
Techniques and tools for program tracing and analysis
with applications to parallel programming

Sapienza University of Rome

Ph.D. program in Computer Engineering

Candidate

Simone Economo
ID number 1270165

Thesis Advisors

Prof. Francesco Quaglia
Dr. Alessandro Pellegrini

Co-Advisor

Prof. Camil Demetrescu

October 2019

Techniques and tools for program tracing and analysis
with applications to parallel programming
Ph.D. thesis. Sapienza – University of Rome

© 2020 Simone Economo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: October 31, 2019

Author’s email: economo@diag.uniroma1.it

mailto:economo@diag.uniroma1.it

iii

Abstract

v

Acknowledgments

vii

Contents

1 Introduction 1

2 Basics of program tracing 7
2.1 Metrics . 9
2.2 Techniques . 11

2.2.1 Filtering . 11
2.2.2 Aggregation . 12
2.2.3 Buffering . 12

2.3 Technologies . 13
2.3.1 Hardware-based . 13
2.3.2 Software-based . 15

3 Tracing generic applications 17
3.1 Baseline formalisms . 18

3.1.1 Preliminary static code analysis 19
3.1.2 The BID addressing mode . 21
3.1.3 Equality between BID expressions 23
3.1.4 Distance between BID expressions 24
3.1.5 BID and x86-64 . 25

3.2 Selection algorithm . 26
3.2.1 Computing the size of the knapsack 28
3.2.2 Overhead implications . 29
3.2.3 Accuracy implications . 30

3.3 Experimental assessment . 32
3.3.1 Implementation details . 32
3.3.2 Results . 38

3.4 Related work . 40
3.5 Conclusions and future work . 41

4 Tracing transaction-based parallel applications 43
4.1 Baseline formalisms . 45
4.2 Analytical model . 46
4.3 On-line model exploitation . 51

4.3.1 Incremental analytical model computation 53
4.4 Experimental evaluation . 56

4.4.1 Implementation details . 56
4.4.2 Results . 58

viii Contents

4.4.3 On-line model exploitation evaluation 60
4.5 Related work . 63
4.6 Conclusions and future work . 64

5 Tracing task-based parallel applications 69
5.1 Baseline formalisms . 70

5.1.1 The TMP programming model 71
5.2 Local task analysis . 75

5.2.1 Verification annotations . 77
5.3 Proving program-level correctness . 80
5.4 Experimental assessment . 84

5.4.1 Implementations details . 84
5.4.2 Benchmarks . 88
5.4.3 Results . 91
5.4.4 Related works . 93

5.5 Conclusions and future work . 95

6 Conclusions 97

1

CHAPTER 1
Introduction

In the last twenty years the conceptual hardware organization of computing systems
has changed significantly due to the increasing pressure of two factors: the physical
limitations of the scaling process of transistors on the one hand; the demand for
high-performance, low-power, energy-efficient computing on the other. As a result,
complex multi-core and heterogeneous architectures are ubiquitous nowadays. They
represent a cost-effective way to employ the increased number of transistors in chips
and to support the high degree of parallelism of many HPC applications. These
include applications for bioinformatics, molecular dynamics, weather forecasting,
quantum chemistry, computational fluid dynamics, cosmology and astrophysics,
computer-aided design, computer graphics, machine learning and computer vision.
These families of HPC applications exploit, to some extent, algorithms for numerical
approximation, discrete or continuous simulation, 2D and 3D rendering, supervised
and unsupervised learning, feature detection, object and pattern recognition. Overall,
given the current and foreseeable architectural trends, we cannot avoid thinking of
hardware parallelism and heterogeneity as concepts pervasively affecting the daily-
life operation of software applications. As a result, we are today at a point where
hardware has become complex enough to respond to different, advanced quantitative
and qualitative desiderata. Unfortunately, exploiting and taming this complexity in
software is challenging. Figure 1.1 depicts the reference conceptual organization of
software on top of a hardware layer which consists of a combination of CPUs, special-
purpose accelerators, different memory hierarchies and interconnections between
all these components. At the other extreme, we can find applications which are
written in different programming languages, paradigms and models. In between
the two layers, a Software Environment (SE) encompasses all software which is
required to (a) translate an application coded in a source language down to a
low-level close-to-machine language, (b) support the execution of the application
during its lifetime; (c) support the development of that application. As such, a
SE includes many different tools and components: typically, an operating system
kernel along with its drivers and modules; a set of standard and third-party libraries
which sometimes may form a middleware or a runtime library; compilers, linkers
and also instrumentation tools. It can also include other development tools which

2 1. Introduction

assist programmers during the development (and debugging) of applications. In this
scenario, the challenge witnessed at the level of environmental software is two-fold:
on the one hand, applications demand software technology able to maximize the
exploitation of hardware features; on the other hand, the complexity of hardware
should have a minimal impact on the complexity of application themselves in terms
on architecture and development. This challenge is extremely critical in the transition
from peta-scale computing to exa-scale computing—a target that looks foreseeable
for the end of the decade. Therefore, when witnessing such a technological shift,
it is fundamental to devise techniques and tools to accommodate this growth in
complexity at the level of environmental software.

 D
e

ve
lo

p
m

e
n

t

COMPILER

0
101
011

Software Environment

INSTRUMENTER

P
ro

d
u

c
ti

o
n

OS Kernel

Middleware/VMLibraries

OS Drivers / Modules

Hardware

CPU ACC MEMORY TOPOLOGY

Application

A
b

st
ra

c
ti

o
n

s

Programming Language
R

e
p

re
se

n
ra

ti
o

n
s

HIGH-LEVEL

LOW-LEVEL

Paradigms Models

Figure 1.1. Reference organization of software on top of different combinations of hardware.

3

The methodology proposed in this thesis to tame this complexity is grounded on
the idea that, to bridge the gap between hardware and software, program tracing
and analysis are needed to understand and to infer the relevant traits and properties
of applications. These features can then be exploited for the sake of optimizing the
execution of the application (e.g., for performance, energy, or power purposes) or
to change other aspects of it (e.g., for the sake of correctness or security). Overall,
this process, depicted in Figure 1.2, can be framed into a framework that involves:
a tracing step, to collect useful static (i.e., prior to execution) and dynamic (i.e.,
at run-time) data about the application; an analysis step, to process the collected
data and derive useful pieces of information; an exploitation step, which uses the
collected information to improve the execution of the application in quantitative or
qualitative ways, either off-line (i.e., prior to execution), or on-line (i.e., at run-time).

EXPLOIT

ANALYSE

TRACE

E
x
p

lo
it

a
ti

o
n

 T
o

o
lc

h
a

in

Figure 1.2. Functional representation of an Exploitation Toolchain.

An important aspect of this methodology is that the above-mentioned steps can
be executed prior to execution or at run-time, thus solving different problems and
raising different issues, as we will see in the following chapters. For example, in
Profile-Guided Optimization (PGO) tracing is achieved at run-time, the analysis
steps is performed after execution, and the exploitation step is carried out before
executing the application. The first step is typically instrumentation-driven and
requires to run an instrumented version of an application to collect some dynamic
traits of its execution (e.g., edge profiles describing the likelihood of taking code
branches); the second step processes and feeds back the information gained in the
first step to the compiler; the compiler can then exploit this information to produce
a better compiled version of that applications so as to improve its execution at
runtime. Another example of compile-time exploitation is that of debugging an
application looking for potential correctness and security bugs, and then feeding back
the outcome of the analysis to the user or an automatic tool to fix the encountered
issues. In this case, the tracing and analysis steps can be performed both off-line
and on-line. When the exploitation is performed at run-time, this implies that the
other steps are, too, executed while the application is running. This methodology is
usually employed for optimization purposes, to maximize the performance of the
application throughout execution, in presence of changing requirements or mutable
properties of the applications. For example, the operating system can trace the
access to virtual pages in order to understand which are the hottest pages, so as
to relocate them to high-bandwidth memory banks. In this case, all the steps are
performed at run-time, for run-time exploitation purposes. Another example is that

4 1. Introduction

of tracing low-level hardware events in terms of control-flow predictions units (e.g.,
the return-address stack) to detect possible hijacking attack schemes and terminate
the process for the sake of security.

A major focus of this thesis is on software environments for parallel applications.
Such software environments are usually conservative in the way they manage the
parallelism of the underlying hardware. For example, they allow to parallelize
independent portions of code, but little effort is put into trying to avoid conflicts
between these independent parallel regions (as for the case of parallel transactions),
or to avoid parallelization errors between dependent parallel regions (as for the case
of parallel tasks). It is worth stressing that these issues should not be a concern for
application developers working at the end of the software stack. It is the software
stack itself that should provide these guarantees. The reliance on environmental
software is essential to software developers at any level of competence, and will also
remain essential in the future as it is the only reasonable way to allow for an easy
programming, maintenance and deploy of applications. For this reason, another
major effort of this thesis is to present tracing and analysis technique that can be
implemented into existing software environment in a transparent manner. When
presenting our contributions in terms of tracing and analysis ideas, great effort is
put into stressing the difference between the techniques we propose, and the tools
that implement them. The fact that such techniques can also be embodied into
existing software stacks serves as an evidence to this transparency objective.

The rest of this thesis is structured as follows. In Chapter 2 we provide an
in-depth explanation of techniques and technologies to perform program tracing.
Then, in Chapter 3 we proceed to analyze a transparent tracing technique for
generic software that attach to the low-level representation of an application, for
either on-line or off-line exploitation purposes. Chapter 4 discuss a high-level
probabilistic model to analyse and estimate the abort probability of applications
based on the Transactional Processing (TP) paradigm, for the sake of performance
and on-line exploitation. Last, in Chapter 5, we present an algorithm to analyse
the parallelization of applications written using task-based programming models,
in order to evaluate their correctness. Chapter 6 concludes this thesis and hints at
possible future research work. Overall, the work presented in this thesis is based on
the following original contributions:

• (pending review) S. Economo, S. Royuela, E. Ayguadé, and V. Beltran, “A
tool-chain to verify the parallelization of OmpSs-2 applications”, 34th IEEE
International Parallel & Distributed Processing Symposium (IPDPS)

• S. Economo, E. Silvestri, P. Di Sanzo, A. Pellegrini and F. Quaglia, “Model-
Based Proactive Read-Validation in Transaction Processing Systems”, in Pro-
ceedings of the 24th IEEE International Conference on Parallel and Distributed
Systems (ICPADS)

• S. Economo, D. Cingolani, A. Pellegrini, and F. Quaglia, “Configurable
and efficient memory access tracing via selective expression-based x86 binary
instrumentation”, in Proceedings of the 24th IEEE International Symposium
on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS)

5

The research work that lead to this thesis has also produced the following
additional publications:

• E. Silvestri, S. Economo, P. Di Sanzo, A. Pellegrini and F. Quaglia, “Preemp-
tive Software Transactional Memory”, in Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid)

• S. Economo, E. Silvestri, P. Di Sanzo, A. Pellegrini and F. Quaglia, “Prompt
Application-Transparent Transaction Revalidation in Software Transactional
Memory”, in Proceedings of the 16th IEEE International Symposium on Net-
work Computing and Applications (NCA)

7

CHAPTER 2
Basics of program tracing

Program tracing is the process of recording information about the execution of a
program. It is achieved by intercepting some events of interested during execution
and storing information about these events. An event can be anything ranging from
a low-level access to memory through a machine instruction, to the invocation of a
high-level transaction banking service. The outcome of tracing is a log of data about
a program’s execution called trace. It can be a temporary trace living in memory,
or a file living in secondary storage. Usually, a trace is represented as a sequence
of records, each of which represents a particular instance of an event of interest
and stores contextual information about it. For examples, in the case of memory
access, we can store information about the involved address, while for transaction
banking we can save information about a bank account’s current balance. Traces
are usually analysed for optimization or debugging purposes, and can be exploited
either on-line or off-line. Classical applications of programs tracing include (a) the
evaluation of alternative memory subsystem designs, in terms of performance and
energy consumption [52, 89, 16]; (b) the detection of security vulnerabilities and
performance inefficiencies in programs [83, 62]; (c) the characterization of program
execution patterns over time (e.g., to optimize the placement of thread/data affinities
in multi-socket systems [30, 44, 68]). Logically, the process of tracing programs can
be split into two different steps.

• The Selection step is the first one. During this step, the code in the program
which, at run-time, produces events of interests is decorated with some tracing
logic. The tracing logic is responsible for saving information about the event
and will only be executed at run-time. This step can be performed ahead-of-
execution (AOE), i.e., during or after the compilation stage), or just-in-time
(JIT), i.e., while the process is already executing application code. It can be
manual or automatic, and can target events in application code or within a
run-time library or other middle-level software.

• The Extraction step executes the tracing logic at run-time and extract
information on the particular event instance being intercepted. Typically, the
tracing logic at this step consists of storing these pieces of information taken

8 2. Basics of program tracing

from a single event instance into a temporary storage area. As soon as a certain
number of records is stored, the whole batch is flushed to the actual trace. The
kind of information that is extracted at this time depends on the abstraction at
which the previous step is performed. High-level information concern abstract
source-level concepts, such as the type and scope of structured objects in
memory or calls to high-level API services. Low-level information relates to
a level of abstraction which is very close to that of the underlying hardware,
or that of an intermediate code representation that is more concrete than the
abstraction provided to the developer (e.g., JVM’s bytecode). For example, it
can be the physical address associated to an accessed virtual memory location,
or the current state of CPU architectural registers.

Typically, tracing is performed in the context of a more general framework that
involves more stes, as we already mentioned in Chapter 1. Indeed, our work is
based on a tight cooperation between program tracing and analysis, and between
the analysis part and a further exploitation step that tries to make good use of the
results of the analysis part:

• The Analysis step processes the records in the trace to infer some properties
of (the execution of) an application. Its complexity is arbitrary and typically
depends on the purpose for which tracing was employed in the first place. This
step can be performed on-line, i.e., while the application is being executed, or
off-line, i.e., after the application has terminated. On-line analysis is timely,
as it produces results that can be exploited to affect the execution of the
application while it is running. However, it can also affect the execution of
applications negatively, depending on the space-time complexity of the analysis
itself. Off-line analysis is usually more heavyweight and not timely, and the
results it produces can be exploited to support application development or the
execution of application at a later time.

• The Exploitation step takes the results produced by the analysis and per-
forms some corrective actions on the application being traced. Corrective
actions can be of any kind, e.g., for optimization, debugging, or other purposes.
Like the previous step, depending on when memory traces are exploited, these
actions are executed on-line, thus affecting the current application instance, or
off-line, hence affecting future application runs. In the first case, corrective
actions are performed by a run-time component that actively monitors and
assists the execution of applications. In the second case, corrective actions
are usually bundled into a compiler, another external tool, or are performed
manually by the user, prior to application execution.

Tracing is distinct to both program logging and program profiling. Even if there
is not always a clear distinction between tracing and logging, and despite the fact
that some of the same technologies are used for both, program logging tends to be a
concern for the users of a program, while program tracings tends to be a concern for
developers. While the main purpose of program logging is that of diagnostics and
auditing, program tracing is used for debugging or other specialed purposes, such as
program-wide or system-wide optimization. Program logging is typically lightweight

2.1 Metrics 9

and used to produce a summary of the execution of the program, including errors
and warnings. Logs are also more standardized and easier to read, often including
sentences in a (localized) natural language. Because of this, looking at logs also
doesn’t give any insight about the code of a program. On the contrary, program
tracing is more heavyweight and is used to produce a more precise description of the
execution of the program. Traces are therefore larger and more noisy than logs, less
standardized and not meant to be read by users (usually not including sentences).
Tracing data may also include sensitive information about the code of a program.

Program profiling are program tracing are more similar. They both serve to aid
program optimization and use the same technologies and techniques. Both profiling
and tracing can be used to guide the design and optimization of programs during
development, at compile-time, or at run-time. However, the purpose of profiling is
to provide a (statistical) summary of the events of interested (a profile). For each
instance of an event, an accumulator over an aggregation operation (e.g., a sum
or an average) is maintained. The resulting profile therefore contains a number of
entries that is proportional to the number of event classes of interested. Program
tracing, on the contrary, is used to produce a stream of recorded events. The number
of events in a trace is orders of magnitude higher, as each record contain information
for each instance of an event. Overall, a profiler can be applied at any scale to
derive quantitative metrics about the execution of a program with respect to a
particular runtime condition or the current availability of system-wide resources.
Typical profiles provide an estimation of the space (memory) or time complexity of
a program, the usage of particular instructions, or the frequency and duration of
function calls. Profiling and quantitative metrics can also be used to characterize a
program at any scale. For example, profiling data can be used to provide insight
into transaction workloads in distributed applications. However, there are situations
in which a summary profile is not sufficient to understand what is happening during
execution. For example, performance and correctness problems in parallel programs
due to synchronization issues typically depend on the specific timing of specific
instances of events, thus requiring a full trace to get an understanding of what is
happening.

In the rest of this chapter we proceed to illustrate the different metrics, techniques
and technologies which are used to support program tracing and analysis. In the
remaining chapter we make extensive use of the ideas in this chapter to frame our
original contributions in terms of techniques and tools.

2.1 Metrics
To evaluate different tracing and analysis techniques and tools, it is important to
define metrics of reference. In this thesis we mainly consider the following measures:

• Accuracy. Intuitively, it is a measure of how trustable is the information being
produced at the end of the analysis step. It can be defined as the proximity
of tracing results to the true value of what is being traced. Sometimes a
100% accuracy is not necessary for certain kind of tracing purposes (see, e.g.,
optimization). In other cases (such as for the sake of security) lacking trustable
information can be critical.

10 2. Basics of program tracing

• Exactness. It is the degree to which analysis can provide results that can
be traced back to individual events. The higher the exactness, the higher the
amount of information that can be used to establish which event affected a
particular analysis outcome. Depending on the specific tracing purpose, it
might not be necessary to have exact results. For example, knowing that a
single location is accessed one or more times may be unnecessary for some
cases (e.g., debugging).

• Overhead. It is the amount of space/time that is spent at runtime for tracing
events. Note that this performance measure is particularly important when
it comes to dynamically optimizing the execution of applications. A 100%-
accurate process that incurs a 50x execution time overhead penalty at runtime
becomes useless for whatever use of tracing on-line or off-line, especially when it
comes to tracing long-running applications. Similarly, if the memory overhead
of tracing is too high, the system will run out of memory before being capable
of tracing applications with an already high memory demand.

• Perturbation. It is a measure to describe a modification in the behavior
of a program when it is subject to tracing. For example, programs that are
susceptible to kernel-level scheduling decisions tend to be very sensible to any
form of tracing which introduces even the slightest form of overhead. Devising
a non-invasive form of tracing is important for many tracing applications not
to modify their behaviors. Failing to do so would put the quality of the trace
at risk and may lead to observing artificial and/or compromised program
executions [60, 20, 92].

• Portability. How easy it is to port a given tracing technique to different ap-
plications, different execution environments (e.g., operating systems), different
computer architectures. In some cases, such as industrial settings, it might
be sufficient to devise a tracing technique which is bound to a particular plat-
form. However, in many other scenarios (including academic ones) a portable
technique is typically more interesting—and valuable, too. At the same time,
less portability means having the opportunity to exploit more features of the
underlying machine/platform, or to collect more information regarding each
event.

Throughout this thesis, we provide different definitions for the measures previously
described, depending on the particular application scenario or tracing purpose. An
important aspect relates to how these metrics are—or can be—correlated via a
trade-off curve, and how easy is to change the shape of this curve or move along it to
explore different configurations. Generally speaking, increasing the accuracy or the
exactness of tracing will almost certainly increase the overhead and the perturbation
of the process. Decreasing the overhead and the perturbation of tracing typically
also decreases the accuracy and the exactness of analysis. Therefore, an interesting
challenge is to try to push the trade-off curve toward high benefits (in terms of
accuracy and exactness) and low costs (in terms of overhead and perturbation)
points. A few common techniques in the academic and industrial literature to pursue
this goal are illustrated in the following section.

2.2 Techniques 11

2.2 Techniques
While program tracing techniques and tools can be described in terms of the
logical steps introduced at the beginning of this chapter, different techniques can be
superimposed over this logical process, depending on the objective of tracing and on
which metrics we wish to optimize. Each technique affects the trade-off between the
different metrics in a unique way, thus allowing to customize the tracing process to
the specific objective. We proceed to explain which are these techniques, and how
they influence the above metrics.

2.2.1 Filtering

An important trade-off exists between tracing accuracy and tracing overhead. When
an application is traced by intercepting all the events of interest, and all instances
of these events, the anaysis step can produce information that is 100% accurate,
thorough, and reliable. However, collecting such traces could pose a huge time
and space overhead on the selection and extraction steps. Most of the times, these
overheads are unbearable and defeat the purpose of tracing itself. At the same
time, not all events are relevant for all tracing applications. For example, when
tracing application-level code it is not useful to trace events occurring in third-party
libraries or even the kernel. If the application is made of tasks (see Chapter 5) or
atomic transactions (see Chapter 4) then it might be useful to restrain the tracing
to the only events performed within these units of work. For these reasons, tracing
is usually implemented through filtering techniques that collect a “relevant” subset
of the memory accesses performed by the application. Filtering deals with reducing
the number of events that flow through the tracing process. A filter can be seen
as a condition φ that is applied to an event e and the current context σ to decide
whether that event should be passed to the next tracing step or should be discarded.
Depending on when the filter is evaluated, i.e., prior to or during execution, the
entities e and σ can represent different things. For example, when tracing memory
accesses, e represents an access of interest in the program, and σ can be the current
program execution state in terms of register values and values of all active memory
locations in its virtual address space.

if φ(e, σ) then
Discard(e)

Filtering by itself can occur at any stage of the tracing process. When performed
at the selection stage, it allows to spare extraction time and analysis time on
irrelevant accesses. The later filtering is performed in the tracing process, the more
time we spend dealing with irrelevant information in previous steps. Notice, however,
than it is not always possible to perform filtering at selection or extraction
time. For example, if we need information about the run-time execution state of an
application (such as the value of a particular location in memory) to know whether
a particular event instance is relevant or not, we can’t perform filtering during an
off-line selection step. If we the information that we need is still not known in
that particular moment during execution, then we may need to postpone filtering
until the analysis step.

12 2. Basics of program tracing

2.2.2 Aggregation

Another way to reduce the overhead of tracing at the expense of accuracy is by
means of aggregation techniques. Many times, at the end of the analysis step the
information that is generated doesn’t need any reference to a particular instance of
an event that was intercepted during execution. Stated differently, the analysis step
typically produces information whose granularity is higher than that of the single
event instance. For example, if we want to know if there have been memory accesses
to a given region of memory (e.g., an OS page), or how many, we don’t need to
know where these accesses have occurred. Therefore, as soon as we encounter two or
more accesses falling within that region, we can discard them and only pass through
limited/aggregated information about them (e.g., their number). As a different
example, if two accesses are performed by the same instruction at different times to
contiguous locations in memory, and the time at which they occurred is not relevant,
we can represent them as a single access having a larger span on memory. When
doing this, we spare tracing overhead because we are reducing the set of accesses
on which the tracing process will deal with, at the cost of losing some information
about each single accesses. Aggregation therefore deals with grouping events which
have something in common in order to focus the subsequent steps to a reduced set
of entries which convey a smaller but still meaningful amount of information. It is
composed of a condition α on the current event e, a set of past aggregated events E ,
and a context σ. When the condition α is true, an Aggregate operation merges e
into E .

if α(e, E , σ) then
Aggregate(e, E)

Aggregation, in a way similar to filtering, allows to reduce the time spent on
processing events at subsequent stages in the tracing process. This is because the
number of records that are passed to the next stage after using aggregation is reduced.
However, just like filtering, it is not always possible to aggregate information coming
from different events at early stages. For example, we can aggregate accesses to
contiguous addresses during the Extraction step because the address information
is the already available. However, if the information must be derived through a
complex sequence of operations, aggregation must wait till the next Analysis step.

2.2.3 Buffering

Communication between the different tracing stages can occur according to two
different temporal schemes, namely synchronously or asynchronously. The first case,
the naïve one, expects each event record to be passed through to the next step as
soon as the current step has it available and processed. It is suitable whenever
we require a timely stream of events that must be consumed on the fly. However,
albeit straightforward, this scheme tends to pose excessive overhead while tracing
the application. For example, the application might be competing for a lock or
performing some time-critical operations that should not be delayed. For this reason,
a generally better form of tracing involves buffering. It entails storing the collected
events into a temporal storage that is later flushed to the actual trace or another

2.3 Technologies 13

temporary storage at an appropriate moment in the execution of the application—
preferably if outside of its critical path, e.g., through a background process. The
natural justification to this asynchronous scheme is that sometimes events need not
be consumed on the fly. Eploitation schemes which are expected to run off-line don’t
require minimum latency between the materialization of an event in the trace and
its exploitation. As for on-line exploitations schemes, it is typically better to wait for
a few events of a kind before taking corrective actions, e.g. by means of aggregation
schemes. While this increases the “time-to-analysis”, which is the delay experienced
by a single event before being consumed by the analysis step, this also allows to
reduce the perturbation on the application.

2.3 Technologies
Generally speaking, tracing can be performed using either hardware or software
facilities for selecting the events relevant for the analysis, although it also depends on
the abstraction at which tracing is performed (low-level vs high-level events). Moving
from hardware to software-based technologies, we observe that getting accurate
traces becomes more and more prohibitive in terms of runtime tracing overhead
and perturbation. This is because selecting a single event is more expensive (and,
in a sense, more explicit) as we move from low-level solutions to high-level ones.
At the same time, it becomes easier and easier to collect high-level information
about events of interests, because the techonologies we use operate at the same
level of abstraction. The portability of these technologies, too, increases when
abstracting further and further from the underlying machine. In this section we
provide an overview of the technologies at our disposal to implement program tracing,
discussing their advantages and drawbacks. In the following chapters we make use
of the technologies explained in this section to provide working implementations of
the tracing technique we propose as our original contributions. It is worth stating
that the implementations we provide, depending on the purpose, are not necessarily
optimized toward low-overhead and low-perturbation tracing. Sometimes, achieving
high accuracy and/or high exactness is more important, as well as developing more
portable tools. For this reason, understanding the technologies available nowadays
is fundamental to know how to move from theoretical techniques to concrete tracing
tools.

2.3.1 Hardware-based

Hardware-based technologies work at the level of electric signals or (micro)instructions
as seen by a processor. In the first case, solutions are based on monitoring signals
coming from on-chip memory controllers [7, 17, 20]. At this level, events are inter-
cepted simply by snooping electric signals being transmitted over communication
lanes (e.g., memory buses). The major advantage of these tracing technologies is that
it is possible to collect very accurate traces at literally no runtime cost. However,
these technologies have some drawbacks in terms of portability and capability of
performing filtering and/or aggregation operations:

• They are usually expensive and very difficult to port to other architectures,

14 2. Basics of program tracing

since they entail physically attaching additional circuitry to the outgoing bus
interfaces of on-chip controllers.

• They can only record very limited information on the events being recorded.
This is because the kind of events being intercepted exist at the lowest possible
level and any high-level information in generated on-chip and therefore is not
available. For example, when recording memory access, usually just the physical
memory address involved in the operation. Any higher-level information, such
as the virtual address associated to a physical address, cannot be recovered at
this level.

• They can only see a subset of the events, just depending on how much of the
events take place on-chip. For example, when tracing memory accesses, the
kind of events which can be intercepted depends on how much of the memory
hierarchy is installed on-chip. In processors with on-chip first-level caches, it
is impossible to snoop the accesses that hit the primary cache and so only L1
cache misses can be observed. In processors where all caches are on-chip, we
can only see accesses served by the main memory.

On modern processors, hardware-based tracing makes use of Performance Mon-
itoring Units (PMUs) (also called hardware instrumentation), which in turn rely
on sampling [64, 59] and operates at a higher level than electric signals. When
enabled, hardware sampling picks one event of interested every N executed machine
instructions (or T clock ticks) and reports to software additional information related
to the event, for further analysis. The accuracy and overhead of this technique
both depend strongly on the frequency of sampling, which is tunable by the user on
most architectures. A too low frequency may lead to poor tracing accuracy, while a
too frequent sampling may give rise to significant execution slowdown. The major
advantage of hardware instrumentation is its reduced intrusiveness with respect to
the traced application, since all tracing is performed by dedicated firmware and
hardware registers in the processor. Moreover, it induces no perturbation on the
traced program. PMUs have also some limitations, which generally involve limited
capability for filtering and/or aggregating events, and scarce portability:

• Despite the freedom to control the frequency of sampling, PMU-based tracing
is essentially arbitrary, meaning that the sampled event is chosen without any
knowledge of the traced program. For example, the sampled event might not
be representative of the behaviour of the program.

• The trade-off between the sampling frequency and the tracing accuracy (or
the tracing overhead) is unknown in general. As a result, it is difficult to
understand which is the right sampling period for a given program, even only
for a specific input.

• Different families of architectures, or different products within the same family,
may exhibit incompatible PMU interfaces with different sampling capabili-
ties. Because of this, PMU-based sampling is usually non-portable across
architectures.

2.3 Technologies 15

2.3.2 Software-based

Software-based tracing technologies can be classified according to the abstraction
level. When performed in the kernel, tracing is performed on processes rather than
programs, meaning that it exploits operating system handlers as injection points for
the required tracing logic. For instance, on many conventional operating systems
it is typical to intercept page faults (hence, page-fault handlers) to acknowledge
that a process p has issued an access to a memory page m. As a result, most of the
literature proposals work at the granularity of virtual pages [30, 44, 90], typically
ranging from 4KB to 2MB in size. Kernel-level tracing is completely transparent to
the process since it requires no modification to the original program. It is also more
portable than hardware-based tracing because the operating system abstracts away
many details of the underlying architecture and the majority of low-level handlers
are exported to all supported platforms. Despite that, it has some shortcomings,
mostly in terms of event granularity and filtering:

• It incurs more overhead than hardware-based techniques, since the additional
tracing logic is implemented using machine instructions rather than special-
purpose hardware and/or firmware.

• It is impossible to trace events at a level lower than that seen by the operating
systems. For example, it is impossible to trace memory accesses at a granularity
lower than that of virtual pages, due to the way modern conventional operating
system treat physical memory.

Some solutions rely on application-external libraries, like MPI/OpenMP [19, 50,
88] or transactional middleware. These approaches have the advantage of being
transparent to the applications that use these libraries and also being able to
understand more about their semantics, thus being able to produce event records
containing high-level information. Not only that, but they tend to introduce small
overhead since the cost of invoking library services is spent anyway. However, there
are also some disadvantages in terms of portability:

• These approaches are usually limited to very specific applications (or ap-
plication domains) that make use of libraries (e.g., MPI for coarse-grained
parallelism or OpenMP for fine-grained one).

• Only events related to explicit library calls can be traced. Therefore, all those
events that occur outside of library invocations cannot be traced.

When it comes to application-level tracing, a well-known method to perform
tracing transparently to a program is software instrumentation. It is a technique
which resorts to transparently patching the code of a program in order to imple-
ment the desired tracing functionality. When patching occurs prior to run-time,
instrumentation is called static or ahead-of-time (AOT) [53, 66]. When patching
is otherwise carried out while the application is executing, it is called dynamic or
just-in-time (JIT) [35, 69]. Depending on the abstraction at which it is performed,
we distinguish between different kinds of software instrumentation:

16 2. Basics of program tracing

• binary-code instrumentation is achieved when patching object files (such as
executables files) and is quite common for classical compiled languages such
as C, C++ or Fortran;

• byte-code instrumentation is similar to binary-code instrumentation, but works
on specific byte-code file formats that are typical of JIT-compiled or emulated
languages such as Java or Python;

• source-code instrumentation applies directly to source code.

Regardless of the specific type of instrumentation being used, this approach has
some interesting properties. Being performed entirely inside application code, it has
no dependence on external libraries, the operating system or even the underlying
computer architecture, therefore it is a more portable technique. Additionally, it
allows to explore interesting trade-offs between tracing accuracy and tracing overhead,
since it can exploits relevant static and/or dynamic information on the program.
Nonetheless, instrumentation tends to be very invasive in terms of overhead and
perturbation:

• Instrumentation techniques tend to be very heavyweight and are likely to
perturb the behavior of applications in a significant way [63]. This is because
the tracing logic is explicitly injected into the program by means of additional
instructions or high-level language statements.

• Static instrumentation, being completely carried out at compile or link-time,
cannot exploit relevant information characterizing the actual execution flow of
programs, which is something that dynamic instrumentation is able to do.

• Moving from binary-code to source-code instrumentation, we gain high-level
information on the program but lose some other properties. For instance,
source-code instrumentation cannot be performed at runtime and requires
the source code of the program, which is not always available. Binary-code
instrumentation is typically able to operate on final executables, but has to deal
with a limited amount of information in terms of an application’ semantics.

17

CHAPTER 3
Tracing generic applications

When targeting general (multi-threaded) applications, the absence of any reference
programming model or paradigm makes it difficult to predicate on the high-level
semantics of the application, thus forcing tracing tools to rely on less abstract
representations of the program (see Section 2.3). This chapter focuses on memory
access tracing, a particular form of tracing that is responsible for the interception of
the memory references issued by an application at runtime. The outcome of this
process are one or more sequences of memory accesses called memory traces, just
depending on whether the user is interested in tracing per-process or per-thread
memory accesses. Independently of whether one relies on hardware or software-
based technologies to operate at this abstraction level, tracing all the memory
accesses may still lead to excessive runtime overhead. This is especially true for
approaches based on software instrumentation, which require to insert additional
code into the application to select and extract information about all memory accesses
which can be performed. An additional drawback of these techniques is that they
cannot exploit relevant information about the actual execution flow of programs
and are typically forced to instrument all accesses in the program. On the other
hand, arbitrary filtering the accesses to be traced, with the purpose of reducing
runtime costs, may lead to produce traces that aren’t sufficiently accurate. For
example, one might use dynamic sampling (e.g., via PMUs or dynamic binary
instrumentation) to only instrument a subset of the accesses of the application.
However, sampling is essentially arbitrary, meaning that the sampled instructions
might not be representative of the memory access pattern of the program. In these
scenarios, tracing can give rise to low-quality samples, while still paying the cost for
taking them. Therefore, given the absence of any hint regarding what is relevant to
tracing and what is not, and at which granularity, the tracing techniques described
in Section 2.2 have limited effectiveness.

In this chapter we look at a flexible tracing technique which can be applied
to generic (multi-threaded) applications to implement memory tracing tools for
off-line or on-line purposes. Our approach relies on binary software instrumentation
and only performs static analysis of code. Even if we are forced to face the classic
limitations of static and software-based approaches—namely, the absence of any

18 3. Tracing generic applications

information to predict the flow of execution and the need for inserting additional
instructions in the program—we are able to exploit a few static properties of
code to explore the trade-offs between tracing exactness, tracing overhead, and
tracing accuracy. Our selection algorithm is based on a hybrid filtering/aggregation
technique that is able to selectively instrument a subset of the memory-accessing
instructions that are identified as the “most representative” of the application for
a desired tracing granularity. The filtering part gathers instructions in groups and
only instruments one instruction per group. The aggregation part assigns to the
instrumented instruction an access count that is equal to the size of the whole group.
The number of instrumented instructions and the granularity parameter are user-
customizable. We also present an abstract addressing mode which fuels (and makes it
possible) the rest of the analysis. Its purpose is to disambiguate the manifold nature
of memory address expressions in CISC (Complex Instruction Set Computing) and
RISC (Reduced Instruction Set Computing) architectures. By relying on this model,
we can reason on memory-referencing instructions unambiguously and regardless of
the specific Instruction Set Architecture (ISA). Additionally, we can abstract away
from the conventions used by compilers and low-level programmers when enconding
memory accesses into these expressions.

Overall, the work presented in this chapter involves the Selection and Extrac-
tion parts of the tracing process illustrated in Chapter 2. The original contributions
of this chapter can be summed up as follows:

• We propose a static selection algorithm and a hybrid filtering/aggregation
technique to select a subset of representative memory-referencing instructions,
while being able to count how many times an access to a memory address has
been issued.

• The trade-off between tracing accuracy and overhead can be controlled through
a parameter called instrumentation factor which is customizable and whose
value depends on user-specific requirements.

• Our instrumentation scheme can be configured in such a way to fit the desired
tracing granularity, which is too customizable by the user depending on the
tracing requirements.

• Our analysis builds upon an abstract addressing mode that disambiguates
the weak semantics of concrete ISA addressing modes, thus being portable to
different architectures and programming conventions.

3.1 Baseline formalisms
Our tracing method is based on selecting for tracing those memory-referencing
instructions, i.e., instructions targeting memory as source or destination, which
are believed to be more representative of the overall execution. In Section 3.2 we
provide a precise definition of what it means for an expression to be representative.
Depending on the purpose, the user can instruct our algorithm to select a varying
number of memory-accessing instructions to instrument. This is similar to how other
tracing techniques based on sampling work. However, differently from them, our

3.1 Baseline formalisms 19

selection is driven by static code analysis only. Additionally, it is less arbitrary than
typical sampling because it selects instructions based on deterministic rules and
properties of instructions in code. In this section, we illustrate some preliminary
analysis we perform on code before running the tracing algorithm. Then, we present
an abstract addressing mode to unambiguously describe memory expressions encoded
into memory-referencing instructions.

3.1.1 Preliminary static code analysis

As hinted, our tracing technique is based on binary software instrumentation, a
technique that operates on (and transforms) the binary code of a program before
the code itself is run. Our approach to select the memory-referencing instructions
to be instrumented relies on rules that compare instructions prior to executing
them. However, the problem of choosing representative accesses using only static
analysis is complex because memory accesses are encoded within a binary file
as memory-address expressions, i.e., linear combinations of register variables and
constants which are evaluated to actual addresses only at run-time. The complexity
of dealing with expressions lies in that the value a register will hold at runtime may
be unpredictable. As an example, it may depend on an unforeseeable quantity such
as program inputs, or it may materialize as any of multiple values resulting from
taking different execution paths. Overall, static analysis forces us to see the “static”
memory access trace of a program, i.e. the one observable prior to execution, as a
graph of ambiguous memory-address expressions. In contrast, the “dynamic” memory
access trace, which is the one materialized by a thread at runtime, is a sequence of
finalized (virtual) memory addresses. Because of the presence of registers and the
impossibility to know the actual control flow of an application prior to execution,
memory address expressions are subject to the following issues:

1. Address multiplexing. A single expression can encode different addresses over
time. This can happen because the values held by registers can change in
between two executions of the same memory-referencing instruction.

2. Address aliasing. Different expressions can encode the same address at the
same time. In general, it is impossible to know whether two different registers
will contain the same value prior to runtime.

To effectively deal with address expressions prior to executing them for tracing
purposes, our analysis relies on a well-known program representation called Control-
Flow Graph (CFG) [4]. It is a directed graph of all the possible ways in which a
thread running a program can flow from one instruction to another at runtime. A
node in the CFG is called a basic block and represents a contiguous sequence of
instructions with one single entry point at the first instruction and one single exit
point at the last. An edge between two blocks in the CFG establishes that the
program’s control flow is allowed to move (along a thread) from the last instruction
of the source, straight to the first instruction of the destination. A basic block may
reach multiple destinations and be linked to multiple sources, though it does not
admit sideways entrances or departures. Therefore, if control flows into a basic block,

20 3. Tracing generic applications

it must go through it from the first instruction all the way to the last1.
Basic blocks represent atomic execution units for the program and therefore

are easy to manipulate and to reason about. For this reason, in our approach we
target the selection of what memory-referencing instructions to instrument on a
per-basic-block basis. If we constrain the rest of the analysis to the scope of a single
basic block, then we can eliminate the problem of address multiplexing. Indeed,
when we consider only what happens within a basic block, each memory address
expression can only represent a single memory address at a time. The fact that
multiple executions of the same basic block can produce different addresses for the
same expressions becomes irrelevant, because the scope of our analysis involves only
what happens in each single execution of that basic block independently. At the
same time, by following the linear flow of instructions in a basic block, we can detect
whether there are instructions which change the value of a register, as a way to
mitigate the effects of the address aliasing problem. To do this, we rely on a simple
form of register analysis inspired by the Static Single Assignment form (SSA). When
starting the inspection of a basic block, all the architectural registers are deemed
stable. We begin scanning the instructions forming each basic block in program
order, from first to last. As soon as an instruction that overwrites the value of one
or more registers is found, these registers are assigned a new incarnation number,
i.e., an increased version number which indicates that we have logically encountered
new register values. Two register parameters appearing in two different memory
address expressions are then considered as equal if and only if they use the same
register identifier and the same register incarnation number. Compared to other
forms of register analysis based on full data-flow analysis (see, e.g., [51]), which
operates on the entire CFG, ours only requires a single pass over each basic block.
Additionally, our analysis is stateless, meaning that it doesn’t remember the values
of past incarnations of a register. Clearly, this approach may lead to false negatives.
For example, it cannot recognize when a sequence of value-changing operations yields
an unchanged register value as the final result. However, in exchange for this, our
register analysis is much faster and doesn’t depend on the full CFG of a function.
Therefore, it can be used both at run-time and in all those cases where functions
are disassembled in blocks, as in the case of memory tracing achieved via dynamic
instrumentation approaches (see Section 2.2).

By the end of our preliminary static code analysis, we are presented with a graph
of basic blocks. Each basic block might contain one or more memory-accessing
instructions which encode the address to be accessed as a memory-address expression
made up of registers and constants. Each register is uniquely idenfitied by its
name and its incarnation number. We can therefore focus on memory-accessing
instructions and parse their memory address expressions to understand whether they
are relevant or not for tracing. The next step is that of defining a formal addressing
mode to represent expressions in a more abstract and less ambiguous way.

1Sideways entrances and/or departures may happen due to hardware interrupts (e.g., for re-
scheduling), as well as software interrupts (e.g., signal handling). However, they are well beyond
the scope of user space program analysis, therefore they do not need to be captured by this
representation.

3.1 Baseline formalisms 21

3.1.2 The BID addressing mode

The rules that explain how to combine register values and constant values within
a memory address expression depend on the specific hardware architecture and
processor. Each addressing mode constraints the possible combinations in different
ways. For example, in x86 processors the most expressive addressing mode is
called SIB addressing (Scale-Index-Base) and involves expressions that combine four
quantities. The base register b specifies the base address from which the address
computation starts. The index register i is used as an index value whenever b points
to an array-like object or a regular structure. The scale is used in conjunction with
the index register to specify the step size and can assume one of the values in {1, 2, 4}
(as well as 8 in 64-bit mode). To obtain the final memory address, a displacement d
is added to the result, as in the following expression:

EAx86 = b+ i× s+ d

A similar form of addressing is the RIP-relative addressing (for x86-64 only).
It is constituted by an immediate value which is used to displace from the current
position in the program. It’s like SIB addressing, but there’s no index (hence, no
scale) and the base register is bound to be the program counter. Lastly, in absolute
addressing the final address is already available in the expression. It is a form of
SIB addressing where there are no index and base registers.

Different processor families and ISAs (Instruction Set Architecture) have similar
addressing modes involving a base register which can be, usually exclusively, combined
with a constant (hence, a displacement), a register (hence, an index register), or a
scaled register (hence, an index register and a scale). Some simple EPIC (Explicitly
Parallel Instruction Computing) and RISC processors can go even further and only
admit a base register, with no possibility to specify an immediate, nor a register
offset.

EAothers =

b+ i× s e.g., ARMv8
b+ i e.g., ARMv8, Sparc, PowerPC
b+ d e.g., ARMv8, RISC-V, MIPS, Sparc, PowerPC
b e.g., Itanium

To make our analysis portable to different processor and architectures, we discard
concrete addressing modes in favor of a more abstract model called BID addressing,
where only base, index and displacement are considered. A BID expression is denoted
as a tuple {b, i, d} such that:

• The base parameter b refers to the initial address of a memory object, such as
an array or an arbitrary structure.

• The index parameter i is used to iterate over a contiguous sequence of entries
in an array-like object.

22 3. Tracing generic applications

• The displacement d is used to move within an arbitrary structure to access its
fields.

To compute the effective address out of a BID expression, it is sufficient to
aggregate the above parameters as in the expression:

EABID = b+ i+ d

These parameters resemble the ones used in many different ISAs and are general
enough to represent all the different addressing modes which are available in modern
processors. Observe, however, that depending on the way address expressions are
exploited by compilers and low-level programmers, the semantics of each parameter
which forms the expression may change from instruction to instruction. For example,
one instruction may encode the most-significant bits of an address in a constant,
while another instruction might pass them into a register and use a constant for the
least-significant bits. As another example, on Linux-x86-GCC, statically-allocated
objects can be accessed by putting the base address of a data object into the SIB
displacement, since that address is already known at compile-time. On the contrary,
the base address of a dynamically-allocated object is not known until the same object
effectively materializes in memory. Therefore, its base address is concealed behind a
register. Assembly programmers can further distance themselves from this scheme
and encode memory address in arbitrary ways—e.g., by deliberately using a single
base register as an accumulator for the final address, for instance via the x86 LEA
instruction.

To mitigate the effects of this ambiguous parameter semantics, we allow each
parameter pe in the tuple {be, ie, de} to map to either a register or an immediate
value. To discriminate the two cases, we introduce the notion of BID expression
template τe, which is a tuple where each symbol indicates whether the corresponding
parameter in the expression e corresponds to a register R or to an immediate I. The
addition of templates makes it possible to distinguish between different compiler
and programmers conventions in terms of usage of parameters in a memory address
expressions, but it must be supported by additional information in order to be
effective. Typically, the ability to discern between templates strongly depends on
compiler choices and the environment under consideration. For Linux-x86-GCC, for
example, when the object file is an ELF executable then we can compare the SIB
displacement parameter with the range of addresses allocated to static data regions.
If the object file is an ELF relocatable, we can check for the existence of relocation
information associated with the x86 instruction. In Section 3.3 we propose a way to
instantiate the BID addressing mode and its templates feature for the case of x86-64
processors and relocatable-object files.

We note that a BID expression e can never lack its base be, since it gives always
the most significant bits of an effective memory address. On the other hand, missing
quantities (index and/or displacement), if any, are modelled in our analysis through
a nil value, just to represent the fact that they do not contribute to the actual
value of an expression e. Therefore, a BID expression can represent not only x86
addressing modes (included RIP-relative and absolute ones), but also less complex
schemes like those used by other ISAs such as RISC and EPIC ones. Not only that,

3.1 Baseline formalisms 23

but we stress that a more complex static analysis scheme could allow to recover
full BID expressions out of simpler RISC/EPIC expressions. For example, it could
transform an expression involving a base register r only into a full BID expressions
with a base, an index, and a displacement, by tracing back the operations which
performed side-effect on r in the same basic block, or across multiple basic blocks.

In the rest of the chapter we will make use of BID expressions and templates
to devise a selection algorithm that can be ported to different architectures, while
also making it possible to predicate on address expressions independently of the
programmer/compiler idiom used to encode memory accesses via the available
addressing modes. Our selection algorithm works by defining two relations over pairs
of different BID expressions: the equivalence relation and the similarity relation.

3.1.3 Equality between BID expressions

Our first objective is that of finding BID expressions which are equal, in order to
establish a trade-off between tracing overhead and tracing exactness. When we find
a group of expressions which are equal, we have the option of selecting for tracing a
single element to represent the whole group. Therefore, a representative access is an
access encoded in an expression which has duplicates in the basic block. An access is
more representative than another in the same basic block if it can represent a bigger
group of duplicate expressions. We can therefore choose the most representative
expressions for each basic block and only instrument these representative ones.
Upon instrumenting, we can assign to the chosen expression an access count that
is equivalent to that of the group. In this way, by only instrumenting a single
expression for each group, we reduce the overhead of tracing at expenses of the
exactness, since we lose information on the uninstrumented duplicates.

Since BID expressions are composed of constants and variables, respectively
represented by immediate and register parameters, we need to compare BID ex-
pressions on a parameter-by-parameter basis. Intuitively, BID equality holds for
two expressions if and only if they share the same template and their parameters
b, i, and d have the same values. If templates mismatch, then the expressions
are deemed incomparable. If the templates are equal, parameter-wise equality is
defined as expected for immediate values, while it relies on names and incarnation
numbers for registers (according to our preliminary static analysis). Formally speak-
ing, given a basic block b that contains a set Eb of memory address expressions
(associated with memory-referencing instructions), we introduce the BID equivalence
relation =⊆ (Eb × Eb) between any two BID expressions (e, e′) belonging to Eb as
follows:

e = e′ ⇐⇒ (τe = τe′) ∧ (be = be′ ∧ ie = ie′ ∧ de = de′) (3.1)
By Equation (3.1), all the BID expressions of the basic block b can be clustered

into different classes, depending on whether they are equivalent or not. Let Cb be
the set of candidate BID expressions for a basic block b , formed by choosing a single
representative from each equivalence class over the set of all expressions Eb. Tracing
a single candidate for each equivalence class means instrumenting the instruction
which uses that BID expression. Each instrumented access via an expression e is
associated with an access count which represents the cardinality of the corresponding

24 3. Tracing generic applications

equivalence class [e]. The access count is precise and accurate because, by definition,
all instructions in a basic block b are executed exactly once at run-time.

As hinted before, the instrumentation of a single element for each cluster im-
plements a form of static aggregation at the basic-block level which generates a
trade-off between tracing overhead and tracing exactness. Since all memory accesses
issued within a given group can be traced by only instrumenting the access issued
by a single representative element of the cluster, tracing all these accesses has the
same cost as tracing one. As for the exactness, we note that by only instrumenting
a single representative access, we are losing information on the instructions that
performed the non-instrumented accesses in the same cluster. Depending on the
kind of analysis that we wish to perform, this kind of aggregation can be considered
acceptable or not. In Section 3.2.3 we provide a few accuracy measures that are
compatible with this aggregation scheme. Observe that by aggregating accesses
prior to execution during the selection step, we can also spare the overhead of
processing each access individually during the extraction and analysis steps.

3.1.4 Distance between BID expressions

We have defined a notion of equivalence between BID expressions and proposed an
aggregation technique which allows to maintain an access count for each distinct
access in a basic block. However, BID expression pairs can only be evaluated via
the equivalence relation, hence there is no way to compare two expressions apart
from checking if they encode the same address. Most specifically, we don’t have a
way to determinate how similar are two BID expressions which are not equal. This
notion can affect the selection of candidate accesses to select for instrument, by
giving proprity to those accesses that are considered to be more different, or less
similar, than others. At the same time, the granularity according to which memory
access tracing is carried out can play a role in determining what elements of Cb
are more relevant. For example, two or more elements, although being associated
with different BID expressions, might target the same memory region at a coarser
granularity (e.g. an operating system virtual-page, a block of dynamically-allocated
memory, a cache-line aligned chunk, etc.). If the user is only interested in tracing the
accesses at such granularity, then instrumenting a single instruction as representative
of all those targeting the same region will be enough.

To take into account these new requirements, we introduce the notion of BID
expression distance between two candidates e and e′. We define a distance function
for every template τ and claim that two expressions e and e′ belonging to Cb and
associated with different templates cannot be related through a distance. The
distance function takes two expressions belonging to that template as arguments
and produces a natural number as output to correlate them according to a notion
of distance. The computation of a distance also takes into account the tracing
granularity κ:

δτ,κ : Cb × Cb −→ N (3.2)

Two expressions e and e′ belonging to the same template τ such that δτ (e, e′) = 0
are called similar. Formally speaking, given a basic block b that contains a set Cb of

3.1 Baseline formalisms 25

candidate BID expressions, we introduce the BID similarity relation ≈κ⊆ Cb × Cb
between any two BID expressions (e, e′) belonging to Cb as follows:

e ≈κ e′ ⇐⇒ (τe = τe′) ∧ δτe,κ(e, e′) = 0 (3.3)

Notice that the similarity relation expressed in Equation (3.3) is not transitive.
Given an expression e and two other similar expressions e′ and e′′, e can be similar
to both e′ and e′′, but the two expressions e′ and e′′ are only similar with κ′ = 2κ.
Because of this, the similarity relation is not an equivalence relation and we can’t
derive equivalence classes over Cb. Nevertheless, we can still exploit the notion of
similarity to provide a selection algorithm that takes into account the granularity κ.
Most notably, the concept of expression distance is useful to select expressions in
such a way to “sample” the highest number of accesses to distinct κ-byte memory
regions in the address space. For example, it may allow to estimate the paged
working set of a scientific application so as to optimally place threads and data
on the different processor sockets, or to estimate the cache-resident set of a thread
which feeds a software prefetching module.

As a hint of how a distance function should be implemented, consider two
expressions e and e′ belonging to Cb which have the same template. We can
measure their distance by comparing their characterizing quantities {be, ie, de} and
{be′ , ie′ , de′} on a parameter-by-parameter basis. To this extent, we can define a
score triplet as a tuple of the form 〈sb, si, sd〉, where each value is a score associated
to the respective parameter p ∈ {b, i, d}. We define with aliases s3, s2 and s1 the
scores assigned to each parameter in decreasing order. Then, for each parameter
p characterizing e and e′, the idea is that of incrementing the computed distance
between the two expressions by a value sp whenever pe 6= pe′ (for register parameters)
or |pe − pe′ | ≥ κ (for immediate parameters). To obtain a valid scoring system, a
triplet must satisfy the constraints:

s1 < s2 < s3

s1 + s2 < s3

Additionally, a valid distance function should always make sure that two expres-
sions e and e′ in Cb, for which (i) the immediate parameters differs by a value less
than κ and (ii) all the register parameters are equal, should be similar.

3.1.5 BID and x86-64

For the x86-64 instruction set, we decided to model address expression by resorting
only to two BID templates:

1. the RRI template, which is suitable for address expressions used to access
dynamic objects or objects relative to the current instruction pointer;

2. the IRR template, which better matches address expressions associated with
accesses to static objects, and which gracefully reduces to absolute addressing
when both the index and the displacement are nil.

26 3. Tracing generic applications

Observe that x86 and other ISAs don’t allow to specify more than one immediate
parameter in an expression. It wouldn’t make sense for at least one reason: if all
values are immediate and known, they can be computed as a single immediate value
before evaluating the address expression (by a compiler or by Assembly programmers);
if they are unknown or don’t fit in the value range of the immediate parameter,
they can be placed inside a register. As for having two register values in each
template, it comes directly from the presence of a base register and an index register
in SIB addressing. Mapping the RRI template to SIB addressing is easy, as the base
parameter corresponds to the base register and the index parameter corresponds
to the result of multiplying the index register with the scale. The displacement
parameter is the same as the displacement value of x86. As for the IRR template,
the only difference is that the base parameter corresponds to the x86 displacement,
while the displacement parameter corresponds to the x86 base register.

Generally speaking, assigning the correct BID template to each SIB expression
is undecidable, as it pertains to the semantics of the application. Stated differently,
it is impossible to know where are the most significant bits of an address by simply
looking at its expression in code. However, in practice, it is sufficient to look at the
displacement in SIB expressions to get an idea of what is the correct template for
them. For example, we can try to match the displacement to the offset of static data
regions in the executable. If there is a match, then it will be likely that the expression
is accessing a static object; otherwise, if the displacement value is significantly lower
and doesn’t look like an address, we assume it will access an object at a location
which depends on the base register. This problem is easier to solve when we are
working with relocatable-object files (see Section 3.3).

3.2 Selection algorithm

We have defined the notions of equivalence and distance between BID expressions,
and proposed an aggregation technique which allows to maintain an access count
for each distinct access in a basic block. This allows us to establish an important
trade-off between tracing exactness and tracing overhead. However, we still don’t
have a way to establish a trade-off between overhead and accuracy. Ideally, this
trade-off should be passed by the user, to make it possible to trace applications
according to different requirements and have expectations in terms of the overhead
and the accuracy of the tracing process.

To meet this requirements, we first call instrumentation coin our currency to
buy tracing of a single access. Its cost is constant and is determined by a finite-
time contribution to the tracing overhead. Specifically, it is determined by the
overhead of inserting additional instructions in the basic block to instrument the
representative access. For this reason, it doesn’t change with respect to the access to
be instrumented. Then, our selection algorithm consists of spending a user-tunable
number of instrumentation coins on those accesses that give the highest payoff in
terms of value. Conceptually, our problem can be modelled as a simple (0,1)-knapsack
constructed as follows. Let Cb be the set of candidate BID expressions for a basic
block b over the set of all expressions Eb. Let mb be |Cb|, which the total number of
equivalence classes. Let ve be the value of instrumenting an expression e from Cb.

3.2 Selection algorithm 27

Let ω be a cost-controlling parameter in [0, 1]. To select the access to instrument
from the set Cb we conceptually solve the linear programming problem below, noting
that the total weight of our knapsack problem is defined as Wb = ζ(ω ·mb):

max
∑
e∈Eb

vexe such that
∑
e∈Cb

xe ≤Wb

xe ∈ {0, 1} ve ≥ 0 (3.4)

To choose which elements to select for tracing, we don’t actually solve the
knapsack problem in Equation (3.4), but an augmented iterative version which
takes into account the possibility to influence the choice on the next expression
e′ to put in the knaspack, after that e was chosen in the previous iteration. To
explain why, we first need to understand the meaning of the parameter ω. It is
user-defined and is called instrumentation factor. It allows to specify a fraction of
memory accesses that must be instrumented in each basic block. A value of 0 means
that no access will be instrumented, while a value of 1 means that all access will be
instrumented. However, while ω specifies how many accesses will be instrumented,
the choice of which accesses to instrumented depends on the value ve assigned to
each expression. To favour expressions which represent a higher portion of accesses,
we need to give a higher value to those expressions which are associated with bigger
equivalence classes. However, in order to also be able to pick expressions that are
less similar to one another, we need to take into account the reciprocal distance
between them. We chose to compute the value ve as a tuple of |[e]|, which is the size
of the respective equivalence class to which e belongs, and δ̄e, which is the average
distance of e towards all the other same-template candidates. To represent the fact
that, the access count being equal, expressions in Cb associated with greater average
distance from the others will exhibit a higher value of instrumentation (because of
the granularity κ), we define a total order on values ve for each template as follows:

ve = 〈|[e]|, δ̄e〉 ve < ve′ iff |[e]| < |[e′]| or |[e]| = |[e′]| ∧ δ̄e < δ̄e′

ve = ve′ iff |[e]| = |[e′]| ∧ δ̄e = δ̄e′ (3.5)

This definition of ve allows us to prioritize expressions that represent a higher
number of accesses or that have a higher probability of encoding an address which is
less similar to all the others in the same basic block. However, this definition alone
is not sufficient to prioritize distant expressions. In fact, whenever we select the
next expression to put in the knapsack according to this definition of ve, we might
inadvertently pick an expression that is similar to another already in the knapsack.
To favour expressions that, even if associated with a smaller value, represent accesses
that are considered more distant, we need to temporarily disable any expression
e′ which is deemed similar to the last chosen expression e. Overall, to select the
most valuable expressions in a basic block given an instrumentation factor ω and a
tracing granularity κ, we proceed as follows:

1. We gather all representatives into Cb and evaluate values ve for each expression
e in Cb.

28 3. Tracing generic applications

2. We solve a residual instance of the (0,1)-knapsack problem over the current Cb:

• Every time we select an expression e from Cb to be put in the knapsack,
we remove from Cb both e and any other expression e′ in Cb that is similar
to e. All the expressions e′ become part of another set Ĉb.

• If there is still space in the knapsack, we set Cb = Ĉb and Ĉb = ∅. Then,
we solve the next residual instance of the (0,1)-knapsack problem.

We can therefore define an access to be the “most representative” at any point
during the current (0,1)-knapsack problem instance if (i) it has the highest value ve
amongst all expressions in Cb and (ii) it doesn’t belong to the set Ĉb.

Despite being solved iteratively, the tractability of this linear programming
problem is guaranteed by the fact that all items are equally-weighted, meaning
that they occupy the same space in the knapsack. This is because, regardless of
which access is instrumented, the extraction phase of the tracing process will
produce the same amount of information. Furthermore, the next instance to be
solved operates on a residual number of expressions, meaning that its computational
cost cannot be greater than that of solving a single instance where all expressions
are always considered for selection, as in Equation (3.4). Concretely, our selection
algorithm instruments a single basic block in Θ(n2

b) time in the worst case, with nb
being the total number of accesses in b (including those which are equivalent), and
assuming that the cost of applying δτ to each pair of expressions is constant. It takes
at most n2

b steps to produce the set Cb, since equivalence classes can be computed
in no more than a single quadratic pass over instructions in the basic block. To
compute distances between representatives of each class we need m2

τ applications of
the function δτ for each template, where mτ is the number of candidates belonging to
the same template. In the worst case, we only have one template and all expressions
are different. A linear scan of mb steps is needed to compute the average distances
for all elements in Cb. The selection algorithm can be implemented by sorting all
candidates in Cb according to their values in decreasing order. Candidates are then
read from the priority queue one at a time. If the next available candidate must
be discarded given the current granularity κ, we keep it in the queue and move to
the next element. Otherwise, we detach it from the queue in constant time and flag
as ‘discarded’ all others similar elements in the queue. Overall, scanning the queue
takes between Wb and mb steps. The cost of discarding similar elements is linear
in their number, provided that they are all logically connected. If this connection
can be established while computing distances, overall discarding elements will take
between 0 and mb − 1 steps. Finally, the queue will be scanned at most Wb times,
when each visit detaches just a single element.

3.2.1 Computing the size of the knapsack

Observe that ideally our selection algorithm would select a number of elements
Wb to be included in the knapsack equal to ω ·mb. However, in many cases Wb

can’t be computed this way, as there isn’t sufficient precision in a basic block to
select exactly that number of elements. For example, if ω is 0.1 and mb is less than
10, then rounding must be employed because we can’t select exactly 10% of the

3.2 Selection algorithm 29

accesses in the current basic block. The purpose of the function ζ(·) employed in
Equation (3.4) is to adjust the value of Wb as a function of the desired ω and the
number of equivalence classes mb in b.

It must be noted that, conceptually, the application of the function ζ(·) to the
product ω ·mb can be seen as equivalent to applying an adjusted instrumentation
factor ωζb to the current basic block. This can have a detrimental effect on both the
overhead and the accuracy. Since this problem is relevant for any implementation of
the described tracing algorithm, it will be further discussed in Section 3.3.

3.2.2 Overhead implications

In Equation (3.4), the instrumentation factor is directly related to the fraction of
accesses that the user wants to be instrumented for each basic block, and has a
direct consequence on the overhead of tracing. Assume that ib is the number of
times that a basic block b is executed at run-time, and that B is the set of distinct
basic blocks that are executed. If we assume that the cost cb of executing a basic
block b is constant, the execution time of a program can be expressed as:

Corig =
∑
b∈B

ib · cb (3.6)

If the user is interested in tracing only a fraction ω of the accesses in each basic
block, with c being the cost of a single instrumentation coin, then the execution
time of the program with tracing is:

Ctraced =
∑
b∈B

ib · (cb + c · ω ·mb) = Corig + c · ω ·
∑
b∈B

ib ·mb (3.7)

We can get an upper bound for Equation (3.7) as follows. The cost cb of a basic
block can be expressed as its length |b| in terms of instructions, times the average
cost per instruction kb (e.g., in terms of clock cycles). We can decouple the cost c
as c′b · kb, where c′b is the cost of a single instrumentation coin in terms of this new
currency. If we take c′ = maxb∈B c′b, we get a first bound for Ctraced:

Ctraced ≤ Corig + c′ · ω ·
∑
b∈B

ib ·mb · kb

Then, we can assume that the number of candidate accesses mb can’t be greater
than the total number of instruction in b. This is a reasonable assumption, as
literally all ISAs only allow to perform at most one access to memory per each
instruction. This last observation leads to the following upper bound for Ctraced:

Ctraced ≤ Corig (c′ · ω + 1) (3.8)

As a result, the overhead of instrumentation never exceeds c′ ω + 1, with the
cost of an instrumentation coin c′ being the only parameter which depends on the
particular implementation. If we assume that the cost of executing an instruction
is independent of the particular basic block and instruction executed, then c′ is
directly proportional to the number of instruction which are inserted in code for

30 3. Tracing generic applications

each instrumented access. By varying ω while keeping c′ fixed, we can expect the
overhead to vary at most proportionally with it. Lastly, when c′ or ω are zero,
Ctraced degenerates to Corig as expected.

Observe that the tracing granularity parameter doesn’t have any direct impact
on the overhead of the tracing process. Indeed, the number of expressions that are
selected for tracing doesn’t vary with κ. The only thing which varies is the set of
selected expressions, and the order in which they are selected. This can in principle
have some micro-architectural effects that can alter the overhead of the tracing
process, for example in term of code layout and exploitation of the in-processor
instruction cache. However, these effects should be minimal and are not expected
to dominate in any way the effects which are instead produced by varying the
instrumentation factor ω.

3.2.3 Accuracy implications

The relation between accuracy and the instrumentation factor is less prominent,
as it depends on the particular accuracy definition that we wish to define. Let
A(ω) ∈ [0, 1] be an accuracy measure depending on the instrumentation factor ω.
The following must hold for A(ω):

ω1 ≤ ω2 =⇒ A(ω1) ≤ A(ω2) (3.9)

Equation (3.9) tells us that a necessary condition for each accuracy measure is
that its value increases by increasing the instrumentation factor. This means that if
the user is willing to spend more instrumentation coins, she will eventually observe
a higher accuracy. It is impossible to decrease the accuracy by increasing ω. Ideally,
we would also like to pose another constrain on the accuracy:

∀ω A(ω) ≥ ω (3.10)

By virtue of Equation (3.10), the rate at which accuracy increases is at least the
increase rate of the instrumentation factor. Therefore, the user can immediately
relate the instrumentation factor to the overall accuracy achieved at the end of the
tracing process for the whole program. Achieving this bound is difficult in general,
as it depends on specific accuracy measure and other factors, such as the selection
algorithm being employed and the value ve assigned to each expression. However, it
can still be observed empirically, as shown in Section 3.3.

Overall, our selection algorithm is designed to target two different accuracy
measures. The first accuracy metric is the count accuracy Acount(ω), defined as the
number of accesses which are detected by our algorithm, over all possible accesses.
Let b ∈ B be a basic block in the program and ib be its access count at run-time.
Let sκb (ω) be the number of selected accesses and nκb be the total number of accesses
in b when considering accesses to regions of granularity κ. Then, the count accuracy
can be evaluated as follows:

Acount =
∑
b∈B ib · sκb (ω)∑
b∈B ib · nκb

(3.11)

3.2 Selection algorithm 31

This accuracy measures is designed to be maximized when we are only interested
the most representative accesses in terms of access count. Indeed, when κ is equal
to 1B (the finest granularity), the algorithm never disables any expression and
degenerates to a single (0,1)-knapsack problem instance that is solved at once. When
this is the case, sκb (ω) is the sum of the top Wb expressions with the highest access
count. However, changing the value of κ can affect the count accuracy negatively.
Given some expressions which are similar, the algorithm instruments a single of
them and moves to other expressions, only returning to the one left apart if there
is still space in the knapsack. By varying the value κ, we can affect the number of
similar pairs seen by the selection algorithm, which in turn can alter the selection
of candidates in Cb. As a result, it is possible for a discarded similar expression
e′ to have a value ve which is greater than the one of another expression which is
included in the knapsack. This scenario becomes more likely when increasing κ, as
more expressions are considered similar.

To take into account the need for covering the widest range of different accesses
to the address space, we can define another accuracy measure, called single accuracy
Asingle, defined as the number of accesses to distinct regions of granularity κ over the
total number of distinct accesses. It measure the coverage of our selection algorithm,
intended as the capability to catch accesses to distinct κ-size and κ-aligned memory
regions in the address space. Let ŝκb be the number of distinct selected accesses to
regions of granularity κ and n̂κb be the total number of distinct accesses in b. Then,
we compute the single accuracy as follows:

Asingle =
∑
b∈B ib · ŝκb∑
b∈B ib · n̂κb

(3.12)

Notice that if we only consider the average distance between expressions and
their similarities, then we favor the single accuracy over the count accuracy. This is
equivalent to solving the iterative (0,1)-knapsack by ignoring the size of equivalence
classes in the value ve of an expression. In general, we cannot say whether this
approach actually maximizes this definition of accuracy, as we don’t know what
is the actual distance between expressions in the final address space. However,
by discarding similar expressions, we are minimizing the probability of picking
two expressions which access the same memory region of granularity κ. Therefore,
favouring distant expressions over similar ones is a way to increase the single accuracy
at every step of the selection algorithm.

As already suggested in Section 3.2, our selection algorithm is designed to consider
both accuracy metrics at the same time. Indeed, even if ω affects the number of items
Wb in the knapsack, our algorithm can choose which Wb instructions to instrument
at freedom. To maximize the number of instrumented accesses, it would be sufficient
to simply instrument the top Wb elements of Cb with the highest access count. By
doing this, we would however loose the opportunity to exploit the parameter κ to try
to observe a wider fraction of the address space of the program. For this reason, the
algorithm still takes the top Wb candidates, but discards those which are believed to
fall within a memory region of granularity κ which was already intercepted.

32 3. Tracing generic applications

3.3 Experimental assessment

In the following section we evaluate our selection algorithm in the context of
ELF object files, the x86-64 ISA, and the Hijacker open source instrumentation
framework [66], augmenting its capabilities in order to fully support the proposed
algorithms2. We also report a set of representative data collected with benchmark
HPC applications taken from the PARSEC suite [12].

3.3.1 Implementation details

In this section we proceed to illustrate the tools that have been employed to implement
the selection algorithm of Section 3.2 and perform the experimental evaluation on
the PARSEC benchmark suite.

Hijacker instrumentation framework

Hijacker is a static instrumentation tool aimed at providing the necessary support for
generic binary code modifications. It addresses this issue by operating at the binary
level and modifying the binary image of programs according to some external user
directives. Hijacker lays between the compiling stage and the linking one of a typical
software compilation tool-chain. Its high-level functioning can be summarized
as follows. Hijacker takes as input a relocatable object file and a user-defined
configuration file containing rules that drive the instrumentation process. As a result
of such process, a new relocatable file is produced as output, carrying the intended
alterations to the original program’s code and data.

Internally, Hijacker translates the input relocatable object file into a convenient
internal representation, with little to none dependence on the original object file
format. This internal representation is then altered by the instrumentation engine
according to a set of rules, provided by the user via the configuration file, which
instruct the instrumentation engine on the specific tasks to be performed. After the
whole process is accomplished, the patched internal representation of the program is
translated back into the original object-file format and a new object file is produced.
Such a file is again a relocatable object, entirely compliant with any compiling
framework. This allows the user (or an automated tool-chain) to easily link it against
the remainder of the software, including external modules (e.g., static libraries). The
whole process of compiling, instrumenting, and linking different object files is shown
in Figure 3.1.

Preprocessing

Included files,

replaced symbols,

macro expansion

Compiling

Procduces object

codes files

.c

.c

.h

...

.o .o

.o

...
Instrumentation

Apply rules, inject

code, etc.

Linking

Resolve relocations

and addresses.o' <exe>

Figure 3.1. The process of instrumenting relocatable-object files with Hijacker

2Source code available at https://github.com/HPDCS/hijacker/tree/mascots-16

3.3 Experimental assessment 33

A typical invocation of Hijacker would be:
1 $ hijacker -i inputfile .o -c rules .xml -o outputfile .o

where -i specifies the input file, -o the output file and -c the supplied configuration
file. The main difference between relocatable files and executable ones is that
executable files can be directly loaded into a process’ address space, while relocatable
files contain unresolved memory references among instructions and data which must
be finalized by the linker. The choice to work on relocatable objects is driven by three
main considerations: (a) the possibility to have at our disposal important meta-data
about instructions, data and cross-references between them; (b) the opportunity
to separate the instrumentation logic from the linking logic; (c) the potential for
flexibility, since in this way modules can be separately instrumented and linked
according to a developer’s needs. Another way to operate would be to directly
instrument executable object files, ready to be launched on the target machine.
Although this solution would be more portable—not all tool-chains keep relocatable
object files on the file-system, since they are the result of intermediate compilation
steps—we would loose all benefits mentioned above.

Hijacker is composed of two main modules, as shown by Figure 3.2a: a front-end
which directly interacts with the user, interprets and emits objects files; a back-end
that is basically constituted by a rule manager and the instrumentation engine.
The front-end is logically split into a file loader module which parses the input
relocatable file and a file writer module which emits the instrumented file. These
modules internally trigger two engines, the executable interpreter and the assembly
interpreter, whenever a format-dependent or machine-dependent stage has to be
undertaken (e.g., disassembly). This allows Hijacker to handle different combinations
of object formats and instruction-sets—despite currently supporting only ELF and
x86. The back-end comprises the rule manager and the instrumentation engine. The
rule-driven engine is responsible for parsing the directives contained within the .xml
file specified by the user. The instrumentation engine is invoked by the rule manager
synchronously with the detection of a new rule (that is, as soon as a rule is met in
the configuration file.)

The logical bridge between Hijacker’s front-end and back-end modules is rep-
resented by the Intermediate Binary Representation (IBR), an abstract high-level
structure maintained for the sake of convenience. Hijacker’s IBR is built out of the
input relocatable file to operate on a logical view of the program, independent of
either the original object-file format or the original instruction set. Stated differently,
it abstracts away many format-specific details of the input object file, and decouples
architectural details of the underlying instruction set architecture from semantic
code aspects. Compared to the offset-based byte-level representation typical of
binary program images, our IBR refers to objects in the program (e.g., sections,
functions, variables, etc.) according to a pointer-based scheme. This means that,
whenever a rule is applied, references among instructions, functions and data are
preserved, since they are indeed realized as logical pointers in our IBR. For example,
instructions can be freely added to (or removed from) the existing chain, while
leaving unaltered all other unrelated links. This scheme is powerful and allows us to
implement even complex instrumentation tasks with relatively little effort 3.

3It also paves the way for an extensible support of other object-file formats and instruction set

34 3. Tracing generic applications

Back-end

Front-end

ELF

COFF

XML Parser File Loader File Writer

Executable

Interpreter

Assembly

Interpreter

x68

ARM

Rule Manager

Instrumentation

Engine

Internal Binary

Representation

rule

<xml>

input

asm

output

asm

(a) Hijacker’s architecture scheme

1 <?xml version ="1.0"?>
2 <hijacker:Rules
3 xmlns:hijacker =" http: // www.dis. uniroma1 .it /~ hpdcs /">
4
5 <hijacker:Executable suffix =" version1 ">
6
7 <hijacker:Instruction
8 type=" I_JUMP "
9 injectBefore =" inject .s" />

10
11 </ hijacker:Executable >
12
13 <hijacker:Executable suffix =" version2 "
14 entryPoint ="foo"
15 initFunc =" myinitfunc " finiFunc =" myfinifunc ">
16
17 <hijacker:Inject file=" inject1 .s" />
18 <hijacker:Instruction type=" I_MEMWR "
19 injectBefore =" inject2 .s" />
20 <hijacker:Instruction type=" I_MEMWR ">
21 <hijacker:AddCall function ="bar"
22 arguments =" target " convention =" stdcall " />
23 </ hijacker:Instruction >
24
25 </ hijacker:Executable >
26
27 </ hijacker:Rules >
28

(b) Example of a .xml configuration file

Figure 3.2b shows an example of a simple configuration file. The Rules tag is
the root tag which logically includes all possible directives. It can contain a variable
number of Executable tags, each of which defines a different instrumentation version
of the same original executable. Each instrumentation version can have its own
rules and is independent of other versions. We can define several attributes for each
executable version:

• The suffix attribute is used to specify the name for this executable version.
It also works as a suffix to be appended to the name of all functions in this
version.

• The entryPoint attribute instructs Hijacker to directly invoke the instru-
mented version of the program, when it is launched, by calling the function
whose name is passed as argument. This attribute is only needed if the input
relocatable file comes with an actual main function that will be automatically
invoked at launch time.

• The initFunc attribute is optional and allows to install a custom initialization
function right before the actual entry point function is about to start. The
function accepts no parameters and returns no value. It must be provided (as
a function internal to the module or, more commonly, as an external function)
prior to the final linking step.

• The finiFunc attribute is optional and allows to install a custom finalization
function right before the actual entry point function is about to end. The
function accepts no parameters and returns no value. It must be provided (as
a function internal to the module or, more commonly, as an external function)
prior to the final linking step.

families, without the need to modify the internal IBR-based instrumentation engine.

3.3 Experimental assessment 35

Within an executable version, an Instruction tag selects instructions according
to their type and allows the user to inject before or after them a desired instrumen-
tation stub. It comes with the following attributes:

• The type attribute select the class of instructions to be instrumented. A
comprehensive list of the available classes is provided in [66].

• The injectBefore and injectAfter respectively instructs Hijacker to insert
additional code before of after the targeted instruction. Code is passed via an
Assembly file whose path is passed as argument to the attribute.

In more complex scenarios, the instrumentation stub can call an external function.
This is specified through an additional, nested AddCall tag which requires a few
extra attributes:

• The name attribute specifies the name of the function to be invoked.

• The arguments attribute specifies the kind of attributes to the passed to the
function. Currently, it only accepts the target value, which tells Hijacker to
provide the function with disassembled information about the instrumented
instruction.

• The convention attribute specifies which calling convention must be honored
to actually invoke the function.

With Hijacker we also left open the opportunity to manually inject custom
Assembly/C code through the <Inject> tag. It only accepts a file attribute, which
represents the path to the file containing the code to be injected. Lastly, Hijacker
also admits the possibility to develop custom plug-ins or skins, called presets. They
can be invoked within each executable version via the Preset tag and typically
solves specialized instrumentation tasks. The next section describes the preset we
developed to implement the tracing technique discussed in this chapter.

Selective Memory Tracer

Selective Memory Tracer (SMT), or simply smtracer is an implementation of the
techniques described in this chapter for the Hijacker instrumentation framework, the
x64 instruction set, and Linux ELF objects. It allows to instrument relocatable object
files by allowing the user to pass the desired instrumentation factor ω and the tracing
granularity κ. To distinguish between the two x86-64 BID templates described in
Section 3.1.5, SMT exploits the meta-data present inside relocatable-object files.
Specifically, whenever it encounters relocation information for the displacement value
of an x86 SIB memory access expression, it applies the IRR template to the expression;
otherwise, it switches to the RRI template. The presence of relocation information
means that the displacement value will be overwritten with a value upon linking. If
this is something for the linker, it must be an address to an object whose location is
known prior to execution. Therefore, the displacement must contribute to the most
significant bits of the effective address at runtime. To derive distance functions for
the two x86-64 BID templates, SMT uses the functions shown in Figure 3.3. They

36 3. Tracing generic applications

procedure δRRI(e, e′)
δ ← 0
if be = be′ then

if ie = ie′ then
if |de − de′ | ≥ C then

δ ← δ + sd

else
δ ← δ + si

else
if ie = ie′ then

δ ← δ + sb

else
δ ← δ + si + sb

return δ

procedure δIRR(e, e′)
δ ← 0
if |be − be′ | ≥ C then

δ ← δ + sb

else
if ie = ie′ then

if de 6= de′ then
δ ← δ + sd

else
if de = de′ then

δ ← δ + si

else
δ ← δ + sd + si

return δ

Figure 3.3. Algorithms implementing the distance functions for the two x86-64 BID
templates RRI and IRR.

directly build on the scoring system hinted at in Section 3.1.4, using a scoring triplet
〈sb, si, sd〉 equal to 〈s2, s3, s1〉 for the RRI template, and 〈s3, s1, s1〉 for the IRR one,
where 〈s1, s2, s3〉 are 〈1, 3, 5〉. These functions also comply with the the requirement
that when two BID expressions only differ in their immediate values with a relative
difference less than κ, they are similar.

The extraction part of STM is based on logging the instrumented accesses
to a per-thread buffer, to avoid synchronization costs by the instrumenting code
when dealing with multi-threading. To transparently assign each thread with its own
private buffer, we exploit a low-level thread-private memory allocation mechanism
called thread-local storage (TLS) [34]. This model, supported by the majority of
architectures and operating systems, allows to define particular data sections in
binary object files that are transparently handled by the operating system and the
standard library to provide each thread in the application with a private memory
area. Memory objects that fall in this area are defined similarly to symbols in other
data sections. The only difference with respect to shared memory objects is that
an access to a TLS object is thread-private, meaning that there are as many object
instances as the number of currently running threads. The implementation also
offers the possibility to transparently inject a call to a stub-function that can be used
to process each TLS buffer in a custom manner, depending on the final objective of
memory tracing—for example, the function could simply flush the logged accesses
onto files for post-analysis. This function is invoked prior to leaving a basic block.
Currently, the size of this buffer is computed and tuned by SMT depending on the
given object file.

To enable SMT in Hijacker, the rules file must be written as suggested in
Figure 3.4. First of all, we must create a new version of the executable to which SMT
will apply its instrumentation. Recall that each new version must be associated with
an entry point and that there must be a way to switch to that version at run-time.
Within this version, we must call the smtracer preset, specifying a flush function to
process TLS buffers via the function attribute. The signature for the flush function
which will be invoked is:

1 void f(unsigned long start , unsigned long size);

3.3 Experimental assessment 37

1 <hijacker:Executable entryPoint =" main_instr " suffix ="instr">
2

3 <hijacker:Preset name=" smtracer " function =" myflushfunc " convention =" stdcall ">
4 <hijacker:Param name=" instrfact " value="1.00" />
5 <hijacker:Param name=" chunksize " value="0" />
6 <hijacker:Param name=" tracestack " value="true" />
7 </ hijacker:Preset >
8

9 </ hijacker:Executable >
10

Figure 3.4. Example of a .xml configuration file to enable smtracer in Hijacker

where start is the address of the TLS buffer and size is the total number of entries
in the buffer. Each entry in the buffer can be described by the following structure:

1 struct entry {
2 unsigned long address ; // Computed address of this memory access
3 unsigned long count; // Number of times that address has been
4 // found (cluster cardinality)
5 unsigned long bbid; // Basic block ID
6 }

A typical flush function will store the contents of the base TLS buffer into a
larger buffer that will be eventually dumped to a file, or consumed at runtime by a
dedicated thread or process daemon. To support the task of dumping the contents to
a file, a finalization function for the current instrumentation version can be provided.
SMT provides an experimental implementation for a flush function that maintains a
larger buffer via a lock-free algorithm. The implementation must be linked to the
instrumented relocatable-object file prior to producing the final executable. Failing
to do so would make the linker complain about missing symbols.

The relevant attributes and values for the smtracer preset are described below:

• The instrfact param is the instrumentation factor provided to SMT. It
has a range between 0 and 1, where 0 means that no memory access is ever
instrumented, while 1 means all memory accesses are intercepted.

• The chunksize param is the tracing granularity provided to SMT. A value
0 means that accesses are treated at the granularity of a single byte, while a
higher value determines a granularity computed as a power of 2 (e.g., 4KB
chunks are obtained by passing 12 as granularity).

• The tracestack parameter determines whether Hijacker will instrument stack
accesses. This is useful when only accesses to the heap or static data sections
are of interest.

To deal with the approximation problem described in Section 3.2.1 for the
knapsack size Wb, SMT implements a simple error propagation algorithm that scans
basic blocks in a linear fashion, in the same order as they appear in code. For
each basic block, it computes the number of instructions to instrument with both
ζ1(·) = b·c and ζ2(·) = d·e and computes the absolute error for both functions,
expressed as follows:

38 3. Tracing generic applications

Eb = Wb

mb
− ω = ωζb − ω (3.13)

To decide which function to use, SMT computes the new absolute error for both
ζ1(·) and ζ2(·), then sums it to a global error accumulator. Since Eb can be positive
or negative, SMT choose the function ζ(·) which produces the least global error.
This global error is then propagated to the next basic block in the linear visit of the
CFG.

3.3.2 Results

In this section we provide an experimental evaluation of the SMT tool against the
PARSEC benchmark suite. We provide accuracy and overhead results obtained after
running each benchmark with the instrumented code. All the experiments have
been executed by running the applications on top of a 32-core HP ProLiant server
equipped with 64 GB of RAM, running Linux (kernel 2.6).

Overhead and accuracy results

The achieved results are shown in Figure 3.5, where we report both memory access
tracing accuracy results and results on the slowdown caused by instrumentation, while
varying the instrumentation factor ω between 0.1 and 1. In this set of experiments
we also varied the tracing granularity κ determining the granularity of memory
access tracing between 16B and 4KB. All the runs have been carried out by relying
on 32 threads, and each reported sample (either for accuracy or slowdown) represents
the average over three executions.

In these experiments, slowdown is computed by including on the critical path of
the application execution only the latency for logging the memory access trace into
the TLS buffer. The cost of the processing function at the end of each basic block is
not considered as it depends on the final objective of memory tracing. The slowdown
value reported in the plots represents the percentage increase in the CPU time used by
the benchmark applications with respect to the one observed with no instrumentation
at all. We also report results for the case of non-selective instrumentation, where
any memory-referencing instruction is instrumented regardless of any notion of
equivalence class and granularity. This scenario, marked as ‘NS’ in the plots, is
used as a baseline to assess the slowdown of our selection algorithm. To provide
indications of how our algorithm behaves with different user requirements in terms
of accuracy, we report for each instrumentation factor and trace granularity two
measures for the count accuracy: one is the one described in Section 3.2.3, called
MA in the experiments; the other, called AIA is the count accuracy that we would
get if we were able to correctly aggregate all accesses to regions at granularity κ,
without making mistakes due to the absence of alignment information in memory
address expressions.

As expected, the reduction of the slowdown achieved by our selection algorithm
scales (almost) linearly when reducing the value of ω. It must be noted that when
there isn’t a sufficient number of accesses to honour the instrumentation factor set by
the user, the tool can choose to perform a rounding ofWb. When the instrumentation

3.3 Experimental assessment 39

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
c
c
u
ra

c
y

Omega (%)

canneal

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
c
c
u
ra

c
y

Omega (%)

blackscholes

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
c
c
u
ra

c
y

Omega (%)

freqmine

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
c
c
u
ra

c
y

Omega (%)

swaptions

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

AIA MA

0.00

0.25

0.50

0.75

1.00

10 25 50 75

A
c
c
u
ra

c
y

Omega (%)

fluidanimate

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

AIA MA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 25 50 75 100 NS

S
lo

w
d
o
w

n

Omega (%)

canneal

1
6
B

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

4
K

B

CPU Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

10 25 50 75 100 NS

S
lo

w
d
o
w

n

Omega (%)

blackscholes

1
6
B

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

4
K

B

CPU Time

0
1
2
3
4
5
6
7
8
9

10 25 50 75 100 NS

S
lo

w
d
o
w

n

Omega (%)

freqmine

1
6
B

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

4
K

B

CPU Time

0

1

2

3

4

5

6

10 25 50 75 100 NS

S
lo

w
d
o
w

n

Omega (%)

swaptions

1
6
B

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

4
K

B

CPU Time

0

1

2

3

4

5

6

7

10 25 50 75 100 NS

S
lo

w
d
o
w

n

Omega (%)

fluidanimate

1
6
B

1
6
B

1
6
B

1
6
B

1
6
B

6
4
B

6
4
B

6
4
B

6
4
B

6
4
B

4
K

B

4
K

B

4
K

B

4
K

B

4
K

B

CPU Time

Figure 3.5. Results with five representative benchmark applications from PARSEC.

factor is equal to 1, we always beat the NS scheme by a factor that can be as great as
an entire baseline (i.e., non-instrumented) run. We generally note a slight reduction
of the slowdown with greater values of κ. This is probably due to the fact that when
increasing the tracing granularity, the selecting algorithm performs different choices
in terms of accesses to be instrumented, which in turn can alter the code layout of
the program and have unexpected micro-architectural effects.

Our selective approach produces accuracy values for MA that scale quite linearly
with respect to the instrumentation factor and is always higher than it in literally all
cases. As for the case of AIA, it is is 15% to 25% higher than MA (as expected) and
in many cases it reaches values that are 0.25 higher than ω in absolute value. For
example, it is close (or slightly above) 0.5 and 0.75 when configuring ω in such a way
to only instrument 25% and 50% of the memory-referencing instructions. Except for
canneal, we achieve values of AIA of the order of 0.25 when instrumenting only
10% of the memory-referencing instructions. Apart from settings where ω is 10%,
MA appears to be (at least) the 60%/70% of AIA. The instrumentation factor
being equal, this indicates how a conservative selection algorithm does not lead to
excessive degradation of the accuracy when memory alignment is important.

We also observe an impact (although limited) by the granularity κ on the
accuracy. This is likely to be motivated by the fact that PARSEC applications

40 3. Tracing generic applications

are generally characterized by basic blocks that are made up by a reduced amount
of memory-referencing instructions (on average no more than 7). Therefore, the
likelihood of finding similar expressions given any value of κ is low. When increasing
κ the value of MA slightly decreases. This is expected, as the tracing granularity
affects the selection algorithm and can potentially lead to select expression with
a lower access count. On the other hand, except for canneal, we always observe
an increase of AIA, meaning that when alignment is not important increasing the
granularity of tracing is beneficial to the accuracy as it allows to aggregate more
access counts.

Overall, our implementation appears to scale quite well with respect to the
instrumentation factor in terms of both different accuracy measures and the slowdown
of tracing.

3.4 Related work

To the best of our knowledge, our selective tracing algorithm has no direct precedent
in past literature works. The work in [68] uses static source-code instrumentation to
dynamically (at runtime) optimize thread/data placement on heterogeneous NUMA
machines. This work is only targeted at tracing the accesses to (large-size) arrays,
in order to locate the associated virtual-pages on the same NUMA nodes where the
threads mostly using them are hosted. Skeletonization [51] has been presented as a
means for emulating the effects of specific inputs on the memory accesses performed
by the application. Compared to these approaches we have a different target, i.e.,
the one of providing a method to statically exchange tracing exactness for tracing
efficiency on the one hand, and to dynamically move along the memory tracing
accuracy-overhead trade-off curve. Also, our technique copes with accesses to both
static and dynamic data structures, thus being of general usage.

A few solutions rely on application-external libraries, like MPI/OpenMP libraries
(see, e.g., [19, 50, 88]), and are aimed at determining the level of sharing in the
access to library-managed data across concurrent threads/processes. The final
target is to optimize the memory layout of the accessed data structures, such as the
memory buffers used for data exchange. Variants of these proposals are based on
either a-priori knowledge of the source/destination threads for specific data-exchange
operations [43] or a knowledge base of the communication pattern built by tracing
previous application executions [31, 10]. Our solution does not exploit any specific
library (since we rely on x86 binary rewriting), thus being potentially usable in
wider application contexts. Also, it does not require any a-priori knowledge base on
memory accesses by applications.

Alternative methods to perform memory access tracing build on hardware fa-
cilities. In this category we find solutions exploiting the output from memory
controllers [7, 17], software-managed TLBs [56, 86] or instruction-based sampling
relying on PMUs [22]. Compared to these solutions, we do not require specialized
hardware, hence our approach looks highly general. On the other hand, we share
with them the idea to provide a customizable memory access tracing support. While
PMU-based approaches allow to tune the trade-off between accuracy and overhead
simply by means of a customizable sampling period, our instrumentation factor tries

3.5 Conclusions and future work 41

to spend instrumentation coins on the accesses that provide the highest revenue.
Additionally, we provide support for the tracing granularity.

As for operating system-based memory access tracing, most of the literature
proposals work at the granularity of virtual-pages [30, 44], while in our approach
we can select the level of granularity for tracing. Also, these literature approaches
are not able to count the number of accesses to individual pages. Rather, they are
mostly tailored to the determination of whether a given virtual-page is currently
within the locality of the accesses by some thread, which may help to dynamically
place it on specific NUMA nodes in parallel machines. Our approach is able to
identify the count of accesses that are materialized by the application run. Hence,
we can determine both the locality of the accesses and the hotness of the different
accessed locations.

3.5 Conclusions and future work
We have presented a static instrumentation method to support a flexible memory
access tracing scheme. Our method is based on a policy that selects what memory-
referencing instructions to instrument depending on the expressions within each
basic block of the program. Our method offers a user-configurable parameter that
enables the determination of suited trade-offs between the runtime costs caused by
the instrumentation of memory accesses and the accuracy of the memory access
tracing process. Another user-tunable parameter allows to specify the granularity
at which tracing will occur. Our implementation targets the x86 Instruction Set
Architecture (ISA) and ELF object files, although the methodology is suited for
other architectures and object formats. An experimental study is also provided with
benchmark applications taken from the PARSEC suite, where we show the overhead
and the accuracy that is possible to obtain in generic memory-intensive applications.

43

CHAPTER 4
Tracing transaction-based

parallel applications

The diffusion of multi-core machines has raised the need for paradigms to simplify
synchronization when accessing shared objects. In this context we find Transaction
Processing (TP), a programming paradigm for managing shared-data accesses in
concurrent scenarios. TP allows to declare some high-level operations as transactions
with atomicity and isolation guarantees. Shared-data accesses coming from within
such transactions are arbitrated by a dedicated hardware or software TP layer
which gives transactions the illusion of running alone and with an all-or-nothing
semantics, thus relieving programmers from the task of implementing such isolation
and atomicity guarantees by hand in application code. A TP runtime layer takes
care of running transactions, coordinating read and/or write accesses to shared
objects, committing completed transactions or rolling back those that can’t be kept
alive without violating isolation.

In the context of transaction-based applications, a major role is played by
concurrency control mechanisms. A concurrency control mechanism is the protocol in
charge of running transactions in the system to guarantee certain correctness criteria
(e.g., serializability), while also maximizing the performance of the transactional
processing system according to some desired metrics (e.g., throughput). Roughly
speaking, we can divide concurrency control mechanisms into two families: optimistic
and pessimistic ones. Optimistic concurrency control protocols decouple the execution
of transactional operations (such as read and write operations) from the validation
of such actions. Therefore, a conflict between two transactions can be detected in a
deferred fashion. When this happens, at least one transaction is typically aborted
and rolled back to execute, possibly from the beginning. These protocols employ
speculation to assume that transactional actions have a low probability of conflicts.
This scheme is well suited for transactional workloads that exhibit a few conflicts over
time, since speculation increases the degree of parallelism in the system by letting
more transactions performing active work. A drawback of optimistic protocols is that
they waste processing time on transactions that are doomed to abort due to a latent
conflict that is not timely detected. In contrast, pessimistic concurrency control

44 4. Tracing transaction-based parallel applications

protocols prevent the arousal of conflicts by stopping transactions from performing
operations which may conflict with those performed by concurrent transactions,
thus reducing the degree of transactional parallelism in the system. Conservative
protocols are best employed when concurrent transactions tend to clash quite often.
However, this scheme may be too strict and prevent fruitful concurrency from ever
happening.

It has been shown that speculative execution has interesting scalability properties
in many applications scenarios (such as Discrete Event Simulation, or DES, applica-
tions [9]), suggesting that it is a better approach for many workload scenarios than
pessimistic models. However, letting transactions execute optimistically poses several
challenges. A major research trend in the scientific literature is that of reducing as
much as possible the number of transaction aborts. Several approaches have been
based on transaction scheduling policies [25, 29, 94], which control whether some
standing transaction can be admitted to the processing stage or needs to be delayed
for a while because of a high likelihood of conflicts with already running transactions.
A few of these techniques [32] rely on migrating transactions to queues managed by
different threads, so as to increase the likelihood that transactions accessing overlap-
ping data sets are serialized, thus not interfering with each other. An alternative
approach to the reduction of the incidence of roll-backs has been the one of adopting
thread scheduling policies [78, 76, 33, 75, 27]. Unlike transaction scheduling, thread
scheduling policies do not delay the processing of standing transactions. Rather,
they aim at (dynamically) determining the well-suited level of parallelism to avoid
thrashing due to transaction aborts caused by excessive thread-level concurrency. A
recent survey of all these techniques can be found in [80].

An important family is that of hybrid concurrency control protocols, where some
transactional operations are performed according to pessimistic policies, while other
are allowed to proceed optimistically. In this context, concurrency control protocols
based on read-validation schemes are optimistic on read operations while being
typically more conservative on write operations. For example, a transaction may read
the value of a shared object without locking it, thus unleashing concurrency. Write
operations can be implemented by taking a lock on the written object, so as to prevent
any concurrent write or read operation from taking place. Depending on the specific
concurrency control protocol in use, locks can be taken upon performing the write
operation or at commit time. To reveal possible conflicts on the objects previously
read by a transaction, a deferred validation operation (or read-validation) can be
performed. This approach is actually exploited in several families of concurrency
control protocols, such as multi-version ones [38]. In the context of distributed
transactional systems, like in-memory data management platforms in the Cloud,
read-validation concurrency control allows for high scalability even under data
replication (see, e.g, [67]).

A major drawback of read-validation protocols is that they allow transactions
which are doomed to abort to run until a subsequent validation operation reveals
them as invalid. Typically, a transaction is validated at its commit attempt. However,
it is also possible to assess the validity of a transaction at earlier points along its
lifetime. This can be done either for the sole purpose of performance, or to support
correctness criteria stricter than serializability, such as opacity [46]. In any case,
a concurrency control protocol doesn’t necessarily require to reassess the validity

4.1 Baseline formalisms 45

of a transactional read operation immediately after a conflict has arisen due to
updates by a concurrent transaction. This prevents the possibility of early aborting
a transaction that is already doomed to abort. The transaction would run until a
commit is attempted, or until the concurrency control protocol decides to perform a
read-validation. These late aborts do not favor the reduction of wasted computation
and can penalize performance and lead to a waste of resources (e.g., CPU).

To counteract this problem, we present a tracing process which intercepts trans-
actional operations to build an analytical model that predicts the abort probability
of transactions handled via read-validation schemes. This model can be exploited to
determine what are the best moments—along a transaction lifetime—to carry out a
validation check which will lead to aborting a transaction with high probability. To
this extent, we provide a hint on how to exploit the abort probability predictions
returned by the model in combination with a threshold-based scheme to trigger
read-validations. We show that our model can precisely estimate the probability of
abort of transactions performing a varying fraction of read/write operations, with a
maximum absolute error that never exceeds 10% in our implementation. We also
show that our on-line treshold-based exploitation scheme can lead to up to 14%
better turnaround in experiments carried out with a port of the TPC-C benchmark
to Software Transactional Memory (STM).

Overall, the work presented in this chapter involves the Analysis and Exploita-
tion parts of the tracing process illustrated in Chapter 2. The original contributions
of this chapter can be summed up as follows:

• We propose a probabilistic model which predicts, at run-time, the probability
that a transactional read-set has become invalid.

• We present an off-line experimental assessment of the accuracy on the model,
showing that it can estimate the abort probability of transactions with different
mixtures of read and write operations with a very reduced maximal error.

• We present a simple on-line model exploitation scheme to validate a transaction
as soon as its abort probability hits a threshold value, showing that it can
reduce the turnaround of transactions emulating a real-world use case scenario.

4.1 Baseline formalisms

We frame our contribution within the scope of read-validation hybrid concurrency
protocols (or read-optimistic concurrency protocols). Transactions execute read
and write operations on shared objects. They are executed speculatively and can
be aborted if something has doomed their execution. The transactional read-set
is the set of all transactional object read since the beginning of the transaction.
Transactions also maintain a write-set for the transactionally written objects. Upon
an abort, the transaction is roll-backed: this means that the transaction will start
from the beginning with empty read and write sets. A running transaction can, at
any time, be invalidated by a conflicting transaction—i.e., a concurrent transaction
performing write operations on the same read and/or written shared objects. When
this happens, the concurrency control protocol doesn’t necessarily reassess the

46 4. Tracing transaction-based parallel applications

validity of the victim transaction in a timely manner. Because of that, it will miss
the opportunity to abort the transaction right after that conflict materializes.

Our focus is on those concurrent writes by another transaction which conflict
with prior reads in the read-set. We refer to these scenarios as write-after-read
conflicts. Other conflicting operations can result from the interaction between a
write and another write—a write-after-write conflict—or between a read and a write
operation—a read-after-write conflict. Write-after-write conflicts can be already
handled efficiently by many read-validation schemes, since typically a transactional
write operation takes a lock on the transaction object being written. The same holds
true for read-after-write ones, as reading an object which is subject to a write lock
is disabled when protocols need to enforce full isolation. Two read operations on
the same object from two different transaction don’t lead to a conflict. However,
depending on the protocol in use. a successful read operation in a transaction may
conflict with the previous read operations by the same transaction (e.g., in multi-
versioning schemes, see Section 4.4). Other conflicts can arise on internal metadata
handled by the transactional processing system, hence they depend on the specific
implementation. In the rest of this chapter, we ignore all these additional conflicts.
Write-after-read conflicts are the only conflicts accounted for when computing the
abort probability of a transaction.

A read-validation is a transactional operation that is implicitly performed by the
transaction to make sure that the objects in its read-set are still valid at that time,
i.e., there haven’t been any conflicting write to at least one of these objects. For
the sake of brevity, and in accordance with our focus on write-after-read conflicts,
in the rest of this chapter we will refer to read-validations as simply validations.
Additionally, we will call abort probability the probability of observing any write-
after-read conflict on the objects read by a running transaction. Therefore, the
abort probability of a transaction is the probability that a transaction has become
invalid due to conflicting writes to the objects in its read-set. A commit validation
is the validation operation which is performed at commit time to check that the
read-set of a transaction is still valid at that point. A validation is proactive (also
termed as early validation) if it is performed prior to commit time, in an attempt
to anticipate an abort that would only occur at commit time. When a proactive
validation produces an abort, we call it an early abort.

4.2 Analytical model

If we look at the abort probability for a generic transaction Tx, we can see that it
increases over time due to the conflicting actions performed by other transactions
on the objects accessed by Tx itself. When the transaction starts, its probability of
abort is zero because it hasn’t read or written any shared object yet. As soon as the
first object is accessed, the probability starts to increase because other transactions
may access the same object concurrently. The more objects are accessed, the faster
the probability of abort increases. This is due to the fact that the probability of
abort depends on the probability of conflicts on all the accessed objects. Therefore,
the more objects are accessed, the more likely it is, at any point, that any of these
objects has been concurrently written by some other transaction. Because of this,

4.2 Analytical model 47

longer transactions can be more likely subject to aborts. The rate at which the
abort probability increases depends not only on Tx, but also on the rate at which
concurrent conflicting transaction perform transactional operations. If only a few
transactions are executing at any moment, then it is less likely to observe a conflict
on any particular shared object. If there are many concurrent transactions running
at any time, the abort probability of any transaction tends to grow faster. Some
events might, in principle, decrease the abort probability of a transaction. For
example, a transaction might decide to release an object from its data-set, or read
it again from shared memory so as to make sure to use an up-to-date value. Some
concurrency protocols have read-validation operations which can extend the lifetime
of a transaction that is doomed to abort because on an invalid read operation,
without aborting. The remainder of this section is devoted to providing the details
on the analytical model being used to cater for these different situations. It serves
as the basis to our Analysis step, as it gives us a way to estimate the abort
probability starting from information on the shared-object accesses performed by
each transaction.

We denote with D the repository of data objects available to transactions for
read and write operations, with dj being the j-th element of this set. The read-set
of a transaction x at time t is denoted with Rx(t). It is composed of a sequence
ri of reads of elements in D. Each ri is a tuple 〈ji, ti〉 containing the index of the
transactional object being read and the time at which the read occurred. Both t and
ti represents points on a physical-time axis1. We also maintain a global commit clock
which advances with each distinct commit of a transaction. This clock is essentially
a global counter of committed transactions and exists on a logical-time axis. To
ease the mapping between logical and physical time, as required in our analysis, we
conveniently denote with cc(t) the current global commit clock at physical time t.

Objects in the read-set are subject to updates by transactions over time. As
already anticipated before, the rate at which objects are updated can affect the abort
probability of a transaction. Accessing an object that has a very high update rate
lead to a faster increase of the abort probability compared to accessing an object
that is hardly updated at any time. The number of updates to a given element dj in
D, which have occurred up to time t, are denoted as nj(t). The value nj(t) is by
definition lower than or equal to cc(t), since an object dj can be updated at most
once at each commit. However, at each commit multiple objects can be updated.
We call λj(t) the rate at which the object is accessed at time t. It is expressed as
the number of updates globally performed by transactions divided by the current
global commit clock at time t:

λj(t) = nj(t)
cc(t) (4.1)

Observe that the update rate λj(t) is an average over the time interval [0, t),
meaning that it is not necessarily representative of what is happening within that
interval, especially if the latter is large. To circumvent this problem, we assume a
system with one or more execution phases, such that each phase reaches stationary

1Note that such wall-clock time has nothing to do with the version clock (or object timestamp)
of time-based and/or multi-version transactional systems.

48 4. Tracing transaction-based parallel applications

conditions and such conditions may vary across different phases. As soon as each
phase becomes stable, the rate at which updates to each transactional object are
carried out by transactions has a characterizing average value λj that is independent
of time. In such a case, t and ti refer to the elapsed time since the beginning of the
current stable execution phase. We then model the system independently in each
one of the aforementioned phases.

In our model, the update rate is used to compute the probability that one or more
updates affected any object dj in between two increments of the global commit clock.
Suppose s and t are two physical-time instants such that cc(s) = x and cc(t) = x+ 1.
Then, to compute the probability that an object dj has been concurrently written
by another transaction in between s and t, i.e., at cc(t), we can use a Bernoulli trial
where the success probability pj is λj and the failure probability qj is 1 − pj . In
this context, we observe a success when the object dj is updated by any transaction,
while a failure means that no update has occurred in between s and t:

qj = 1− λj (4.2)

If we now assume that s is an arbitrary reference time, then the probability
of failure in the (s, t] time interval depends on the number of global commit clock
increments in the same period. This is because an update can only occur upon a
global commit clock increment. Therefore, the failure probability is the probability
of observing as many failures as the number of commits performed in the same
physical time period, which can be expressed as cc(t)− cc(s). The resulting failure
probability fj(s; t) corresponds to the probability of failure of independent Bernoulli
trials, derived using a geometric distribution:

fj(s; t) = q
cc(t)−cc(s)
j (4.3)

It must be noted that in order to use a geometric distribution we are assuming
that the updates to transactional objects represent independent events. This is
certainly true for single-write transactions, i.e., transactions that only perform one
and only one write operation. It is also true for transactions with a non-deterministic
write-set, but only if it still holds that the probability of writing any dj is independent
of which elements were already written. We must additionally guarantee that the
probability of success is the same for every trial. This, under the assumption of a
stationary system, is clearly true.

When considering a transactional object in D which is actually read by a
transaction x, we are only interested in those updates that occur since the object
is put into its transactional read-set Rx. In that case, the reference time for a
transactional object read by a transaction then coincides with its reading time ti.
Anything that happened before this moment is not of interest for the model, as the
object didn’t belong to the transactional read-set. Given that s equals ti for each ri
in Rx(t), the failure probability at time t can be therefore rewritten as:

fri(t) ≡ fji(ti; t) = q
cc(t)−cc(ti)
ji

(4.4)

The failure probability for the entire read-set Rx(t) of transaction x is the
probability of failure for any object in the read-set, starting from the time ti at which

4.2 Analytical model 49

the object was read. It can be considered as the probability of failure of updating a
single composite object, such that we observe a success whenever there is at least one
update to any of its parts, while we have a failure when no part is updated. Given a
read-set Rx containing objects ri = 〈ji, ti〉 is valid at time t if no object dji read at
ti has been updated in (tj , t] by some concurrent committing transaction. Therefore,
for each element in the read-set, we consider the failure probability at time t starting
from the reference time tj . According to logical time, this is equivalent to checking
that no updates have occurred in [cc(ti) + 1, cc(t)]. The following equation expresses
the probability of observing a valid read-set at time t:

Fx(t) =
∏
i

fri(t) =
∏
i

fji(ti; t) (4.5)

To obtain the abort probability for transaction x at time t, we must have at least
a success (therefore an update) inside Rx(t), meaning that the read-set is invalid. In
accordance with elementary probability theory, this means that the modelled abort
probability of a transaction x having a read-set at time t can be expressed as:

Ax(t) = 1−Fx(t) (4.6)

A useful property of the geometric distribution that we exploit is the memory-
lessness property. In accordance with this property, the probability of observing a
number of Bernoulli failures greater than a, given than a number b of failures has
already been observed, is equal to observing a number of failures equal to a − b.
Therefore, the probability that an update occurs at a time greater than t, given that
a reference time s already passed without updates, is the probability of observing at
least cc(t)− cc(s) increments of the commit clock. To prove this statement, let Tri

be the random variable which represents the first physical time instant at which an
update to ri materializes. Let Fri be the number of consecutive Bernoulli failures up
to t. By virtue of the connection between physical and logical time, the probability
that Tri > t can be expressed as:

P[Tri > t] = P[Fri ≥ cc(t)] = q
cc(t)
ji

(4.7)

Suppose now that a time s < t has already passed. The probability of waiting
a time greater than t given that we already waited a time s can be computed as a
conditional probability of observing at least cc(t) failures, given that at least cc(s)
were already observed. The resulting quantity is equivalent to the probability of
observing at least cc(t) − cc(s) failures, meaning that the geometric distribution
doesn’t have a memory of the failures already observed along the logical-time axis:

50 4. Tracing transaction-based parallel applications

P[Tri > t |Tri > s] = P[Fri ≥ cc(t) |Fi ≥ cc(s)] (4.8)

= P[Fri ≥ cc(t) , Fri ≥ cc(s)]
P[Fri ≥ cc(s)]

= P[Fri ≥ cc(t)]
P[Fri ≥ cc(s)]

= q
cc(t)−cc(s)
ji

= P[Fri ≥ cc(t)− cc(s)]

We already exploited this property in Equation 4.4. In that case, the reference
time s was the time at which we first read the transactional object ri. The object
begins to exist in Rx(t) starting from the physical and logical time instants ti and
cc(ti). Before reading the object for the first time, any update was not conflicting
and could not affect the transaction. To compute the probability that the first
conflicting update to ri is at a time greater than t, we must consider that a time ti
already passed without updates:

qri(t) = P[Tri > t |Tri > ti] (4.9)

The memorylessness property can also be used upon validating a transaction.
Upon a read-set validation, all objects within it are checked to see if there has been
any concurrent update by a conflicting transaction. If that is not the case, it means
that the transactional object ri was still valid at time t′i, which can be used as a new
reference time. This is equivalent to saying that the object ri was re-read at t′i, since
we know that up to that moment there were no conflicts. If this is true for every
object in the read-set, the latter is valid and so is the transaction. Therefore, when
a new validation is performed, the reference time for each ri is considered to be the
last reading time, i.e., the time at which the last (re-)read occurred. By refreshing
the reading time of all the objects in the read-set, we abide by the memorylessness
property and we make sure that future abort probability calculations performed by
the model are adjusted.

We have provided an explanation of the analytical model used to compute the
abort probability Ax(t) of a transaction x throughout its lifetime. The model gives
us a prediction based on two input values for each read object ri: its average update
rate λi and its reference physical time ti. The model is based on physical time,
but internally uses a convenience auxiliary function cc(t) to translate from physical
to logical time. Generally speaking, the model can provide an estimation of the
abort probability at any time t. However, to compute this estimation we need to
evaluate the failure probability of each object in the read-set at time t separately.
This can give rise to efficiency issues, as a trivial model implementation would need
a linear scan of the read-set, thus making the abort probability estimation slower
and slower as the transaction reads more and more objects. In the following section,
we explain how the model can be computed and used on-line to solicit earlier aborts
and improve the execution time of transactions.

4.3 On-line model exploitation 51

Figure 4.1. A visual representation of our threshold-based mechanism for proactive
read-validation.

4.3 On-line model exploitation

In this section we explain our Exploitation step to install additional proactive
validations within the execution of transactions, in an attempt to achieve a higher
amount of early aborts and reduce the turnaround of a transaction. These additional
early validations are model-based, i.e., they are driven by the analytical model
explained in Section 5.1, which takes a transactional read-set as input and returns its
abort probability as output. When we wish to distinguish model-based validations
from other validations already performed by the concurrency control protocol, we
refer to the original validations as spontaneous validations. Generally speaking, there
are many points along the lifetime of a transaction which can be good candidates for
proactive validations. For example, a validation can be attempted upon accessing a
transactional object for the first time, or when reading an object that may conflict
with the pre-existing read-set. Choosing whether and when to perform such an
early validation is a choice which depends on correctness and performance aspects.
Many concurrency control protocols already perform proactive validations which
may lead to early aborts. Figure 4.1 shows two conflicting transactions performing
read and write operations on four shared objects—a, b, c, and d. If our model-based
mechanism is absent, the underlying concurrency control mechanism is still able to
perform some early validations (marked as V). The first of such early validations is
forced on transaction Tx0 right after its read access to object a, but at this point
the read-set of Tx0 is still valid and so there is no need to abort. In between this
access and the next access to object b, the read-set of Tx0 becomes invalid due to a
conflicting write access to a performed by another transaction Tx1, which occurred
after the first validation of Tx0 and becomes visible after Tx1 commit (marked as

52 4. Tracing transaction-based parallel applications

C). Therefore, Tx0 is doomed to abort. However, only after Tx0 has performed a
read access to d the underlying concurrency control mechanism decides to trigger
another validation and the abort (marked as A) of the transaction Tx0. Hence, the
time between the access to object b and that to d is spent doing useless work.

Let’s see what happens when we introduce a validation mechanism which is
based on our analytical model. A typical usage of the model is to put a threshold on
the maximum abort probability that can be tolerated at any time, in order to allow
the transaction to run ahead without being (re-)validated. Once this threshold is
exceeded, the transaction must undergo a validation of its read-set, which might lead
to an early abort. Therefore, a necessary condition for performing a model-based
read-validation of transaction Tx is the following:

Ax(t) > TV (4.10)

In the figure, we depict the abort probability for transaction Tx0 computed over
time. We assume that a threshold value (TV) is used to trigger a model-based
validation whenever the abort probability exceeds this value. In the example, this
may happen as soon as a read to object c is performed, thus producing an early
abort and reducing the time spent on useless computation by an amount which is
equal to the highlighted area on the timeline of Tx0. Then, the scheduler used by
the transactional system can decide to attempt to re-execute Tx0 immediately, to
wait some time (e.g., via an exponential back-off mechanism), or to simply execute
another transaction.

It is worth stressing that the condition in Equation 4.10 is only a necessary
condition. In fact, the higher the threshold, the higher is the probability of actually
experiencing an early abort when the predicted probability exceeds the threshold. In
such a case the cost for performing the read-set validation operation can actually pay
off. At the same time, for very large threshold values, either the number of threshold
violations decreases drastically or the perceived benefit of performing a model-based
abort decreases. To motivate the above assertion, let us first consider a transactional
system which only validates transactions’ read-sets at commit time. Many DBMS
implementations based on the read-validation scheme actually adopt this approach.
The probability of abort as computed by our model in such a scenario clearly
increases as the transaction approaches its end, being it a function of the current
time t and of the time at which past read accesses were performed. Unfortunately,
there is little gain in validating and aborting a transaction thanks to the model
when the transaction itself is about to perform a commit validation anyway. In
that case, the cost of performing an additional validation will probably be greater
than the cost of waiting till a commit attempt is performed, meaning that further
conditions can and should be imposed before triggering a model-based validation
in general. On the other hand, lets us consider the case of a transactional system
which already performs spontaneous validations in the middle of a transaction to
provide some correctness criterion stricter than serializability, such as opacity [46].
In this other scenario, setting too high a threshold value for firing validations means
performing a model-based proactive validation only in those rare cases when the
aforementioned spontaneous validations have failed to catch any abort. Hence, even
if the (predicted and real) probability of abort of the transaction is high at some

4.3 On-line model exploitation 53

point in time, the probability of getting to that point itself—and exploiting the
model for triggering validations—is actually very low. In accordance with the above
considerations, it would be better to set a threshold value which allows to invoke
an early validation when there is more computation time to save (hence a lower
threshold value). However, if the threshold is very low, the cost of performing
frequent validations can actually be detrimental to the performance of the system.
Indeed, the lower the threshold, the higher the fraction of validations which succeed,
because a validation is triggered even if the estimated abort probability is low. In
that case, running a model-based validation might only be reasonable for a given
TV if the estimated time to a spontaneous validation exceeds that spent for the
model-based validation. This is especially true for the case of TP concurrency
protocols which already perform early validations.

Overall, finding an optimal value for the threshold parameter is a challenging
task. Generally speaking, there are at least two main approaches to finding an
optimal threshold value. An off-line methodology is to run the application/workload
of interest while collecting some high-level profiles and statistics. Then, the best
threshold can be found after processing the collected information. For example, one
can compute the actual abort probability distribution and set a threshold which is
near to the observed mode parameter of that distribution. Another technique can
be based on runtime feedback-oriented optimization. The application is run with an
initial threshold value—possibly inferred using static off-line techniques such as the
one suggested above—and its performance over time is observed. After some time,
the threshold is changed and a new observation period starts. A biased exploration,
like the hill-climbing approach, can be used to test new values and decide when
to stop. In general, a run-time methodology eventually picks the threshold which
provides the best performance among all observed values. This process can be
repeated over time to optimize multi-phase applications. Additionally, when the
workload is comprised of large and small transactions which exhibit quite different
memory access patterns, the threshold can be set separately for each transactional
profile. The extreme case is that of enabling the model and setting a threshold only
for a subset of the profiles. Section 4.4 provides a preliminary experimental evaluation
of this threshold-based approach when setting the threshold values manually.

4.3.1 Incremental analytical model computation

As explained in the previous section, the proposed on-line model-based validation
mechanism is triggered based on a threshold value TV. At time t, the inequality
Ax(t) > TV is checked to verify whether the predicted abort probability exceeds the
threshold. If such inequality holds, a model-based validation is triggered. While this
scheme can lead to beneficial effects, as explained in Section 4.4, evaluating the abort
probability Ax(t) at any time t can still be inefficient due to the way the failure
probability Fx(t) is computed. In this section, we illustrate an incremental version of
our model based on a physical-time decomposition of Equation 4.5 that complements
the Analysis step described in Section 5.1. To explain how it works, consider the
evolution of the failure probability of a single element ri in the transactional read-set
Rx over a physical time axis. Whenever a transactional read operation on dj occurs
which adds a new element ri to the read-set of the transaction, the current time t is

54 4. Tracing transaction-based parallel applications

fetched and saved as ti. If λj is the update rate of dj , then at any later time t′ we
can compute the probability of failure of ri as fji(ti; t′). If we wait till time t′′ > t′,
the failure probability at that time for ri becomes fji(ti; t′′). This probability can
be decomposed in time as the failure probabilities in between (ti, t′] and (t′, t′′]:

qji(ti; t′′) = P[Tri > t′′ |Tri > ti] (4.11)
= P[Tri > t′ |Tri > ti] · P[Tri > t′′ |Tri > t′]

= q
cc(t′)−cc(ti)
ji

· qcc(t
′′)−cc(t′)

ji

= fji(ti; t′) · fji(t′; t′′)

Suppose we now choose n points along the physical-time axis to evaluate the
abort probability. By virtue of Equation 4.11, it is possible to evaluate the failure
probability of the element ri by considering the different time intervals (t̂k, t̂k+1]
separately for each k = 1, . . . , n, starting from time t̂0 = ti till time t̂n = t. As a
result, we can time-decompose the failure probability fji(t) as follows:

fji(t̂0; t̂n) =
n∏
k=1

fji(t̂k−1; t̂k) (4.12)

Equation 4.12 offers us an efficient way to maintain the failure probability of
element ri over time, as the product operation is distributive and allows to rewrite
the equation inductively:

f
(0)
ji

= 1 (4.13)

f
(k)
ji

= f
(k−1)
ji

· fji(t̂k−1; t̂k)

However, we are interested in the failure probability of the whole read-set Rx,
for which we still don’t have a physical-time decomposition. Intuitively, we can
apply the same reasoning we used for each qji(t) to derive a time decomposition
for Fx(t) similar in spirit to the one we achieved in Equation 4.12. Unfortunately,
while Equation 4.12 uses qji as its base Bernoulli failure probability, to derive a
similar decomposition for the whole read-set we must consider the fact that Rx grows
over time. Let Qx(t) be the read-set failure probability at time t. It accumulates
the Bernoulli failure probabilities for all elements in the read-set at time t. If we
choose again n points in physical time and define Rx(t̂k−1; t̂k) as the subset of
elements added to the read-set during the interval (t̂k−1, t̂k], then the read-set failure
probability at time t̂n can be evaluated inductively as shown:

Qx(t̂0) = 1 (4.14)

Qx(t̂k) = Qx(t̂k−1) ·

 ∏
i∈Rx(t̂k−1;t̂k)

qji

Unfortunately, to evaluate Qx(t̂k) given Qx(t̂k−1) we still need to perform a

number of computational steps proportional to the number of transactional read

4.3 On-line model exploitation 55

objects added to the read-set in between t̂k−1 and t̂k. Not only that, but if we
choose n arbitrary points in time and Qx(t) changes in between any two consecutive
physical-time instants, this also affects the kind of time-decomposition we can derive
for the failure probability Fx(t). To explain way, let Fx(t̂k−1; t̂k) be the failure
probability computed in between two consecutive points in the sequence k = 1, . . . , n.
To correctly compute this quantity we must consider, just like we did for Qx(t̂k), that
mk elements are added to the read-set in the interval (t̂k−1, t̂k]. Let t̂

(1)
k , . . . , t̂

(mk)
k

be the instants at which these reads materialize. If we call t̂k = t̂
(0)
k and t̂k = t̂

(mk+1)
k

then we can compute the failure probability as follows:

Fx(t̂ (0)
k ; t̂ (mk+1)

k) =
mk+1∏
p=1

 ∏
i∈Rx(t̂ (p−1)

k
)

fji(t̂
(p−1)
k ; t̂ (p)

k)

 =
mk+1∏
p=1

Qx(t̂ (p−1)
k) t̂

(p)
k
−t̂ (p−1)

k

(4.15)

This formulation of the failure probability allows to compute the failure prob-
ability in the interval (t̂k−1, t̂k] in a number of steps that is equal to mk. Notice
that in this case Qx(t̂ (p−1)

k) can be computed in a single step as each instant t̂ (p−1)
k

represents a new object added to the read-set. By virtue of Equation 4.12 we can
then rewrite the failure probability at time t̂n, with k = 1, . . . , n, as:

Fx(t̂0; t̂n) =
n∏
k=1
Fx(t̂k−1; t̂k) (4.16)

Therefore, we can compute an incremental version of this probability as:

F (0)
x = 1 (4.17)
F (k)
x = F (k−1)

x · Fx(t̂k−1; t̂k)

Equation 4.17 is the equivalent of Equation 4.12 for the case of the whole
transactional read-set. However, compared to the latter equation, the former is still
inefficient to be computed in the general case when the n points in time are chosen
arbitrarily. Indeed, we are forced to add as many other points as the time instants
at which new read operations are performed in between them. Therefore, even if
we already know the value of F (k−1)

x , computing F (k)
x can still require an arbitrary

number of steps. Equation 4.15 admits a simpler formulation if the n time instants
we choose coincide with the times at which new elements are added to the read-set.
In that case, we have that t̂k = ti and m = 0 for each k:

Fx(ti; ti+1) =
∏

i′∈Rx(ti)
fj′i(ti; ti+1) = Qx(ti) ti+1−ti (4.18)

Equation 4.18 can be evaluated in constant time if we compute the read-set
failure probability incrementally as shown in Equation 4.14 and instantiate our
arbitrary n points to the times at which new objects are added to the read-set. As

56 4. Tracing transaction-based parallel applications

a result, we get a simpler time-decomposition for the failure probability Fx(t) as
follows:

F (0)
x = 1 (4.19)
F (i)
x = F (i−1)

x ·Qx(ti) ti+1−ti

In the rest of this chapter, whenever the on-line exploitation scheme is used, we
will compute the abort probability as in Equation 4.19.

4.4 Experimental evaluation
In this section we provide an experimental analysis of the model accuracy on a micro-
benchmark we developed which satisfies the properties of the geometric distribution,
as well as the impact of a model-based read-validation on the execution of a real-world
TP application.

4.4.1 Implementation details

We evaluate our tracing analysis technique within the context of Transactional
Memory (TM) systems, a family of transactional-processing systems that cope with
general-purpose multi-threading applications. TM allows to mark code blocks in
multi-threading applications performing accesses to shared-memory as transactions,
while preserving atomicity and isolation guarantees which are typical of TP sys-
tems. Programmers’ productivity is therefore improved, as it makes concurrent
programming almost as simple as sequential programming or coarse-grained locking
schemes, while also not sacrificing the advantages—in terms of scalability and high
parallelism—provided by fine-grain locking techniques. Nowadays various TM im-
plementations exist, including the ones natively embedded in modern processors via
specific hardware support, the so-called Hardware Transactional Memory (HTM)
[47]. To achieve atomicity and isolation, off-the-shelf HTM implementations typically
augment the capabilities of a cache coherency protocol to maintain transactional
cache lines. The granularity of data is therefore the granularity of a cache line,
meaning that transactional conflicts can be detected by the cache-coherency protocol
when invalidating a transactional cache line. Aborting a hardware transaction means
dropping all cache lines that were in transactional mode. Committing a transaction,
on the other hand, means flushing to lower cache levels in the memory hierarchy all
cache lines temporarily marked as transactional. A major drawback of such HTM
implementations is that transactions will abort every time the cache must be invali-
dated prior to committing the transaction, and even for reasons that don’t related to
transaction execution. This may occur upon sending an interrupt to the CPU-core
running the transactional code block, upon a context or mode switch, when there’s
a capacity miss or cache-line conflicts between threads running in Simultaneous
Multi-Threading (SMT) mode, and so on. The most diffused TM implementations
are still based on software support, known as Software Transactional Memory (STM)
[82]. These provide the advantage of not requiring any specific hardware technology,
thus being much more portable across different machines. Additionally, they can

4.4 Experimental evaluation 57

implement different isolation criteria without being limited by the capabilities of
the hardware. Further, STMs have been recently identified as an ideal candidate to
simplify the programming of distributed applications deployed in large scale data
centers [3] or in cloud computing environments [72].

LSA and TinySTM

A well-known STM algorithm is called Lazy Snapshot Algorithm (LSA) [39]. It is
based on an optimistic execution of transactions. An object value is associated with
a validity range delimited by the logical time at which that value was written inside
that object (the lower bound) and the logical time of the next write operation, if any
(the upper bound). The logical time of a write operation denotes the version number
for that object’s value. A global clock is queried to know the current logical time. It
is advanced monotonically by each committing transaction, which also updates the
version number of all the shared objects that it writes with the next value of the
global clock. A running transaction maintains a snapshot, which is an interval of
logical times delimiting which values can be read out of an object in order to preserve
correctness. In principle, a transaction can read all those values whose versions
comply with the snapshot. Upon a read operation on a shared object, the value
being read must have a version falling within the current snapshot boundaries. If the
read succeeds, the snapshot boundaries are adjusted according to the intersection
with the read value’s validity range. If such intersection is empty, the transaction
is conservatively aborted since it is no longer possible to guarantee correctness.
A mechanism that is used to reduce the need for aborting transactions is called
snapshot extension. It is triggered upon observing an empty snapshot to see if an
intersection can be found by tentatively trying to shift the snapshot’s upper bound
to a logical time higher than the first available value’s version number. If that is the
case, it means that it was possible to find a valid version number for all objects in
the read-set, such that the intersection of their values yield at least one valid instant
in logical time—a possible linearization point. At commit, a transaction acquires
a unique timestamp from the global clock and checks whether this commit time
intersects with the current snapshot. In the positive case, the linearization point
coincides with the commit time and the transaction can commit. Otherwise, the
transaction is aborted. Read-only transactions can commit at every valid logical
time in their current snapshots, since they are all valid linearization points.

A classic implementation of the LSA algorithm for the C language is called
TinySTM and is based on word-sized objects. It is a single-version variant of LSA,
meaning that a transaction can only read the latest written version of an object. It is
also lock-based, meaning that concurrent accesses are detected by means of revocable
locks (hence it is still an optimistic STM). In order to store version numbers and
locks for each word location, a lock array is used. It is based on a hash function
which maps word addresses to entries in this array, each of which contains (a) a lock
bit which is the lock itself, and (b) either the last written version number or (in case
the lock bit is set) the identifier of the transaction which is currently writing that
word-sized object. Due to its single-version nature, snapshots are single logical time
instants and extensions try to advance them to the current global clock timestamp
when the culprit read is attempted. We call transaction timestamp the transaction’s

58 4. Tracing transaction-based parallel applications

single-version snapshot.
Read operations on shared objects previously updated by the same transaction

are served by reading values from the transaction write set. Instead, read operations
performed on shared objects outside the write set lead to sample the version number
and the lock bit of the shared object in order to check if (a) the timestamp is less
than or equal to the timestamp of the reading transaction, and (b) the object is not
currently locked. If both checks succeed, it means that no concurrent transaction
has modified the object in the interval between the start of the reading transaction
and the actual read operation, hence the read value is valid. Otherwise, either an
extension succeeds or the transaction gets aborted.

Upon attempting to commit a writing transaction, all past reads are revalidated
in order to check that no object in the read-set has been modified after the transaction
started; if so, a timestamp corresponding to the value of the sampled global clock
+1 is installed for each written object in the respective entry of the lock array. If
the revalidation succeeds, and provided that the thread managed to take the locks
for each written object, the write set is committed to memory and the transaction
completes. If at least one lock acquisition fails, the transaction is aborted and
restarted.

Depending on the chosen locking strategy, lock acquisition for write operations
may happen at the time shared-data are transactionally written (ETL, or Encounter-
Time Locking) or at commit time (CTL, or Commit-Time Locking). ETL algorithms
can be further divided into write-back schemes, where the write-set is committed to
memory upon commit, and write-through ones, where this is done upon write, hence
an undo log is needed to revert dirty memory in case of aborts. When relying on
CTL for managing the locks associated with the objects written by a transaction,
the lock holding time is typically very short, being it bounded by the duration
of the transaction validation phase executed at commit-time. Consequently, the
probability for a transaction to be aborted due to lock-acquisition failure is typically
reduced, compared to the probability to be aborted due to the invalidation of some
read object-value, as caused by write operations on that same object by concurrent
transactions. This is one significant advantage of CTL when compared to other
schemes such as ETL where locks are acquired while transaction processing is still
in progress.

4.4.2 Results

In this section we report our results in terms of accuracy and transaction turnarounds
for respectively a micro-benchmark we developed and a port of the TPC-C benchmark
to STM.

Off-line accuracy evaluation

To quantitatively assess the accuracy of our model we have carried out an experiment
based on a synthetic benchmark for STM. A shared array of elements in memory
constitutes the whole transactional repository at disposal of transactions. Each
transaction performs accesses to this repository, split between read and write accesses
hitting the set of objects randomly, with a varying probability of performing a read

4.4 Experimental evaluation 59

operation. The size of the repository, the number of transactional operations and the
probability of performing a read operation as the next transactional operation are
all user-defined parameters of the synthetic benchmark. We also varied the number
of threads and the number of transactions per thread to explore different levels
of parallelism. The experiments have been run on top of a 32-core HP ProLiant
server equipped with four two-socket 2GHz AMD Opteron 6128 processors and
64GB of RAM. To obtain accuracy results, we evaluated our model using an off-line
methodology. We traced each transaction as follows:

• Upon a begin operation, we save the current commit clock to use it as a
reference for the next transactional events. This comes directly from the
memorylessness property as explained in Section 5.1.

• Upon a read operation, we save the number of updates to the target transac-
tional object and the current commit clock to compute the update rate for the
read object and store its start reference time.

• Upon a spontaneous validation operation, for each element in the read-set we
save the new number of updates and the new current commit clock; then, we
refresh the update rate for the read object and reset its reference time.

• Upon an abort event, we just record the fact that an abort has occurred.

By re-playing the tracing off-line, i.e., after the benchmark has already terminated,
we could compute the abort probability as predicted by the model and compare it
with the number of times an actual abort event was generated at run-time. We then
gathered the predicted abort probabilities into buckets, storing for each of them the
number of samples per bucket and the number of real aborts associated to the abort
probability values that fell in the same bucket. By doing this, we could evaluate
the actual abort probability observed at run-time for each bucket by dividing the
number of aborts by the number of samples.

Figure 4.2 shows how the predicted abort probability compares with the actual
abort probability. On the x-axis is the abort probability as computed by the model,
while on the y-axis is the actual abort probability, derived as the ratio of aborts
over total validations for that specific point on the x-axis. We experimented with
two configurations. One sets the number e of elements to 10, 000 and the number o
of operations per transaction to 200, thus hitting 5% of the objects in the dataset.
The other sets the number e of elements to 1, 000 and the number o of operations
per transaction to 50, thus hitting 20% of the objects in the dataset. For each of
the previous configurations, we experimented with a percentage r of read operations
of 85%, 90%, and 95%, while we also run each experiment with a number p of
threads of, 8, 16, and 32. The number t of transactions per thread stayed the
same in all experiment, being fixed at half a million. These scenarios represent a
realistic situation where contention is fairly spread across all the dataset, with a
probability of abort that can still be high due to the relatively high number of read
operations compared to the overall dataset size. Additionally, it emulates a real-world
application scenario where reads tend to be much more frequent than writes. To
obtain a perfect match, the predicted probability must equal the actual probability,

60 4. Tracing transaction-based parallel applications

as suggested by the straight, blue line on the plot. The increase in transparency of
the black dots used to indicate the actual probability represents the fact that some
buckets have a number of samples that is not statistically representative to evaluate
the accuracy of the model. This tends to happen when the abort probability (both
predicted and actual) is very high, and can be explained by the fact that many
transactions abort or commit before reaching that probability. The absolute error
committed in any configuration never exceeds 10%, which is only reached when the
concurrency is the highest (24 threads, last two rows in the figure). This error can
be reduced by decreasing the number of read operations (moving to the right of the
figure) or by decreasing the level of parallelism in the system (moving to the top of
the figure).

To further evaluate the prediction accuracy of the model, we decided to run
another batch of experiments, this time by reducing the percentage of read operations
to 50% and reducing accordingly the number of transactions per thread to compen-
sate for the increased execution time to the higher number of aborts and overall
concurrency in the system. Figure 4.3 shows the results of this experimentation.
As it can be seen, the maximum error still reaches 10% in the case of maximum
parallelism with 24 threads, while being completely negligible when the number
of threads is set to 8. Overall, these error values suggest that the accuracy of the
proposed model might be affected by small-order effects due to numerical stability
and possibly by some slight statistical correlations between read and write operations
from different transactions that make the geometric distribution assumptions less
realistic. Nevertheless, the data also show that our model is reasonably stable
regardless of the specific read/write ratio of transactional operations, thus being
capable of predicting the abort probability of transactions under the studied settings
with negligible or small accuracy errors.

4.4.3 On-line model exploitation evaluation

We tested the comparison of the predicted abort probability values to TV for
triggering validations by integrating our on-line model exploitation scheme into
TinySTM. By default, a validation is only attempted in TinySTM upon explicit read
accesses, when such accesses may result into a violation of the opacity correctness
criterion. If a thread runs a transaction that does not access shared data for a
while (e.g., it manipulates local variables into the stack), or accesses data deemed
valid (the object timestamp is within the transaction visibility snapshot), then the
underlying STM layer does nothing to detect conflicting accesses. On the other
hand, our analytical model can predict the probability that the transaction has
become invalid upon performing those accesses and be used to trigger a model-based
proactive validation. Our implementation of the abort-probability model for on-
line exploitation is based on the CTL variant of TinySTM. We redefine the values
of entries in the lock array to also keep track of the number of updates to each
transactional location. This number is reset after every epoch, which corresponds to
a certain number of commits. Each epoch is associated to a starting time, which is
the global commit clock read at the beginning of that epoch. Our tracing technique
works as follows:

4.4 Experimental evaluation 61

• Upon commit, for each written transactional word we increment by one its
associated total number of updates for the current epoch, or we reset it if in
the meantime a new epoch has started. The new number of updates and the
new version number are installed into the respective lock array entry. Notice
that since we use the CTL version of TinySTM, we don’t need to do anything
upon transactional write operations.

• Upon read operations, we compute the abort probability and check if it exceeds
the given threshold. In the positive case, we trigger a model-based validation.
Otherwise, we update the failure probability for the current transaction by
taking into account the time since the last update. The operation is computed
as described in Equation 4.13 of Section 4.3. This only happens if the read
operation is to an element that didn’t belong to the transactional read-set or
write-set. Then, we read the update rate of the new transactional word and
use it to actualize the read-set failure probability as described in Section 4.3.

• On early validations, we use the memorylessness property to rejuventate the
read-set of the transaction in its entirety, as explained in Section 5.1. This
means that we reset the validity probability and start computing it from
scratch incrementally. We compute again the update rate of all entries and
re-compute the failure probability for the current transaction based on the
new rates. This is done incrementally on each object that is re-read and re-put
into the read-set.

To evaluate the effectiveness of our threshold-based mechanism, we have chosen
a port of the TPC-C [87] benchmark to STM. TPC-C is representative of OLTP
workloads and includes different transaction profiles that simulate a whole-sale
supplying items from a set of warehouses to customers within sales districts. In
our experiments we instantiated one district, and generated a workload made up
by requests spanning four different transaction profiles specified by the benchmark,
excluding the “delivery” profile since, according to the TPC-C specification, it is
conceived to be run in deferred mode. In our porting to the target STM environment,
CPU demands for the different transactional profiles of TPC-C range from tens
of microseconds to milliseconds, as shown in Table 4.1, where we also report the
percentage mix of the different profiles. It must be noted that of all enabled profiles,
“new order” is the only one having a high CPU demand, a relevant share of the whole
workload (almost 50%), and a mixture of read and write operations. The “stock
level” profile is also long-running, but it has a much smaller share of the workload
and it is read-only2.

To emulate a realistic deploy for modern applications, we have run experiments
on a cluster of two 64-bit NUMA HP ProLiant servers. The STM application is
deployed on one of these nodes—acting as a back-end data layer—while the other
node is used for generating the workload of transactional requests. The server node
is equipped with four 2GHz AMD Opteron 6128 processors and 64GB of RAM. The
client node has two 2.2GHz AMD Opteron 6174 processors and 32GB of RAM. Both

2Read-only transactions don’t usually undergo any validation upon their commit. In fact, it is
admissible that their read-sets contain overwritten data, provided that the read-set is consistent
before reaching commit.

62 4. Tracing transaction-based parallel applications

ID Profile Type CPU demand % mix
1 new order RW ≈ 350 µsec 0.49
2 payment RW < 10 µsec 0.43
3 order status RO ≈ 10 µsec 0.04
4 stock level RO ≈ 650 µsec 0.04

Table 4.1. Transaction profiles and associated CPU demand.

processor models have eight NUMA nodes. In all the experiments, threads remain
pinned to their NUMA nodes so as to minimize the impact of (possible) thread
migrations by the operating system. We don’t move data across NUMA nodes and
don’t change the default allocation policy for dynamic memory.

We have run our experiments with continuous injection of transactional requests,
using 24 threads for processing the requests at the back-end data management node
and 6 threads for managing the socket pool from which the client-generated workload
comes. This scenario led to use at most 94% of the CPU computational power at
the back-end data management node, thus avoiding hardware resources saturation
that would affect the reliability of the experimental analysis. We have run with the
highest concurrency, as admitted by 24 threads, and configured TinySTM to rely on
the Commit-Time Locking scheme for data-lock acquisition upon write operations.
We set the backlog of pending transactional requests to be processed at the server
side to 4096, and we experimented with a sustained workload leading the backlog to
be close to saturation at any used thread count. Each experiment entails 3 million
committed transactions.

In our experiments we varied the parameter TV using the following values:
100%, 85%, 70%, 55%, 40%, 25% and 10%. Upon a read access to a transactional
object at time t performed by transaction x, the inequality Ax(t) > TV is checked
to verify whether the predicted abort probability exceeds the threshold. If such
inequality holds, a new validation task is triggered before completing the access.
The configuration with TV = 100% leads our model-based optimization to never fire
any model-based validation, since the estimated abort probability of transactions
cannot be greater than one. However, this configuration is important in order to
assess what is the actual overhead for managing the model at runtime—especially to
access the global commit clock value and to keep information related to the update
rate of each distinct transactional word in memory.

In Figure 4.4 we report the variation of the transaction turnaround for profile
#1 using the different values of TV , relative to the turnaround that can be observed
when running the original configuration of TinySTM (not embedding our model-
based validation scheme). We will refer to the latter configuration as ‘baseline’ in our
discussion. As already anticipated, we reported data for profile #1 only since profiles
#2 and #3 are so short running that no early abort technique allows for actual
improvements of their performance. On the other hand, profiles #3 and #4 are read
only, and TinySTM already applies to these profiles a set of runtime optimizations
that stand aside of the model-based read-validation scheme we present. By the data
we see how, although the runtime management of the model introduces about 5%
overhead (see the bar for TV = 100%), as soon as we also exploit the model we do

4.5 Related work 63

not only recover the loss of performance caused by the runtime model-management
overhead; rather, we also achieve a performance gain over the baseline of about
14%. Even more important, we observe that the performance gain provided by the
model-based read-validation scheme is stable for large interval of values of TV . This
is in practice an indication of the effectiveness of the approach even in contexts
where no (extremely) fine tuning of the value of TV is adopted.

4.5 Related work

In the literature, several analytical models have been presented which cope with
very disparate concurrency control schemes for transactional systems (see, e.g.,
[96, 65, 24]). Most of them have been exploited as off-line tools for performance
analysis and prediction, while a few of them have been exploited as runtime decision
supports. In the specific context of STM, analytical runtime decision models
have been proposed in order to determine suited levels of parallelism for running
applications [77, 33, 25] as a way to avoid trashing due to excessive transaction
aborts. However, to the best of our knowledge, none of the past literature works
provides a model coping with the problem of determining proactively whether to
(re)assess the validity of a transaction along its life time in concurrency control
mechanisms based on read-validation schemes.

In [28] a model-based proactive approach is exploited in order to determine
whether to scale up/down the number of nodes of an in-memory transactional data
store depending on workload changes. However, this proposal does not attempt to
optimize performance via proactive checks of transactions’ validity along their lifetime.
The proposed model predicts performance for the scenario where transactions are
aborted either when reaching their commit point, or when the concurrency control
mechanism detects some inconsistent access to data. Previously issued accesses are
not accounted for to proactively predict transaction validity, as instead we do in
our proposal. On the other hand, the approach in [28] can be seen as orthogonal to
ours. The former is mostly oriented to drive decisions on the amount of resources to
be used to sustain a given workload, while our proposal is oriented to optimize the
usage of each individual CPU-core by reducing CPU-waste.

In [36] the transaction validity check is triggered periodically, via an ad-hoc
operating system support integrated within Linux. Differently from this proposal,
our model-based read-validation scheme does not need special support from the
operating system, thus being of wider portability. Also, the solution in [36] does not
rely on any prediction scheme for choosing at which points to attempt transaction
validation. The validation task is triggered independently of the probability that
the transaction has become invalid. In our proposal, the validation task is triggered
on the basis of predictions carried out by the analytical model.

Several works have targeted the reduction of the incidence of transaction aborts
via heuristic based approaches [94, 32, 27]. These solutions either try to sequentialize
conflicting transactions on the same thread or control the concurrency degree of
the STM-based application by changing the number of threads/transactions that
are allowed to run in parallel. A comprehensive survey of the proposed techniques
can be found [80]. Other techniques have been oriented to the optimization of the

64 4. Tracing transaction-based parallel applications

strategy for managing contention across concurrent transactions [93, 26]. Some of
these approaches also enable the runtime adaptation of the contention management
strategy to the workload profile [26]. The orthogonal issue of mapping threads to
CPU-cores for performance optimization has been addressed in [18]. An approach
aimed at reducing the waste of CPU-time and energy caused by transaction aborts,
which acts with per-transaction granularity, is the one in [70]. Here the authors
propose a solution for enabling a no longer valid transaction to be rolled back
partially (rather than totally), which may help saving work otherwise doomed to
be unfruitful. Our work is orthogonal to (and ideally combinable with) the above
solutions, as our target is to select points along the transaction lifetime where a
read-validation operation is likely to produce an early abort of the transaction. On
the other hand, similarly to the proposal in [70], we retain the potential to reduce
CPU-time waste on per-transaction granularit if our analytical model is exploited to
trigger early transaction aborts that would have never be triggered by the underlying
transactional layer otherwise.

4.6 Conclusions and future work
In this chapter we have presented a model for estimating the abort probability of a
transaction maintaining a read-set of all the read-accessed transactional objects. Our
proposal has applications to different concurrency control protocols which avoid read-
locking data objects, such as optimistic and multi-version ones. Our model can be
used to perform proactive validations of transactions, as a means to abort no longer
valid transactions as fast as possible. We have shown the accuracy of our model for
a synthetic benchmarks under different transactional read/write mixtures. We also
evaluated the performance benefits that can be achieved by exploiting the model
via a simple threshold-based mechanism to trigger proactive transaction validations
whenever the estimated abort probability of a transaction exceeds a threshold.
Thanks to this mechanism, we have observed up to 14% performance gain—on a
per transaction-profile analysis—for a port of the TPC-C benchmark to an STM
environment. As future work we plan to investigate more sophisticated strategies for
exploiting the abort probability predictions by the model in combination with other
(predicted) costs—such as the expected residual transaction execution time and the
real cost of the validation operation as function of the read-set size. We also plan to
investigate architectural solutions for reducing the overhead to manage the model at
runtime, to further improve the performance of transactional applications.

4.6 Conclusions and future work 65

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 10000, o = 200, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 10000, o = 200, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 10000, o = 200, r = 95

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 1000, o = 50, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 1000, o = 50, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 500000, e = 1000, o = 50, r = 95

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 10000, o = 200, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 10000, o = 200, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 10000, o = 200, r = 95

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 1000, o = 50, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 1000, o = 50, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 500000, e = 1000, o = 50, r = 95

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 10000, o = 200, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 10000, o = 200, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 10000, o = 200, r = 95

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 1000, o = 50, r = 85

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 1000, o = 50, r = 90

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 500000, e = 1000, o = 50, r = 95

Figure 4.2. Model validation plots using a synthetic benchmark. p is the number of threads,
t is the number of tranactions per thread, e is the number of transactional objects that
can be read or written, o is the number of transactional operations per transaction, r is
the probability of performing a read operation at each transactional operation.

66 4. Tracing transaction-based parallel applications

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 200000, e = 10000, o = 200, r = 50

0 25 50 75 100
0

20

40

60

80

100
p = 8, t = 200000, e = 1000, o = 50, r = 50

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 200000, e = 10000, o = 200, r = 50

0 25 50 75 100
0

20

40

60

80

100
p = 16, t = 200000, e = 1000, o = 50, r = 50

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 200000, e = 10000, o = 200, r = 50

0 25 50 75 100
0

20

40

60

80

100
p = 24, t = 200000, e = 1000, o = 50, r = 50

Figure 4.3. Model validation plots using a synthetic benchmark when r = 50%. p is
the number of threads, t is the number of tranactions per thread, e is the number of
transactional objects that can be read or written, o is the number of transactional
operations per transaction, r is the probability of performing a read operation at each
transactional operation.

4.6 Conclusions and future work 67

Figure 4.4. Turnaround results for profile #1 compared to the baseline.

69

CHAPTER 5
Tracing task-based parallel

applications

To adapt to the multi-core paradigm shift, several new ideas have been put into
software in terms of parallel programming supports, ranging from APIs such as
Pthreads [14] or Intel TBB [71] to first-class programming constructs in modern
programming languages (e.g., Go [1]). In order to implement parallelization via these
supports, applications need to be redesigned or ported to a different programming
language with parallelization constructs. In some cases, the user is also responsible
for how the parallelism is implemented. A direct consequence of this is that the
effort of maintaining the source code increases and tasks like debugging, or testing,
become more complex. Parallel programming models based on compiler directives,
such as OpenMP, are an alternative to the above-mentioned approaches. These
models allow the programmer to disclose both data and task parallelism within
programs by means of source-code annotations. These annotations do not have an
explicit effect in terms of the semantics of the program. They are instead interpreted
by the compiler as hints to perform transformations that parallelize the code, while
preserving sequential consistency. The annotation-based approach is very effective
because it does not require to rewrite the program, or port it to a different language.
In fact, it allows users to parallelize applications incrementally. Starting from the
sequential version, additional portions of code can be annotated to specify parallelism.
This has an important impact on the productivity that can be achieved thanks
to this philosophy, with benefits in terms of programmability, composability, and
reusability of code.

A widely-adopted abstraction for parallel programming is the task-based one. A
program is represented as an acyclic graph where nodes are tasks and directed edges
are constraints between them. A task can only be executed if all its constraints are
satisfied, i.e., all the tasks to which it is connected via incoming edges have completed.
These constraints establish the partial order of the program. If there are two or more
tasks in the graph for which this is true, they can be executed in parallel without
affecting the correctness of the program. Compared to data-parallel programming
models, where the same operations are applied in parallel to a set of data items

70 5. Tracing task-based parallel applications

(e.g., MapReduce, SIMD), programming models for task-based parallelization can
support a wider set of use cases. Many scientific applications employ algorithms and
data structures that are not embarrassingly parallel, hence data parallel models are
inadequate. Unfortunately, besides the high potential of task-based programming
models, the parallelization process remains manual and prone to errors by the user.
This is even more relevant for task-based parallel programming models that use
source-code annotations to mark task code and express execution constraints between
them. Indeed, the process of annotating code for the sake of parallelization can lead
to mistakes that would undermine the potential for parallelism due to performance
and correctness problems. Because of this, it cannot be considered a trusted process
in general. Wrong annotations can lead to synchronization issues and many hours of
bug-haunting, thus forcing developers to debug their programs in conventional (and
typically less effective) ways to try to get to the root cause of the problem.

In this chapter, we present a tracing technique to detect parallelization issues
coming from wrong or missing annotations in a fictitious programming model
which shares many properties with real-world models used in the industry. Our
reference parallel programming model uses tasks to mark parallel code regions and
dependencies between tasks to synchronize their execution. It also uses task nesting
to define multiple levels of parallelism at different scales. An important property
of our model is the capability to prove the correctness of applications by means of
structural induction: the correctness of each task depends on local task analysis and
on the correctness of the tasks it creates. To improve the effectiveness of our tracing
technique, we introduce some ad-hoc verification annotations which can be placed
manually or automatically to disable code analysis inside well-defined regions of code
or when third-party libraries, such as BLAS or MPI, are invoked. An experimental
implementation of this technique using dynamic binary instrumentation has been
evaluated for the OmpSs-2 programming model against a set of sample kernels and
real-world applications. Our results suggest that the synergistic exploitation of
run-time analysis and verification annotations can be successfully used to verify
complex applications that rely on third-party libraries and task-nesting.

Overall, the work presented in this chapter involves the Selection, Extraction,
and Analysis parts of the tracing process illustrated in Chapter 2. The original
contributions of this work can be summed up as follows:

• We describe a reference task-based programming model with task dependencies
and task nesting for which a definition of program correctness can be derived.

• We show a way to prove program correctness via structural induction and
local task analysis, to analyse each task in the program separately.

• We introduce some new verification annotations to improve the accuracy and
efficiency of our tracing technique.

5.1 Baseline formalisms

In this section we give an overview of the task-based programming model used as a
reference in the rest of this chapter. In later sections, we proceed to explain how

5.1 Baseline formalisms 71

structural induction can be used together with local task analysis to leverage the
task nesting feature of the model and prove program compliance by inductively
proving correctness for each task.

5.1.1 The TMP programming model

Our reference task-based programming model, called TMP (Task Multi-Processing)
is based on placing annotations in the source code to, starting from a sequential
program, produce a parallel version of it. As already mentioned, our model takes
inspiration from other existing programming models like OpenMP, an API for
shared memory multiprocessing programming in C, C++, and Fortran, and OmpSs-
2, a programming model developed at Barcelona Supercomputing Center (BSC)
and similar in spirit to OpenMP. In the rest of this section we explain the TMP
programming model in further detail. Throughout the section we also introduce
some class of errors, denoted with the ‘E’ prefix, that can occur in TMP programs
and which can affect the correctness of the parallelization process.

Task creation

TMP allows the expression of parallelism through tasks. Tasks are independent
pieces of code that can be executed by the parallel resources at run-time. Whenever
the program flow reaches a section of code that has been declared as a task, instead
of executing the task code, the program will create an instance of the task and will
delegate its execution to the TMP run-time environment. The TMP run-time will
eventually execute the task on a parallel resource. Therefore, in order to parallelize
a program, the user has to specify what is a task. The TMP runtime system creates
a team of threads when starting the user program execution. This team of threads is
is composed by a single master thread and several additional workers threads. The
master thread, also called the initial thread, executes sequentially the user program
in the context of an implicit task region called the initial task (surrounding the
whole program). Meanwhile, all the other additional worker threads will wait until
concurrent tasks are available to be executed. Depending on a thread’s availability
to perform work, the execution of a task is assigned to one of the threads in the
team. Whenever a thread encounters a tmp task directive, it instantiates a new
task and resumes execution after the task-creation construct. The task instance can
be executed either by that same thread at some other time or by another thread.
Thus, execution of the new task could be immediate or deferred, according to task
scheduling constraints and thread availability. Threads are allowed to suspend the
current task region at a task scheduling point in order to execute a different task.
Task scheduling points may occur at the following locations: (a) when creating a task;
(b) in a barrier directive (see later); (c) just after the completion of a task. Any
directive that defines a task or a series of tasks can only appear within code belonging
to another task, thus defining multiple levels of parallelism and implementing task
nesting (see Listing 5.1). The underlying TMP run-time environment can exploit
factors like data or temporal locality between tasks to improve the performance of
applications with task nesting. Supporting multi-level parallelism is also required to
allow the implementation of recursive algorithms.

72 5. Tracing task-based parallel applications

1 #pragma tmp task label(T1)
2 {
3 ...
4

5 #pragma tmp task label(T2)
6 ...
7 }

Listing 5.1. Creating tasks in TMP

Task dependencies

TMP tasks require data in order to do meaningful computation. Usually a task will
use some input data to perform some operations and produce new results that can
be later on be used by other tasks or parts of the program. These data references can
be declared via the in, out, or inout clause, meaning respectively that a task will
use them as an input, an output, or both. The set of all data references constitutes
the dataset of a task. Each time a new task is created, the dataset is matched
against those of previously-created tasks to produce execution-order constraints
between them. We call these constraints dependencies. This process creates a task
dependency graph at runtime that guarantees a correct order of execution for the
application. There are three possible dependencies: Read-after-Write (RaW), Write-
after-Write (WaW) or Write-after-Read(WaR). Tasks are scheduled for execution as
soon as all their predecessor in the graph have finished, or at creation if they have
no predecessors. Listing 5.2 illustrates an example of tasks with dependencies.

1 #pragma tmp task in(a) out(b) inout (c)
2 {
3 c += a;
4 b = c;
5 }

Listing 5.2. Creating dependencies in TMP

Note that whether the task really uses that data in the specified way its the
programmer responsibility.

E1 (No matching dataset entry for an access). It is it is a mistake to access a shared
object from within a task if that object is not in the task dataset. In the example,
since x is not in the dataset of the task, it won’t generate any dependency. Therefore,
if there is another task accessing the same variable the two tasks would generate a
data race on x. This would happen regardless of whether the second task has or not
a dependency on x.

1 int x = 10;
2

3 #pragma tmp task
4 {
5 x++;
6 }

By default, every task in TMP can only be connected via dependencies to a
limited set of other tasks, which are those in the same dependency domain. In

5.1 Baseline formalisms 73

TMP, the dependency domain of a task is the set of sibling tasks. Therefore, the
TMP runtime system will establish input/output dependencies between two tasks
if their datasets match and they are siblings. To connect two tasks t and t′ which
are not siblings, but have a common ancestor ta, we can pass the dataset of both
t and t′ upwards to all their intermediate ancestors until we reach ta. By doing
this, the runtime will merge the dependency domain of all tasks from t to ta, and
from t′ to ta, thus being able to establish a dependency between t and t′. This
mechanism guarantees synchronization between tasks in different domains and in
different hierarchies, However, it is inefficient because augmenting the dataset of
a task may defer its execution unnecessarily. The entries that were added to the
datasets of tasks at each intermediate nesting level only serve as a mechanism to
connect different dependency domains. In this sense, allowing them to defer the
execution of the intermediate tasks is unnecessary, since these tasks don’t actually
perform any conflicting accesses by itself. After all, users are only interested in
linking the dependency domains for these tasks, without affecting their execution.

To this extent, the dependency model in TMP supports weak dependencies.
These are created via the weakin, weakout, and weakinout clauses. Their purpose
is to inform the runtime that some descendant of the current task is accessing the
data elements specified in the weak variant. Weak dependencies do not imply a
direct dependency, and thus do not defer the execution of tasks. Their purpose is to
serve as linking point between the dependency domains of different tasks in different
hierarchies. Listing 5.3 provides an example of weak dependencies. T1.1 and T2 live
in different dependency domains. However, the runtime is able to establish a WaR
dependency between them because T1 declares the access to b via the weak variant.
Notice that no synchronization is necessary between T1 and T2 because T1 by itself
does not perform any action that requires the enforcement of the dependency. Those
actions will be performed by T1.1, or a deeply nested subtask.

1 #pragma tmp task in(a) weakout (b) label (T1)
2 {
3 ...
4 #pragma tmp task out(b) label (T1 .1)
5 ...
6 }
7

8 #pragma tmp task in(b) weakout (c) label (T2)
9 {

10 ...
11 #pragma tmp task out(b) label (T2 .1)
12 ...
13 }

Listing 5.3. Connecting tasks via weak dependencies in TMP

This mechanism is transparent to the user, but it can’t be unintuitive at times.

E2 (No matching (weak) dataset entry in the parent task). Failing to specify a
(weak) dataset entry in the parent task is a mistake if the current task accesses
a shared object or, has itself a weak reference to it. This is an error because the
model states that if dependency domains are not properly connected, accesses to the
same object in different domains will not be synchronized. In the example, T1.1 is

74 5. Tracing task-based parallel applications

accessing x directly, while T2.1 has a weak reference to it. However, neither T1 nor
T2 have a weak reference to x. T1 should declare a (weak)in(x), while T2 should
declare a (weak)out(x). Failing to do so prevents the TMP runtime from creating
an execution constrain between T1.1 and the descendants of T2.1 which access x.

1 int x = 10;
2

3 #pragma tmp task label(T1)
4 {
5 #pragma tmp task in(x) label (T1 .1)
6 ...
7 }
8

9 #pragma tmp task label(T2)
10 {
11 #pragma tmp task weakout (x) label (T2 .1)
12 ...
13 }

Task barriers

So far we have illustrated the mechanisms that are used in TMP to transparently
synchronize two different tasks that will otherwise conflict on their accesses to a
shared object. Strong dependencies can be used if the task t is directly accessing
an element, as a way to synchronize the task itself with other tasks that share the
same dependency domain. Weak dependencies are used in t if some (deeply nested)
subtask t′ is accessing that element, to make sure that it will synchronize with tasks
that can only be reached through the dependency domains of t or its ancestors.

However, to synchronize accesses between a task t and one of its descendants t′
we need to explicitly set synchronization points, as the dependency system cannot
create execution-order constraints between t and t′ by only looking at their datasets.
These synchronization points are defined using the barrier directive, and can be
specialized by adding a dataset to it. When a dataset is present, the TMP run-time
will look at the tasks in the same dependency domain to establish dependencies
between the barrier and other (descendant of t) tasks. If dependencies are formed,
the barrier will wait until its dependencies can be satisfied. Notice that for this
mechanism to work as expected, the dependency domains of the descendant tasks
need to be properly linked to that of the barrier via at least weak dependencies
(see previous section). In the absence of a dataset, the barrier will wait until all
descendants of t have completed. In Listing 5.4, the first assert won’t be executed
until all previous descendant tasks writing on x have terminated. The second task
might not have terminated at this point. However, by the time the second assert is
executed, all previous descendant tasks must have completed, included the second.
Using barriers, proper synchronization can be guaranteed between T1 and its three
descendant T1.1, T1.1.1, and T1.2.

1 #pragma tmp task label(T1)
2 {
3 int x = 0, y = 2;
4

5 #pragma tmp task weakinout (x) label (T1 .1)

5.2 Local task analysis 75

6 {
7 ...
8

9 #pragma tmp task inout(x) label (T1 .1.1)
10 x++;
11 }
12

13 #pragma tmp task in(x) inout (y) label (T1 .2)
14 y -= x;
15

16 #pragma tmp barrier in(x)
17 assert (x == 1);
18

19 #pragma tmp barrier
20 assert (x == y);
21 }

Listing 5.4. An example of the different taskwait constructs in TMP

Placing barrier at appropriate points in code can be very difficult at times and
leads to a single class of errors which however can be very difficult to debug by hand.

E3 (No barrier between an access and previous tasks). Not protecting an access to
an object that is shared with a previously-created child task is a mistake in TMP.
Every object that is also accessed by previous child tasks must be protected by a
barrier. More precisely, there must be a barrier between the access to the object and
the previous child tasks that were created after the last barrier without a dataset,
or that were not affected by any barrier with a dataset after their creation. In the
example, there a missing barrier (no dataset) or barrier in(x) directive before
the write to y in task T1. Its absence may lead to a lack of dependencies between it
and the descendant task T1.1.1, because the accesses to x are not synchronized as
the two tasks can run in parallel.

1 int x = 10;
2

3 #pragma tmp task inout(x) label (T1)
4 {
5 int y;
6 x = 5;
7

8 #pragma tmp task weakinout (x) label (T1 .1)
9 {

10 ...
11 #pragma tmp task inout(x) label (T1 .1.1)
12 x++;
13 }
14

15 y = x + 6;
16 }

5.2 Local task analysis

Table 5.1 provides a compact lists of the errors that were discussed in Section 5.1,
grouped according to which elements are checked to detect these errors: accesses

76 5. Tracing task-based parallel applications

E Description
G1. Compare accesses and datasets of the same task
E1 No matching dataset entry for an access
G2. Compare datasets of two adjacent task in the hierarchy
E2 No matching weak dataset entry in the parent task
G3. Compare accesses of a task with datasets of child tasks
E3 No barrier between an access and previous tasks

Table 5.1. Programming errors in TMP

with dependencies (G1 and G2), and dependencies with dependencies (G3). These
comparisons are only made within the same task (G1), a task and its child tasks
(G2 and G3), or a task and its parent task (G3). It is never necessary to compare
accesses from a task with accesses of another task, or access/dependencies from a
task to dependencies of a strict ancestor/descendant of that task. To check that
a task is free of errors in Table 5.1, we only need to look at what happens within
the code of task itself, the annotations of its parent (if any), and the annotations of
its children (if any). We call local task analysis the kind of processing we carry out
within our Analysis step because such analysis doesn’t need to reason globally, i.e.,
at the level of the whole program.

To understand how local task analysis works, let’s consider a task t in the
program. Let tp be its parent task, and tc be a child task. Let clkt be the time at
which t was created by tp. Let d(t,i) be the i-th dataset entry of t, defined as a tuple
〈m,weak, I〉, where m ∈ {r, w} is the access mode (read or write), weak ∈ {>,⊥}
tells if the entry is weak or not, and I is a sequence of intervals of type i = 〈l, h〉,
where l is the lowest non-contiguous address since the last interval (if any), and h
is the highest contiguous address before the next interval (if any). Let Dt be the
sequence of all dependencies of t. Let a(t,j) be the j-th memory access performed by
t, defined as a tuple 〈m, clk, i〉 with i = 〈l, h〉 and clk being the time at which the
access was performed. Let At be the sequence of all accesses of t (also called the
access-set of t). Finally, let Bt be the set of barriers of task t. Each entry b(t,k) is a
tuple 〈m, clk, I〉, where clk is the time at which the barrier was created.

To detect errors of type E1, we verify if there is at least one access performed by
t that doesn’t have a corresponding dataset entry.

Condition 1 (E1 detection). To detect errors of type E1, we check if, for each
a(t,j) ∈ At, there it at least one d(t,i) ∈ Dt for which:

• a(t,j).i ⊆ d(t,i).I, and

• d(t,i).m = a(t,j).m

If there is any a(t,j) for which no d(t,i) satisfies the above conditions, then t is
affected by E1.

To detect errors of type E2, we verify that there is at least one dataset entry of t
(weak or not) that doesn’t have a corresponding dataset entry in its parent (at least
weak).

5.2 Local task analysis 77

Condition 2 (E2 detection). To detect errors of type E2, we check if, for each
d(t,i) ∈ Dt, there is at least one d(tp,ip) ∈ Dtp for which:

• d(t,i).I ⊆ d(tp,ip).I, and

• d(t,i).m = d(tp,ip).m

If there is any d(t,i) for which no d(tp,ip) satisfies the above conditions, then t is
affected by E2.

To detect errors of type E3, we verify that there is at least one access performed
by t that is not protected by a barrier. The access must have a corresponding dataset
entry in one of the previously-created child tasks, such that at least one amongst
the access and the dataset entry is a write. The barrier must be missing between
the access and the creation of such child task.

Condition 3 (E3 detection). To detect errors of type E3, we check if, for each
a(t,j) ∈ At, there is at least one d(tc,ic) ∈

⋃
tc Dtc for which:

• a(t,j).i ⊆ d(tc,ic).I, and

• a(t,i).m = d(tc,ic).m, and

• a(t,i).clk > clktc, and

• there is no b(t,k) ∈ Bt for which:

– a(t,i).m = b(t,k).m, and
– b(t,k).clk < a(t,i).clk, and
– b(t,k).clk > clktc, and
– b(t,k).I ⊆ d(tc,ic).I, and
– b(t,k).m = w, or d(tc,ic).m = w, or both.

If there is any a(t,j) for which it is true, then t is affected by E3.

Conditions 1 to 3 give us a way to detect the errors in Table 5.1. However, to
translate them into concrete algorithms, we need to convert them into algorithms,
and the mathematical objects they use into concrete data structures. Section 5.4
provides an experimental implementation of local task analysis based on binary
search trees and operations over them.

5.2.1 Verification annotations

As explained in the previous section, detecting parallelization errors requires checking,
among other things, the memory accesses of each task with the dataset entries of
the same task, or those of other tasks. Notice that this is done for every memory
accesses performed within the task, including those accesses coming from third-
party or standard libraries. While this might be desirable for some libraries, it
may pose accuracy and performance problems in other cases. Tasks might include

78 5. Tracing task-based parallel applications

code which accesses meta-data that are not interesting from the point of task-
based parallelization. For example, some code may use ad-hoc techniques for
synchronization that are opaque to TMP (e.g., spinlocks, HTM, RMW instructions,
etc...). Every memory access performed within such explicit synchronization code
would be detected by our tools as a potential candidate for parallelization errors.
Additionally, it might slow down the local task analysis by orders of magnitude. In
Listing 5.9, the task is performing an I/O operation which internally may coordinate
for the use of a shared I/O buffer via additional memory operations that aren’t
relevant.

1 #pragma oss task
2 {
3 int x = 5;
4

5 printf ("%d", x);
6 ...
7 }

Similarly, some code which is relevant for tracing might be quite simple to
understand in terms of its interaction with memory, but have an arbitrarily complex
structure. Regardless of the concrete number of memory accesses which are performed
(and memory addresses which are touched) its semantics could be described very
precisely in a succinct way. However, the price to detect such patterns would be
function of the complexity of the code, rather than its semantics. In Listing 5.2.1 a
task is performing TS2 accesses to the same number of cells of a matrix, but the
final effect is that of traversing a well-defined contiguous region for writing.

1 double A[N/TS][M/TS][TS][TS];
2 ...
3 for (long ii = 0; ii < TS; ii ++)
4 for (long jj = 0; jj < TS; jj ++)
5 A[i][j][ii][jj] = value ;

Tasks might additionally make use of code that internally use synchronization di-
rectives and perform accesses to irrelevant meta-data together with relevant accesses,
according to some well-defined semantics. In Listing 5.2.1 a task is performing two
MPI operations whose visible effects are just those of reading some bytes from a
send buffer and writing an equivalent number of bytes to a receive buffer.

1 MPI_Send (sendbuf , size , MPI_BYTE , dst ,
2 block_id +10, MPI_COMM_WORLD);
3 MPI_Recv (recvbuf , size , MPI_BYTE , src ,
4 block_id +10, MPI_COMM_WORLD ,
5 MPI_STATUS_IGNORE);

What is common to all these examples is a given piece of code whose semantics
can be confusing for our local task analysis. Fortunately, the quality of our local
task analysis in terms of tracing overhead and accuracy can be reduced by user
interventions on the source code. In this section, we introduce two new TMP
annotations to assist with the task of checking the parallelization of code: (1) the
lint directive, which accepts three keywords to define data references appearing
within the related code: in, out, and inout; and (2) the verified clause optional
in the task construct. Overall, the purpose of both features is the same: pause the
analysis for the targeted code, although the accesses declared via the data references

5.2 Local task analysis 79

of the lint or task pragma are registered and taken for granted for the wrapped
code. Intercepting these directives while tracing the application therefore affects
both the Selection and Extraction steps of our tracing methodology, as we can
both filter irrelevant accesses performed within the ignored regions, and extract the
only relevant information about them—that is, data references information. In the
remaining of this section, we proceed to explain the new annotations in more details.

The lint pragma

The lint pragma can be put inside task code to avoid analysing the code wrapped
by the directive. This is useful to mark code that has no effect on the dataset of
a task. For example, we can mask library functions performing I/O operations, or
exclude initialization and finalization code in a task that is known to only access
private memory. The pragma also allows to specify which memory operations are
performed within a marked region of code, and to which memory addresses. The
pragma accepts three main keywords: in, out, inout. They are equivalent to those
specified for a task dataset and allow the user to state which are the shared object
read and/or written within the wrapped code. The local task analysis can use these
data-references as a hint of the accesses that were performed within the code, so
that it doesn’t have to derive them by itself. This brings many benefits in terms of
accuracy and performance of the analysis. Consider the four cases below:

1 #pragma tmp lint inout (m[0:n])
2 x = malloc (n * sizeof (int));
3

4 #pragma tmp lint out(m[0:n])
5 free(x);
6

7 #pragma tmp lint in(sendbuf [0: size]) out(recvbuf [0: size])
8 {
9 MPI_Send (sendbuf , size , MPI_BYTE , dst ,

10 block_id +10, MPI_COMM_WORLD);
11 MPI_Recv (recvbuf , size , MPI_BYTE , src ,
12 block_id +10, MPI_COMM_WORLD ,
13 MPI_STATUS_IGNORE);
14 }
15

16 double A[N/TS][M/TS][TS][TS];
17

18 #pragma tmp lint out(A[i][j])
19 for (long ii = 0; ii < TS; ii ++)
20 for (long jj = 0; jj < TS; jj ++)
21 A[i][j][ii][jj] = value ;

Listing 5.5. Four different tmp lint use cases

In the first case, we are using the oss lint pragma to instruct the analysis
that an allocation has been performed. At the same time, we are also disabling
the analysis within the malloc function, which is probably a good idea given that
its implementation can be arbitrarily complex and can involve accesses to shared
objects (e.g., locks) defined within the library that implements it. The second
case is analogous to the first, but memory is released. Analysis is also disabled, so
that whatever happens within the call to free cannot be seen. The third example

80 5. Tracing task-based parallel applications

describes a very common case in which we are using some API functions to read
and/or write buffers in memory via I/O operations. It is what happens, for example,
with the MPI_Send and MPI_Recv functions. According to the textual description
of these functions, and regardless of their implementation, they are respectively
reading/writing N bytes from/to memory. Not only the implementation of these
functions can be arbitrary complex so as to slow down the analysis by orders of
magnitude, but it can also affect negatively the accuracy of the generated report.
Indeed, the synchronization mechanisms used within these functions are independent
of the TMP execution model and, as such, may require to access objects that aren’t
(and shouldn’t be) declared as dependencies in the task where these functions are
invoked. The fourth case is that of nested loops where the final effect is that of
traversing a well-defined portion of an array for reading and/or writing. By marking
this code with the pragma and summarizing its behaviour we are saving the cost of
analysing a number of accesses that is proportional to the number of iterations. The
analysis would still correctly detect all the accesses performed within the loop and
there wouldn’t be any accuracy concern, but the overall execution time would be
much greater due to the cost of analysis.

The verified attribute

Users are also provided another way to disable analysis at the level of whole tasks, via
the verified keyword that can be passed to the oss task pragma. Conceptually,
the effect of the verified flag is equivalent to wrapping the entire task code within
an lint pragma, specifying as dataset the same data-references used for the task
pragma. Performance wise, the verified attribute is equivalent to wrapping the
entirety of task code with a lint pragma, because analysis is disabled for the whole
task. The verified task also comes with an optional expression that is evaluated
at run-time to decide whether memory tracing for the task will be disabled or not.
This expression can be used to conditionally evaluate tasks that are more likely to be
subject to programming errors—for example, task that are related to boundary loop
iterations. Additionally, it can be used as a way to implement task-level sampling
and reduce the overall memory tracing overhead of the application (e.g., instrument
one out of N task instances).

1 for (int i = 0; i < N; ++i)
2 #pragma tmp task verified (i % M)
3 ...

Listing 5.6. An example of the verified attribute

5.3 Proving program-level correctness

Local task analysis and task nesting can be exploited to prove the correctness of
the whole program by only looking at what happens within each task individually.
To understand why, let’s consider a TMP program p and a task t in it. We call t
TMP-compliant if it is free of errors in Table 5.1 and if, for every tc who is child
of t, tc is TMP-compliant. If t0 is the initial task in the program, and it is TMP-
compliant, then p is TMP-compliant. The notion of TMP-compliance is therefore a

5.3 Proving program-level correctness 81

combination of local task analysis and task nesting: the former is used to check the
presence of errors in the task itself; the latter is used to inductively reason about
increasing portions of the code in the program, until we reach the initial task which
represents the whole program. Local task analysis and task-level TMP-compliance
have a direct implication on the correctness of the task. To understand why, let’s
consider a TMP program p and a task t in it. We call a conflict the absence of
synchronization between two tasks t and t′′ which may generate a synchronization
problem at run-time (e.g., a data race). If t and t′′ cannot conflict, they are said to
be conflict-free (CF). We want to prove that if a task t is TMP-compliant, then no
two tasks t′ and t′′ which are descendant of t can conflict. If that is the case, t is
internally conflict-free. In the rest of this section, we prove that TMP-compliance
is a sufficient condition for internal conflict-freedom, meaning that if a task t is
TMP-compliant, then its descendant tasks can only race with tasks that are created
outside of t. To prove this fact, we proceed by considering pairs of tasks t and t′ in
three different cases: (a) when they live in the same dependency domain; (b) when
they live in different dependency domains and have a strict common ancestor; (b)
when they live in different dependency domains and one is a descendant of the other.

Theorem 1 (CF1). Let t and t′ be in the same dependency domain. If they are not
affected by E1, then they are conflict-free.

Proof. If the two tasks are not affected by E1, it means that every access in the
access-set of t and t′ is contained in the respective datasets. If the access-sets of t
and t′ don’t intersect, the datasets of t and t′ won’t, and there won’t be any conflict.
If they do intersect, there will be an intersection in the datasets of t and t′ which will
generate a dependency, because the two tasks are in the same dependency domain.
Therefore, there won’t be any conflict.

Condition CF1 is sufficient to prevent conflicts between the two tasks, if t′ and t
are in the same dependency domain, because the model guarantees that they will be
able to form dependencies, if necessary. Notice that we don’t need to compare the
accesses of t and t′ directly because the local task analyses on t and t′ compose to
imply conflict-freedom between the two tasks. The opposite is not true: conflict-
freedom between the two tasks doesn’t imply that t and t′ are exempt of those
errors E1. The absence of these errors is a sufficient but not necessary condition. In
Listing 5.7, the second task won’t be created until the first has completed. T1 and
T2 are both affected by E1, but the program is conflict-free.

1 #pragma tmp task label(T1)
2 {
3 x++;
4 }
5

6 #pragma tmp barrier
7

8 #pragma tmp task label(T2)
9 {

10 x--;
11 }

Listing 5.7. CF1 is not a necessary condition for conflict-freedom

82 5. Tracing task-based parallel applications

Theorem 2 (CF2). Let t and t′ be two tasks in different dependency domains with
a common strict ancestor ta. Let α(t) and α(t′) be the sequences of ancestors of t
and t′ up to ta (excluded). Let t̂ and t̂′ be respectively the ancestors in α(t) and α(t′)
which are direct children of ta. If t and t′ are not affected by E1, and t ∪ α(t) \ t̂
and t′ ∪ α(t′) \ t̂′ are not affected by E2, then t and t′ are conflict-free.

Proof. If the tasks t∪α(t) \ t̂ and t′ ∪α(t′) \ t̂′ are not affected by E2, then it means
that the tasks α(t) and α(t′) declare (at least weak) dataset entries for every entry
respectively in t and t′. This means that the tasks t̂ and t̂′, which are in the same
dependency domain, will be able to form (at least weak) dependencies between them,
thus affecting the execution of their descendent tasks up to t and t′. If the two tasks
t and t′ are not affected by E1, it means that every access in the access-set of t
and t′ is contained in their respective datasets. If the access-sets of t and t′ don’t
intersect, the datasets of t and t′ won’t, and there won’t be any conflict. If they do
intersect, there will be an intersection in the datasets of t and t′ which will generate
an execution-order constraint at the level of tasks t̂ and t̂′, which are in the same
dependency domain. Therefore, there won’t be any conflict.

To evaluate CF2 we don’t need to check the accesses of t and t′ directly, because
we are composing the local task analyses carried out on the two tasks and their
ancestors separately. Once again, conflict-freedom between the two tasks doesn’t
imply that t and t′ are free of errors E1, nor that they and their ancestors are not
affected by E2. In Listing 5.8, T1 is affected by E2 and T2 is affected by E1, but
the overall program is conflict-free.

1 #pragma tmp task in(a) label (T1)
2 {
3 ...
4 #pragma tmp task out(b) label (T1 .1)
5 ...
6

7 #pragma tmp taskwait
8 }
9

10 #pragma tmp task label(T2){
11 b += 1
12 }

Listing 5.8. CF2 is not a necessary condition for conflict-freedom

Theorem 3. Let t and t′ be two tasks such that t′ is a descendant of t and α(t′) are
the ancestors of t′ until t excluded. Let t̂′ be the ancestor in α(t′) which is a direct
child of t. If t is not affected by E3, t′ ∪ α(t′) \ t̂′ are not affected by E2, and t′ is
not affected by E1, then t and t′ are conflict-free.

Proof. If t is not affected by E3, it means that every access from t which intersects
with the dataset of t̂′ is guarded by a barrier, whose dataset contains the conflicting
accesses. If tasks in t′ ∪ α(t′) \ t̂′ are not affected by E2, then it means that the
tasks α(t′) declare (at least weak) dataset entries for every dataset entry in t′. This
means that the task t̂′ and the barrier, which are in the same dependency domain,
will be able to form (at least weak) dependencies between them, thus affecting the

5.3 Proving program-level correctness 83

execution of their descendent tasks up to t′. If t′ is not affected by E1, it means that
every access in the access-set of t′ is contained in its dataset. If the accesses in t
and the access-sets of t′ intersect, there will be an intersection in the datasets of the
barrier and t′ which will generate an execution-order constraint at the level of the
barrier and t̂′, which are in the same dependency domain. Therefore, there won’t be
any conflict. This means that t can’t be affected by E3.

CF3 doesn’t require to check the accesses of t and t′ directly because the local
task analyses can be composed. However, conflict-freedom between the two tasks
doesn’t imply that t is free of error E3, nor that t′∪α(t′)\ t̂′ are free of errors E2, nor
that t′ is free of errors E1. In Listing 5.9, T1.1 is affected by E2 as there is no (weak)
reference to x. T1 is affected by E3 because it relies on an external synchronization
mechanism (e.g., a monitor) to coordinate with T1.1.1. Nevertheless, T1 and T1.1.1
are conflict-free (excluding the meta-data used to achieve proper synchronization).

1 synchr_variable_t sv;
2

3 #pragma tmp task label(T1)
4 {
5 #pragma tmp task label (T1 .1)
6 {
7 #pragma tmp task label(T1 .1.1) out(x)
8 {
9 x--;

10 sv_release (sv);
11 }
12 }
13

14 sv_wait (sv);
15 x++;
16 }

Listing 5.9. CF3 is not a necessary condition for conflict-freedom

Let’s now consider a task t for which we claim TMP-compliance. We can prove
that t is internally conflict-free.

Theorem 4. Let t be t be a TMP-compliant task. Then, there cannot be two tasks
t′ and t′′ in t that conflict, meaning that t is internally conflict-free.

Proof. If t is TMP-compliant, it means that it is free of errors E1, E2, and E3, and
that every descendant t′ of t is TMP-compliant. We can use conditions CF1, CF2,
and CF3 to prove the theorem in an incremental manner:

1. The fact that each t′ is free of errors E1, by CF1, excludes conflicts with any
tasks t′′ in the same dependency domain.

2. The fact that each t′ is also free of errors E2, by CF2, excludes conflicts with
any task t′′ that is not in the same dependency domain, but for which there is
a common ancestor ta that is in t or coincides with t.

3. The fact that each t′ is also free of errors E3, by CF3, excludes conflicts with
any task t′′ that is a descendant of t′.

84 5. Tracing task-based parallel applications

Additionally, the fact that t is TMP-compliant implies that t is free of errors
E3, meaning that it can’t conflict with any of its descendants t′. This is because
by CF3, if such tasks t′ are TMP-compliant, they are free of errors E1, E2, and 3,
hence there can’t be conflicts.

We can now prove that a program p which is TMP-compliant is also internally
conflict-free, hence no task t in it can conflict with any other task t′.

Theorem 5. Let p be a TMP-compliant program. Then, p is conflict-free.

Proof. If p is TMP-compliant, then the initial task t0 is TMP-compliant, meaning
that it is also internally conflict-free. Since there are no other tasks outside of t0,
internal conflict-freedom is sufficient to prove that p is conflict-free.

In general, a program p doesn’t need to be TMP-compliant to be conflict-free.
In fact, the examples in Listings 5.7 to 5.9 can be used as building block to provide
a working counter-example.

5.4 Experimental assessment
In this section we discuss an experimental implementation of our analysis. Our
objective is to demonstrate that it can be effectively used to evaluate scientific appli-
cations that benefit from task-based parallelization. To do this, we implemented our
analysis into a dynamic binary instrumentation tool for the OmpSs-2 programming
model. We then evaluated the tool on a set of nine benchmarks representative of
different execution kernels and scientific problems.

5.4.1 Implementations details

In this section we provide further details on the OmpSs-2 programming model and
the tool we developed.

The OmpSs-2 programming model

OmpSs-2 is a programming model developed at Barcelona Supercomputing Center
(BSC) and similar in spirit to OpenMP, an API for shared memory multiprocessing
programming in C, C++, and Fortran. Compared to OpenMP, OmpSs-2 has a more
advanced execution model to synchronize the execution of different tasks via the
specification of weak dependencies, just like TMP. It also has a different way of
sycnhronizing a task with its descendant, which however can be easily emulated with
OmpSs-2 taskwait functionality (analogous to TMP’s barrier). TMP is a strict
subset of OmpSs-2. Compared to TMP, OmpSs-2 use the oss prefix for compiler
directives and supports additional functionalities:

• It defines a mechanism to release the dependencies that do not need to be
enforced anymore. For instance, a task may use certain data only at the
beginning and then perform other lengthy operations that unnecessarily delay
the release of the dependencies associated to that data.

5.4 Experimental assessment 85

• It supports commutative and concurrent dataset entries. They are similar
to inout dataset entries, but dependencies between two commutative entries
don’t imply any particular order (although guranteeing sequential execution),
while dependencies between two concurrent entries are enforced (meaning that
synchronization is left to the user).

• Tasks creation can be blocking, using the conditioned if attribute. When the
condition is true, the parent tasks won’t resume execution until the child task
has terminated. This functonality can be used to implement barriers with
datasets.

• Tasks creation can be disabled using the conditioned final attribute. When
the condition is true, all child tasks that are created will be executed within
the context of the parent task, hence all weak dependencies become strong for
the task. This funcionality can be exploited to avoid the overhead of creating
child tasks when this overhead is bigger than the time to execute the task
themselves.

OmpSs-2 also supports other parallelization directives, such as task reductions,
task loops, and critical regions. For a in-depth explanation of these features, consult
the official OmpSs-2 specification [13]. We introduced some changes to the OmpSs-2
software stack at BSC to make it possible to analyse OmpSs-2 applications in the
way described in this chapter. More precisely, we introduced the following changes:

• We added a new instrumentation variant to Nanos6, BSC’s OmpSs-2 runtime,
to allow our run-time tool to subscribe to some task-level events of interests
(more details on this in the next section).

• We introduce a pragma oss lint directive and a new verified flag to the
pragma oss task directive, whose meanings are the same as the ones described
in Section 5.2.1. These changes have been introduced into the Mercurium
source-to-source compiler [40].

• We also enriched the Mercurium built-in infrastructure for static analysis
with a new algorithm that analyzes the source code of an OmpSs-2 program
and annotates it with the directives proposed in Section 5.2.1. This static-
time analyser is not part of the work illustrated in this chapter, but is used
in the experimental evaluation to demonstrate the effectiveness of placing
verification annotation in source code for the sake of tracing accurancy and
tracing overhead. More details on the techniques employed in the static-time
analyser can be found in [73].

OmpSs-2 Linter

Our run-time tracing process is based on a dynamic binary instrumentation tool
built on top of Intel’s PIN [69]. It takes as input an application parallelized using
OmpSs-2 and provides a report of all parallelization errors that were encountered
by tracing the application. When an OmpSs-2 application is run through this tool,
memory accesses issued by tasks are recorded and temporarily saved to a storage area.

86 5. Tracing task-based parallel applications

Figure 5.1. Interaction of the run-time tool with other software components

For each task, the recorded memory accesses are later processed at task completion
time and compared with task information (e.g., dependencies) to check for potential
parallelization errors. For each of such errors a warning is generated to report to the
user about the problem. The report comes with additional contextual information
such as: address and size of the mismatching memory access (if any) along with its
access mode (i.e., read or write); name of the involved dependency (if any) with the
expected directionality (in, out, inout); variable name (if found); task invocation
point in the source code (i.e., line in the respective file).

The tool operates at two different levels of abstraction: (1) the abstraction
provided by the OmpSs-2 programming model to deal with task and dependencies,
which also forms the basis of TMP (see Section 5.1); (2) the abstraction provided
by the target Instruction Set Architecture (ISA) to recognize accesses to memory,
which in our case is AMD64. As illustrated in Figure 5.1, the target program is
composed of the actual OmpSs-2 application and, if available, debugging information
(i.e. symbol table and DWARF sections). The target program interacts with Nanos6
to execute in parallel on the available cores. When oss pragmas are translated
by Mercurium into calls to Nanos6, these calls invoke task-based primitives which
update the internal execution state of each task. Internally, Nanos6 maintains a
state machine for each task to keep track of its execution state over time. Nanos6

5.4 Experimental assessment 87

provides an Instrument API to subscribe to state transitions in the task state
machine and perform custom actions. Our instrumentation tool is composed of
three main components: the PIN virtual machine (VM) that performs dynamic
binary instrumentation and two modules that perform memory access tracing of the
binary executable. The frontend module is dedicated to intercepting the accesses
performed by the application at run-time and generating the actual traces, while
the backend module is responsible for the processing of traces and generates the
final user report. Our tool interacts with the rest of the software as follows. It
executes the original application via the Pin VM. Events of interests at the ISA
abstraction level (i.e., memory reads and writes) are intercepted via the PIN VM
itself, which gives control to the trace generator module. Out tool also intercepts
events of interests at the OmpSs-2 programming model level via Nanos6’s Instrument
API; these events are: when a task is created or destroyed, begins or ends, is put
to wait via a full or partial synchronization, when dependencies are available or
released. When one of these events occur, the PIN VM once again gives control
to the frontend module. The backend module is invoked when a task completes
execution. It loads traces from the storage area and combines them with information
coming from Nanos6 via the Instrument API to detect parallelization errors. To
provide contextual information, each entry of this report is further combines with
information coming from the debug metadata available, if any, in the executable file.
To date, the tool support all core functionalities of OmpSs-2 shared with TMP, plus
the manual release of dependencies, the if and final task attributes, commutative
and concurrent dataset entries. Other advanced parallelization constructs are not
supported, meaning that all errors resulting from the use of these directives can’t
be detected. Despite that, the resulting restricted OmpSs-2 model is nevertheless
general enough to support a wide-range of real-word applications and use cases, as
shown in the next section.

Internally, local task analysis is implemented using binary search tree operating
on intervals of contiguous memory addresses. These intervals can be easily derived
from dataset entries, due to the way OmpSs-2 enables the user to specify as dataset
entries entire C, C++, Fortran objects, or portions of it (included arrays). As for
task accesses, our tool implements an aggregation operation that merges together
all the accesses coming from the same instruction that touch consecutive memory
accesses. While this aggregation has a detrimental effect on performance when
it comes to build the access-set of a task, it speeds up the subsequent local task
analysis. Indeed, checking for the different errors becomes a matter of intersecting
different binary search trees, looking for overlapping intervals and checking for the
conditions 1 to 3. For all intervals for which no match can be found, that interval is
reported as an error. The case of E3 errors is lightly more complex as it involves
barriers. Our approach to implement condition 3 was to maintain an expiry clock
for all dataset entries of all child task of a task. The expiry clock is set as soon as
we exit from a barrier. If it is a barrier with no dataset, all the child dataset entries
are set as expired. Otherwise, we only set as expired the dataset entries that match
with the entries in the barrier. Accesses are then compared with the child dataset
entries that are not exprired at the time each access is performed.

88 5. Tracing task-based parallel applications

5.4.2 Benchmarks

Our testbed is composed of a set of six typical kernels (matmul, dot-product,
multisaxpy, mergesort, cholesky, and nqueens) and three proxy application
(nbody, heat, and HPCCG). For each of these benchmarks we provide a small descrip-
tion of their inner workings and the accepted input parameters.

matmul

This benchmark runs a matrix multiplication operation C = A ·B, where A has size
N×M , B has sizeM×P , and the resulting matrix C has size N×P . Parallelization
is achived using tiling which relies on block partitioning with block size TS. The
problem size for this benchmark is given byM×N×P . The degree of parallelization
for this benchmark is given by TS. In our experiments we use M = N = P = 128
and TS = 8.

dot-product

The dot-product takes two equal-length Nvectors and returns a single scalar. Paral-
lelization is achieved using tiling which relies on block partitioning with block size TS.
The problem size for this benchmark is given by N . The degree of parallelization for
this benchmark is given by TS. In our experiments we use N = 8192 and TS = 64

multisaxpy

This benchmark runs several SAXPY operations. SAXPY stands for “Single-
Precision A·X Plus Y”. It is a Level 1 operation in the Basic Linear Algebra
Subprograms (BLAS) package, and is a common operation in computations with
vector processors. Each SAXPY operation solves the equation Y = A · X + Y ,
where X and Y are two vectors of size N , and A is a scalar value. Parallelization
is achieved using tiling which relies on block partitioning with block size TS. The
problem size for this benchmark is given by N . The degree of parallelization for
this benchmark is given by TS. A further parameter I specifies the number of
times the SAXPY problem will be solved. In our experiments we use N = 4194304,
TS = 1024, and I = 1.

mergesort

This benchmark runs a Merge Sort operation. It recursively halves an unsorted
vector X and sorts these chunk, until it gets to a sorted vector X ′. Parallelization is
achieved via a divide-and-conquer approach which relies on a maximum chunk size
TS. This means that all chunks will a size lower than TS won’t create new tasks.
The problem size for this benchmark is given by N . The degree of parallelization
for this benchmark is given by TS. In our experiments we use N = 65536 and
TS = 512.

5.4 Experimental assessment 89

cholesky

This benchmark runs a Cholesky decomposition over a square matrix A of side N .
The code uses the CBLAS and LAPACKE interfaces to both BLAS and LAPACK.
Parallelization is achieved using tiling which relies on block partitioning with block
size TS. The problem size for this benchmark is given by N . The degree of
parallelization for this benchmark is given by TS. In our experiments we use
N = 16384 and TS = 128.

nqueens

This benchmark computes, for a N ×N chessboard, the number of configurations
of placing N chess queens in the chessboard, such that none of them is able to
attack any other. It is implemented using a Branch-and-Bound algorithm. A sub-
problem consists of checking if the current queen, placed at coordinates (i, j) on
the chessboard, can be attacked by any of the existing M < N of queens already
placed. Each sub-problem is truncated as soon as an attack from one of the existing
M queens is found. Otherwise, the current queen is added to the solution. If
it was the N -th queen, the current solution is a valid solution to the N-queens
problem. Placements are evaluated from left to right, top to bottom. Parallelization
is achieved by spawning an independent task for each sub-problem, until we reach
the j-th column. The rest N − j columns won’t generate any tasks and will be
executed serially. The input to the problem are the chessboard size N and the
column threshold TS. Therefore, the problem size for this benchmark is given by N .
The degree of parallelization for this benchmark is given by TS. In our experiments
we use N = 10 and TS = 4.

nbody

An N-body simulation numerically approximates the evolution of a system of bodies
which interact with each other. It has applications in many scientific fields: astro-
physical simulation, protein folding, and turbulent fluid flow simulation, to name
a few. This application makes use of MPI for coarse-grained parallelization. Both
computation and communication phases are taskified. However, communication
tasks are serialized to prevent deadlocks between processes, since communication
tasks perform blocking MPI calls. A familiar example is an astrophysical simulation
in which each body represents a galaxy or an individual star, and the bodies attract
each other through the gravitational force. N-body simulation arises in many other
computational science problems as well. For example, protein folding is studied using
N-body simulation to calculate electrostatic and Van der Waals forces. Turbulent
fluid flow simulation and global illumination computation in computer graphics are
other examples of problems that use N-body simulation. The input to the problem
are the number of interacting particles N and the number of iterations I to compute
the interactions between them. The problem size for this benchmark is given by
N . The degree of parallelization for this benchmark is given by TS, which is the
number of particles that are handled in parallel by each thread of each process, and
R, which is the number of processes. In our experiments we use N = 4096, TS = 64,
and I = 1.

90 5. Tracing task-based parallel applications

Figure 5.2. Execution time slowdown for the selected benchmarks.

heat

The Heat simulation uses an iterative Gauss-Seidel method to solve the heat equation,
which is a parabolic Partial Differential Equation (PDE) that describes the distri-
bution of heat (or variation in temperature) in a given region over time. Just like
N-body, the application use MPI for coarse-grained parallelization. In mathematics,
it is the parabolic partial differential equation par excellence. In statistics, it is
related to the study of the Brownian motion. Additionally, the diffusion equation
is a generic version of the heat equation, and it is related to the study of chemical
diffusion processes. The input to the problem is the size along one dimension of
the grid used to compute heat N and the number of iterations I. The problem size
for this benchmark is given by N . The degree of parallelization for this benchmark
is given by TS, which is the block size along one dimension, and R, which is the
number of processes. In our experiments we use N = 4096, TS = 64, and I = 1.

HPCCG

Solves the equation A · X = b, where A is a large sparse matrix, and B and X
are vectors such that X is unknown. The problem is discretized with a finite-
difference scheme on a 3D rectangular grid domain and solved via a preconditioned
conjugate gradient method. The input to the problem are Nx, Ny, and Nz, which
are the sub-grid dimensions in the 3D space assigned to the different processes.
Parallelization is achieved by assigning each sub-grid to a different process and by
using block partitioning based on the number of threads for each process. Therefore,
the problem size for this benchmark is given by Nx ×Ny ×Nz ×R, where R is the
number of processes. The degree of parallelization for this benchmark is given by
R and T , which is the number of threads per process. In our experiments we use
Nx = 50, Ny = 150, Nz = 50.

5.4 Experimental assessment 91

5.4.3 Results

In this section we show that our tool can be used to evaluate the parallelization of
applications even in presence of small inputs. We believe that this doesn’t limit
the effectiveness of our tool, as for many scientific applications (which are well-
represented by the benchmarks we use) changing the input size doesn’t affect what
kind of tasks are executed but only how many of them. It must also be noted that
even if an application is sensitive to changes in the inputs (e.g., changes in the
internal control-flow of a task), these changes can usually be stimulated through
small variations in the input size. Therefore, in general, it is not necessary to use big
input sizes to achieve a complete coverage of code. This property is not a property
of our tool, but rather that of applications, and is also leveraged by other debugging
and testing tools. Nevertheless, for all those cases in which it is necessary to test an
application with large or productive-level inputs, we can exploit the lint pragma
and the verified attribute to focus the analysis only on the tasks and the region of
code whose activation depends on those inputs. This approach makes our tool more
effective, because it allows to spare the tracing overhead on the remaining code that
could be tested with smaller input size.

Our experimentation proceeds as follows. For each benchmark, we report the
slowdown and the absolute execution time to get a report of all the detected
parallelization errors. All the experiments have been conducted on the MareNostrum4
supercomputer. Each compute node is equipped with two Intel Xeon Platinum 8160
CPUs with 24 cores each, thus totalling 48 cores per node, and 96 GB of main
memory. The interconnection network is based on 100 Gbit/s Intel OmniPath HFI
technology. The MPI benchmarks are run on 4 nodes, while the other benchmarks
are run on a single node.

Figure 5.2 shows the slowdown and the absolute execution time (in seconds)
for the benchmarks described above. Each bar represent a different benchmark
and a different case. The lint suffix represents the case of running the benchmark
using the lint directives to annotate third-party libraries. Of all benchmarks,
only cholesky and the MPI benchmarks use the pragma oss lint, respectively to
annotate the Intel MKL and Intel MPI third-party libraries. The autolint suffix
represents the case of running the benchmark with the aid of a static analysis tool
(mentioned in Section 5.4.1) which in turn exploits the existing pragma oss lint
(if any) to extend the scope of these pragmas to bigger regions of code. This case is
evaluated to demonstrate the effectiveness of verification annotations as a means to
simplify local task analysis. The absence of any suffix means that the benchmark is
run without the aid of the static analysis tool and without using the pragma oss
lint directives. For each bar, we also report the execution time cost split into:
(a) the minimum instrumentation cost to run the application using PIN (the base
case in the legend); (b) the minimum instrumentation cost to instrument memory
instructions, even without processing them (the instr case); (c) the full analysis
cost (the full case in the legend).

Overall, the mechanism works in three phases. Initially, users can annotate the
portions of code that they know for sure are correct with the proposed directives
and clauses (further explained in Section 5.2.1). Then, a compile-time tool analyzes
the code with the objective of verifying parts of code. At this stage, the compiler

92 5. Tracing task-based parallel applications

can take different actions: (a) any detected error is reported to the user prior to
execution, (b) the parts of the code that cannot be analysed statically are left for
instrumentation, and (c) the parts of code that are analyzed and decided to be
correct, are verified using the same directives and clauses offered to the user with
such a purpose. Finally, a run-time tool executes the code and instruments only
those parts that have been verified neither by the user nor by the compiler.

As we can see from the figure, the slowdown for the pure runtime instrumentation
case (no suffix) can be quite high for some benchmarks (e.g., dot-product ormergesort).
In the case of cholesky, the overhead is quite high due to the heavy use it makes
of Intel’s MKL library. However, we note that even so, the absolute execution
time is in the order of minutes, thus not undermining the usability of the tool-
chain. We run a breakdown analysis of these cases and detected the major source
of overhead to be the insertion of accesses in our binary search tree, which is used
to aggregate contiguous accesses coming from the same instruction over time, and
to compare them with task dependencies. In the case of nqueens, another major
source of overhead is that of saving the errors encountered in the application, which
still uses a binary search tree. Although we intend to develop a more efficient
implementation for this data structure using interval trees ??, we are still bound
to pay the instrumentation cost depicted in the base and instr cases. This is not
only due to the way PIN internally works, but also to the nature of each application.
In fact, we already disable instrumentation whenever the application performs calls
to the OmpSs-2 runtime system or the standard C/C++ libraries. Additionally, we
disable instrumentation of private-memory instructions (such as stack instructions)
in regions where there can’t be conflicts due to the absence of a barrier.

When using external libraries protected by the pragma oss lint directive, the
improvements in terms of slowdown can be critical. By appropriately marking
those calls with the new pragmas, the runtime instrumentation tool only needs to
instrument the pragma oss lint directive itself, and store a number of accesses that
is proportional to the intervals specified in the in, out, and/or inout parameters of
the pragma itself. This is critical for the case of cholesky, as each task only performs
a single call to a different function in the MKL library, but there calls internally
hide a huge number of accesses to memory that are the main source of overhead.
Performance improvements can also be observed for the case of MPI benchmarks,
which use the Intel MPI library, although the impact is smaller. For example, while
heat is communication-intensive and so protecting calls to MPI is highly effective,
nbody and HPCCG are computation-intensive, hence the use of pragma doesn’t
improve the execution overhead by much.

Using pragma oss lint directives and leveraging the compile-time analysis tool
brings the most evident benefits, as it can be seen for matmul, dot-product, and
multisaxpy. In this case, the compile-time tool can automatically wrap whole for-loop
cycles into pragmas, or even put the verified flag to tasks within loops. In all these
cases, the performance improvements are drastic because the instrumentation tool
can disable tracing for most of the execution time of the application. We note that
these improvements are not uncommon for real-world scenarios, as many kernels
have a regular loop structure which can be easily analysed by means of techniques
like those mentioned in [73]. As for nqueens, we observe that the static tool is unable
to infer useful information due to the nature of the code and can only wrap in

5.4 Experimental assessment 93

pragmas simple memory-accessing statements. This has an effect in our runtime
tool that is actually worse than not placing them, thus suggesting that additional
work can be put in the static tool to avoid wrapping simple statements, and in the
runtime tool to reduce the overhead of processing pragma oss lint directives. In
mergesort, the tool can only partially simplify the handling of accesses in the merge
phase of the algorithm, because the number of iterations which are performed in
each part depends on the contents of the two sub-arrays to merge. For this reason,
the overhead improvements are minimal. Similar considerations can be made for
the MPI benchmarks and especially for HPCCG, where the main kernel performing
a MKL-like dgemm operation couldn’t be annotated at all due to the fact that a
sparse matrix representation is used. As for cholesky, we observe that each task only
performs a single call to a MKL library function, hence the compile-time tool can
successfully promote the existing oss lint pragmas to the verified clause at the
level of tasks, but this brings little additional benefits compared to the lint case.

Overall, experimental evaluation suggests that the absolute execution cost of
running the selected applications against the runtime tool is affordable, and that a
synergistic exploitation of static analysis and pragmas can drastically reduce this
cost.

5.4.4 Related works

The strategies for correctness checking can be classified in: (1) static tools, which
analyze the code at compile-time, and (2) dynamic tools, which analyze the code at
run-time. Static tools need to be over-conservative because at compile-time they
have to assume that any path is possible, and so these tools struggle to obtain no
false negatives and minimal false positives. On the other hand, dynamic tools have
the benefit of knowing all variables values, but are limited to the paths taken in
a given execution and the input data-set, and also they introduce changes in the
runtime behavior, possibly masking errors that may appear in a regular execution.
The following paragraphs introduce different relevant works that have been developed
in the last years to enhance the correctness of parallel programming models, and
also highlight the need for further tools that overcome the limitations of the existing
ones. Most of the static approaches for correctness detection focus on a specific
programming model, or even a subset of it. As for OpenMP, there are solutions
focused in subsets of the language such as ompVerify [11], a tool based on the
polyhedral model that is able to detect several errors in OpenMP parallel loops, and
OpenMP Analysis Toolkit (OAT) [55], a tool that uses Satisfiability Modulo Theories
(SMT) solver based symbolic analysis to detect data races and deadlocks. A more
general solution is provided by Lin [54], who described a control flow graph and a
region tree to statically detect non-concurrent blocks of code and race conditions in
OpenMP2.5 programs with the Sun Studio 9 Fortran compiler.

For task-based models such as OmpSs and the OpenMP tasking subset, there
are static solutions that allow catching errors in the synchronization of tasks and
variables that may lead to non-deterministic results (due to data races) and runtime
failures (due to accessing dead variables) [73]. These techniques adopt a conservative
approach, in the sense that performance is secondary when correctness is on the line
(e.g. privatize a variable in order to avoid a race-condition). Considering concurrent

94 5. Tracing task-based parallel applications

models such as Ada, there have also been efforts to introduce correctness checking
techniques at compile time. These include GNATprove [2], a formal verification tool
for Ada based on the GNAT compiler and Meyer’s design-by-contract paradigm.
However, although model checking based techniques are very mature, their usefulness
depends on contracts that are also written by programmers, hence are liable to
have errors. For that reason, more general approaches have appeared including the
analysis of Ada and OpenMP mixed programs [74]. However these only consider the
Ada Ravenscar profile and are not yet implemented.

Finally, other static solutions that can be applied in different environments are
the following: RacerX [37], a flow-sensitive, interprocedural analysis to detect race
conditions and deadlocks; Chord [61], a static analysis tool able to detect races,
deadlocks and atomicity violations, among others, in the Java bytecode; Warlock
[84], a tool for finding races in C programs, or Extended Static Checking (ESC)
[23] and ESC/Java [41], tools for Modula-3 and Java respectively, which use a
theorem-proving techniques to find errors like null dereferences, array bounds errors
and typecast errors among others.

For the dynamic detection of programming errors coming from parallelization,
most of the literature is focused on algorithms and tools to check for data and
determinacy races [8, 81, 49, 42]. Archer [5] adapts ThreadSanitizer, which can
detects data races in unstructured parallel programs, to the case of OpenMP 3.1 (i.e.,
basic tasking with no dependencies). Similarly to our tool-chain, it employs a hybrid
approach and section-based analysis [21], where a static phase is used to discard all
sequential code and a dynamic phase is used to check for data races in the remaining
concurrent parts. It is sound but not complete, as it is sensitive to the particular
scheduling of events at run-time and cannot detect data races coming from concurrent
tasks executed by the same thread. Sword [6] is a tool that is capable of detecting
all and only data races in OpenMP programs comprised of only nested fork-join
parallelism (i.e., only parallel constructs). DFinspec [57] is a tool for detecting
determinacy races in task-parallel programs where tasks have dependencies but are
atomic (i.e., there are no task-switching points inside task code). TaskSanitizer
[58] solves the same problems for OpenMP program comprised of only tasks with
dependencies and internal scheduling points. ROMP is another tool targeting at
OpenMP with tasking [45]. It uses an approach close to Sword to built the HB
relation for nested fork-join parallelism parts and one similar to TaskSanitizer for the
HB relation of tasks with dependencies. A more general approach for async/finish
programs that can include futures—a parallel programming paradigm which is more
general than the one offered by OpenMP—is provided in [85]. Our approach differs
from the ones adopted by the above tools in two ways. We don’t explicitly check
for data or determinacy races as our tools check for every kind of programming
error in the code, including performance errors. Further, we exploit the structural
induction of OmpSs-2 to only check the correctness for each task at each nesting
level separately.

Other tools aim at checking the correctness of parallel programs in a way akin
to that of our tool-chain. StarSscheck [15] is a correctness checker for applications
written in the StarSs programming model. Our tool-chain is similar in spirit to
StarSscheck, but supports a wider range of errors due to the wider flexibility of the
OmpSs programming model (task nesting being the most evident). Additionally,

5.5 Conclusions and future work 95

we exploit the structural induction of OmpSs to deal with task nesting efficiently.
Lastly, differently from StarSscheck, we also complement our dynamic analysis with
a compile-time tool to prove the correctness of OmpSs-2 programs independently of a
specific input. Other tools verify the correctness of MPI applications [95, 91, 48, 79].
Our tool-chain cannot check the MPI correctness of MPI-pure or hybrid applications,
although it can check the OmpSs-2 parallelization of applications that make use of
both MPI and OmpSs-2 for respectively coarse-grained and fine-grained parallelism.

5.5 Conclusions and future work
We have presented an analysis technique to detect parallelization errors in applications
which use task-based parallel programming model with task nesting and whose
correctness can be proved by structural induction. Our technique only requires local
analysis of code, i.e., independently for each task. Because of the way our reference
task-based programming model is defined, by locally analyzing each task we can
infer programming errors at a global scale, i.e., for the whole program. We note that
this model has its roots in well-known programming models such as OpenMP and
OmpSs-2. More importantly, our approach can be easily used with other parallel
programming abstractions based on tasks and structural induction, thus making
it applicable to a wider range of scenarios, thus making our contribution of wide
applicability in real-world settings. We also introduced two new annotations that
use the same syntax employed to describe a task dataset. Application developers
can use these two annotations to inform the analysis about the set of data references
performed in a specific regions of code. We can therefore safely ignore what happens
inside these regions, thus improving both performance and accuracy. We implemented
our technique into a run-time tool that analyzes binary code and informs the user
about possible parallelization errors in the applications. Experiments run on a series
of benchmarks varying from simple execution kernels to real-world applications with
a suggest that our tool is capable of analyzing a wide range of applications within
an acceptable execution time limit. Future works entail extending our analysis to
other OmpSs-2 and OpenMP task-based construct. We also plan to improve our
analysis to detect inefficient parallelization constructs and suggest the use of more
efficient ones.

97

CHAPTER 6
Conclusions

Since the beginning, the objective of the research included in this thesis has been
that of investigating on transparent techniques and tools to support application
development and execution, taking into account the increasing complexity of hard-
ware and the increasing demands of scientific and large-scale applications. In this
thesis, we discuss ways to bridge the gap between the two worlds using a framework
that involves tracing the application, analysing the traces that were produced, and
exploiting the produced information for different purposes, with a focus on applica-
tions that rely on parallel programming. Our scientific contributions, in terms of
tracing and analysis, exist within this well-known framework. A pivotal point of this
thesis is also that the complexity of hardware should have the least possible impact
on the complexity of applications, especially in terms of structure and development.
For this reason, the techniques and tools we present (1) find their natural placement
within the scope of environmental software, and (2) support the existence of abstract
and intuitive programming paradigms and models.

The experience we gained during this journey tells us that the methodology we
followed is promising, but has some limitations that prevent us from taking it to its
full potential. There are so many intertesting aspects of applications that are worth
observing, and information is king to bring any improvement in terms of development
and/or execution. However, a fundamental overhead-accuracy-precision trade-off
exists, at least empirically: in order to obtain the desired information, the cost is high;
lowering the cost means lowering the quality of information, hence the effectiveness
of any exploitation scheme. Sometimes, this cost is too high and can outweight the
benefits. Not only that, but when tracing is performed at run-time, it can essentially
change the properties of the applications being executed (a phenomenon described as
tracing perturbation), thus leading us to observe the effects of our own observation.

Nowadays, some interesting technologies are raising, with the intent of pushing
the trade-off curve toward low-cost, low-perturbation, and high-quality tracing. For
example, hardware monitoring units in modern processors promise to be able to
trace low-level hardware events quite efficiently. The vast range of events which can
be catched makes this technology extremely valuable in many different contexts.
Our expectation is that it will be the gold mine of the next decade, and that many

98 6. Conclusions

researchers will join this gold rush. However, despite its potential, it can only be
used to trace applications at their lowest possible level—that of machine-instructions,
or even micro-operations, running into a processor. To trace higher-level events
software instrumentation remains the only option. One might argue whether it
makes more sense to provide instrumentation internally, within that portion of the
software stack that we are interested in tracing (e.g., calls to a run-time library which
implements task-based parallelism primitives). Another option is to instrument
these events externally, by means of ad-hoc instrumentation tools. Our empirical
experience in this sense is that the first option is more promising, as the tracing
logic can share code and data with other pre-existing logic in that portion of the
software stack, without having to re-invent the wheel.

Overall, in the foreseeable future, we expect a better integration between the
different components and tools that make up environmental software, as well as
between environmental software itself and the underlying hardware. It is clear to
us that the abstractions offered at the level of application software must remain
generic and unopinionated with respect to the hardware, in order to be portale
and comprehensible to programmers. We also claim that tracing should not occur
within the application, so as not to perturb it excessively, but rather in middle-level
software or in hardware. This is not only important in terms of the cost-benefit
relationship we mentioned before. In fact, in our opinion, it also allows developers
to still have a quite good idea of what is the implicit cost of using certain language
constructs in their programs. We also demand better frameworks and tools for the
analysis of programs at any level, and debugging/linting/profiling tools that are
aware of the programming abstractions used by the application. To support these
tools, it is also important to enrich programs with annotations and directives which
can serve as documentation for other developers, and be exploited by compilers to
generate or export richer meta-data for later use by these analysis tools.

As future work, we wish to continue working on the methodology presented in
this thesis to study other relevant problems in parallel programming. Our focus
won’t simply be theoretical, but also on implementations that are efficient enough to
be used in production environments, for on-line or off-line exploitation. Our intent is
to use new tracing technology, such as the hardware monitors previously described,
to reduce the effects of tracing in terms of overhead and perturbation. We also wish
to invest more effort on the analysis and exploitation parts, to increase the positive
gap between the benefits of tracing and its cost. Our intuition is that a stricter,
closer cooperation between kernel-space and user-space software can maximize the
effects of trace exploitation in on-line schemes. Also, we believe that a tighter
cooperation between analysis tools and the run-time libraries providing abstract
programming paradigms and models can be the key to improve the effectiveness of
off-line exploitation schemes.

99

101

Bibliography

[1] Go: Concurrent programming. https://web.archive.
org/web/20190815110617/https://programming.guide/go/
go-concurrency-tutorial.html. Accessed: 2019-08-15.

[2] AdaCore, Altran, Astrium Space Transportation, CEA-LIST,
ProVal at INRIA and Thales Communications. Project Hi-Lite: GNAT-
prove. http://www.open-do.org/projects/hi-lite/gnatprove (2017).

[3] Aguilera, M. K., Merchant, A., Shah, M., Veitch, A., and Karamano-
lis, C. Sinfonia: a new paradigm for building scalable distributed systems. In
SOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles, vol. 41, pp. 159–174. ACM (2007). ISBN 978-1-59593-591-5.
doi:10.1145/1294261.1294278.

[4] Allen, F. E. In Proceedings of a Symposium on Compiler Optimization, pages
1–19, New York, NY, USA. ACM (1970).

[5] Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Ahn, D. H., Laguna,
I., Schulz, M., Lee, G. L., Protze, J., and Müller, M. S. Archer:
Effectively spotting data races in large openmp applications. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp.
53–62 (2016). doi:10.1109/IPDPS.2016.68.

[6] Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Laguna, I., Lee,
G. L., and Ahn, D. H. Sword: A bounded memory-overhead detector of
openmp data races in production runs. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 845–854 (2018). doi:
10.1109/IPDPS.2018.00094.

[7] Awasthi, M., Nellans, D. W., Sudan, K., Balasubramonian, R., and
Davis, A. Handling the problems and opportunities posed by multiple on-chip
memory controllers. In 19th International Conference on Parallel Architecture
and Compilation Techniques (PACT 2010), Vienna, Austria, September 11-15,
2010, pp. 319–330 (2010). Available from: http://doi.acm.org/10.1145/
1854273.1854314, doi:10.1145/1854273.1854314.

[8] Banerjee, U., Bliss, B., Ma, Z., and Petersen, P. Unraveling data race
detection in the intel thread checker. In In Proceedings of STMCS ’06 (2006).

https://web.archive.org/web/20190815110617/https://programming.guide/go/go-concurrency-tutorial.html
https://web.archive.org/web/20190815110617/https://programming.guide/go/go-concurrency-tutorial.html
https://web.archive.org/web/20190815110617/https://programming.guide/go/go-concurrency-tutorial.html
http://www.open-do.org/projects/hi-lite/gnatprove
http://dx.doi.org/10.1145/1294261.1294278
http://dx.doi.org/10.1109/IPDPS.2016.68
http://dx.doi.org/10.1109/IPDPS.2018.00094
http://dx.doi.org/10.1109/IPDPS.2018.00094
http://doi.acm.org/10.1145/1854273.1854314
http://doi.acm.org/10.1145/1854273.1854314
http://dx.doi.org/10.1145/1854273.1854314

102 Bibliography

[9] Barnes, P. D., Jr., Carothers, C. D., Jefferson, D. R., and LaPre,
J. M. Warp speed: Executing time warp on 1,966,080 cores. In Proceedings of
the 1st ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
SIGSIM PADS ’13, pp. 327–336. ACM, New York, NY, USA (2013). ISBN
978-1-4503-1920-1. Available from: http://doi.acm.org/10.1145/2486092.
2486134, doi:10.1145/2486092.2486134.

[10] Barrow-Williams, N., Fensch, C., and Moore, S. W. A com-
munication characterisation of splash-2 and parsec. In Proceedings of the
2009 IEEE International Symposium on Workload Characterization, IISWC
2009, October 4-6, 2009, Austin, TX, USA, pp. 86–97 (2009). Avail-
able from: http://doi.ieeecomputersociety.org/10.1109/IISWC.2009.
5306792, doi:10.1109/IISWC.2009.5306792.

[11] Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S.,
Quinton, P., and Wonnacott, D. ompVerify: polyhedral analysis for
the OpenMP programmer. In International Workshop on OpenMP, pp. 37–53.
Springer (2011).

[12] Bienia, C. Benchmarking Modern Multiprocessors. Ph.D. thesis, Princeton
University (2011).

[13] BSC. Ompss-2 specification (2019). Available from: https://pm.bsc.es/ftp/
ompss-2/doc/spec/.

[14] Butenhof, D. R. Programming with POSIX Threads. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (1997). ISBN 0-201-63392-2.

[15] Carpenter, P. M., Ramirez, A., and Ayguade, E. Starsscheck: A tool
to find errors in task-based parallel programs. In Euro-Par 2010 - Parallel
Processing (edited by P. D’Ambra, M. Guarracino, and D. Talia), pp. 2–13.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010). ISBN 978-3-642-15277-1.

[16] Carrington, L., Snavely, A., Gao, X., and Wolter, N. A perfor-
mance prediction framework for scientific applications. In ICCS Workshop on
Performance Modeling and Analysis (PMA03, pp. 926–935 (2003).

[17] Casanova, H., Desprez, F., and Suter, F. On cluster resource allocation
for multiple parallel task graphs. J. Parallel Distrib. Comput., 70 (2010),
1193. Available from: http://dx.doi.org/10.1016/j.jpdc.2010.08.017,
doi:10.1016/j.jpdc.2010.08.017.

[18] Castro, M., Goes, L. F. W., Ribeiro, C. P., Cole, M., Cintra, M.,
and Mehaut, J.-F. A machine learning-based approach for thread mapping on
transactional memory applications. In Proceedings of the 2011 18th International
Conference on High Performance Computing, pp. 1–10. IEEE Computer Society,
Washington, DC, USA (2011).

[19] Chen, H., Chen, W., Huang, J., Robert, B., and Kuhn, H. MPIPP: an
automatic profile-guided parallel process placement toolset for SMP clusters

http://doi.acm.org/10.1145/2486092.2486134
http://doi.acm.org/10.1145/2486092.2486134
http://dx.doi.org/10.1145/2486092.2486134
http://doi.ieeecomputersociety.org/10.1109/IISWC.2009.5306792
http://doi.ieeecomputersociety.org/10.1109/IISWC.2009.5306792
http://dx.doi.org/10.1109/IISWC.2009.5306792
https://pm.bsc.es/ftp/ompss-2/doc/spec/
https://pm.bsc.es/ftp/ompss-2/doc/spec/
http://dx.doi.org/10.1016/j.jpdc.2010.08.017
http://dx.doi.org/10.1016/j.jpdc.2010.08.017

Bibliography 103

and multiclusters. In Proceedings of the 20th Annual International Conference
on Supercomputing, ICS 2006, Cairns, Queensland, Australia, June 28 - July
01, 2006, pp. 353–360 (2006). Available from: http://doi.acm.org/10.1145/
1183401.1183451, doi:10.1145/1183401.1183451.

[20] Daigle, R., Xia, C., and Torrellas, J. Low perturbation address trace
collection for operating system, multiprogrammed, and parallel workloads in
multiprocessors. Tech. rep., Multiprogrammed, and Parallel Workloads in
Multiprocessors,º technical report, Center for Supercomputing Research and
Development, Univ. of Illinois at Urbana-Champaign (1996).

[21] Das, M., Southern, G., and Renau, J. Section-based program analysis
to reduce overhead of detecting unsynchronized thread communication. ACM
Trans. Archit. Code Optim., 12 (2015), 23:23:1. Available from: http://doi.
acm.org/10.1145/2766451, doi:10.1145/2766451.

[22] Dashti, M., Fedorova, A., Funston, J. R., Gaud, F., Lachaize, R.,
Lepers, B., Quéma, V., and Roth, M. Traffic management: a holistic
approach to memory placement on NUMA systems. In Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’13, Houston,
TX, USA - March 16 - 20, 2013, pp. 381–394 (2013). Available from: http://
doi.acm.org/10.1145/2451116.2451157, doi:10.1145/2451116.2451157.

[23] Detlefs, D. L., Leino, K. R. M., Nelson, G., and Saxe, J. B. Extended
static checking. (1998).

[24] di Sanzo, P., Ciciani, B., Palmieri, R., Quaglia, F., and Romano,
P. On the analytical modeling of concurrency control algorithms for software
transactional memories: The case of commit-time-locking. Perform. Eval., 69
(2012), 187.

[25] di Sanzo, P., Sannicandro, M., Ciciani, B., and Quaglia, F. Markov
chain-based adaptive scheduling in software transactional memory. In 2016 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2016,
Chicago, IL, USA, May 23-27, 2016, pp. 373–382 (2016). Available from: http:
//dx.doi.org/10.1109/IPDPS.2016.104, doi:10.1109/IPDPS.2016.104.

[26] Didona, D., Diegues, N., Kermarrec, A., Guerraoui, R., Neves,
R., and Romano, P. Proteustm: Abstraction meets performance in trans-
actional memory. In Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’16, Atlanta, GA, USA, April 2-6, 2016, pp. 757–
771 (2016). Available from: http://doi.acm.org/10.1145/2872362.2872385,
doi:10.1145/2872362.2872385.

[27] Didona, D., Felber, P., Harmanci, D., Romano, P., and Schenker, J.
Identifying the optimal level of parallelism in transactional memory applications.
Computing, 97 (2015), 939. Available from: http://dx.doi.org/10.1007/
s00607-013-0376-3, doi:10.1007/s00607-013-0376-3.

http://doi.acm.org/10.1145/1183401.1183451
http://doi.acm.org/10.1145/1183401.1183451
http://dx.doi.org/10.1145/1183401.1183451
http://doi.acm.org/10.1145/2766451
http://doi.acm.org/10.1145/2766451
http://dx.doi.org/10.1145/2766451
http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/2451116.2451157
http://dx.doi.org/10.1145/2451116.2451157
http://dx.doi.org/10.1109/IPDPS.2016.104
http://dx.doi.org/10.1109/IPDPS.2016.104
http://dx.doi.org/10.1109/IPDPS.2016.104
http://doi.acm.org/10.1145/2872362.2872385
http://dx.doi.org/10.1145/2872362.2872385
http://dx.doi.org/10.1007/s00607-013-0376-3
http://dx.doi.org/10.1007/s00607-013-0376-3
http://dx.doi.org/10.1007/s00607-013-0376-3

104 Bibliography

[28] Didona, D., Romano, P., Peluso, S., and Quaglia, F. Transactional
auto scaler: Elastic scaling of replicated in-memory transactional data grids.
TAAS, 9 (2014), 11:1.

[29] Diegues, N., Romano, P., and Garbatov, S. Seer: Probabilistic scheduling
for hardware transactional memory. In Proceedings of the 27th ACM on Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
OR, USA, June 13-15, 2015, pp. 224–233 (2015). Available from: http://doi.
acm.org/10.1145/2755573.2755578, doi:10.1145/2755573.2755578.

[30] Diener, M., da Cruz, E. H. M., Navaux, P. O. A., Busse, A., and
Heiß, H. kmaf: automatic kernel-level management of thread and data
affinity. In International Conference on Parallel Architectures and Compi-
lation, PACT ’14, Edmonton, AB, Canada, August 24-27, 2014, pp. 277–
288 (2014). Available from: http://doi.acm.org/10.1145/2628071.2628085,
doi:10.1145/2628071.2628085.

[31] Diener, M., Madruga, F. L., Rodrigues, E. R., Alves, M. A. Z.,
Schneider, J., Navaux, P. O. A., and Heiss, H. Evaluating thread
placement based on memory access patterns for multi-core processors. In
12th IEEE International Conference on High Performance Computing and
Communications, HPCC 2010, 1-3 September 2010, Melbourne, Australia, pp.
491–496 (2010). doi:10.1109/HPCC.2010.114.

[32] Dolev, S., Hendler, D., and Suissa, A. Car-stm: scheduling-based collision
avoidance and resolution for software transactional memory. In Proceedings of
the twenty-seventh ACM symposium on Principles of distributed computing, pp.
125–134. ACM, New York, NY, USA (2008).

[33] Dragojević, A. and Guerraoui, R. Predicting the scalability of an stm:
A pragmatic approach. In Presented at: 5th ACM SIGPLAN Workshop on
Transactional Computing (2010).

[34] Drepper, U. Elf handling for thread-local storage. Tech. rep. (2013). Available
from: https://www.akkadia.org/drepper/tls.pdf.

[35] DynamoRIO. http://www.dynamorio.org/.

[36] Economo, S., Silvestri, E., di Sanzo, P., Pellegrini, A., and Quaglia,
F. Prompt application-transparent transaction revalidation in software transac-
tional memory. In 16th IEEE International Symposium on Network Computing
and Applications, NCA 2017, Cambridge, MA, USA, October 30 - November 1,
2017, pp. 157–162 (2017).

[37] Engler, D. and Ashcraft, K. Racerx: effective, static detection of race
conditions and deadlocks. In ACM SIGOPS Operating Systems Review, vol. 37,
pp. 237–252. ACM (2003).

[38] Felber, P., Fetzer, C., Marlier, P., and Riegel, T. Time-based software
transactional memory. IEEE Trans. Parallel Distrib. Syst., 21 (2010), 1793.

http://doi.acm.org/10.1145/2755573.2755578
http://doi.acm.org/10.1145/2755573.2755578
http://dx.doi.org/10.1145/2755573.2755578
http://doi.acm.org/10.1145/2628071.2628085
http://dx.doi.org/10.1145/2628071.2628085
http://dx.doi.org/10.1109/HPCC.2010.114
https://www.akkadia.org/drepper/tls.pdf

Bibliography 105

[39] Felber, P., Fetzer, C., Marlier, P., and Riegel, T. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed Systems,
21 (2010), 1793. doi:10.1109/TPDS.2010.49.

[40] Ferrer, R., Royuela, S., Caballero, D., Duran, A., Martorell, X.,
and Ayguadé, E. Mercurium: Design decisions for a s2s compiler. In Cetus
Users and Compiler Infastructure Workshop in conjunction with PACT (2011).

[41] Flanagan, C., Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson,
G., Saxe, J. B., and Stata, R. Extended static checking for java. In ACM
Sigplan Notices, vol. 37, pp. 234–245. ACM (2002).

[42] Flanagan, C. and Freund, S. N. The roadrunner dynamic analysis frame-
work for concurrent programs. In Proceedings of the 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’10, pp. 1–8. ACM, New York, NY, USA (2010). ISBN 978-1-4503-
0082-7. Available from: http://doi.acm.org/10.1145/1806672.1806674,
doi:10.1145/1806672.1806674.

[43] Fujimoto, R. M., Panesar, K. S., and Panesar, K. S. Buffer management
in shared-memory time warp systems. In PADS, pp. 149–156 (1995).

[44] Gennaro, I. D., Pellegrini, A., and Quaglia, F. Os-based numa optimiza-
tion: Tackling the case of truly multi-thread applications with non-partitioned
virtual page accesses. In 16th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, CCGrid 2011, May 16-19, 2016 – Cartagena,
Colombia (2016).

[45] Gu, Y. and Mellor-Crummey, J. Dynamic data race detection for openmp
programs. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18, pp. 61:1–61:12. IEEE
Press, Piscataway, NJ, USA (2018). Available from: https://doi.org/10.
1109/SC.2018.00064, doi:10.1109/SC.2018.00064.

[46] Guerraoui, R. and Kapalka, M. On the correctness of transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA,
February 20-23, 2008, pp. 175–184 (2008).

[47] Herlihy, M. and Moss, J. E. B. Transactional memory: Architectural
support for lock-free data structures. SIGARCH Comput. Archit. News, 21
(1993), 289. Available from: http://doi.acm.org/10.1145/173682.165164,
doi:10.1145/173682.165164.

[48] Hilbrich, T., de Supinski, B. R., Hänsel, F., Müller, M. S., Schulz,
M., and Nagel, W. E. Runtime mpi collective checking with tree-based
overlay networks. In Proceedings of the 20th European MPI Users’ Group
Meeting, EuroMPI ’13, pp. 129–134. ACM, New York, NY, USA (2013). ISBN
978-1-4503-1903-4. Available from: http://doi.acm.org/10.1145/2488551.
2488570, doi:10.1145/2488551.2488570.

http://dx.doi.org/10.1109/TPDS.2010.49
http://doi.acm.org/10.1145/1806672.1806674
http://dx.doi.org/10.1145/1806672.1806674
https://doi.org/10.1109/SC.2018.00064
https://doi.org/10.1109/SC.2018.00064
http://dx.doi.org/10.1109/SC.2018.00064
http://doi.acm.org/10.1145/173682.165164
http://dx.doi.org/10.1145/173682.165164
http://doi.acm.org/10.1145/2488551.2488570
http://doi.acm.org/10.1145/2488551.2488570
http://dx.doi.org/10.1145/2488551.2488570

106 Bibliography

[49] Jannesari, A., Kaibin Bao, Pankratius, V., and Tichy, W. F. Helgrind+:
An efficient dynamic race detector. In 2009 IEEE International Symposium
on Parallel Distributed Processing, pp. 1–13 (2009). doi:10.1109/IPDPS.2009.
5160998.

[50] Karlsson, C., Davies, T., and Chen, Z. Optimizing process-to-core
mappings for application level multi-dimensional MPI communications. In 2012
IEEE International Conference on Cluster Computing, CLUSTER 2012, Beijing,
China, September 24-28, 2012, pp. 486–494 (2012). Available from: http:
//dx.doi.org/10.1109/CLUSTER.2012.47, doi:10.1109/CLUSTER.2012.47.

[51] Ketterlin, A. and Clauss, P. Efficient memory tracing by program skele-
tonization. In IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS 2011, 10-12 April, 2011, Austin, TX, USA, pp.
97–106 (2011). Available from: http://dx.doi.org/10.1109/ISPASS.2011.
5762719, doi:10.1109/ISPASS.2011.5762719.

[52] Laurenzano, M., Simon, B., Snavely, A., and Gunn, M. Low cost trace-
driven memory simulation using simpoint. SIGARCH Computer Architecture
News, 33 (2005), 81. Available from: http://doi.acm.org/10.1145/1127577.
1127593, doi:10.1145/1127577.1127593.

[53] Laurenzano, M., Tikir, M. M., Carrington, L., and Snavely, A.
PEBIL: efficient static binary instrumentation for linux. In IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, IS-
PASS 2010, 28-30 March 2010, White Plains, NY, USA, pp. 175–183 (2010).
Available from: http://dx.doi.org/10.1109/ISPASS.2010.5452024, doi:
10.1109/ISPASS.2010.5452024.

[54] Lin, Y. Static nonconcurrency analysis of openmp programs. In IWOMP, pp.
36–50. Springer (2008).

[55] Ma, H., Diersen, S. R., Wang, L., Liao, C., Quinlan, D., and Yang,
Z. Symbolic analysis of concurrency errors in openmp programs. In ICPP, pp.
510–516. IEEE (2013).

[56] Marathe, J. and Mueller, F. Hardware profile-guided automatic page
placement for ccnuma systems. In Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2006, New York,
New York, USA, March 29-31, 2006, pp. 90–99 (2006). Available from: http://
doi.acm.org/10.1145/1122971.1122987, doi:10.1145/1122971.1122987.

[57] Matar, H. S., Mutlu, E., Tasiran, S., and Unat, D. Output nonde-
terminism detection for programming models combining dataflow with shared
memory. Parallel Computing, 71 (2018), 42 . Available from: http://
www.sciencedirect.com/science/article/pii/S016781911730193X, doi:
https://doi.org/10.1016/j.parco.2017.11.008.

[58] Matar, H. S. and Unat, D. Runtime determinacy race detection for
openmp tasks. In Euro-Par 2018: Parallel Processing (edited by M. Aldinucci,

http://dx.doi.org/10.1109/IPDPS.2009.5160998
http://dx.doi.org/10.1109/IPDPS.2009.5160998
http://dx.doi.org/10.1109/CLUSTER.2012.47
http://dx.doi.org/10.1109/CLUSTER.2012.47
http://dx.doi.org/10.1109/CLUSTER.2012.47
http://dx.doi.org/10.1109/ISPASS.2011.5762719
http://dx.doi.org/10.1109/ISPASS.2011.5762719
http://dx.doi.org/10.1109/ISPASS.2011.5762719
http://doi.acm.org/10.1145/1127577.1127593
http://doi.acm.org/10.1145/1127577.1127593
http://dx.doi.org/10.1145/1127577.1127593
http://dx.doi.org/10.1109/ISPASS.2010.5452024
http://dx.doi.org/10.1109/ISPASS.2010.5452024
http://dx.doi.org/10.1109/ISPASS.2010.5452024
http://doi.acm.org/10.1145/1122971.1122987
http://doi.acm.org/10.1145/1122971.1122987
http://dx.doi.org/10.1145/1122971.1122987
http://www.sciencedirect.com/science/article/pii/S016781911730193X
http://www.sciencedirect.com/science/article/pii/S016781911730193X
http://dx.doi.org/https://doi.org/10.1016/j.parco.2017.11.008
http://dx.doi.org/https://doi.org/10.1016/j.parco.2017.11.008

Bibliography 107

L. Padovani, and M. Torquati), pp. 31–45. Springer International Publishing,
Cham (2018). ISBN 978-3-319-96983-1.

[59] Moore, S. V. A comparison of counting and sampling modes of using per-
formance monitoring hardware. In Proceedings of the International Confer-
ence on Computational Science-Part II, ICCS ’02, pp. 904–912. Springer-
Verlag, London, UK, UK (2002). ISBN 3-540-43593-X. Available from:
http://dl.acm.org/citation.cfm?id=645458.653464.

[60] Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney, P. F. Un-
derstanding measurement perturbation in trace-based data. In 2007 IEEE
International Parallel and Distributed Processing Symposium, pp. 1–6 (2007).
doi:10.1109/IPDPS.2007.370515.

[61] Naik, M., Park, C.-S., Sen, K., and Gay, D. Effective static deadlock
detection. In Proceedings of the 31st International Conference on Software
Engineering, pp. 386–396. IEEE Computer Society (2009).

[62] Nethercote, N. and Seward, J. How to shadow every byte of memory used
by a program. In Proceedings of the 3rd International Conference on Virtual
Execution Environments, VEE 2007, San Diego, California, USA, June 13-15,
2007, pp. 65–74 (2007).

[63] Nilakantan, S., Lerner, S., Hempstead, M., and Taskin, B. Can
you trust your memory trace? a comparison of memory traces from binary
instrumentation and simulation. In 2015 28th International Conference on
VLSI Design, pp. 135–140 (2015). doi:10.1109/VLSID.2015.28.

[64] Nowak, A. and Bitzes, G. The overhead of profiling using PMU hardware
counters (2014). Available from: http://dx.doi.org/10.5281/zenodo.10800,
doi:10.5281/zenodo.10800.

[65] Osman, R., Coulden, D., and Knottenbelt, W. J. Performance mod-
elling of concurrency control schemes for relational databases. In Analytical and
Stochastic Modelling Techniques and Applications - 20th International Confer-
ence, ASMTA 2013, Ghent, Belgium, July 8-10, 2013. Proceedings, pp. 337–351
(2013).

[66] Pellegrini, A. Hijacker: Efficient static software instrumentation with appli-
cations in high performance computing (poster paper). In Proceedings of the
2013 International Conference on High Performance Computing & Simulation,
HPCS, pp. 650–655. IEEE Computer Society (2013).

[67] Peluso, S., Ruivo, P., Romano, P., Quaglia, F., and Rodrigues, L.
E. T. GMU: genuine multiversion update-serializable partial data replication.
IEEE Trans. Parallel Distrib. Syst., 27 (2016), 2911.

[68] Piccoli, G., Santos, H. N., Rodrigues, R. E., Pousa, C., Borin, E.,
and Quintão Pereira, F. M. Compiler support for selective page migration
in numa architectures. In Proceedings of the 23rd International Conference on

http://dl.acm.org/citation.cfm?id=645458.653464
http://dx.doi.org/10.1109/IPDPS.2007.370515
http://dx.doi.org/10.1109/VLSID.2015.28
http://dx.doi.org/10.5281/zenodo.10800
http://dx.doi.org/10.5281/zenodo.10800

108 Bibliography

Parallel Architectures and Compilation, PACT ’14, pp. 369–380. ACM, New
York, NY, USA (2014). ISBN 978-1-4503-2809-8.

[69] Pin. http://www.pintool.org/.

[70] Porfirio, A., Pellegrini, A., di Sanzo, P., and Quaglia, F. Transparent
support for partial rollback in software transactional memories. In Euro-Par
2013 Parallel Processing - 19th International Conference, Aachen, Germany,
August 26-30, 2013. Proceedings, pp. 583–594 (2013).

[71] Reinders, J. Intel threading building blocks - outfitting C++ for multi-core
processor parallelism (2007). ISBN 978-0-596-51480-8.

[72] Romano, P., Palmieri, R., Quaglia, F., Carvalho, N. M. R., and
Rodrigues, L. An optimal speculative transactional replication protocol. In
Proc. of ISPA, vol. 0, pp. 449–457 (2010). ISBN 978-0-7695-4190-7. doi:http:
//doi.ieeecomputersociety.org/10.1109/ISPA.2010.94.

[73] Royuela, S., Ferrer, R., Caballero, D., and Martorell, X. Compiler
analysis for OpenMP tasks correctness. In Computing Frontiers, p. 7. ACM
(2015).

[74] Royuela, S., Martorell, X., Quiñones, E., and Pinho, L. M. Safe
parallelism: compiler analysis techniques for ada and openmp. In Ada-Europe In-
ternational Conference on Reliable Software Technologies, pp. 141–157. Springer
(2018).

[75] Rughetti, D., Di Sanzo, P., Ciciani, B., and Quaglia, F. Machine
learning-based self-adjusting concurrency in software transactional memory
systems. In Proceedings of the 2012 IEEE 20th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, pp. 278–285. IEEE Computer Society, Washington, DC, USA (2012).

[76] Rughetti, D., di Sanzo, P., Ciciani, B., and Quaglia, F. Analytical/ml
mixed approach for concurrency regulation in software transactional memory.
In 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, pp. 81–91
(2014). Available from: http://dx.doi.org/10.1109/CCGrid.2014.118, doi:
10.1109/CCGrid.2014.118.

[77] Rughetti, D., di Sanzo, P., Ciciani, B., and Quaglia, F. Analytical/ml
mixed approach for concurrency regulation in software transactional memory.
In 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, pp. 81–91
(2014). Available from: http://dx.doi.org/10.1109/CCGrid.2014.118, doi:
10.1109/CCGrid.2014.118.

[78] Rughetti, D., Romano, P., Quaglia, F., and Ciciani, B. Automatic
tuning of the parallelism degree in hardware transactional memory. In Euro-
Par 2014 Parallel Processing - 20th International Conference, Porto, Portugal,
August 25-29, 2014. Proceedings, pp. 475–486 (2014).

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISPA.2010.94
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ISPA.2010.94
http://dx.doi.org/10.1109/CCGrid.2014.118
http://dx.doi.org/10.1109/CCGrid.2014.118
http://dx.doi.org/10.1109/CCGrid.2014.118
http://dx.doi.org/10.1109/CCGrid.2014.118
http://dx.doi.org/10.1109/CCGrid.2014.118
http://dx.doi.org/10.1109/CCGrid.2014.118

Bibliography 109

[79] Saillard, E., Carribault, P., and Barthou, D. Combining static and
dynamic validation of mpi collective communications. In Proceedings of the
20th European MPI Users’ Group Meeting, EuroMPI ’13, pp. 117–122. ACM,
New York, NY, USA (2013). ISBN 978-1-4503-1903-4. Available from: http://
doi.acm.org/10.1145/2488551.2488555, doi:10.1145/2488551.2488555.

[80] Sanzo, P. D. Analysis, classification and comparison of scheduling tech-
niques for software transactional memories. IEEE Transactions on Parallel and
Distributed Systems, PP (2017), 1. doi:10.1109/TPDS.2017.2740285.

[81] Serebryany, K. and Iskhodzhanov, T. Threadsanitizer: Data race detec-
tion in practice. In Proceedings of the Workshop on Binary Instrumentation and
Applications, WBIA ’09, pp. 62–71. ACM, New York, NY, USA (2009). ISBN
978-1-60558-793-6. Available from: http://doi.acm.org/10.1145/1791194.
1791203, doi:10.1145/1791194.1791203.

[82] Shavit, N. and Touitou, D. Software transactional memory. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, pp. 204–213. ACM, New York, NY, USA (1995). ISBN 0-89791-
710-3. Available from: http://doi.acm.org/10.1145/224964.224987, doi:
10.1145/224964.224987.

[83] Song, D., et al. Bitblaze: A new approach to computer security via binary
analysis. In Proceedings of the 4th International Conference on Information
Systems Security, ICISS ’08, pp. 1–25. Springer-Verlag, Berlin, Heidelberg
(2008). ISBN 978-3-540-89861-0. Available from: http://dx.doi.org/10.
1007/978-3-540-89862-7_1, doi:10.1007/978-3-540-89862-7_1.

[84] Sterling, N. Warlock-a static data race analysis tool. In USENIx Winter, pp.
97–106 (1993).

[85] Surendran, R. and Sarkar, V. Dynamic determinacy race detection for
task parallelism with futures. In Runtime Verification (edited by Y. Falcone
and C. Sánchez), pp. 368–385. Springer International Publishing, Cham (2016).
ISBN 978-3-319-46982-9.

[86] Tikir, M. M. and Hollingsworth, J. K. Hardware monitors for dynamic
page migration. J. Parallel Distrib. Comput., 68 (2008), 1186. Available
from: http://dx.doi.org/10.1016/j.jpdc.2008.05.006, doi:10.1016/j.
jpdc.2008.05.006.

[87] TPC Council. TPC-C Benchmark, Revision 5.11. (2010).

[88] Trahay, F., Rué, F., Faverge, M., Ishikawa, Y., Namyst, R., and
Dongarra, J. Eztrace: A generic framework for performance analysis. In
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid 2011, Newport Beach, CA, USA, May 23-26, 2011, pp. 618–
619 (2011). Available from: http://dx.doi.org/10.1109/CCGrid.2011.83,
doi:10.1109/CCGrid.2011.83.

http://doi.acm.org/10.1145/2488551.2488555
http://doi.acm.org/10.1145/2488551.2488555
http://dx.doi.org/10.1145/2488551.2488555
http://dx.doi.org/10.1109/TPDS.2017.2740285
http://doi.acm.org/10.1145/1791194.1791203
http://doi.acm.org/10.1145/1791194.1791203
http://dx.doi.org/10.1145/1791194.1791203
http://doi.acm.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1145/224964.224987
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1007/978-3-540-89862-7_1
http://dx.doi.org/10.1016/j.jpdc.2008.05.006
http://dx.doi.org/10.1016/j.jpdc.2008.05.006
http://dx.doi.org/10.1016/j.jpdc.2008.05.006
http://dx.doi.org/10.1109/CCGrid.2011.83
http://dx.doi.org/10.1109/CCGrid.2011.83

110 Bibliography

[89] Uhlig, R. A. and Mudge, T. N. Trace-driven memory simulation: A survey.
ACM Comput. Surv., 29 (1997), 128. Available from: http://doi.acm.org/
10.1145/254180.254184, doi:10.1145/254180.254184.

[90] van Riel, R. and Chegu, V. Automatic NUMA Balancing. Tech. Rep. 1.0
(2014).

[91] Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., d. Supinski, B. R.,
Schulz, M., and Bronevetsky, G. A scalable and distributed dynamic
formal verifier for mpi programs. In SC ’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–10 (2010). doi:10.1109/SC.2010.7.

[92] Wagner, M., Doleschal, J., and Knüpfer, A. Tracing long running
applications: A case study using gromacs. In High Performance Computing
Simulation (HPCS), 2015 International Conference on, pp. 129–136 (2015).
doi:10.1109/HPCSim.2015.7237031.

[93] Wang, Q., Kulkarni, S., Cavazos, J. V., and Spear, M. Towards applying
machine learning to adaptive transactional memory. In Proceedings of the 6th
ACM SIGPLAN Workshop on Transactional Computing (2011).

[94] Yoo, R. M. and Lee, H.-H. S. Adaptive transaction scheduling for trans-
actional memory systems. In Proceedings of the 20th annual Symposium on
Parallelism in Algorithms and Architectures, pp. 169–178. ACM, New York,
NY, USA (2008).

[95] Yu, H. Combining symbolic execution and model checking to verify mpi
programs. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings, ICSE ’18, pp. 527–530. ACM, New York,
NY, USA (2018). ISBN 978-1-4503-5663-3. Available from: http://doi.acm.
org/10.1145/3183440.3190336, doi:10.1145/3183440.3190336.

[96] Yu, P. S., Dias, D. M., and Lavenberg, S. S. On the analytical modeling
of database concurrency control. J. ACM, 40 (1993), 831.

http://doi.acm.org/10.1145/254180.254184
http://doi.acm.org/10.1145/254180.254184
http://dx.doi.org/10.1145/254180.254184
http://dx.doi.org/10.1109/SC.2010.7
http://dx.doi.org/10.1109/HPCSim.2015.7237031
http://doi.acm.org/10.1145/3183440.3190336
http://doi.acm.org/10.1145/3183440.3190336
http://dx.doi.org/10.1145/3183440.3190336

	Introduction
	Basics of program tracing
	Metrics
	Techniques
	Filtering
	Aggregation
	Buffering

	Technologies
	Hardware-based
	Software-based

	Tracing generic applications
	Baseline formalisms
	Preliminary static code analysis
	The BID addressing mode
	Equality between BID expressions
	Distance between BID expressions
	BID and x86-64

	Selection algorithm
	Computing the size of the knapsack
	Overhead implications
	Accuracy implications

	Experimental assessment
	Implementation details
	Results

	Related work
	Conclusions and future work

	Tracing transaction-based parallel applications
	Baseline formalisms
	Analytical model
	On-line model exploitation
	Incremental analytical model computation

	Experimental evaluation
	Implementation details
	Results
	On-line model exploitation evaluation

	Related work
	Conclusions and future work

	Tracing task-based parallel applications
	Baseline formalisms
	The TMP programming model

	Local task analysis
	Verification annotations

	Proving program-level correctness
	Experimental assessment
	Implementations details
	Benchmarks
	Results
	Related works

	Conclusions and future work

	Conclusions

