reboot ”) ;

11 e x i t (0) ;

}

13 . . .

Listing 5.30: Rejuvenate the VM

CHAPTER 5. PROACTIVE WORKLOAD MANAGEMENT 72

5.4.4 User

In this framework is supposed that the user is a common user surfing on

the web. To simulate incoming user requests, it is chosen to use emulated

browsers provided by TPC-W. A more detailed description will be provided

in Chapter 6, where it is showed the experimental evaluation and all the

choices related to the achieved results.

Chapter 6

Experimental evaluation

The experiments is carried out using three different regions:

1. Region 1 is hosted by Amazon EC2 services in Ireland. The used

instances in this region are m3.medium. This kind of instances use

Intel Xeon E5-2670 v2 (Ivy Bridge) processors and SSD storage. In

particular they have 1 vCPU, 3.75GiB of Memory and a storage SSD

of 1 x 4 GB.

2. Region 2 is hosted by Amazon EC2 services in Frankfurt. The used

instances in this region are m3.medium.

3. Region 3 is privately hosted in HP ProLiant server in Munich. The

used hypervisor if Vmware Workstation 10.4.

All virtual machines of the experimental environment were equipped with

Ubuntu 10.04 Linux Distribution (kernel version 2.6.32-5-amd64). This set

up is representative of a hybrid virtualized environment.

The test-bed application is a multi-tier e-commerce web application that

simulates an on-line book store, following the standard configuration of TPC-

73

CHAPTER 6. EXPERIMENTAL EVALUATION 74

W benchmark[8] and using the Java implementation[25], developed using

servlets, and relying on MySql[26] as a date base server.

In order to generate TPC-W requests, we have used an emulated browser.

To evaluate the RT of the web application, software probes are introduced in

the emulated browsers to store on a database file the response time of every

web interaction.

The TPC-W implementation has been modified in order to generate the

anomalies of interest for this experimentation, namely memory leaks and

unterminated threads. Specifically, the Home Web Interaction class has been

modified (it implements the beginning of a TPC-W session) so that, when the

servlet is started up, two different rates (for memory leaks and unterminated

threads) are generated. Then, whenever an emulated browser connects to

the initial page, some memory is leaked or a new thread is spawn, according

to the corresponding probability. By using this approach, the generation

rate of anomalies directly depends on the load of the TPC-W server (i.e on

the number of connections by the emulated browsers). TPC-W clients are

connected to load balancers of regions 1,2 and 3, and the number of active

clients (towards each region) varies in the interval [16,512].

Tables 6.1 and 6.2 report respectively, the Soft-Mean Absolute preditction

Error (S-MAE) for Amazon and Munich regions.

The experiment was performed in a time interval of about 60 when two

regions are considered, and about 120 minutes when three regions are consid-

ered, with atmost six active VMs per region keeping the other in STAND BY

state. Due to the framework design, it is not important which of the two

regions on three are activated, this framework is able to work on hybrid cloud

environment.

CHAPTER 6. EXPERIMENTAL EVALUATION 75

Table 6.1: Soft Mean Absolute Error—10% Threshold (Amazon regions)

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 137.600 Linear Regression 156.603

M5P 79.182 M5P 118.292

REP Tree 69.832 REP Tree 108.476

SVM 132.668 SVM 146.594

SVM2 132.675 SVM2 146.607

Lasso (λ = 100) 405.187 Lasso (λ = 100) 405.187

Lasso (λ = 101) 405.187 Lasso (λ = 101) 405.187

Lasso (λ = 102) 405.186 Lasso (λ = 102) 405.186

Lasso (λ = 103) 405.178 Lasso (λ = 103) 405.178

Lasso (λ = 104) 405.124 Lasso (λ = 104) 405.124

Lasso (λ = 105) 404.823 Lasso (λ = 105) 404.823

Lasso (λ = 106) 404.041 Lasso (λ = 106) 404.041

Lasso (λ = 107) 399.023 Lasso (λ = 107) 399.023

Lasso (λ = 108) 399.240 Lasso (λ = 108) 399.240

Lasso (λ = 109) 392.469 Lasso (λ = 109) 392.469

CHAPTER 6. EXPERIMENTAL EVALUATION 76

Table 6.2: Soft Mean Absolute Error—10% Threshold (Munich region)

Using all parameters Using only parameters selected by Lasso

Algorithm Error (seconds) Algorithm Error (seconds)

Linear Regression 125.421 Linear Regression 132.127

M5P 76.623 M5P 116.393

REP Tree 68.923 REP Tree 112.932

SVM 139.012 SVM 134.282

SVM2 131.053 SVM2 133.220

Lasso (λ = 100) 399.109 Lasso (λ = 100) 399.109

Lasso (λ = 101) 399.107 Lasso (λ = 101) 399.107

Lasso (λ = 102) 399.115 Lasso (λ = 102) 399.115

Lasso (λ = 103) 399.103 Lasso (λ = 103) 399.103

Lasso (λ = 104) 399.101 Lasso (λ = 104) 399.101

Lasso (λ = 105) 399.021 Lasso (λ = 105) 399.021

Lasso (λ = 106) 399.001 Lasso (λ = 106) 399.001

Lasso (λ = 107) 397.923 Lasso (λ = 107) 397.923

Lasso (λ = 108) 397.872 Lasso (λ = 108) 397.872

Lasso (λ = 109) 391.126 Lasso (λ = 109) 391.126

CHAPTER 6. EXPERIMENTAL EVALUATION 77

The Figure 6.1, shows how the MTTF and the Forwarding Probability

values change when one then two regions are activated and a constant request

rate of 500 req/s come. In particular, initially, all the traffic is served by the

unique active region. When a new region is added to the system (i.e. 22

minutes in the execution time), the incoming requests are forwarded towards

both the two regions in order to increase the global MTTF value, reaching

a steady-state situation where the MTTF values of the two regions are the

similar. Of course this result is tied to the forwarding probabilities. The plot

at the top of the Figure 6.1, shows how the MTTF values change when a new

region is added and the framework divides the incoming traffic. Of course,

when a region is removed (i.e. 54 minutes in the execution time), only one

region is active and is able to serve the incoming requests, then its MTTF

value has to decrease.

Fig. 6.1: Results using two regions

CHAPTER 6. EXPERIMENTAL EVALUATION 78

The main results are represented in the Figure 6.2. This experiment run

for 130 minutes, varying the requests rate and using at least two regions,

then activating a new region, trying to simulate a real scenario. The plot

at the bottom, simply represents how the requests rate varies over the time.

The two above plots, represent how the forwarding probabilities and MTTF

values change when the number of the requests per second change. In partic-

ular, until 22 minutes, the rate is constant at 300 req/sec and the forwarding

probabilities of the two active regions and them own MTTF values are sim-

ilar. When the incoming rate increase up to 700 req/s, but again only two

regions are active, the forwarding probabilities remain the same, but the

MTTF values decrease, due to the accumulation of anomalies, namely in-

crease in memory leaks and unterminated threads rates. Finally, to evaluate

properly this framework, a new region is added to the system. First of all,

the system balances the forwarding probabilities in order to exploit the just

added region. Due to this fact, the workload is distributed over one more

region, allowing to the system to increase the global MTTF value and prov-

ing that the proposed load balancing strategy in Section 5.3 works in hybrid

cloud environments.

CHAPTER 6. EXPERIMENTAL EVALUATION 79

Fig. 6.2: Results using three regions

Another interesting result is the alternance in the MTTF values and for-

warding probabilities. Indeed, the framework always tries to balance these

values to reach a steady state situation, so when the region 1 MTTF is greater

than the region 2 MTTF, the framework tries to send more incoming traffic

fraction towards the region 1, causing a fluctuation in the forwarding prob-

ability then in the MTTF values, and leading the region 2 MTTF value to

be greater than the region 1 MTTF, and so on. After a certain time, the

system becomes stable, as shown in the just seen figures.

Chapter 7

Conclusions

In this work, an innovative framework to perform a proactive workload man-

agement in multi-cloud environment is presented. This framework exploits

the PCAM Machine Learning-based framework to predict the Remaining

Time To Failure (RTTF) value for the VMs composing a cloud region, in

order to face the problems related to the software aging, and ensuring an

increase in the cloud segment availability applying a proactive rejuvenation

procedure. Again, an innovative load balancing strategy is presented relying

on the Mean Time To Failure (MTTF) value for each region. Due to the fact

that the framework uses OS’s parameter measurements (e.g. free memory, cpu

usage, etc. . .) and network monitoring (e.g. response time, arrival rate), it

is able to work independently from the underlying machines. The combina-

tion of the rejuvenation strategy and the load balancing strategy allows the

increase of the system’s availability, then the decrease of the response time

(user side) and the possibility to simulate the behavior of the most common

distributed applications. The experiment evaluation shows that when two

regions are active, triggering the procedure to add a new third region im-

proves the MTTF value 2.5 times (i.e. from 4000 seconds to 10000 seconds)

80

CHAPTER 7. CONCLUSIONS 81

leading the whole the distributed system to guarantee an higher availability.

This work has not considered the overheads and delays due to the net-

work. They may be analyzed in future works, in order to better represent

real scenarios and nowadays common distributed applications.

Chapter 8

Bibliography

[1] D. L. Parnas, “Software aging,” in Proceedings of the 16th Interna-

tional Conference on Software Engineering, ICSE ’94, (Los Alamitos,

CA, USA), pp. 279–287, IEEE Computer Society Press, 1994.

[2] S. Pertet and P. Narasimhan, “Causes of failure in web applications

(cmu-pdl-05-109),” Parallel Data Laboratory, p. 48, 2005.

[3] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation

and availability assurance techniques,” International Journal of System

Assurance Engineering and Management, vol. 1, no. 4, pp. 340–350,

2010.

[4] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software reju-

venation: Analysis, module and applications,” in Fault-Tolerant Com-

puting, 1995. FTCS-25. Digest of Papers., Twenty-Fifth International

Symposium on, pp. 381–390, IEEE, 1995.

[5] P. Di Sanzo, A. Pellegrini, and D. R. Avresky, “Machine learning for

achieving self-* properties and seamless execution of applications in

82

CHAPTER 8. BIBLIOGRAPHY 83

the cloud,” in Proceedings of the Fourth IEEE Symposium on Network

Cloud Computing and Applications, NCCA, IEEE Computer Society,

June 2015.

[6] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A machine learning-

based framework for building application failure prediction models,” in

Proceedings of the 20th IEEE Workshop on Dependable Parallel, Dis-

tributed and Network-Centric Systems, DPDNS, IEEE Computer Soci-

ety, May 2015.

[7] D. Avresky and N. Natchev, “Dynamic reconfiguration in computer clus-

ters with irregular topologies in the presence of multiple node and link

failures,” Computers, IEEE Transactions on, vol. 54, no. 5, pp. 603–615,

2005.

[8] W. D. Smith, “Tpc-w: Benchmarking an ecommerce solution,” 2000.

[9] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software aging

and rejuvenation: Where we are and where we are going,” in Proceedings

- 2011 3rd International Workshop on Software Aging and Rejuvenation,

WoSAR 2011, pp. 1–6, 2011.

[10] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive Workload

Management in Hybrid Cloud Computing,” 2014.

[11] Y. Han and A. T. Chronopoulos, “A Resilient Hierarchical Distributed

Loop Self-Scheduling Scheme for Cloud Systems,” in IEEE 13th Inter-

national Symposium on Network Computing and Applications, 2014.

[12] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, “Dual time-

scale distributed capacity allocation and load redirect algorithms for

CHAPTER 8. BIBLIOGRAPHY 84

cloud systems,” Journal of Parallel and Distributed Computing, vol. 72,

no. 6, pp. 796–808, 2012.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and

R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algo-

rithms,” Software - Practice and Experience, vol. 41, no. 1, pp. 23–50,

2011.

[14] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud

using predictive models for workload forecasting,” in Proceedings - 2011

IEEE 4th International Conference on Cloud Computing, CLOUD 2011,

pp. 500–507, 2011.

[15] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Provi-

sioning Based on Analytical Performance and QoS in Cloud Computing

Environments,” 2011 International Conference on Parallel Processing,

pp. 295–304, 2011.

[16] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and

S. Dawson, “Markovian workload characterization for QoS prediction in

the cloud,” in Proceedings - 2011 IEEE 4th International Conference on

Cloud Computing, CLOUD 2011, pp. 147–154, 2011.

[17] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-

driven workload modeling for the cloud,” in Proceedings - International

Conference on Data Engineering, pp. 87–92, 2010.

[18] P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. Didona, P. Romano,

R. Palmieri, and S. Peluso, “A Flexible Framework for Accurate Simu-

CHAPTER 8. BIBLIOGRAPHY 85

lation of Cloud In-Memory Data Stores,” Simulation Modelling Practice

and Theory, 2015.

[19] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software

aging,” in Software Reliability Engineering Workshops, 2008. ISSRE

Wksp 2008. IEEE International Conference on, pp. 1–6, IEEE, 2008.

[20] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,

and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[21] D. Simeonov and D. Avresky, “Proactive software rejuvenation based

on machine learning techniques,” in Cloud Computing, pp. 186–200,

Springer, 2010.

[22] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-

nal of the Royal Statistical Society. Series B (Methodological), pp. 267–

288, 1996.

[23] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J.

Cunningham, “Weka: Practical machine learning tools and techniques

with java implementations,” 1999.

[24] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[25] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,

R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a java

implementation of tpc-w,” in Third Workshop On Computer Architec-

ture Evaluation Using Commercial Workloads, 2000.

[26] A. MySQL, “Mysql database server,” Internet WWW page, at URL:

http://www. mysql. com (last accessed/1/00), 2004.

Chapter 9

Ringraziamenti

Con questo progetto di tesi, si chiude un capitolo della mia vita che ricorderò

con grandissimo piacere. Il percorso non è stato dei più facili, e come tutte le

cose, le difficoltà non si sono fatte attendere. Durante questi anni ho avuto

la fortuna di essere circondato da persone veramente eccezionali, per cui,

una sola paginetta di ringraziamenti non può bastare. Non me ne vorranno

coloro che non nominerò direttamente, ma chi c’è stato, sicuramente lo sa, e

si riconoscerà in questi più che dovuti ringraziamenti.

Il mio ringraziamento più grande va ai miei genitori, che al di là del

sostegno economico, sono stati sempre presenti, soprattutto nei momenti di

difficoltà, insegnandomi che quando si pensa di aver toccato il fondo ci si deve

rialzare, e lottare, con la tenacia di voler raggiungere l’obiettivo prefissato.

Un ringraziamento speciale va a mio fratello, perchè il suo spirito critico

è sempre stato per me fonte di ispirazione e di emulazione nel cercare di

superare la superficialità delle cose. Non posso non citare Assunta e il mio

nipotino Simone, perchè hanno portato una ventata di felicità alla nostra

famiglia, contribuendo sempre a rendere più leggere le giornate e per essere

una piacevolissima fuga dalla quotidianeità.

86

CHAPTER 9. RINGRAZIAMENTI 87

A Edda faccio un grandissimo ringraziamento per essere sempre un punto

saldo, con la sua disponibilità e soprattutto pazienza quando mi approcciavo

verso la fine di questo percorso. Inoltre non posso non mandarle un enorme

abbraccio, per esprimergli tutta la mia stima per il suo coraggio, mentre agli

altri sono capitato, lei me s’è proprio scelto!

Agli amici di sempre Francesco, Aurelio e Giuseppe faccio i più sentiti

ringraziamenti e scuse nel contempo, per esserci sempre stati e aver sempre

dato quel pizzico di colore nonostante le continue buche (anche dell’ultimo

momento), rendendo questi anni veramente indimenticabili, regalandomi

emozioni indelebili dentro di me.

Non me ne vorranno i ”Fracichi di Ingegneria” se un ringraziamento a

parte lo faccio a Mauro, compagno di numerosi progetti ed esami preparati

insieme, perchè è la persona più brillante che abbia mai conosciuto e che oltre

alla sua amicizia, mi ha donato sempre prospettive mai banali per analizzare

le situazioni che abbiamo dovuto affrontare, in ambito accademico e non. A

tutti gli altri fracichi, Guerino, Francesco, Elisa, Federica, Marcella, Celeste

(anche detti ”Gli amici di Ninodimmerda”) un grazie che viene dal cuore.

Senza di voi questo percorso non avrebbe avuto lo stesso epilogo, sicuramente

non nella spensieratezza con il quale mi avete portato ad affrontare situazioni

anche complicate. Siete sempre stati grandissimi amici e ottimi compagni di

studio, e non avrei mai sperato di avere tanta fortuna.

Agli amici del fantacalcio, Giorgio, Corrado, Francesco, Alessandro e Si-

mone va un ringraziamento per avermi spilato un sacco di soldi, conceden-

domi di essere il Re di Coppa e perché no, per avermi regalato un pò di

spensieratezza, che non fa mai male.

Ultimi non per importanza, ringrazio di cuore il mio relatore, il Prof.

Bruno Ciciani, perchè oltre che ad insegnarmi nozioni tecniche, ha sempre

CHAPTER 9. RINGRAZIAMENTI 88

tentato di trasmettermi valori di cui farò tesoro nel mio futuro, e perchè mi

ha concesso la possibilità di poter collaborare in questi mesi con un gruppo

fantastico, che forse, mi ha insegnato più cose di quanto un intero corso di

laurea ha potuto insegnarmi. Per questo motivo i ringraziamenti non saran-

no mai abbastanza per Pierangelo Di Sanzo e Alessandro Pellegrini, perchè

sempre pazientemente mi hanno guidato, rispondendo ad ogni mio dubbio,

e facendomi sempre sentire parte integrante di un team, anche quando ci

conoscevamo appena.

Alla fine di questi ringraziamenti, una dedica speciale va a mia madre,

che più di ogni altro mi ha insegnato lo spirito di sacrificio, e quanto le cose

semplici della vita, a volte sono le più belle. A mio padre una dedica soprat-

tutto per il suo ”Cerca a strigne!”, che ricorderò fin quando avrò memoria, e

per avermi insegnato la serietà e la dedizione in quello che faccio e che farò.

Chiudo ringraziando Igor, perchè è d’obbligo dopo che Giorgio non l’ha

fatto nella sua tesi.

