
A new approach to reversible computing
with applications to speculative parallel

simulation

Sapienza University of Rome

Ph.D. program in Computer Engineering

XXXI Cycle

Davide Cingolani

Thesis Advisors

Prof. Francesco Quaglia
Dr. Alessandro Pellegrini

Co-Advisor

Dr. Leonardo Querzoni

Reviewers

Prof. Kalyan S. Perumalla
Prof. Christopher D. Carothers

A.Y. 2017/2018

Thesis defended on 22nd February 2019
in front of a Board of Examiners composed by:

Riccardo Torlone (Universitò degli Studi "Roma Tre") (chairman)
Alessandro Farinelli (Università degli Studi di Verona)
Paolo Prinetto (Politecnico di Torino)

A new approach to reversible computing with applications to speculative parallel sim-
ulation
Ph.D. thesis. Sapienza – University of Rome

© 2019 Davide Cingolani. All rights reserved

Version: 31st January 2019

Website: http://www.diag.uniroma1.it/∼cingolani/

Author’s email: cingolani@diag.uniroma1.it

http://www.diag.uniroma1.it/$\sim $cingolani/
mailto:cingolani@diag.uniroma1.it

Abstract

In this thesis, we propose an innovative approach to reversible computing that
shifts the focus from the operations to the memory outcome of a generic program.
This choice allows us to overcome some typical challenges of “plain” reversible
computing. Our methodology is to instrument a generic application with the help
of an instrumentation tool, namely Hijacker, which we have redesigned and de-
veloped for the purpose. Through compile-time instrumentation, we enhance the
program’s code to keep track of the memory trace it produces until the end. Re-
gardless of the complexity behind the generation of each computational step of
the program, we can build inverse machine instructions just by inspecting the in-
struction that is attempting to write some value to memory. Therefore from this
information, we craft an ad-hoc instruction that conveys this old value and the
knowledge of where to replace it. This instruction will become part of a more
comprehensive structure, namely the reverse window. Through this structure, we
have sufficient information to cancel all the updates done by the generic program
during its execution.

In this writing, we will discuss the structure of the reverse window, as the
building block for the whole reversing framework we designed and finally realized.
Albeit we settle our solution in the specific context of the parallel discrete event
simulation (PDES) adopting the Time Warp synchronization protocol, this frame-
work paves the way for further general-purpose development and employment.
We also present two additional innovative contributions coming from our inno-
vative reversibility approach, both of them still embrace traditional state saving-
based rollback strategy. The first contribution aims to harness the advantages of
both the possible approaches. We implement the rollback operation combining
state saving together with our reversible support through a mathematical model.
This model enables the system to choose in autonomicity the best rollback strategy,
by the mutable runtime dynamics of programs. The second contribution explores
an orthogonal direction, still related to reversible computing aspects. In partic-
ular, we will address the problem of reversing shared libraries. Indeed, leading
from their nature, shared objects are visible to the whole system and so does every
possible external modification of their code. As a consequence, it is not possible
to instrument them without affecting other unaware applications. We propose a
different method to deal with the instrumentation of shared objects.

i

ii Abstract

All our innovative proposals have been assessed using the last generation of the
open source ROOT-Sim PDES platform, where we integrated our solutions. ROOT-
Sim is a C-based package implementing a general purpose simulation environment
based on the Time Warp synchronization protocol.

Ringraziamenti

Vorrei esprimere la mia più profonda gratitudine al mio advisor ed i miei tutor
Prof. Francesco Quaglia, Prof. Bruno Ciciani e Dr. Alessandro Pellegrini, per
la loro costante guida ed incoraggiamenti durante questi anni di lavoro, studio
e condivisione passati insieme. É grazie alla loro passione e all’entusiasmo che
hanno sempre profuso nei temi di ricerca e nelle metodologie che ho scelto di
perseguire questa tanto perigliosa quanto soddisfacente strada del dottorato e che
ha portato alla nascita di un gruppo di lavoro tanto bello, ricco e coeso.

Un ringraziamento doveroso va, dunque, anche a tutti i membri del gruppo
HPDCS. Una grande famiglia che, accomunata dalla passione per la ricerca, ha
reso speciali questi tre anni di dottorato donandogli qualcosa che va oltre il puro
contributo scientifico o di crescita proessionale, comunque presenti, toccando val-
ori importanti quali l’amicizia e l’affetto.

Infine, ma non certo per importanza, vorrei ringraziare davvero di cuore la mia
famiglia, i miei parenti e tutti i miei amici. Mi avete sostenuto in ogni momento
ed in ogni condizione, mi avete fatto vedere ciò che in quel momento non riuscivo
a percepire, mi avete aiutato a rialzarmi dalle innumerevoli “cadute” e non avete
mai smesso di credere in me anche quando io stesso avevo difficoltà a farlo. Anche
all’infuori di questo progetto siete sempre accanto a me, rendendo ciascuno di voi
davvero inestimabile.

Le parole non sempre sono sufficienti ad esprimere tutta l’emozione, tuttavia
spero che possiate sentire il mio affetto e vedere il vostro contributo in quest’opera
resa possibile grazie alla partecipazione di ciascuno. La conoscenza, l’intuizione,
l’entusiasmo e la passione che (spero) qui troverete sono le medesime di cui mi
avete fatto dono e per le quali vi sono infinitamente grato.

iii

Acknowledgements

I would like to express my deep gratitude to my research’s advisor and co-advisor,
Prof. Francesco Quaglia, Prof. Bruno Ciciani and Dr Alessandro Pellegrini for their
guidance and encouragement during these years of work, research and sharing. It
is thanks to their passion and enthusiasm they always lavished on the research
subjects and methodologies that I had no doubt, at the time, to choose diving my-
self into the as perilous as satisfactory adventure of the PhD. The same driving
force which brings a research group so beautiful, rich and cohesive to emerge.

A due thank, hence, goes to all the members of the HPDCS research group
which like a big family sharing the passion for study and research makes this
three years special, offered something beyond pure scientific or professional con-
tributions, yet present, giving much more important values like friendship and
affection.

Finally, though certainly not least, I would like to thank my family, my relatives
and all my friends. You supported me at every moment and in every condition,
you showed me what I could not perceive at that moment, you helped me to get up
from the countless "falls" and you never stopped believing in me even when even
I had trouble doing it. Even outside this project, you are always beside me making
each of you invaluable.

Often words are not sufficient to thoroughly express the emotions. Nonethe-
less, I hope you could perceive my fondness e to see your contribution in this
writing, made possible thanks to the involvement of each one. The knowledge, in-
tuition, enthusiasm and passion which you will (hopefully) find here are the same
you gave me as a gift and for which I’m infinitely grateful.

v

vi

Contents

Abstract i

Ringraziamenti iii

Acknowledgements v

1 Basics 1
1.1 Motivation . 4
1.2 Thinking in “reverse” . 7
1.3 Discrete event simulation . 8

2 State of the Art 13
2.1 Reversible computing . 14

2.1.1 Physical perspective . 16
2.1.2 Reversible computational models 20
2.1.3 Software perspective . 24

2.2 Reversible computation in speculative PDES 33

3 The reversing framework 37
3.1 Architectural details . 39

3.1.1 The reverse window . 41
3.1.2 Reversing toolchain . 46
3.1.3 The reverse code engine . 52
3.1.4 Instruction and object predominance 55
3.1.5 Reverse cache . 58

3.2 Addressing code instrumentation . 59
3.3 Dealing with memory allocations . 64

4 The hybrid rollback strategy 69
4.1 Hybrid strategy basics . 70
4.2 State restoration process . 71
4.3 Experimental assessment . 76

4.3.1 Test-bed platform . 76
4.3.2 Test-bed environment . 76

vi

Contents vii

4.3.3 Test-bed application . 77
4.3.4 Performance data . 80
4.3.5 Comparison to state saving . 86

5 Dealing with shared libraries 91
5.1 Resolve the symbol’s address . 94

5.1.1 Intercepting dynamic linker’s resolver 97
5.1.2 Instrumentation of library functions 99

5.2 Experimental assessment . 107
5.2.1 Test-bed environment . 108
5.2.2 Test-bed application . 109
5.2.3 Performance data . 110

6 Conclusions and future work 113

Bibliography 117

A Synergistic hardware and software reversibility 1
A.1 Simulation horizons and value of speculative work 3
A.2 The simulation engine’s architecture 6
A.3 Experimental results . 11

Index 15

viii

List of Figures

Figure 1.1 Roadmap of the work done. 5

Figure 2.1 Non-determinism in traditional computational models. . . . 16
Figure 2.2 The layers stack of a reversible computer. 24

Figure 3.1 Memory footprint example of a program. 38
Figure 3.2 Example of a assembly program which makes updates on

memory. 40
Figure 3.3 Illustration of the content of a single reverse window. 43
Figure 3.4 Illustration of a single reverse window. 44
Figure 3.5 Chain of reverse windows in case of an overflow of the parent. 46
Figure 3.6 Reversing toolchain step illustration. 47
Figure 3.7 Instruction entry byte representation. 49
Figure 3.8 The x86’s addressing notation. 51
Figure 3.9 Generation of an inverse instruction. 53
Figure 3.10 Flowchart of our reversal engine. 54
Figure 3.11 Illustration of the instruction predominance property. 57
Figure 3.12 Reverse cache graphical description. 59
Figure 3.13 Description of the reverse cache internals. 60
Figure 3.14 The Hijacker workflow within the compilation toolchain. . . 61
Figure 3.15 The Hijacker’s architecture. 63
Figure 3.16 Intermediate binary representation 65
Figure 3.17 Illustration of the malloc-free-malloc call sequence. 67

Figure 4.1 Basic reverse schema to employ reverse window in a rollback
operation. 73

Figure 4.2 The hybrid rollback strategy. 74
Figure 4.3 Architecture of the DyMeLoR memory manager of ROOT-Sim 77
Figure 4.4 Experimental results for the Read-Intensive profile. 81
Figure 4.5 Experimental results for the Read-Write profile. 82
Figure 4.6 Experimental results for the Clustered configuration (RW

profile). 84
Figure 4.7 Execution speed ratio (new approach vs traditional periodic

checkpointing). 86

viii

List of Figures ix

Figure 4.8 Layout of the LP state in the data store model. 87
Figure 4.9 Results with the data platform model. 88

Figure 5.1 The whole picture of the functions call chain to start a new
process in Unix-like Operating Systems. 95

Figure 5.2 High-level dynamic symbol’s address resolution flow for the
shared objects. 96

Figure 5.3 Dynamic symbols resolution procedure relying on the GOT
and PLT tables. 97

Figure 5.4 Flowchart of the dynamic symbol resolver. 99
Figure 5.5 Library instrumentation process. 103
Figure 5.6 Organization of code, tables, and trampolines after instru-

mentation . 106
Figure 5.7 Shared library instrumentation overhead with 300 sensor work-

load. 111
Figure 5.8 Shared library instrumentation overhead with 2000 sensor

workload. 112

Figure A.1 Event density simulation regions in HTM environment. . . . 3
Figure A.2 Basic engine organization . 6

x

List of Tables

Table 2.1 Example of constructiveness property for most common oper-
ations. 27

Table 3.1 Description of the reverse window C structure. 43
Table 3.2 Instruction entry insn_entry’s fields 49
Table 3.3 Description of a revrese cache line 59
Table 3.4 The instruction descriptor’s fields table 65
Table 3.5 The instruction descriptor fields table 66

Table 4.1 Rollback strategies and their respective restore operations. . . 71
Table 4.2 Machine configuration relative to the experimental assessment

of Chapter 4 “The hybrid rollback strategy”. 77
Table 4.3 Summary of test configurations for the hybrid strategy in Chap-

ter 4 “The hybrid rollback strategy”. 79

Table 5.1 Definition of the possible libreverse’s execution modes. . . . 105
Table 5.2 Machine configuration relative to the experimental assessment

of Chapter 5 “Dealing with shared libraries”. 108

x

List of Algorithms

A.1 Shared Lock Acquisition/Release. 7
A.2 Main Loop. 9

xi

Chapter1
Basics

The reverse side also has a reverse side.
— Japanese proverb

Many complex systems, from parallel to distributed applications, may need to per-
form work which is somehow “undo-able”, either to prevent unrecoverable system
crashes or to untie speculative decisions that may generate infeasible or incon-
sistent evolution trajectories. These cases are commonly considered as generic
“misbehaving” operations, with respect to the application’s logic. The advent of
multi-core and many-core architectures sharpened this requirement even more.
Indeed, handling parallel applications efficiently needs a different design. Multi-
ple and simultaneous execution flows may coexist, requiring to orchestrate com-
plex synchronization and communication aspects. Reversible computing, in its
general form, has been employed (and it does continue) as a solution to address
rollback-based synchronization issue. Indeed, the most consolidated way to re-
align the system to a consistent state is to dismantle the portions of computation
which brought the system to misbehave.

Large-scale parallel computations and distributed systems heavily exploit the
available underlying resources, increasing the likelihood to lead the system into
some incoherent state. As a consequence, they need a software layer able to syn-
chronize and properly orchestrate the whole system. They pose a few big chal-
lenges that currently have been resolved in a non-definitive way: (a) fault-toler-
ance, (b) synchronization, (c) efficient debugging support and application’s pro-
filing, (d) energy-efficiency issues. These challenges directly affect systems’ de-
pendability which, in its turn, embraces several aspects to ensure: availability,
reliability, security and performance. In database and distributed systems, con-
current elements are typically transactions which try to access shared resources
simultaneously, though even in much simpler architectures conflicts may occur
at the level of machine instructions; an example is that of speculative execution,
instruction pipelining or branch prediction. Similarly to other systems, also paral-

1

2 1. Basics

lel applications introduce a high contention factor to access shared resources. An
example is that of speculative parallel simulation applications; they consume mil-
lions of events speculatively—the basic idea beneath is to relax synchronization
and causality constraints—many of which might be rolled back due to possible in-
consistencies generated, e.g. by priority inversions. The widely adopted solution
is to rollback the whole system to a previously saved coherent state; this technique
goes under the name of state saving.

In this writing, we primarily focus on the first two challenges; although, we
carried out additional research work also addressing the others. The first mile-
stone has been to provide approaches that go beyond classical solutions found
in the literature, where generic misbehaviour (e.g. faults, intrusions or causally
inconsistent executions due to speculative processing) is supported via checkpoint-
based rollback, enabled by the state-saving technique mentioned above. In this
case, upon any misbehaviour occurrence, the runtime environment rolls back the
system’s state to the nearest checkpoint, blowing away a (restrained) portion of
computation. Once a consistent state has been restored, the system resumes its
forward execution flow. Anyhow, with nowadays scalability levels in the under-
lying hardware platforms, and with the growth of memory-hunger applications
(e.g. due to 64-bit based address spaces), saving the system’s state is becoming a
significant concern both for CPU costs and for direct/indirect memory costs.

As the reader may have already asked himself/herself: what if the system
would be able to act also in reverse, instead of this rollback&replay mode? Con-
trarily to state saving, we adopt a backward approach which realigns the whole
system to a consistent state by simply rewinding computational steps. Reversible
computing is a very appealing alternative to conventional state-saving based roll-
back. Despite someone can imagine, reversible computing is a rather ancient re-
search field, which only in the latest years has gained a growing attention, both
for energy efficiency aspects and for software performance. Reversible computing
may have several potential applications in (a) computer security, (b) transaction
processing, (c) intrusion detection systems, (d) debugging activities, (e) developing
aiding tools (i.e. IDE), (f) and backtracking reasoning.

Objectives of the thesis are to develop a broad reverse-enabling support that com-
prises an on-line reverse code generator and a set of algorithms and models to
embed our reversible computing rollback strategy next to traditional state sav-
ing. This hybrid interweaving of rollback strategies is the base of our autonomic
system that tailors reversibility support to application’s runtime dynamics. The
overall framework relies on a static binary instrumentation tool (namely Hijacker,
refer to Section 3.2 “Addressing code instrumentation”) in order to integrate our
reverse code generator module in target applications. Through instrumentation

3

we are able to support transformation of generic applications into reversible ones
in a transparent and automatic way.

Our case of study is that of speculative simulation platforms, and more in de-
tails the speculative Parallel Discrete Event Simulation (PDES). From a generic
point of view simulation is a problem-solving technique to cope with complex
models generally conceived from real (or hypothetical) phenomena, which are
non-trivially reproducible otherwise. Simulation applications handle a consider-
able number of parallel/distributed objects interacting together by message pass-
ing. Each object is a logical entity which lives into a virtual time context unre-
lated to wall-clock time, and consumes incoming messages. Event-based simula-
tion enforces the equivalence between those messages exchanged and the relative
triggered events. Unlike other structured processes, speculative simulation adopts
optimistic heuristics, which allow to perform scheduled events even if they are not
safely processable—the safety property straightway depends on the actual process-
ing order of events with respect to global causality relationship they are involved
in. The optimistic approach looses event processing constraints and exploits com-
putational resources much better. Nevertheless, it might lead the system to vio-
late the causal order, bringing the simulation to an inconsistent state. The more
complex the simulation model runtime dynamics is, the more likely it requires to
rollback out-of-order events. So far, the most consolidated way to rollback is to
employ state saving techniques, though it exhibits considerable memory overhead
and time latency as the simulation model gets more complex. Leading from the
previous considerations, it appears clear that simulation models usually require
a considerable storage allocation to model the reality and to store partial results,
which further observe several updates per time. Nonetheless, the optimistic (spec-
ulative) slant increases the likelihood of rollback operations. Simulation applica-
tions exhibit also CPU-intensive loads, making them a representative testbed to
assess our approach in a wide spectrum of cases at once.

The key innovation that distinguishes our work from the solutions proposed in
the literature is basically the viewpoint change in the data structures and logic
supporting the rollback operation. Traditional solutions require to maintain a
complex data structure that has to hold some meta-data, beyond the real data
to restore. Meta-data builds the proper application’s memory layout and, con-
sequently, the knowledge of how data will have to be restored. Rather, we shift the
focus from data to instructions. This new approach harnesses the intrinsic power of
machine instructions to convey both data and the relative restore logic together. It
results in a single complete and yet compact structure, namely the reverse window
(refer to Chapter 3 “The reversing framework”). This approach reduces notably
the runtime overhead required for saving the application’s state and generating

4 1. Basics

the necessary restore-enabling meta-data. Furthermore, the rollback operation be-
comes independent of the forward-operation complexity; since we climbed the
abstraction level down to the machine instructions, this enables to leverage a raw
yet uncluttered outline of the memory usage.

1.1 Motivation

Reversible computers are the future alternative that will eventually replace cur-
rent conventional architectures. The growing demand for more energy-efficient
hardware and the impossibility to trespass an insurmountable physical limit in the
manufacturing process of transistors have now become evident. Such a reversible
hardware architecture, though, does not exist yet but as a proof of concept. This
topic has a profound ground in physical and mechanical aspects, and an increas-
ing number of researchers are investigating new technologies to bring these ar-
chitectures to reality. Other research branches, on the contrary, place themselves
at a higher abstraction level to respond orthogonally to the need that reversible
computing can address. This is the rationale that motivated us in realizing a thor-
ough reverse-transforming framework (i.e. libreverse, Chapter 3 “The reversing
framework”), which will be the core of this thesis. Nevertheless, we would like to
stress that, even though software-reversible computing is our context, this is not
unrelated to its physical counterpart, at least in principle. This is also a reason why
in Chapter 2 “State of the Art”, dedicated to provide the background of the related
work, we will deserve a digression on the general reversible-computing theory.

Settling in the broad context of reversible computing, we aim to provide so-
lutions from a software perspective, targeting the rollback-enabling supports for
those applications which require to undo generic misbehaving operations. Going
beyond what it has been already done in the literature, we conceived an innovative
way to employ reversible computing through a general-purpose framework that
enables for a reverse-transformation of any generic application into a reversible
version (see Section 3.2 “Addressing code instrumentation”). Although we focus
on PDES, applications of that framework span over different fields, from debug-
ging and profiling systems, to efficient rollback paradigms to address synchro-
nization in parallel execution. The scope of this work is to describe and evaluate
the contribution’s impact of the innovative approach we began to early develop
in [27], where we start addressing challenges that conventional state-saving roll-
back approach solves in a non-definitive way. While devising such a high-level
framework, we bear in mind some fundamental objectives to pursue: (a) efficiency,
(b) transparency, (c) autonomicity and (d) portability. As for the first efficiency ob-
jective, the search for improvements of runtime performance is the driving re-
quirement of this work. Further on, to meet the developer’s needs of focusing

1.1 Motivation 5

1

Envisage a compact
structure to enable
reverse support

2

Improve Hijacker in-
strumentation tool

3

Develop a hybrid self-
tuning model

4

Improve reverse sup-
port to system-wide
and shared library
support

5

Finalize complex
memory manager
towards general pur-
poses

Figure 1.1. Roadmap of the work done.

on his/her work and not burdening he/she with the additional encumbrance of
handling reverse-related stuff, transparency arises as a fundamental requirement.
Provided that not every developer has the knowledge and/or the sufficient abil-
ity to design reversible code properly and devise an optimized version of it—him/
her may be a domain expert not a programmer,—the reverse-enabling framework
must provide a complete toolset to take care of that. Analogously, every applica-
tion has its own characteristics and peculiarities; hence it is nearly impossible to
find a “one size fit all” solution to achieve the best performance in every context.
This observation is the main motivation behind the autonomicity requirement. It
somehow catches a problem similar to transparency, but it further enables the sys-
tem to better suit dynamic application’s behaviour under its actual contexts and/
or runtime conditions. Besides the objectives mentioned above, we also consider
portability to enable for an “out of the box” pluggable support. For this reason, we
also underline the broad scope our reverse-enabling support framework aims.

From these assumptions, it was born libreverse, one of the primary efforts
of this work. It is a comprehensive library providing broad reversing support,
capable of being plugged into any generic software, both user-level and system-
level. libreverse is part of what we call the reversing framework which, indeed,
comprises also a set of others tools we devised for the purpose. As a result, the
whole reversing framework is a sort of history and memory manager, providing the
best reversibility support strategy, according to the application’s characteristics.

Figure 1.1 gives the roadmap overview of the effort spent on developing a com-
prehensive reverse-enabling framework, from the very beginning of envisaging an
efficient data structure able to maintain all the meta-data necessary to the upper
level reversing function and the reversing function itself, until to devise and inte-
grate toolset to enable for an “out of the box” usage.

6 1. Basics

As a last introductory note, we remark that the content of this thesis appeared
also in the following list of publications:

• Cingolani, D., Pellegrini, A., Schordan, M., Quaglia, F., & Jefferson, D. R.
(2017). Dealing with Reversibility of Shared Libraries in PDES. In Proceed-
ings of the 2017 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation (pp. 41–52). https://doi.org/10.1145/3064911.3064927

• Cingolani, D., Pellegrini, A., & Quaglia, F. (2017). Transparently Mixing
Undo Logs and Software Reversibility for State Recovery in Optimistic PDES.
ACM Transactions on Modeling and Computer Simulation, 27(2), 26.
https://doi.org/10.1145/2769458.2769482

• Cingolani, D., Ianni, M., Pellegrini, A., & Quaglia, F. (2016). Mixing hard-
ware and software reversibility for speculative parallel discrete event simu-
lation. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol.
9720, pp. 137–152). https://doi.org/10.1007/978-3-319-40578-0_9

• Cingolani, D., Pellegrini, A., & Quaglia, F. (2015). RAMSES: Reversibility-
based agent modeling and simulation environment with speculation-support.
Lecture Notes in Computer Science (Vol. 9523).
https://doi.org/10.1007/978-3-319-27308-2_38

• Cingolani, D., Pellegrini, A., & Quaglia, F. (2015). Transparently Mixing
Undo Logs and Software Reversibility for State Recovery in Optimistic PDES.
In Proceedings of the 2015 ACM SIGSIM Conference on Principles of Ad-
vanced Discrete Simulation (pp. 211–222). New York, New York, USA: ACM
Press. https://doi.org/10.1145/2769458.2769482

The research effort spent while working on this thesis has also contributed to the
following publications:

• Ianni, M., Marotta, R., Cingolani, D., Pellegrini, A., & Quaglia, F. (2018). The
Ultimate Share-Everything PDES System. In F. Quaglia, A. Pellegrini, & G.
K. Theodoropoulos (Eds.), Proceedings of the 2018 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, Rome, Italy, May 23-25, 2018
(pp. 73–84). ACM.
https://doi.org/10.1145/3200921.3200931

• Conoci, S., Cingolani, D., Di Sanzo, P., Pellegrini, A., Ciciani, B., & Quaglia,
F. (2018). A Power Cap Oriented Time Warp Architecture. Proceedings of
the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, (i), 97–100. https://doi.org/10.1145/3200921.3200930

1.2 Thinking in “reverse” 7

• Economo, S., Cingolani, D., Pellegrini, A., & Quaglia, F. (2016). Configurable
and efficient memory access tracing via selective expression-based x86 bi-
nary instrumentation. In Proceedings - 2016 IEEE 24th International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems, MASCOTS 2016 (pp. 261–270). IEEE Computer Society.
https://doi.org/10.1109/MASCOTS.2016.69

1.2 Thinking in “reverse”

Albeit a more detailed discussion about reversible computing will be addressed
in Section 2.1 “Reversible computing”, we would like to introduce the topic to
give the reader a prompt overview of the context. We shall proceed by giving a
pragmatic definition of reversibility:

Definition. Let A be an automaton. It is reversible if the transition function
from a generic state Sk to another generic state Sn is invertible.

Reversible Computing refers to computational models performing logically re-
versible operations. That is, instructions which allow to rebuild any previous state
by relying only on the knowledge of the current one, stepping backwards through
the same computational steps already performed in forward execution. The fun-
damental requisites are the following:

• No information has to be lost (or implicitly erased) during the operation.

• The transition function, from a generic state to the following one, must be
bijective.

If the former requirement is more related to the physical realization of digital logic
and circuitry, the latter regards software implementation of the algorithms. This
already gives an insight on the underlying strict correlation between physical and
logical aspects. Further, reversible computing has to face some big challenges
that prompted several researchers. Clearly, perfect physical-reversible architec-
tures are infeasible; quantum theory clearly explains that any environment has al-
ways a non-zero possibility to be irreversibly altered by the everlasting Universe’s
ground noise which creates entropy. Notwithstanding that, interesting attempts
have been done (see Section 2.1). Vice versa, no existing software implementa-
tion is generally designed to be natively fully reversible; any application always
exhibits a certain degree of irreversibility, as a leading inheritance of the program-
ming languages’ structure and underneath computing architectures. Therefore,
one of the biggest hurdles in achieving software reversibility is indeed overcom-

8 1. Basics

1 percent (base , perc) {
2 int result = base;
3 result *= perc;
4 result /= 100;
5 return result ;
6 }

Listing (1.1) Forward version of the
function percent() that calcu-
lates the percentage.

1 percent_i (value , perc) {
2 int result = value;
3 result *= 100;
4 result /= perc;
5 return result ;
6 }

Listing (1.2) Reverse version of the
function percent().

ing the forward-determinism of our traditional computational models, and thus
of their relative programming languages.

Settling in this context, the effort of this thesis work is to propose solutions at
the software level, targeting those applications that require to undo misbehaving
operations from a high level logical perspective.

Unlike the traditional concept of reversible computing (or reversible compu-
tation), we embrace a slightly different form of reversibility in this work. To be
more precise, the more general reversible computation in computer theory ad-
dresses how to reverse a generic computational step sk. The objective is to build
an inverse function F−1, provided the generic forward counterpart F composed
of several computational steps sk ∀k ∈ N. Our approach, instead, changes the fo-
cus only on the outcome of that computation “perceived” by memory, rather than
on the single operations done by our example’s function F . In this way, we can
overcome some challenges that are still open in the reversible computing theory,
and simplify the creation process of the inverse code block—we will call it undo of
reverse code block.

1.3 Discrete event simulation

To proceed further on this dissertation, it is worth to spend few words to intro-
duce the specific application context this work has taken as “use case”. As a first
step, we focused on discrete event-driven simulation (DES) applications and in
particular its parallel version (PDES). This section is dedicated to introduce the
simulation world, which happens to be the case study of this research work. Let’s
introduce simulation applications by first answering to the following questions:
why simulation? and why discrete event, specifically?

Answering to these questions is fairly simple. Simulation is a proven tech-
nique able to capture a lot of physical phenomena whose testing in a real envi-

1.3 Discrete event simulation 9

ronment would be infeasible or, at least, impractical. Hence, the straightforward
idea is to create an “in-vitro” environment that captures every interesting aspects
of the real one, except for being scaled down to a manageable size. The reason
behind the adoption of discrete event simulation is related to its architecture; it
often handles a high number of distributed objects interacting together by mes-
sage passing. Since simulation relies on a Simulation platform!virtual time con-
cept, the correctness of messages causality must be ensured. Unlike other struc-
tured processes, event-based simulation systems may adopt speculative explo-
ration/execution, which could bring the system to inconsistent simulation states.
This is the typical case of optimistic heuristics, which allow to handle scheduled
events even if it is not yet proven that they are safe to be actually executed. This
speculative approach loosens some causal constraints and better exploits compu-
tational resources, at the expenses of a burden to handle “misbehaving” cases. If
on the one hand the solution allows to gain efficiency and guarantees to avoid any
kind of deadlock, on the other hand many times, operating entities are faced with
the following dilemma: whether to follow one branch or the other. The answer
adopted is to speculatively perform one of the two by choosing according to some
criterion, even though it may not be the right decision.Taking a checkpoint before
a branch is followed, allows to undo the mis-predicted portion of computation and
to bring the system back to a previous consistent state.

Event though discrete event simulation is a specific context, it is representa-
tive of a more generic kind of applications where the “rollbackable” execution is
an endemic phenomenon in their runtime evolution. As mentioned, the rollback
operation is a fundamental building block to support the correct execution of spec-
ulative systems, such as Time Warp-based ones [65]. In the literature, several so-
lutions to reduce the execution cost of this operation have been proposed, either
based on the creation of a checkpoint of previous simulation state images, or by
executing negative copies of simulation events which are able to undo the updates
on the state. State saving is a widely employed, simple and easy-to-implement
solution that allows for a reversible execution; nonetheless it may consume much
memory to save a program’s history snapshot.

Differently from other proposals, we address the issue of executing backward
updates in a fully-transparent and event granularity-independent way, by relying
on static software instrumentation (targeting the x86 architecture and Linux sys-
tems) to generate at runtime reverse code blocks (or undo code blocks)—which differ
from reverse-events implemented as pure inverse shadow copies of the event itself,
“proper” of the reverse computing technique.

So far in the literature (see also Chapter 2 “State of the Art”) we have seen two
approaches to build a reversible support: (a) saving copies of variables to memory
or (b) computing inverses of individual operations without relying on memory at

10 1. Basics

all. Although the former approach is simpler to implement, it introduces a time
overhead due to additional instructions in charge of saving values, and moreover it
may require an exceeding memory amount to store old copies. Further, memory-
based reversal might also negatively affect the memory subsystem behaviour (in
terms of cache misses and TLBs) during snapshot re-installation. Conversely, per-
forming inverse computations allows to consistently reduce memory costs, as no
additional storage latency is required and no additional processing time would be
wasted for memory movement operations.

Memory latency represents a limit of current undo schemes which actually
checkpoint-based solutions heavily rely on. The pursuit was to relieve memory
pressure in rollback operations by focusing on machine instructions, rather than to
dump a composite and (relatively) large structure—in other words, instead of tak-
ing periodic snapshots of the application’s state, the instructions’ outcome would
be tracked. To this end, the challenge to deal with was the optimization of the
ratio between forward and backward instructions. The key objective in this first
research’s phase has been to optimize memory requirements of reversible comput-
ing support’s needed to implement rollback facilities, from two orthogonal per-
spectives: (a) the pure storage size, and (b) the number of memory accesses.

Speculative processing is proven to be very effective, nonetheless its current
implementation still lacks optimality guarantees. As we have seen, traditional ap-
proaches try to provide for it by varying either the frequency at which checkpoints
are taken or by devising delta-based schemes to build incremental snapshots. All
these solutions, though, do not ensure to achieve straightforward the optimum,
which requires a fine tuning process to best match application’s characteristics.
This is an operation that results in tuning parameter’s values, that cannot be easily
computed a-priori and could be time-expensive to determine. To better under-
stand this aspect, it is sufficient to observe that each application has a different na-
ture which reflects itself in the rollback characteristics. For example, fault-tolerant
applications will have a reduced rollback ratio, whereas speculative-processing-
based ones would likely show a much higher degree of event’s concurrency, thus
of consistency violation probability, especially in adverse runtime scenarios. Ap-
plications themselves rarely have a homogeneous behaviour, rather each of them
shows a different trajectory footprint which reflects distinct computational phases.
Each phase likely evolves showing a certain events’ processing density, therefore
it is characterized by different rollback frequency. Such a difference in processing
density is reflected in a non-balanced advancement of the components along the
simulation time.

Leading from these considerations, the optimum rollback strategy is not unique
and quite often hard to compute in advance, moreover it is likely not able to suit
an application throughout its whole extension. To this end, a supplementary con-

1.3 Discrete event simulation 11

tribution we focused on in Chapter 4 “The hybrid rollback strategy” is to provide
autonomicity, by investigating hybrid and yet transparent approaches. The devised
algorithms will dynamically choose the best reversibility scheme according to the
specific application or execution context, blending different schemes together un-
der a single composite strategy. The result is transparently tailored to the soft-
ware’s features, hence able to better catch its runtime execution’s dynamics.

Chapter2
State of the Art

Any sufficiently advanced technology is indistinguishable from magic.
— Arthur C. Clarke, Profiles of the Future: An Inquiry Into the

Limits of the Possible

To make unfamiliar readers comfortable with the context of reversible computing,
we believe it is worth to deserve a chapter to a deeper insight into the history be-
hind it. Reversible computing is a vast and rather ancient research field which
stirred several researchers to investigate what is the linkage between information
theory and its corresponding physical representation. It interweaves several per-
spectives, from mathematics to physics, electronics and informatics. Within this
broad context, and throughout the thesis, we identify two main abstraction lev-
els: (a) physics and (b) software. They provide two orthogonal yet complementary
perspectives. The former clearly regards the proper physical substratum, inspect-
ing the correlation between the entropy generation and the information comput-
ing theory. Indeed, reversible computing is historically steered to the physical
perspective of computing platforms, investigating a new dimension of computa-
tional models and practical technologies (e.g. cellular automata, adiabatic circuits
or billiard-ball computational models) to build an “entropy-less” reversible com-
puter. Notwithstanding, reversible computing has widened its perspective touch-
ing the software layer. Software reversible computing regards techniques and al-
gorithms developed to overcome the intrinsic forward-determinism proper of the
conventional computer hardware architectures and make a program reversible.
Applications of software reversibility span to:

• synchronization;

• fault tolerance;

• application security sandboxing; and

• debugging and profiling.

13

14 2. State of the Art

In Chapter 3 “The reversing framework”, we propose a solution to address the first
of the bullets mentioned above, namely synchronization. The following Section 2.1
is dedicated to providing a more detailed overview of the reversible computing do-
main, notwithstanding it is not strictly preparatory to our scopes. On the contrary,
Section 2.2 gives the related work overview set in the specific context we embrace,
namely Parallel Discrete Event Simulation (PDES). A comprehensive work aimed
to who is approaching to the reversible computing realm is the book “Introduction
to Reversible Computing” of Kalyan Perumalla [88]

2.1 Reversible computing

One of the toughest challenges the semiconductor industry is currently facing
can be summarized by the so-called “dark-silicon”. According to the well-known
Moore’s Law, transistors were made continuously smaller, becoming simultane-
ously cheaper, faster, and more energy-efficient. However, multiple issues ap-
peared in this winning scenario. The main obstacle to this trend regards a feasibil-
ity limit of the fabrication processes of transistors and integrated circuits. Thus,
when short-channel effects resulted in approaching a plateau of clock speeds, the
industry shifted to multi- and many-core architectures. Notwithstanding, even
these architectures begun to suffer. Heat dissipation constraints prevent to power
all the possible cores available, bounding the full computational power they could
provide. We are approaching a clear untraversable point, beyond which Physics
tells us we cannot push ourselves much farther because of the entropy genera-
tion, resulting in heat. Reversible computing paves the way for a new promising
dimension, where we may find solutions to overcome these limitations [51].

What is “reverse computing”? In [78], Kenichi Morita gives a plain definition
of reversible computing. We quote:

“ Reversible computing is a paradigm that has a close relation to
physical reversibility.

By far, this definition seems rather generic and even too much simplistic, how-
ever it clearly catches the essence of this research branch. Reversible computing
grounds its roots in the past [123, 70]. Indeed, starting from Rolf Landauer who
in the 60s first argued (Theorem 2.1) the relation between computing reversibility
and physical reversibility, other researchers began to investigate the implication:

Logical reversibility ⇐⇒ Physical reversibility (2.1)

2.1 Reversible computing 15

In the literature, reversible computing refers to computational models found-
ing on reversible physical phenomena and reversible (logic) operations. Conven-
tional computers are founded on intrinsically irreversible computational models.
The motivation behind so much effort in reversible computing, on the contrary,
is that it represents an entirely new dimension of reasoning, without information
loss. Historically, the main motivation behind reversible computing has been en-
ergy efficiency, due to its profound relation with physics. Nowadays, it is contin-
uously gaining ever-growing attention both for energy efficiency aspects and for
performance (e.g. scalability of concurrent applications). Further, also other per-
spectives have been addressed beyond theoretical physical implications or logic
circuit design—we refer to the engineering of reversible hardware supports,—but
also in the higher level of abstractions. At the software level, reversible computing
is used as an adjective for algorithms and programs able to perform some back-
ward deterministic operation, though still on top of traditional information-loss
hardware.

The concept of reversible computing grounds on the combination of traditional
forward determinism and its backward counterpart. In other words, a generic ap-
plication or program can be considered “reversible” if by no means there exists a
pair of computational states that can reach two different final states, provided the
same execution context. Fundamental requisites for reversible computing are the
following:

a. No information has to be lost during computation;

b. the transition function, from a generic state to the following one, must be
bijective.

To give first the concept behind its potentialities, we intentionally introduce the
Definition 2.1 of what reverse computation allows to do, instead of what it actually
is. This choice is also preparatory to understand how to achieved reversibility in
generic programs.

Definition 2.1 (Reversibility). A program is defined to be reversible if it allows
to backward retracing all the computational steps between the current state and
any previous one. In other words, reversibility implies that each state Sk has a
unique predecessor Si and, thus, a unique backward execution trajectory.

F (Si) =⇒ Sk

F−1(Sk) =⇒ Si Si ≺ Sk
(2.2)

16 2. State of the Art

S1a S3a

S2

S1b S3b

Figure 2.1. Non-determinism in traditional computational models.

where F (·) represents the generic transition function from one computational
state S to another and F−1(·) is its inverse. The ≺ notation introduce a total
order between the two computational states, so as Si is a predecessor of Sk.

From a practical point of view, we define a program as reversible if it is possi-
ble to pause its forward execution at any time and walk backwards throughout the
same computational steps, and vice versa. Figure 2.1 explains, by means of a coun-
terexample, the underlying concept of bi-directional determinism at the founda-
tion of reversible computing. The picture represents the computational steps of
a generic program, for a given input. Let’s assume to be in state S2, ignoring for
the moment how we have reached it. In this computational state, let’s suppose to
pause the forward execution to step back to our previous state; where should we
go? It is clear we have no sufficient information to decide whether the former state
is S1a or S1b. Analogously, if we decide to let the forward execution proceed, we
again do not have a deterministic behaviour of the transition function, which has
two edges; one toward S3a and S3b the other. In other words, there exist two sub-
sequent runs of the program such that they may produce a different final output,
provided the same input.

The remainder of this section is dedicated to an overview of the broad context
of reversible computing. Section 2.1.1 “Physical perspective” provides some addi-
tional details on physical implications of reversible computing through an excur-
sus of the research’s evolution. Albeit interesting, this dissertation does not hinges
on the physical perspective, rather on a higher level of abstraction. Therefore, Sec-
tion 2.1.3 “Software perspective” introduces reversibility in software, which is the
context of this work.

2.1.1 Physical perspective

Despite the great interest and important involvement that physical aspects have
concerning computation and computer theory, this matter is slightly out of the
scope of this thesis. However, it is worth to spend some words on this topic to give

2.1 Reversible computing 17

the reader a broader viewpoint of the context underneath the software level we
worked on and will present in the remainder of this dissertation.

As we think about reversibility, probably our mind first goes to physics and
its natural phenomena, most of which are actually reversible. It is sufficient to
think about simple processes like water freezing and melting, or the gas expansion
within a piston chamber which can be compressed and let be expanded. However,
if we think about a piece of wood burning, the process does no longer seem to
be reversible. Indeed, it is not reversible because fire introduces entropy, which
eventually translates into heat. If now we come back to computing architectures,
the viewpoint is much more similar to the latter example. It is due to our hard-
ware design, built on top of an irreversible process: the bit flipping. To be precise,
the action of flipping one bit from a generic logical state to the other (e.g. from
one to zero) is not irreversible per se; however, it implies the consumption of a
quantum of energy and the irrecoverable erasure of the previous state. The intrin-
sic reversibility of physics’ nature prevents we can ever truly erase information in
a computer; rather, it “moves” to the machine’s thermal environment turning it-
self into information entropy [106], that external world perceives as heat. Erasure,
in this case, exists only from a logical perspective. Recalling the example in Fig-
ure 2.1, the information entropy reflects into the non-determinism that prevents
to move backward through a single edge

Definition 2.2 (Physical reversibility). Processes are defined to be physically
reversible if they do not dissipate energy in heat, hence without generating en-
tropy.

People early start asking themselves what would be the relation between the
physical components of the underlying computing architectures and the upper
application’s logic. In other words, what is the relationship among Definition 2.2
and the following Definition 2.3.

Definition 2.3 (Logical reversibility). An operation is logically reversible if its
computational state, just before it is carried out, is uniquely determined by the
output state. Therefore, no information must be erased, or otherwise lost.

The direct consequence is that a logical reversible program is backward deter-
ministic along its trajectory.

Recall the operation of changing the bit status and consider a real system. If it
would be possible to flip bits reversibly, hence without destroying information,
then how much it would be the minimum amount of energy dissipated? To an-
swer this question the researcher Rolf Landauer, in a paper published in 1961
by IBM [70], argued the implications of the logically irreversible nature of the

18 2. State of the Art

conventional computational operations on the thermodynamic behaviour of the
underneath device. Landauer’s reasoning can be understood by observing that the
most fundamental laws of physics are reversible, meaning that if you had complete
knowledge of the state of a closed system at some time, you could always run the
laws of physics in reverse and determine the system’s exact state at any previous
time, at least in principle. Theorem 2.1 expresses what goes under the name of the
Landauer’s principle. It states the relation between heat dissipation and the “era-
sure” of information bits. In his essay, Landauer also argues the inevitable presence
of logic (and physical) irreversible operations in traditional computational models.

Theorem 2.1 (Landauer’s principle). The irreversible loss of 1 bit of computa-
tional information requires the dissipation of the following quantity of energy:

Emin = kBTa ln 2 (2.3)

where kB is the Boltzmann constant (∼ 1.38 · 10−23 J/K) and Ta is the tempera-
ture of the circuit in which the lost bit finally ends up.

According to Landauer, Emin is hence the corresponding minimum amount of en-
ergy that any computer will dissipate as heat for every single bit of information
erasure1, which happens to be a 17-thousandths of an electron volt (eV). This re-
sult has also been proven experimentally in [22]. However, it is quite interesting to
note that current CMOS technology-based conventional computers can dissipate
over 5000 eV per bit erasure; much worse than Landauer stated. Efforts in the op-
timization of this hardware can be made, but it seems not possible to push energy
efficiency beyond the threshold of around 500 eV; an order of magnitude less than
the previous result, but still far away from the theoretical lower bound identified
by Landauer.

Landauer’s effort went to prove his approach of reusing the same energy asso-
ciated with the information-bearing signals for multiple operations, rather than a
single one; only then throwing away data. To prove his theory, Landauer ended up
to convince himself of the inevitability of information erasure, because of the lim-
ited memory available which eventually had required to clean up some previous
value. Later on, his colleague, Charles H. Bennet, first showed in 1973 in [18, 19]
the theoretical feasibility of logically reversible computers, arguing that it is prac-
tical to make any irreversible computation reversible. Bennett, though, addressed
only the logical and theoretical aspects, leaving open the problem of how to pre-
cisely embed such a reversibility property in real and complex hardware archi-
tectures. However, his work was hinged to overcome Landauer’s claim that irre-
versibility is a certain computing property. Bennett built a 3-tapes reversible Tur-

1About 3 · 10−21 joule at room temperature (21°)

2.1 Reversible computing 19

ing Machine which proved the reversibility of general-purpose computers, without
an overburdening complexity. This is the first attempt in the reversible comput-
ing models direction. Bennett’s reversible machine is based on the state saving
technique—basically, he save all the information that would be otherwise lost—
therefore, it may require a considerable amount of storage. This fact renders a real
implementation in complex systems infeasible, or at least impractical.

The debate regarding the physical implications of reversibility in computing
theory is rather heated, however. The discussion regarding physical implications
of computing theory is more complicated than it appears and embraces conflict-
ing opinions related to the connection between the Landauer’s principle and the
second law of thermodynamics. On the one hand, we find supporters arguing the
whole groundlessness of the Landauer’s principle [69], and, on the other hand,
there are supporters, such as Bennet [21], who still support the pedagogic power
of the principle in understanding some aspects of computational, nonetheless ad-
mitting its limitations concerning practical implications:

“ I would nevertheless argue that Landauer’s principle serves an
important pedagogic purpose of helping students avoid a mis-
conception that many people fell into during the twentieth cen-
tury, including giants [. . .]. Landauer’s principle, while per-
haps obvious in retrospect, makes it clear that information pro-
cessing and acquisition have no intrinsic, irreducible thermo-
dynamic cost whereas the seemingly humble act of information
destruction does have a cost, exactly sufficient to save the Sec-
ond Law from the [Maxwell’s] Demon.

As a result of the Bennet’s work, reversible computation could, in principle, cir-
cumvent the Landauer’s law provided it would be implemented onto the right
hardware, which though is still missing.

In this direction, the first notable attempts to overcome traditional circuitry ar-
chitectures was made by Fredkin and Toffoli between the ’70s and ’80s [53, 52, 50].
They investigated the possibility to build a complex reversible computer on top of
a conservative hardware architecture, and realized a working hardware prototype
of a physical reversible logic gate; namely, the so-called Fredkin gate and the Toffoli
gate. These logic gates are essentially Boolean functions which are both invertible
and conservative. The former property regards the mathematical aspect related to
the ability of finding an invertible function, whereas the latter refers to the real in-
formation conservation throughout the elaboration process. At the same time, also
other researchers investigated the possibility to build a reversible architecture, ap-
proaching what they called “adiabatic” circuits. The research in this direction cre-

20 2. State of the Art

ated a fertile ground for a subsequent generation of researchers who spent more ef-
fort on that branch; among others Michel P. Frank at MIT where he graduated with
extensive work on this topic [48]. Soon, he and Carlin Vieri built a fully-reversible
processor [112, 113, 11], which represents a proof of concept that computer archi-
tecture theory could actually be transferred over the reversible computing realm
without barriers. In [51], Michel P. Frank comments reversible computing with the
following words:

“ To be clear, reversible computing is by no means easy. Indeed,
the engineering hurdles are enormous. [. . .] I would guess that
the total cost of all of the new investments in education, re-
search, and development that will be required in the coming
decades will most likely run well up into the billions of dollars.
It’s a future-computing moon shot.

More recently, a work [41] on the adiabatic computational model has been pro-
posed addressing also security aspects of computation.

2.1.2 Reversible computational models

Usually, digital computers perform operations that erase information along the
execution history. Therefore, the immediate predecessor of a computational state
could be ambiguous. In other words, traditional general-purpose automatons
lack a single-valued inverse function; thus they are not backward deterministic.
Starting from the first historical Landauer’s claim breakthrough, several attempts
were made to prove the general reversibility of computational theory, therefore
the equivalence between physical and logical operations. Then, after that Bennet
overturned the belief that information erasure is an unavoidable consequence of
the computation process, other researchers have spent effort in studying reversible
computation and its physical implications and in exploring possible architectural
models to efficiently perform computation in reversible computers.

Reversible Turing Machines In 1973, Bennett [18] first defined the universal
reversible computation model showing the feasibility of building a Reversible Tur-
ing Machine (RTM). He built a 3-tapes (reversible) Turing Machine, which proved
the reversibility of general-purpose computers. A Reversible Turing Machine is
described by the same tuple of the traditional forward-deterministic Turing Ma-
chine: 〈Q, σ, b, δ, qs, qf 〉, where:

2.1 Reversible computing 21

Q Is the set of possible computational states.

σ Is the set of possible symbols.

δ Is the transition function δ : Q× σ =⇒ Q× σ × {←,→, ◦}.
qs Represents the starting computational state.

qf Represents the final computational state.

The set {←,→, ◦} describes the possible moves of the needle on the tape, suppos-
ing that it is infinite and readable in both directions. Respectively ← indicates a
step backward of one character, the symbol → indicates a step foreword of one
character and ◦ indicates the needle to remain in the same position.

Definition 2.4 (Reversible Turing Machine - RTM). A Reversible Turing Ma-
chine is a Turing Machine where the δ transition function is partial bijective.
Since the transition function is a partial function, partial bijection relaxation
implies that it is sufficient the δ function to be injective.

Bennett’s reversible machine is based on the state saving technique, storing in
memory any information that successive computations would erase. As some-
one may notice, such a machine may require a considerable amount of storage,
so that Bennett’s model is more a theoretical proof than a real implementation.
To this extent, subsequent works on time and space requirements were conducted
by Bennett himself in [20] and, later, by Buhrman et al. in 2001 [24]. Buhrman
proved an upper bound to reversibly simulating irreversible computations. To
quote from [24]:

“ Previous results seem to suggest that a reversible simulation is
stuck with either quadratic space use or exponential time use.
This impression turns out to be false: Here we prove a trade off
between time and space which has the exponential time simu-
lation and the quadratic space simulation as extremes and for
the first time gives a range of simulations using simultaneously
sub-exponential (f(n) is sub-exponential if f(n) = o(n)) time
and sub-quadratic space.

Cellular Automata (CA) Cellular Automata is another example of an abstract
model to support reversible computations. A CA is a discrete mathematical model
based on the concept of a self-reproducing machine, used to simulate complex
systems in several fields. It composes of an infinite number of identical finite au-
tomata called cells, which are placed and connected uniformly in space. Each cell

22 2. State of the Art

is supposed to be in one finite set of states such that the evolution of one cell also
affects its neighbourhoods. More in details, a cellular automaton is reversible if,
for every current configuration of the cellular automaton, there is precisely one
past configuration. In the 40s, Von Neumann first conceived the concept of a self-
reproducible machine that appears in [115]. Later, with his colleague Stanislaw
Ulam, Von Neumann further describes a more sophisticated model of Cellular
Automata in the book “Theory of Self-Reproducing Automata” [116], completed
by Arthur Burks after his death. In the 1980s, Matthew Cook, the assistant re-
searcher of Stephen Wolfram, also proved that this computing model was Turing-
complete [33, 119].

Ballistic billiards model In the late 1970s, Ed Fredkin, Tommaso Toffoli, and
other members at MIT envisioned the concept of ballistic computing. Instead of
using electronic signals like a conventional computer, it relies on the motion of
spherical billiard balls in a nearly frictionless environment. The state of the ma-
chine would proceed forwards along its trajectory, and under its own momentum,
with only a small fraction of the signal energy being dissipated to heat upon each
operation. The original physical picture Fredkin and Toffoli envisioned was that
of idealized, perfectly elastic billiard balls on a frictionless pool table. Neverthe-
less, it was just inspirational, having no real implementation proposals. Later on
in [52], the authors proposed a closely analogous, but more feasible, electronic
implementation; the project involved charge packets bouncing around along in-
ductive paths between capacitors. Even though idealized, the picture proposed
by Fredkin and Toffoli became the starting point for the following research topics,
such as the adiabatic logic and circuits.

Borrowing from this theoretical model, other researchers have investigated and
devised reversible computational models. An example of that is proposed in [89],
where the author develops a new algorithm to cope with the simulation of colliding
particles in a reversible flavour. The primary goal of this work is to address the
reversing of the collisions with no memory overhead, which typically requires a
memory amount proportional to the number of collisions. Again, this results prove
the power reversible computing promises with its new dimensions of reasoning.

Adiabatic circuits Adiabatic Logic is the term given to low-power electronic cir-
cuits that implement reversible logic. It comes from the notion of adiabatic process
in physics, where given a closed system the total energy (or heat) remains constant.
Current CMOS technology, albeit more energy efficient compared to similar tech-
nologies, dissipates a considerable amount of energy as heat, mostly when switch-
ing. Further, as the circuits get smaller and faster, the overall energy dissipation
increases. To solve the energy waste due to transistors switching in CMOS, adi-

2.1 Reversible computing 23

abatic circuits follows two fundamental rules: (a) avoid to switch on a transistor
whether a voltage difference between the drain and source is non-zero; (b) avoid
to switch off a transistor whether a current is flowing through. The first rule is
rather straightforward to understand. Without going too depth in details of tran-
sistors’ operating, we recall only that the total power consumption Ptotal is given
by Equation (2.4).

Ptotal = Pdynamic + Pshortcircuit + Pleakage (2.4)

Where Pdynamic = C · V 2
dd · fswitching, and Pshortcircuit Pleakage << Pdynamic. Ptotal

is primary due to the first component of Equation (2.4), Pdynamic. It is related to
the on/off switching operation of the transistor. When signals change their logic
state in a CMOS transistor, energy is drawn from the power supply to charge up
the load capacitance from 0 to Vdd. As a result, the dynamic power is proportional
to the switching frequency fswitching, i.e. the processor’s clock speed. The second
component of power, namely short-circuit power, derives from finite non-zero rise
and fall times of transistors, which causes a direct current path between the supply
and ground. Nevertheless, this amount is usually negligible and not really signif-
icant in logic design. The third component of power dissipation in CMOS circuits
is the static or leakage power. Even though a transistor is in a stable logic state,
just because it is powered-on, it continues to leak small amounts of power at al-
most all junctions due to various effects. As for the second rule mentioned above,
it requires some electronics details, which are out of the scope of this dissertation,
hence we redirect interested readers to the literature on adiabatic logic [109].

Several designs of adiabatic CMOS circuits have been developed, during the
time. From work proposed by Charles Seitz in [105], and further explored and
improved by other groups [60, 77, 122, 49]. Some of the more interesting ones
include Split-level Charge Recovery Logic (SCRL) [122], and Two Level Adiabatic
Logic, or 2LAL, developed by Michael Frank [49]. Both of them rely heavily on
the transmission gates, use trapezoidal waves as the clock signal. Other exam-
ples of interest are also adiabatic circuits built using current nano-materials such
as silicon nano-wires or carbon nano-tubes since nano-electronics are expected
to dissipate a significant amount of heat. Another example of adiabatic circuits
which leverages SCRL is FlatTop, described in [11]. It is the first scalable and
fully-adiabatic reconfigurable processor (FPGS), capable of efficiently simulating
2D and 3D reversible circuits of arbitrary complexity. FlatTop works by mimicking
a stack of computational models sophisticated enough to render it just a proof of
concept, rather than a real working implementation. By the same research group,
noteworthy is Pendulum, a fully-reversible MIPS-style microprocessor developed
by Carl Vieri in [113].

24 2. State of the Art

Algorithms

Programming
languages

Machine as-
sembly code

Computational
architecture

Logic gate cir-
cuitry design

Physical realization

Physical

Software

0

1

2

3

4

5

Figure 2.2. The layers stack of a reversible computer.

2.1.3 Software perspective

Alternative computational models and technologies for hardware architectures
are, probably, the future of computer engineering. Though, they are still far from
being a reality soon; notwithstanding the continuously increasing effort and money
investments on looking for reversible hardware. In fact, computers still rely on
conventional forward-deterministic logic, which impacts programming languages,
algorithms and programs design. As human beings, it is equally true that our com-
mon way of thought is forward-deterministic, as well. It would require a great
effort to train our minds to think “reversibly” and almost no one would envisage
an algorithm in a reversible way from scratch. Harry Buhrman in [24] writes:

“ Currently, almost no algorithms and other programs are de-
signed according to reversible principles [. . .] To write re-
versible programs by hand is unnatural and difficult. The natu-
ral way is to compile irreversible programs to reversible ones.

Therefore, while the research on new hardware technologies proceeds, other re-
searchers start addressing some challenges from a higher abstraction level. Sliding
upward on the layers of the Figure 2.2 we approach software reversibility, which
is the one we spent effort on, in this thesis.

The Definition 2.5 below gives the idea of what is the purpose of software re-
versible computing supports. The challenge of (general) software reversible com-
puting is to allow the execution trajectory to switch back and forth without re-
strictions, by retracing the same computational steps. The goal is to approach
a “perfect-reversible” solution that incurs (close to) zero CPU and memory over-
heads during both execution directions. However, a minimum quantity of over-
head is required, due to the need for saving information that conventional compu-
tational architectures otherwise erase. In other words, we have to preserve infor-
mation from the so-called destructive operations (see Table 2.1).

2.1 Reversible computing 25

Definition 2.5 (Reversible program). A program is defined as reversible if and
only if it is both forward and backward deterministic, at the same time.

From a software perspective, there are several application contexts where re-
versible computing can take place. In the following, we provide a brief intro-
duction of the most relevant, introducing the one relative to our scope. Possible
applications fields are: (a) fault tolerance (and fault detection), (b) asynchronous
computing (synchronization problem), (c) speculative execution, and (d) debug-
ging.

In its broader meaning, fault tolerance is the reliability-related property of a
system to seamlessly overtake transient faults—definition of faults varies accord-
ing to the application—and continuing the execution as if “nothing bad” had hap-
pened. Consistency and fault-tolerance are, thus, fundamental properties several
complex systems must exhibit. On the other hand, synchronization is another key
aspect, ensuring that the whole system obeys data consistency and logical depen-
dencies. However, synchronization supports inevitably affect performance, since
they introduce the overhead of orchestrating each working component. Part of this
synchronization time is unavoidable and fundamental in nature, according to the
application’s design; nonetheless, what remains can be optimized. This optimiza-
tion can translate into a tuning of the system’s working parameters and in code
design. However, we have to observe a trivial consideration: it is much simpler to
devise systems which ensure a strict conservative execution order, at performance
detriment, rather than conceive an elegant “parallelizable” solution that manually
copes with component’s synchronization. Tuning the system for the optimal over-
head is somewhat tricky. It needs first to calculate a-priori a lower bound and,
then, to achieve it in practice. We disclose some further details of this dissertation,
the challenges mentioned above are the ones we will address with an innovative
autonomic model of self-tuning (Chapter 4 “The hybrid rollback strategy”).

The synchronization problem can be addressed by devising algorithms and
techniques able to reorder the operations so as to find the better exploitation of
the computing unit—a clear example is the one of speculative execution in hard-
ware processors,—or by exploiting some non-blocking techniques, in other words
by relaxing the logical dependencies. Relaxing data dependency constraints al-
lows transient violations to occur. Speculative execution is a typical example, where
the execution trajectory is assumed to be reversible, and working units perform
actions optimistically even if they are not proven to be safe—the concept of safety
is evaluated accounting for the application’s logic (e.g. causality). Conversely to
any conservative scheme, which avoids transient violations at all, speculative ex-
ecution exploits a much higher degree of actual parallelism by leveraging subtle
concurrent interactions among working components, otherwise ignored. Never-

26 2. State of the Art

theless, both in processor architecture—by employing an instruction pipeline sup-
port [111]—and in large-scale parallel (or distributed) computing, speculative ex-
ecution has been proven to be an effective solution which reduces synchronization
overheads and increases application’s parallelism dynamically2. Each component
executes asynchronously to each other, both in forward and in backward direc-
tion. Any misbehaviour is a-posteriori detected at runtime and fixed by undoing
a portion of the forward execution trajectory; therefore we need some reversible
support. At the same time, parallel applications try to harness as much parallelism
as possible from the hardware underneath—consider the diffusion of multi- and
many-core systems. This approach translates into an increased amount of concur-
rency due to computing units that have to interact asynchronously with each other,
subject to generic failures which cause the system to lay into an incoherent state.

In the examples above, if a failure occurs, the rollback operation restores the
system’s state to a target checkpoint and re-establish its execution from that point
over, wasting a portion of the computation though. Such a solution requires to
maintain a program history. With reversible computing, we may realign the sys-
tem’s state through back-stepping, i.e. rewinding the forward computation until
we reach a target configuration. Regarding latency, the trade-off depends on the
number of instructions that have to be untied for memory saving. So far we have
seen two approaches to build reversible support: (a) saving copies of variables
to memory or (b) computing inverses of individual operations without relying on
memory at all. The obvious and foremost plain solution is the former approach of
state saving [65] (or its sparse state saving and incremental variants [117, 83, 15]).
As the name suggests, the program’s history is built by periodically taking a check-
point during the natural execution. Although it is simpler to implement and re-
quires low architectural complexity, it introduces a time overhead due to addi-
tional instructions in charge of saving values, and it may require an exceeding
amount of memory to store old copies. Besides, the undo operation could poten-
tially corrupt data locality in contexts whose different working components share
the same memory partitions. Conversely, performing inverse computations allows
to consistently reduce memory costs, as no additional storage latency is required
and no extra processing time would be wasted for memory movement operations.
Generally, main memory exhibits much higher latencies with respect to CPU’s
arithmetic units; therefore, it is much more efficient to perform inverse operations
rather than relying on memory accesses—the so-called memory wall which refers to
the gap between the speed of arithmetic/logic and memory movement operations.
The goal is to overcome core challenges that limit the design of reversible applica-
tions, both for architectural complexity, concerning the end user, and for efficiency

2It is sufficient to think about eventual-consistency adopted by some major service providers,
such as Amazon [114].

2.1 Reversible computing 27

Operator Statement Meaning Type Inverse

= a = b Destructive RESTORE(a)
+= a += b a = a + b Constructive a -= b
-= a -= b a = a - b Constructive a += b
*= a *= b a = a * b Constructive a /= b
/= a /= b a = a / b Destructive RESTORE(a)
%= a %= b a = a % b Destructive RESTORE(a)
«= a «= b a = a « b Destructive RESTORE(a)
»= a »= b a = a » b Destructive RESTORE(a)
|= a |= b a = a | b Destructive RESTORE(a)
&= a &= b a = a & b Destructive RESTORE(a)
++ a++, ++a a = a + 1 Constructive a–-
–- a–-, –-a a = a - 1 Constructive a++

Table 2.1. Example of constructiveness property for most common operations.

aspects. Therefore, on the one hand, it aims to improve performance by leverag-
ing on more clever usage of memory, on the other hand, it is steered to provide
an autonomic and transparent framework. The latter would allow achieving the
twofold objective of relieving programming models from overburden complexity
and of further allowing for a seamless blending of different undo techniques to
best suit application characteristics at runtime.

From a purely logical and theoretical point of view, every algorithm can be
reversible-transformed provided that we have a sufficient amount of storage to
keep track of its whole history [18]. However, this is not always feasible.

As an inheritance of this forward-determinism, our programming languages’
statements can be categorized in two macroscopic families: (a) constructive and
(b) destructive operations. The former ones are those in which no information is
lost during the execution, whereas destructive operations are structured so as to
overwrite one or more operands, making it impossible to revert them “out of the
box”. Table 2.1 shows a brief summary of the most common C operands along
with their possible inverses. Due to the traditional programming languages con-
structs’ nature, destructive operations are typically employed in any program. In-
teger division, shift and modulo operations, in general cause loss of information
for arbitrary variable values. Integer division may cause truncation of the result;
remainder after division has indeed no information about the dividend obtained,
even if we know the value of the divisor. Analogously, both shift and modulo op-
erations may result in bits getting shifted out or truncated, and thus getting lost.

Branches, assignments or other non-deterministic functions (e.g. random num-
ber generators, or I/O) are often destructive operations that implicitly gobble bits
of information. Beside the entropy that those operations generate flipping the bits’
state, they basically prevent to rebuild prior states by a backward retrace (recall

28 2. State of the Art

the example in Figure 2.1). For instance, an if statement is solved during forward
execution basing on the condition’s value. However the outcome of that compar-
ison will be just thrown away after the execution takes one of the two branches.
On the contrary, backtracking the if statement would require either to keep the
information of which branch has been taken, or to save all the variables needed to
rebuild the computation (i.e. the if condition). Let us consider the mock code in
Listing 2.1, written in C.

1 int foo(int value , int offset) {
2 int value;
3
4 if (value < offset) {
5 value += offset ;
6 } else {
7 value -= offset ;
8 }
9

10 value *= 4;
11
12 return value;
13 }

Listing 2.1. Indeterimism of code branch implies irreversibility.

Reading the code in Listing 2.1 from line 1, it is not possible to know before-
hand which of the two branches will reach the statement at line 10, at least until
we do not evaluate of the if condition. Analogously, once the branch is taken, it is
possible to backtrack this decision only if we re-evaluate the condition. However,
in this case, we lost the information of what was the previous value; whether it
was less than offset or, rather, the opposite. To solve this issue we could save the
branch outcome in a separate variable branch, and use it to properly reverse foo.
This scenario is shown in Listing 2.2, which depicts a reversible and semantically
equivalent version of the previous code snippet. In this case the variable branch
retains the output of the comparison, allowing to properly undo the operations,
which are performed by the relative reversing function shown in Listing 2.3.

2.1 Reversible computing 29

1 int foo_reversible (int value , int offset) {
2 int value;
3 static char branch ; // Global variable
4
5 branch = value < offset ;
6 if (branch) {
7 value += offset ;
8 } else {
9 value -= offset ;

10 }
11
12 value *= 4;
13
14 return value;
15 }

Listing 2.2. Reversible implementation of the code branch.

1 int reverse_foo (int value , int offset) {
2 int value;
3 static char branch ; // Global variable
4
5 value /= 4;
6
7 if (branch) {
8 value -= offset ;
9 } else {

10 value += offset ;
11 }
12
13 return value;
14 }

Listing 2.3. Inverse function that undoes foo.

A different yet possible approach would be to make some inference starting
from the outcome. Suppose to be at line 13 of Listing 2.1 and to have the result
of value. In this case, we could infer that if value is negative, then the only pos-
sible case is that value < offset was true. However, the reader may observe
this solution implies that we have and we are able to understand the semantics of
Listing 2.1; otherwise, the question would be «what operation should I execute?».
This scenario introduces another possible approach to reversible computing. In-
deed, several solutions have been proposed so far in the literature to address the
reversibility problem at the software level. They span over several abstraction lev-
els and approaches:

30 2. State of the Art

• Program state recording

• Source code transformation

• Code virtualization

• Reversible languages

• Instruction reversion

The example mentioned above requires source code transformation to create a new
reversible code, provided its irreversible counterpart. Nevertheless, as it gets more
sophisticated, this transformation entails code analysis to retrieve and understand
the semantics behind the code itself—something similar for the assembly abstrac-
tion level is presented in [42], or at an even higher abstraction level in [38].

As previously introduced, the obvious and foremost plain software solution to
build “rollbackable” applications is to record the program state, via the state sav-
ing [65, 66] technique. As the name suggests, the state of the computation is saved
periodically or just before it would be modified by an operation. Therefore, as soon
as the system is prompted, previous states are rebuilt by restoring the checkpoints
recorded in the snapshot. Since they “sample” the program’s state at discrete
points in time, we need to choose the nearest checkpoint in time and replay those
instructions which separates the checkpoint from the target we want to achieve.
Although this solution is quite simple and requires low architectural complexity,
it is highly time-consuming; moreover, it may still require a very large amount
of storage, depending on the specific application. Optimizations have been pro-
posed to improve the state saving strategy resulting in sparse state saving [16, 93]
or incremental state saving [117, 98, 100]. With the latter optimization, only the
directly modified portions of the state are stored, therefore it slightly lightens the
memory requirements which, however, remains still considerable in complex sys-
tems, such as parallel and distributed applications. Further, unlike transactional
applications, in general-purpose computation or in parallel simulation it is harder
to recognize and keep track of variable modifications, making the design of the
state saving routine more complex. Sparse state saving, instead, aims to reduce
the frequency at which snapshots are taken.

Program animation is another approach to reversible execution [35]. It basi-
cally interposes a virtual machine with a reduced and reversible instruction set.
Therefore, each real assembly machine instruction is uniquely mapped onto a re-
versible one allowing to run it backwards as needed. Though, the program must
be dynamically interpreted and it slows considerably down the forward execution.
In order to reduce runtime slowdown, a solution is to directly act at the source
code level. Source code transformation is therefore targeted to statically parse an

2.1 Reversible computing 31

irreversible code producing a reversible version of it by excluding destructing in-
structions ([102]); for those instruction, state saving is applied. Even though, time
and memory requirements are lightened, they still slow down the forward normal
execution.

Further on the different approaches to reversible computing, between 2002–
2004 Tankut Akgul and his teamwork proposed an appealing solution towards the
assembly instruction reversion [8, 7, 9]. They proposed a novel way to efficiently
reverse the assembly code by generating a logically inverse copy which exactly
unwinds the forward trajectory. It is an instruction-level reverse code generator
which statically parses an input program and computes their reverse, instruction
by instruction. Assembly level reversibility ensures a fine-grain rollback, with-
out the need to forward rerun any statements. Stepping back to some previous
instruction can be trivially done seamlessly, with regards to the user perspective.
It simply diverts the natural control flow towards the inverse code, and back to
the forward one as soon as the former point in time has been reached. Whenever
the algorithm cannot straightway reverse the assembly code—as for the so called
destructive operations which dispose some useful information,—it will fall back
to state saving. Nevertheless, this kind of solution is also quite complex to realize
and to implement. The major challenge of Akgul’s solution is to infer software
logic, whose semantic is mandatory to know how to group assembly instructions
that belong to the same logical operation, hence how to reverse it. Akgul relies
on dynamic control flow information from which he builds a Control Flow Graph
(CFG) employed to properly reverse instruction blocks. Nevertheless, a burden-
some effort is required to understand code instructions sequences and build the
relative control flow graph. In his work, he exploits a three-passes static analysis
to build a control flow graph in combination with a variable renaming algorithm
which emulates the well-known Single Static Assignment form (SSA) [36].

Indeed, properly building an instruction-level reverse copy of the program in-
troduces some other challenges. First of all, to be able to precisely infer the ap-
plication’s logic from a pure scan of machine instruction corpus. As already men-
tioned, programming languages and compilers are forward-deterministic, steered
to easiness of use (by programmers) and machine code’s optimization, respectively.
Binary code is hence shuffled and tailored for the specific purpose. This requires to
first unwind this elaboration in order to be able to recognize the logical execution
trajectory within machine instructions. To this end, reactive programming [5, 6, 4]
could be explored in conjunction with reverse computation, and more in general
the data-flow analysis. The work proposed by Camil Demetrescu in [38] has pro-
posed an extension to the C/C ++ languages where the programmer is able to mark
a memory region (i.e., either complex data structures, or even single primitive

32 2. State of the Art

datatypes) as reactive. The executable, at compile time, is statically analysed in
order to identify which operations can produce modifications on data.

Another field of research in the direction of reversibility hinges on devising re-
versible programming languages. However, the major hurdle is to write a reversible
software in nature that overburdens the developer with a non-negligible extra
effort; on the one hand it is practically difficult to design algorithms due to the
non-conventional concealing and it is unreasonably time-consuming, on the other.
Rather, it would be much more valuable to develop a system able to convert any
irreversible program into a reversible one. Nonetheless, this “translation” requires
a comprehensive knowledge of software and its semantic, especially if done auto-
matically. Research done on high-level languages has built a solid theory, although
mainly focused only on one-directional determinism structure, according to tradi-
tional machine architectures. On the contrary, backward deterministic languages’
study is a quite new and thereby not much explored research area. Yokoyama et
al., in [121, 120], face the principle that a programming language (independently
of the abstraction level) must ensure so as to be reversible, further they devise a re-
versible high-level language prototype. Nonetheless, devising a program directly
in a reversible flavour is not a straightforward process. This is why reversible lan-
guages, although feasible, are not practically employed. It would be much more
convenient, in this case, to circumvent the problem by using a proper interpreter
which generates the relative forward and reverse versions on behalf of the pro-
grammer, instead.

Applications of reversible execution through speculation at hardware level
have also been proposed in 1993 by Herlihy and Moss [61]. They present a clever
way to implement transactional memory in hardware—without relying on locks,
at all—by modifying standard processor cache coherency protocols. The concept
is quite straightforward and currently implemented by IBM and Intel in modern
CPU architectures: any critical section is surrounded by a couple of instructions,
namely xbegin and xend, and any attempt to access memory in critical sections
are buffered into a private memory region. When the transaction ends, the system
checks whether no conflicts have been detected and commits, otherwise the whole
transaction is wiped out. Examples of reversible computing supports exist also
at firmware level since several years. Pipelining in processing architectures is an
example of reversibility applied at machine level. Processors’ pipelining adopts
a speculative scheme, e.g. in branch predictions. Instructions are executed opti-
mistically until a consistency violation is met. In such a case, the entire work done
is flushed and a new trajectory is re-executed from the misprediction point on.

As we will largely discuss in the further Chapter 3 “The reversing framework”,
we settle at the binary representation level. Before proceeding in exploring the
solutions we propose in Chapter 3, it is worth providing also a more contextu-

2.2 Reversible computation in speculative PDES 33

alised overview on the speculative parallel discrete event simulation realm’s re-
lated work.

2.2 Reversible computation in speculative PDES

The rollback operation is a fundamental building block to support the correct
execution under speculative synchronization. In the context of Parallel Discrete
Event Simulation (PDES) [55], schemes for undo-able execution have been widely
adopted to address synchronization challenges [65, 45]. The Time Warp protocol
proposed by David Jefferson in [65] proves the potential of rollback-based synchro-
nization applied to discrete event applications (e.g. discrete event simulation)3.
This protocol is built on a relaxation of the causal constraints, allowing execution
to be logically reversible: operations are executed optimistically without ensuring
the safety of the causality chain; rollback occurs just after the system detects a vi-
olation. Time Warp is relatively independent (in terms of its run-time dynamics)
of both the simulation model’s lookahead and the communication latency for ex-
changing data across threads/processes involved in the simulation platform. All
these peculiarities allow it to guarantee high performance even in systems that are
not tightly coupled and/or possibly entail up to millions of processors [87, 71]. Ac-
cording to classical PDES, the simulation model is partitioned into distinct simu-
lation objects, which are mapped to Logical Processes (LPs). The latter is in charge
of handling the execution of impulsive events, which ultimately produce state up-
dates (hence transitions) in the actual simulation model state. As mentioned, Time
Warp allows any LP to consume simulation events speculatively, regardless of con-
sistency checks. As a result, events are processed independently of their safety (or
causal consistency); as soon as an event is a-posteriori detected to be violating
causality, its effects on the simulation state are undone, via the rollback operation.
Building effective rollback support to the simulation state is, therefore, a funda-
mental building block for an effective optimistic simulation platform.

In the literature, generic rollback operations have been thoroughly studied,
and the approaches that have been proposed provide benefits in specific scenar-
ios. All those solutions can be mainly grouped into two separate families, namely
checkpoint-based [65] and reverse computing-based [26], depending on the algorith-
mic technique used.

With checkpoint-based rollback, the engine exploits the knowledge of where
the simulation state is located in main memory to create a copy of the simulation
state after the execution of one (or a group of) operations which have produced

3Theoretical analyses have proven performance gains mathematically for Time Warp systems [10,
75]

34 2. State of the Art

state updates. To this extent, different possibilities have been presented, all aim-
ing at reducing the cost due to creating a state snapshot, both concerning memory
and CPU usage. Among the various research lines, we find two different main ap-
proaches, which have been often combined. On the one hand, solutions to reduce
the frequency according to which a snapshot is generated, the so-called sparse or
periodic state saving [76, 17, 80, 99, 46, 108, 94]—with a focus on detecting which
is the best-suited checkpoint interval to minimize unfruitful work (e.g., taking
checkpoints which are never used for a rollback operation). On the other hand, we
find solutions which try to reduce the amount of data copied into a state snapshot,
ensuring anyhow that no meaningful piece of information is lost at any time—the
so-called incremental state saving [73, 118, 84]. A mixture of these approaches has
been proposed as well in [86], trying to modify at runtime the execution mode
of the state saving operation, depending on the current execution dynamics, to
capture different execution phases of the simulation models. At different scales,
all these solutions suffer from the high cost associated with making a (logically)
complete copy of the simulation state, which is either proportional to the size of
the state (full state saving) or to the number of update operations related to the
execution of one or more events (incremental state saving).

The idea of supporting the rollback operation in the context of Time Warp
simulation systems by relying on reverse computation rather than on snapshot
restoration dates back to 1999 [26] from Christopher Carothers. In this work, the
automatic generation of the reverse code relies on a custom compiler, namely rcc.
This reversible compiler generates two versions of the input simulation model, the
first is a reversible-instrumented version of the model, whereas the second is the
resulting reversing code. An example of a hand-crafted reverse simulation model
for a specific context is proposed in [104]. The authors developed and presented
a new reversible model for the radio signal propagation, from its original forward
formulation, with particular attention to illustrating of the runtime complexity
behind. Thus, a comparative study with the classical state saving approach for
the same problem is also described. Another attempt to automatically generate
reversible code can be found in [72], where control flow analysis is used to gen-
erate code which allows reconstructing the execution path taken in the forward
code. Differently from the work we have carried out in this thesis, in [72] reverse
code is generated at compile time. This approach has the drawback of preventing,
for example, the possibility to rely on any number of third-party libraries. In a
more recent work in [102, 96], the authors perform source-to-source transforma-
tion of C++ code based on the ROSE compiler infrastructure [97], intercepting all
operations which modify memory and recording information about the performed
updates in a data structure that is used to reverse the effects of memory updates.
We will recall this contribution in Chapter 5 “Dealing with shared libraries”. The

2.2 Reversible computation in speculative PDES 35

effectiveness of reverse computing applied to the Time Warp protocol is proposed
also in [14]. The authors illustrate the scalability of this synchronization protocol
even on top of different computing architecture, as the IBM Blue Gene Supercom-
puters, assessing the performance of the system over a variety of workloads and
using up to 216 cores.

In contrast to checkpoint-based solutions, the reverse computing-based roll-
back operation tries to cancel the non-negligible memory footprint produced by
the state saving technique. This solution grounds on the availability of reverse
copies of simulation events [26, 72], such that if the execution of a forward event
e on a simulation state S produces a state transition e(S) → S′, then the execu-
tion of the reverse event ê associated with e on S′ produces the inverse transition
r(S′)→ S. Overall, while the reverse computing approach can strongly reduce the
impact of memory usage from which state saving may suffer, the execution cost of
the rollback operation is directly proportional to the execution time of simulation
events. This cost could become predominant in case of events with high granu-
larity, and the rollback length is non-minimal. Again Carothers, in his work [25],
presents a modular C-based Time Warp simulation system capable of integrating
several techniques, from the Fujimoto GVT algorithm [57] to reverse computation
as he previously presented in [26]. However, as we repeatedly mentioned, our ap-
proach to reversible computing is slightly different from the one in the literature.
We primarily focus on the memory footprint of the program, rather than on the
semantics of operations/instructions.

By mixing the different philosophies standing behind the above state recover-
ability techniques, in this writing, we will present a new approach (Chapter 3 “The
reversing framework”) which combines the conventional undo logs with software
reversibility (Chapter 4 “The hybrid rollback strategy”). Notably, in our proposal,
the data that are typically recorded by the undo-log systems are used to gener-
ate so-called reverse code blocks, or undo code blocks. Orthogonally to the approach
mentioned above we likewise investigate how to address the challenge of dynami-
cally reversing code instructions of shared objects (Chapter 5 “Dealing with shared
libraries”).

Chapter3
The reversing framework

Wait a minute. Wait a minute Doc, uh, are you telling me you built a
time machine. . . out of a DeLorean?

— Marty McFly, Back to the Future

As we are interested in reverting the work done by an application, or more in gen-
eral by an algorithm, our approach to software reversible computing focuses on the
output it produces on memory. We take inspiration from the naïve observation that
it is possible to somehow describe the algorithm’s evolution through a sequence of
generic “state transitions”; they eventually produce some output which translates
into memory updates.

Memory is indeed a founding part of the whole computing process. Without
it, we lack the information to move from one state to the other. Each state is the
result of some computational steps, and its final output will be the input for its
successor, according to some logic (i.e. the transition function). A generic state S
hence represents a development stage, a partial result toward the outcome. This
observation intuitively tells us that the computation of a generic algorithm A is
a sequence of state transitions producing a sequence of memory updates. Leading
from this considerations, we can assert that A is somehow described by a specific
sequence of memory updates; it is what we refer to as memory footprint, and that
we can resemble as the evolution’s history of A.

We mentioned in Section 2.1.3 “Software perspective” that from a theoretical
point of view, reversible programs (see Definition 2.5) allow moving along their
evolution trajectory back and forth by undoing and replaying each computational
step, respectively. Nevertheless, we can settle the meaning behind terms “replay”
and “undo” in different ways, according to the approach to reversible comput-
ing. In Section 2.2 “Reversible computation in speculative PDES”, we introduced
a brief description of the conventional form of reversible computing; each com-
putational step has forward and inverse versions that are executed accordingly to
move forward or backwards. In this text, we address reversible computing look-

37

38 3. The reversing framework

Code
Main memory Reverse window

...

Time

e
x
e
c
u
t
i
o
n

X

Y

Z

...

write 1, X

...

...

...

write 10, Y

...

write 8, X

...

...

write 400, Z

...

write 0, X

0 1 8 0 ...

4 10 ...

99 400 ...

write 0, X

write 4, Y

write 1, X

write 99, Z

write 8, X

T1 T2 T3 T4

1

3

2

5

4

1

3

2

5

4

Figure 3.1. Memory footprint example of a program.

ing at the algorithms as a sort of “black-box”, rather at the knowledge of their
high-level semantics. Our definition of memory footprint does not carry any in-
formation about the application’s semantics; it represents the “shadow” of what
the application did, instead. Therefore, via this “footprint” we can re-bind the
value of the significant variables so as to rebuild consistently the execution trajec-
tory, even backwards. This flexibility is what we achieve by devising a framework
capable of generating and keeping track of the memory’s update history, so as to
“reverse-transform” any generic application into a reversible one.

Indeed, things are a bit more complex, and this reversible-transformation
comes at a price. On the one hand, it is possible to keep track of all the over-
written values, so that it would be possible to restore them as soon as required.
On the other hand, however, it is not immediate to know at which memory loca-
tions to restore these values correctly, preserving the same application’s behaviour.
Further, we have to take into account I/O operations that, by their nature, are not
deterministically reproducible; redoing the same I/O several times ends to differ-
ent results on each run. These considerations pose some challenges. First, we have
to devise a system able to handle information restoration efficiently and using as
few meta-data as possible. Second, we have to consider a pseudo-deterministic
behaviour in our reversed applications, and ensure a determinism level, though
under specific conditions. The latter issue depends more on the needs and the ob-
jectives users want to achieve, which may need additional particular interventions.
Vice versa, we solved the first issue by devising a structure, namely the reverse
window, which merges the “executable” power of assembly instructions with their
convenient means to convey data.

This whole chapter describes our reversing framework; how it handles the pro-
gram image of a generic software application to make the program reversible in a
transparent way, without the direct intervention of the user. Just as an antici-
pation, this result is achieved by relying on a technique to (statically) instrument

3.1 Architectural details 39

the program image (an insight about instrumentation is given in Section 3.2 “Ad-
dressing code instrumentation”). In our work’s context, “making a program image
reversible” basically means to enhance the code’s capabilities, under the hood. As
a matter of fact, we will keep a minimum yet sufficient set of information by inter-
cepting a subset of code’s instructions.

Section 3.1 “Architectural details” describes the reverse window’s architecture
and how it plugs itself within the applications’ execution flow. Throughout the
text, we should bear in mind that the reverse-transformation process of an appli-
cation is carried out by a more complex framework (and toolchain) we will come
back later at in this chapter, in Section 3.1.2 “Reversing toolchain”. Section 3.2
“Addressing code instrumentation” illustrates in details the process of instrumen-
tation, which is the strategy we rely on to modify generic code transparently to
the user. Finally, in Section 3.3 “Dealing with memory allocations” we address the
problem of the non-determinism introduced by “environmental” services provid-
ing memory allocation/deallocation facilities, such as the malloc library function.
As a last note before moving on, we would like to recall that the development of
the proposal in this work is done in C on a Linux environment.

3.1 Architectural details

Let us move forward and describe what a reverse window is1, or by adopting our
programmatic terminology what the revwin structure is. We already introduced
the concept of memory footprint as a bare sequence of updates in memory. At
the assembly level, these updates are made by instructions belonging to several
families, e.g. mov*, stos and cmov, or in general by all those instructions having a
memory location as the destination operand. Mentioned instructions modify the
content of a target memory location with a new value at the expenses of the old
one, which is discarded.

Our approach is to address the unavoidable necessity of saving erased data by
packing it into a machine (assembly) instruction, rather than an accessory complex
memory structure. The twofold advantage in this approach, beyond the visible
means of data storage, is to harness instructions’ power to embed also the “roll-
back” logic in one fell swoop. By their nature, instructions convey sufficient in-
formation to known in advance how and where to replace data, relieving us of the
cumbersome task of maintaining data consistency between the accessory structure
and actual memory layout the application expects. In other words, instructions

1In this text, we will refer to the reverse window also as undo code blocks or reverse cod blocks. All
the previous terms must be considered synonymous of reverse windows. This multiplicity comes
from the fact that the last two terms subsume the real content of the reverse window itself, which is
a mere set of instructions, indeed.

40 3. The reversing framework

Code

push %rbp

mov %rsp,%rbp

sub $0x10 ,%rsp

mov $0x1 ,%edi

callq 12 <main+0x12>

mov %rax,-0x8(%rbp)

mov -0x8(%rbp),%rax

movb $0x78 ,(%rax)

mov -0x8(%rbp),%rax

mov %rax,%rsi

mov $0x0 ,%edi

mov $0x0 ,%eax

callq 33 <main+0x33>

mov $0x0 ,%eax

leaveq

retq

Memory-write

intructions

Figure 3.2. Example of a assembly program which makes updates on memory.

are a convenient means to do the right thing at the right place and moment, pro-
vided that we are able to properly generate them. This strategy allows us to reduce
the overhead to computed and manage meta-data; they are needed to maintain
the memory layout that (saved) values have to keep when further restored. As
the reader may have noticed, it is quite straightforward that by creating a suffi-
ciently detailed instruction-stepped map of these “inverse” instructions it would
be possible to undo and replace even registers’ value theoretically, though it lays
slightly out the scope of our approach in this work. Nonetheless, it still constitutes
a future perspective we will cope with—as mentioned in Section 2.1 “Reversible
computing”, interesting work in this direction is done by T. Akgul in [9]. On the
contrary, what is relevant to our application scopes is the net data flow toward
physical memory. It hence translates in focusing only on generic write instruc-
tions. Figure 3.2 gives a graphical clue of what it is happening.

The basic idea is to logically intercept every instruction responsible for propa-
gating updates in memory, and save the value of the relative destination location
just before the instruction replaces it with a new one. At this time we can proceed
in crafting a complementary (inverse) instruction able to undo memory changes.
From a high-level and theoretical point of view, it seems quite straightforward to
achieve; how to do it practically, however? At this point, it enters the scene Hi-
jacker[81]2, an instrumentation tool which allows handling code’s capabilities of
a generic program with some custom logic. We will address the instrumentation
process further in this chapter in Section 3.2 “Addressing code instrumentation”,
however here we anticipate some details to give a clue about the technique em-
ployed to modify the executable code of the provided application. The instrumen-
tation process has to ensure that is does not alter the outcome of the application,
which we also refer to as the original or native application. Within the context of

2Hijacker is an open-source project; the source code is available at https://github.com/
HPDCS/hijacker.

https://github.com/HPDCS/hijacker
https://github.com/HPDCS/hijacker
https://github.com/HPDCS/hijacker
https://github.com/HPDCS/hijacker

3.1 Architectural details 41

this work’s effort, Hijacker is a building block we exploit to lay the foundation
for the reversing framework this dissertation hinges upon. Nevertheless, before
exploiting it, we have considerably enhanced its capabilities as it was in an early
development stage. The choice of the tools can be found on its sketched structure
whose flexibility promises significant customizability both for the matter of this
writing and, moreover, to reuse it for future work orthogonally. Further on this
chapter in Section 3.2 “Addressing code instrumentation” we will discuss more
this tool, albeit its internals are not the scope of this text. The instrumentation
process is fuelled by a binary file that represents our application’s code. Through
an XML configuration file, we instruct Hijacker how to alter the code of the input
program. We remark that this modification is only a preliminary part of the whole
reversing toolchain (see Section 3.1.2 “Reversing toolchain”). In particular, it will
look for every instruction having side effects on memory and to inject, just before
each of them, a brief preamble of additional code. Note that all this process lives
at the machine code level. The injected preamble of code is in charge of triggering
our reversal engine, namely the reverse_code_generator() function. As the name
suggests, this function is responsible for creating at runtime a negative version of
the original instruction from a logical, or better still, from the memory point of
view.

Henceforth, we will adopt the following terminology: a positive instruction ex-
plicitly refers to the original one intercepted by the instrumentation tool, as op-
posed to its negative (or inverse) version dynamically generated by our reversal en-
gine. The negative version of the instruction undoes memory updates by replacing
the new value with the one discarded by the positive instruction.

3.1.1 The reverse window

We temporarily skip the details regarding our reverse toolchain, moving forward
describing the architecture of a reverse window. It is the core structure of our
reversing framework and its toolchain; it is devised as a C-structure that maintains
negative instructions and potential data associated with them. Generally, the data
is kept by the instruction’s binary representation (instruction encoding); however,
this is not true for string instruction families (e.g. movs) which require to act on
a separate set of data. We will explore them more in details later in this chapter
(refer to Section 3.1.3 “The reverse code engine”).

It is worthy to remark that our reverse window is atomic by design. In other
words, we envisage this structure so that it holds a set of instructions composing
an “all-or-nothing” computational unit. In other words, a reverse window cannot
be executed partially. This means that we are not allowed to perform a partial
reversal of the memory updates the reverse windows have tracked. On the one

42 3. The reversing framework

hand, this logic suites well the case of study we have undertaken, namely Discrete
Event Simulation; on the other hand, it allows for a finer-grain control over the
reversibility support.

To understand the structure of a reverse window and the reasons behind the
implementation choices, we should introduce the scenario of a reverse window’s
execution. We recall that, in the remainder of this writing, we will refer to reverse
windows also as undo code blocks (or reverse code blocks), subsuming its executable
content conceived to revert the memory state.

Execution of a reverse window A reverse window contains a block of instruc-
tions that cancel the forward execution of some portion of computation. For the
sake of simplicity and without loosing in generality, we will call this portion of
computation an event. This notation happens to be convenient as it complies with
the case of study where we will apply the results of this work and does not limit the
general nature of the meaning. Now, as soon as the system is prompted to undo an
event, the reverse window’s code is invoked as if it were a conventional function.
The reverse execution is requested passing through the execute_reverse_code()
API function of our framework. This invocation entails the execution of all the
inverse instructions contained in the code section of our reverse window—for the
sake of brevity, we will say execution of a reverse window referring to this flow. The
reverse window employs a pair mov instructions to restore the old value (see Fig-
ure 3.3). This choice is because of the x86 ISA standard does not provide a single
machine instruction able to encode a whole quadword (64 bits) of immediate data.
Thus, we must rely on an accessory register necessarily, and split the data move-
ment into two steps: (a) first, the quadword representing the value to be restored
is placed into the rax register3; once the rax register is set, (b) move the content
of rax into the destination address already encoded in the inverse instruction (we
will cover the aspect of how to generate it in the Section 3.1.3). Due to this tech-
nological impediment, we have to modify the initial content of the rax register on
each reverse window’s execution. However, we bear in mind that the execution of a
reverse window is somehow transparent to the user application, which ignores its
presence. Thus, just before the ret instruction returns the control to the original
application, we need to realign the state of the rax register. A couple of push/pop
instructions ensures consistency and performs this realignment.

Internal structure Now that we have seen the operating scenario of the reverse
window, Figure 3.4 illustrates its internals. The C-structure is rather simple and

3The choice of the rax register is not arbitrary, rather it represents the only possible source
operand for the subsequent 64-bits movabs instruction toward memory. We address to the Intel’s
manuals for mode details on that [64]

3.1 Architectural details 43

CPU

rax 0xfffba2001

Inverse

entry

Main memory

0xfffba2001

0x0042

Reverse window

...

movabs $0xfffba2001, %rax

movabs $0x10, (%rax)

Negative

instruction

Prepare

address

movabs $0xfee0c9601, %rax

movabs $0x4242, (%rax)

movabs $0xff000100c, %rax

movabs $0x400bac, (%rax)

New value

Old value

to restore

Figure 3.3. Illustration of the content of a single reverse window.

Field Type Description

code_start void * Holds the initial address where executable
code starts.

data_start void * Holds the initial address where data dump
starts.

code void * Holds the next free cell in the data dump
where to continue to store.

data void * Holds the tip of executable reverse code, i.e.
the entry point where to start undo execu-
tion.

parent struct _revwin_t * A link to the parent revwin, in case of over-
flow.

raw char[] Where the payload section of the reverse
window starts.

Table 3.1. Description of the reverse window’s field in C structure struct _revwin_t.

comprises a couple of pointers that Table 3.1 describes in detail. Among others,
it is noteworthy to mention the code pointer, which points to the upper tip of the
window and will be the entry point of the reverse execution; the data pointer to
the area where to store chunks for stos or movs; and the parent variable holding a
reference to another revwin structure in case of the reverse windows chaining—we
will come back later on this point.

The reverse code generator feeds a reverse window, and crafts the negative in-
structions from each original memory-update one. The expansion order of the
reverse window is the same of a stack, as a direct consequence of its nature to be
reverse: the last positive instruction matches the generation of the first negative
one, from which to start executing backwards. Leading from this naïve observa-
tion, we devised the reverse window so that code starts basically from the bottom

44 3. The reversing framework

reverse window

header

data

code

pop %rax

ret

revwin descriptor
data

data_base

code
code_base

parent
raw

Figure 3.4. The figure illustrates the structure of a single reverse window, binding its
descriptor’s fields described in Table 3.1 to the actual representation in memory. Note
that the reverse-window descriptor’s raw field references a bare memory area where
to store both code and data. At the same time, the window’s descriptor is contained
into the same memory area as an header.

of the window itself and grows upward; vice versa, the data section of the window
grows from the top (just below the header) down to the bottom. This expansion
continues until data and code sections do not overlap somewhere in the middle,
possibly. The data section contains a collection of bytes the instruction is sup-
posed to write in memory whose size, however, exceeds the instruction’s binary
representation to be encoded directly.

Each revwin structure is a pre-allocated slice of memory, handled by a sim-
ple internal slab allocator; hence the size of each window is fixed. At the creation
of a new reverse window, the revwin_alloc() function is invoked. It reserves a
free slab from the available pool and initializes it as a fresh reverse window as in
the following. The initialization of a window places a ret instruction at the end
of the window, and a pop instruction just before. This latter pop instruction will
match a complementary push that will be placed as soon as the user requests the
finalization of the reverse window by calling the revwin_finalize() API func-
tion. The presence of this pair of push/pop instructions, preserves CPU registers
(i.e. rax) from our reverse window that will clobber them during its reverse ex-
ecution, as mentioned above. Coming back to the initialization of a new reverse
window, the revwin_alloc() function sets up code_base and code pointers; both
of them hold the first free instruction’s slot available in the reverse window. At
runtime, the code pointer will increase each time a new inverse instruction is cre-
ated and pushed into the window, whereas the code_base will always maintain
the base address of the code section. In the same way, data_base and data point-

3.1 Architectural details 45

ers are handled to maintain the next available data slot and the starting address
of the data section, respectively. The only difference is that the data section grows
downward, contrarily to the code section that grows upward.

The finalization of a reverse window is performed by the above mentioned
execute_reverse_code() function. This function will eventually trigger the ex-
ecution of the reverse window itself, but before it finalizes the code section. In
particular, it completes the reverse window by adding the complementary push
instruction we discussed earlier; only after that, it launches the execution of the
window’s content beginning from the code entry point. From a practical point of
view, the application will perceive the reverse window as a traditional function,
invoked by the execution_reverse_code(), via a classical call statement.

Growth of the reverse window’s content Each time the reverse code generator
creates a new negative instruction (see Section 3.1.3 “The reverse code engine”), it
is stored in the reverse window at code location. This pointer holds the next free
slot in the code section of the revwin structure. The revwin structure is handled
by our code generator which properly updates the metadata held by the structure
in Table 3.1. Once the insertion is completed, indeed, the code generator auto-
matically increments the code pointer of the negative instruction’s size, so that it
always points to the next free slot. If this is the case of a string instruction that
needs to add additional data, the reverse code generator will use the data pointer;
it then updates that pointer according to the size of the written data.

It could be the case that the free space to store new inverse instruction ends,
where the code pointer reaches the data one and no more free space is available.
In this case, an overflow occurs. Since the reverse window is built on top of a slab
allocator for efficiency reasons, each window has a fixed size and cannot be reallo-
cated. Once the window overflows, the architecture handles it by chaining a new
“child” reverse window to the previous one, continuing to store instructions seam-
lessly. To chain together two (or even more) reverse windows, the parent pointer
is used. This scenario is illustrated in Figure 3.5. The chain of multiple windows
is handled by the framework both programmatically, through the parent pointer,
and from a semantic perspective. At the end of the child revwin, the framework
will replace the standard code epilogue, constituted by ret and pop instructions,
with a direct jmp instruction to the parent window. The choice is compliant with
the presence of a slab allocator and prevents to reallocate, e.g. through a mremap
system-call or a realloc, the whole window. Both of the previous solutions would
introduce an overhead due to the copy of bytes; rather, in our solution, we ensure
the execution flows seamlessly with a negligible management overhead. Needless
to say that a good early estimation of the window’s size in the slab initialization
may increase the overall efficiency of the whole reverse generation process.

46 3. The reversing framework

Reverse execution

entry point

revwin 1
push %rax

mov $0x340, $0xAABBCCDD

...
jmp 0x7ffffff415000

revwin 0
mov $0x340, $0xAABBCCDD

...
mov $0x340, $0xAABBCCDD

pop %rax

ret

execution

flow

Figure 3.5. Chain of reverse windows in case of an overflow of the parent.

3.1.2 Reversing toolchain

So far, the previous section described the architecture of a single reverse window
and its internals. Here, we address each step of the reversing toolchain; from the
instrumentation phase up to the runtime generation of each negative instruction.
The complete toolchain is described in Figure 3.6 and evolves by following these
logical steps:

1. instrument the original application’s code by injecting a preamble code;

2. prepare the stack for the subsequent invocation of the
reverse_code_generator();

3. compute the destination address;

4. invoke the reverse_code_generator() function;

5. check whether the address has been already involved in a reverse instruction
generation (we will come back later on this);

6. access the memory location (or area, e.g. for movs/stos) where the positive
instruction will write new value Vnew;

7. generate and push a new inverse instruction;

8. return back control to the original instruction and continue the normal exe-
cution flow.

Looking at Figure 3.6, the whole reversing toolchain seems rather complex, though
every steps adds a bit more of information needed by the subsequent one. The ba-
sic idea behind the modularization of the toolchain is to keep bounded the amount
of additional code to inject, the runtime overhead and the complexity of the binary
code itself.

Before actually reversing the memory-update instruction we have intercepted
in the original code, we have to collect a few additional information concerning
the instruction’s encoding. The reversal engine must to know which kind of in-

3.1 Architectural details 47

Code

push

add

mov

mov

...

rax 0x502

rdi 0xFFEE0890

rsi 0x4

Trampoline

push

call <code_generator>

pop

Rev. code gen.

check_dominance

<read memory>

<generate instruction>

return

Reverse

cache

Reverse

window

revwin

growth

push reverse

instruction
mov

pop %rax

ret

revwin

exec

Main memory

0xFFEE0890

0x0042

Prepare trampoline

jump

Code

push

add

mov

<preamble>

mov

...

1

2
3

5

6

7

8

4

Figure 3.6. The reversing toolchain steps.

struction has to be reversed and where it points to in memory. From a practical
point of view, the reversal engine needs the following basic information: (a) the
size of the data that will be written, (b) the destination address where the instruc-
tion will write, and finally (c) some additional flags to properly handle conditional
or string instructions. These data can be retrieved only by parsing the instruction
binary representation they are encoded into; even worse, some of them need to be
computed at runtime.

Passing data to the reverse code engine can be addressed basically in two ways.
One solution is to use the stack by pushing data the runtime generator will even-
tually access. The second solution is to rely on an online instruction disassembler.
This component would be in charge of decoding the target instruction at runtime
to retrieve its flags and the relative destination address—we would stress that the
instrumentation tool already has disclosed this information for its purposes. Dis-
assembling a machine instruction is costly, as anyone can expect. Opting for the
latter solution would translate into a waste of resources and performance penalty,
since every instruction caught by our logic would require an invocation to the on-
line disassembler. On the contrary, by relying on the results of the instrumentation
phase, we harness the offline characteristic of the task which does not become an
additional overhead for the runtime execution. We, therefore, embrace the former
approach realized by two subsequent stages. This approach allows to minimize
the amount of binary code injected per memory-write instruction and the overhead
needed to prepare the runtime generator, at the same time. These two stages trans-
late into as many code hooks. Each of them is responsible of building meaning-

48 3. The reversing framework

ful information progressively, till invoking the final reverse_code_generator()
function. Namely, we refer to them as the (a) preamble hook and the (b) tram-
poline hook. The combination of preamble and trampoline hooks, along with the
execution of the reversing function reverse_code_generator(), represents what
we call the reversing toolchain.

As we will see later on, we developed our instrumentation tool in such a way to
decode and translate the instructions of the input application into a more conve-
nient structure, namely the Intermediate Binary Representation (IBR). This step is
the very first to integrate the reversing framework with generic programs. For the
relevant instructions (i.e. memory-write instructions), the instrumentation tool
wires part of the instruction’s binary data into the specific C structure insn_entry,
whose fields are described in Table 3.2). The insn_entry structure conveys the in-
formation needed by the reversal engine, and it is designed to be squashed into the
instrumented version of the applications as a block of executable code. This por-
tion of code constitutes the instruction preamble (or preamble hook) and represents
the first preparatory stage before executing the trampoline hook. A first imple-
mentation of the preamble hook was a simple block of code that actually “pushes”
the insn_entry (Figure 3.7) structure into the stack providing the information to
the underneath trampoline. Noteworthy is that we adopt the x86 standard mem-
ory representation, which is evaluated from the tuple 〈displacement, scale, index,
base〉 encoded binary representation; we will came back with more details on that
in few paragraph. However, this implementation did not exploit some architec-
ture’s microcode facilities. We moved toward an optimized version (reported in
Listing 3.1) which provides a speedup factor of 1.3X. Although the improvement
may seem negligible, it must be considered in the whole context of several thou-
sands of invocations due to each memory-write instruction encountered. It is im-
portant to note that this optimized version of the preamble code conveys the same
information of the previous version, logically. As the only difference, it relies on
registers, rather than on the memory stack, for data passing. For the sake of clarity,
we show in Figure 3.7 and Table 3.2 the more comprehensive structure used by the
instrumentation tool.

As the reader may have observed, in Figure 3.7 there is a reversing function
pointer entry accounting for 8 bytes. The presence of this field derives from the
general-purpose nature we aim for this framework. We implemented the instru-
mentation tool so that to be part of the toolchain of this reversing framework, yet
bearing in mind to provide the user with a set of customizable features. This func-
tion pointer is given by the user during the instrumentation tool’s configuration
and could refer to any callback function the user wants to call when the instru-
mentation conditions are met. Since also these conditions are customizable by the

3.1 Architectural details 49

0 7 15 23 31 63

flags base scale index write size

address displacement

}
insn_entry

reversing function pointer

Figure 3.7. Instruction entry byte representation.

Field Type Description

flags char Instruction’s flags, used by the instrumentation
tool to identify movs instructions.

base char The base address register’s identifier (if
present).

scale char The scale factor (if present).
index char The index register’s identifier (if present).
size int How many bytes the instruction will touch (if

identifiable statically).
offset unsigned long long The executable entry point of the callback func-

tion.

Table 3.2. Instruction entry insn_entry’s fields

user, we have to guarantee the required flexibility, allowing to specify a custom
callback function.

Let’s come back to the preamble hook. At runtime, it propagates some infor-
mation to the subsequent trampoline hook. Unfortunately, the destination address
might be known only at runtime. Hence, even though we propagate the specific
data associated with the target instruction through the preamble hook, we might
need to emulate the machine’s microcode behaviour to resolve it. Indeed, accord-
ing to the x86 addressing mode the effective address—using the Intel’s notation—is
condensed into a tuple of data rather be plainly wired in the instruction’s rep-
resentation (Figure 3.8). As a result, memory addresses are associated with the
tuple 〈displacement, scale, index, base〉, which is encoded in the instruction bi-
nary representation. The effective address is expressed as base + (index · scale) +
displacement. If the displacement and the scale are wired “as-is” into the instruc-
tion binary representation itself, parameters index and base are not plain values,
rather they represent register’s identifiers. The set of parameters scale, index and
base is also known as the SIB byte, as they altogether account for 1 byte. To eval-
uate the expression, i.e. the destination address, we need to access the content of
these registers; possible only at runtime. One of the main goals the preamble is
one of resolving the effective address efficiently. Bearing in mind the x86 address-
ing mode, we designed our reversing toolchain architecture so to harness the lea
machine instruction (line 8 of Listing 3.1). The lea instruction is fuelled with the
same SIB byte and displacement of the target instruction for details about the in-

50 3. The reversing framework

struction encoding). This solution leverages the underneath microcode, instead of
spending precious clock cycles to emulates its behaviour.

Having a more in-depth look at the code listed in Listing 3.1, the more rel-
evant parts are highlighted in a dashed box. We mentioned the insn_entry is
“squashed” into a binary code; lines from 6 to 8 are the result of translating the C
structure’s contents into an optimized executable code. These lines are in charge of
preparing the stack frame for the subsequent call to the trampoline hook. Respec-
tively, they translate the following information for the upper code generator level:
(a) the instruction’s flags, (b) the number of bytes the instruction is attempting to
write on memory, (c) the destination address. Instruction’s flags are employed by
the reverse code generation to check whether the machine instruction belongs to a
specific class, such as string (e.g. stos) or conditional instructions (e.g. cmov). This
check is preparatory to interpreting the addressing used and, in case of conditional
instructions, to rebuild a consistent state.

The reader could ask himself/herself why we employed a call instruction in-
stead of a simple direct jmp. Because the trampoline hook is a single binary code
with the same entry point, it is unaware of its callee. Unlike a bare jump instruc-
tion, the conventional call guarantees that the microcode will properly handle
the return flow, up to the callee native code.

1 pushfw
2 push %rax
3 push %rsi
4 push %rdi
5
6 mov <flags >, %rax
7 mov <size >, %rsi
8 lea <sib >, %rdi
9

10 call trampoline
11
12 pop %rdi
13 pop %rsi
14 pop %rax
15 popfw

Listing 3.1. The block of binary code injected as preamble before
a memory-write instruction.

We reached stage 2 of the reversing toolchain, where the preamble code gives
the control to the trampoline hook. This is an external module dynamically called
before the actual invocation of the reverse code generator. Unlike the instruction
preamble, the trampoline hook is not replicated for each instrumented instruction
since it has a general purpose semantic and acts as the gate toward the actual re-

3.1 Architectural details 51

Effective address

displacement +

Base address

scale · index + base

0 1 2 3 4 5 6 7

scale index base
}

SIB

displacement

Figure 3.8. The x86’s complete addressing mode. The SIB byte represents the tuple
〈scale, index, base〉, where parameters index and base are register’s identifiers; we
subsume their content, for the sake of brevity. Both displacement and scale are wired
into the instruction encoding.

verse engine. The trampoline’s code is relatively simple, having primarily the task
of saving the CPU context so as to guarantee the native application a completely
transparent invocation of the reverse code engine. For the sake of simplicity, we
will not report here also the trampoline’s code. The reverse transformation of the
application takes place after the first compilation of the application’s code; hence
we have to explicitly protect the CPU context seen by the application by the im-
pact of our revering toolchain. Compilers (e.g. gcc) generally can perform lots of
instructions reordering to optimize different architectural aspects such as pipeline
usage, cache misses, register spilling and similar; however, the compiler is aware
of the whole code. In our case, on the contrary, the instrumentation process works
on this optimized code and may breaks some assumption done by the compiler.
Consequently, we have to manually save and restore the process image to seam-
lessly integrate our solution and to comply the calling conventions. Applications
are unaware of the reverse code generation’s behaviour which modifies registers’
value during the whole process of inverse instructions creation, indeed.

Beyond the save and restoration of the CPU context, the trampoline code is
also in charge of partially handling the case of string instructions, such as movs
or stos. Because of their nature, this class of instructions requires a handful
of steps more to evaluate the source operand, as we will see further in this sec-
tion. The remaining part of the string instructions handling is performed by the
reverse_code_generator, and so does also for other variants of write instructions,
such as the conditional cmov.

52 3. The reversing framework

3.1.3 The reverse code engine

So far, we presented how the reversing toolchain works and what a reverse window
contains; but we have not seen yet how the process of generating a new negative
instruction takes place.

Through instrumentation, the original program is augmented with additional
binary code which works as a preparatory preamble to call the core function that
actually crafts the negative instruction. The reverse_code_generator(), for the
sake of brevity referred to as engine, takes three arguments:

address the destination address where the positive instruction will write.

size the actual size in bytes of the future write.

flags the flags relative to the positive instruction to reverse.

Figure 3.10 illustrates the logic of reverse_code_generator(), which consists of
the following tasks:

1. check whether address is already been referenced and dumped (cfr. Sec-
tion 3.1.4 “Instruction and object predominance”);

2. check whether to change the reversing strategy: (a) single or (b) clustered;

3. retrieve the value at memory location pointed to by address;

4. generate instruction’s inverse;

5. store the newly created negative instruction into the reverse window (possi-
bly with a dump of data).

After retrieving the parameters relative to the instruction, the engine performs
a first preliminary check. Before generating the inverse instruction, it verifies
whether address has been already referenced in a previous invocation. The rea-
son behind this first step is to optimize the generation of ineffective inverse in-
structions. We will come back later in Section 3.1.4 “Instruction and object pre-
dominance” with more details on this, but for the moment it is sufficient to note
that under certain conditions two references to the same address would be redun-
dant. The address check employs a hash-based map we refer to as reverse cache
(Section 3.1.5 “Reverse cache”). If it happens that the address has been previously
referenced, there is no need to generate a negative instruction, under the instruc-
tion predominance property (Property 3.1), and the engine returns the control to
the original code, right away. This optimization is done under the assumption
that Property 3.1 holds; in this case, we can ignore the occurrence of this address.

3.1 Architectural details 53

negative instr. opcode $0x4200 0x7fffffff50098

source operand destination operand

memory

0x4200

0x7fffffff50098

4 bytes

Figure 3.9. The engine creates an inverse instruction encoding in the instruction’s bi-
nary representation the destination address as a destination operand and the current
value of that memory location as the source operand. The amount of bytes to be read
for this task depends on the argument of the engine’s invocation.

Because a reverse window represents an atomic unit of execution, everything it
contains is undone according to a “all-or-nothing” policy. Any address previously
involved in the generation of a negative instruction is eventually dominated by
the very first undo since it will be the last to be restored—recall that although
the reverse window grows upward during its building, the execution flow is still
downward. As an obvious result, it masks any previous undo which becomes use-
less.

On the contrary, if the address has not be referenced yet, a negative instruction
must be generated according to the writing size. As for the crafting of the inverse
instruction, the generator accesses the memory location pointed to by address and
will retrieve the current value. This value is hence embedded straightway into the
inverse instruction as the source operand (Figure 3.9). As the destination operand,
the engine places the same memory address from which we read. It is interesting
to note that the creation of a negative instruction is not affected by the logic in the
forward mode, which can be of any arbitrary complexity. Indeed, since we focus
only on the memory instruction’s outcome, it is regardless of the computational
complexity behind. In this way, we can guarantee an amortized constant time
overhead needed to generate an inverse instruction.

The generation of reverse instructions is not a costly operation, except for the
movs case where a memory buffer must be explicitly copied. Indeed, the set of
instructions to be generated is very limited, and the opcodes are known before-
hand. Therefore, we rely on a pre-compiled table of instructions in which only the
memory address and the old immediate should be packed within.

Recall, now, that there are two classes of instructions which cannot be directly
dealt with according to the aforementioned instrumentation scheme, rather they
require special management; cmov and string instruction families. The former
class is managed directly in the trampoline, which uses the flags field of the Fig-
ure 3.7. The 4 bits of this field (recall the Figure 3.7) records what is the check the
trampoline have to emulate. If these bits are set, the corresponding status bits in

54 3. The reversing framework

Trap in
Preamble hook

Set-up the
stack frame

Jump to
Trampoline hook

Compute desti-
nation address

Reverse code generator

Address yet
referenced?

Dump data

Generate inverse
instruction

Store inverse
instruction in the

reverse window

Conditional
instruction?

Generate
complement
conditional
instruction

Return control
to original code

no

yes

yes

no

Figure 3.10. Flowchart of our reversal engine.

3.1 Architectural details 55

the EFLAGS register must be checked to determine whether the condition is met.
Nevertheless, the values of status bits might have been already altered during the
execution of the previous injected operations. To this end, the trampoline’s code
looks for the old value in the application stack, as stored during the CPU-context
save phase. If the condition is met, the reversal engine treats cmov instructions
exactly as the standard mov, otherwise the instruction is ignored.

The second class is the one of string instructions (e.g. movs or stos). We exploit
one bit of the flags field to let the trampoline know whether its invocation is
related to such an instruction. In this specific case, the size flag keeps only the
size of one single iteration of the movs instruction. Therefore, to compute the total
size, the trampoline’s code checks the value of the rcx register, and multiplies it
by size. The starting address of the write is then computed by first checking
the direction flag of the flags register. In case this flag is cleared, the destination
starting address is already present in the rdi register. If the flag is set, then the
movs instruction will make a backwards copy, and therefore the (logical) initial
address of the move is computed as rdi - rcx * size.

3.1.4 Instruction and object predominance

It is noteworthy, now, to recall that our application context is related to Discrete
Event Simulation (DES), where the smallest atomic unit of logical computation
is an event. From a logical point of view, each event may convey several high-
level operations; despite, it can be still perceived, under certain conditions, as a
transaction which produces an atomic sequence of memory updates. Besides, an
event may also cause several updates on the same memory location, as the effect
of the application logic which progressively works on it (e.g. a do-while loop).
However, from the perspective of the application’s memory footprint, it translates
into a mere sequence of several updates on the same regions. Each of this update
should be traced and might be undone in case of reverse execution triggering. As
the reader may have noticed, since in our application context the smallest compu-
tational unit is an atomic event that responds to the well-known “all-or-nothing”
logic, it would be pointless to keep track of all the updates other than the first. In-
deed, recall that our reverse window follows an inverse expansion direction; hence
given a generic sequence of updates on the same memory location, former instruc-
tions dominate over the latter ones. From this simple observation, we derive the
following Property 3.1 that we can harness in our application context as a feasi-
ble optimization due to the atomic nature of the event. As a side note, we would
like to stress that the assumption of having an atomic unit of computation does
not affect the generality of the solution in its whole. Indeed, it is always possible to
identify a generic event as an arbitrarily small unit of computation, and tuning the

56 3. The reversing framework

size of the reverse window to match any transactional logic; even in case of single
machine instruction. This last consideration is where we start for the next future
developments.

Property 3.1 (Instruction dominance). Let’s introduce a precedence relation ≺,
which holds in a total ordered set of generic actions, and define the relation ♦

as the dominance operator. Let’s assume also that the reversal operation’s flow is
not supposed to terminate on any of the instructions ik | {ik � i ∧ ik ≺ i′}. Any
memory-update instruction i that touches a memory location m̂ dominates an-
other instruction i′ if and only if instruction i updates, in the forward execution,
m̂ before i′, namely i ≺ i′.

i(m̂) ♦ i′(m̂) ⇐⇒ i ≺ i′

To better explain Property 3.1, let us suppose to have a sequence of updates
A1 → B1 → C1 → B2 → A2 → D1 → A3, where each letter indicates a memory
location where the update will take place and the subscript indicates a reference
counter. We will call this sequence an event and Figure 3.11 will guide us. The
relative reverse window generated will be clearly A3 → D1 → A2 → B2 → C1 →
B1 → A1. By proceeding backwards, we progressively reverse each instruction
until we reach the target restoration point, that in our case is the event’s begin-
ning. Eventually, the last and durable restore operation is indeed the inverse of
the first positive instruction that touches memory on that specific area. We stress
that Property 3.1 is valid only under the assumption that reversal operations must
logically comprise all the subsequent updates in a whole; in other words, if we
are not interested in a partial reversal that could stop before what we consider the
first update. It appears clear that keeping track of all the instructions updating
the same memory address would be redundant, as it introduces an extra and use-
less overhead while undoing an event. To avoid unnecessary effort and costs, both
for generating inverse instructions and the actual number of instruction to execute
during the reversal operation, we employ a hashmap-based cache structure to keep
track of addresses referenced during the forward execution of the application.

A further optimization aimed to reduce both the overhead in the forward ex-
ecution, due to the generation of reverse instructions, and the overhead when ex-
ecuting an undo code block, due to the number of instructions contained, comes
from the way software applications are often implemented. Structures and ob-
jects are commonly stored in the heap, for example, via malloc standard library’s
services or the new operator in object-oriented programming languages. We can ex-
tend Property 3.1 by defining the Object Dominance property (Property 3.2), where
term object is used in a broader way with respect to the common usage in object-
oriented programming languages. In our context, the term “object” identifies a

3.1 Architectural details 57

A B C B A D A

A

Figure 3.11. Illustration of the instruction predominance property. Every address that is
previously involved in a negative instruction will be overwritten by the following neg-
ative instruction. In fact, the last reverse update on that address would be the one
relative to the first reference to that address.

generic memory area keeping a portion of the application’s state and instantiated
by a single memory allocation operation (in the heap).

Property 3.2 (Object Dominance). Let i be an instruction executed by the event
e in forward mode, and let o be an object spanning on the memory area M . If
i accesses a single memory location m̂ is said to dominate any other memory-
update instruction i′, executed later on by the same event e, if and only if i′

updates a memory location m̂′ such that m̂ and m̂′ belong to the same object o.
Recall the operator ≺ as the precedence relation between two instructions:

i(m̂) ♦ i′(m̂′) ⇐⇒ i ≺ i′ ∧ m̂, m̂′ ∈M

Property 3.2 is inspired to traditional time and spatial locality principles for
software applications. It extends Property 3.1 laying on the consideration that if
a structure’s field or an object’s attribute is updated during the forward execu-
tion, then other elements within the same (logically coupled) memory area will be
likely updated as well. For execution patterns where Property 3.2 holds, it is much
more efficient to generate simpler undo code blocks which restore a whole cluster
rather than a single memory location. Restoring the image of the whole structure/
object, as the application sees it at the beginning of the execution, results in a more
compact reverse window and fewer negative instructions to generate and possibly
executed. We refer to this technique as chunk-based reversal.

The reversal engine supports two operating modes that can be swapped dy-
namically at runtime according to the application’s characteristics: (a) single-in-

58 3. The reversing framework

struction and (b) chunk-based reversal. If the first is the default operating mode
seen so far, chunk-based reversal is obtained creating a small snapshot of the whole
structure/object before the first update operation that falls inside the memory
boundaries of it is executed. The snapshot is kept within the reverse window in
the data area (refer to 3.4), along with the instructions that are in charge of cop-
ing back the original content of the memory region4. The potential advantages of
per-chunk reversal arise especially in contexts where memory update operations
dominated according to Property 3.2 involve a non-minimal percentage α of the
chunk area, which can be expected especially for small to medium chunks. We
will come back to aspects related to the fragmentation of the operations within
chunks in Section 4.3 of Chapter 4 “The hybrid rollback strategy”, where we dis-
cuss a heuristic for determining whether it is convenient to switch to per-chunk
undo code blocks or not.

3.1.5 Reverse cache

As mentioned, the reverse memory manager of our framework is equipped with
a cache structure that keeps track of the addresses accessed during the forward
execution of the application. This structure is defined by the reverse_cache_t C
structure. It maintains a pointer to a linear array of words; each of them represents
a line of our cache. The main purpose of this cache map is to keep track of what
addresses are accessed and therefore which addresses are reversed within a single
event. The map is held by the reverse_cache_t descriptor basically composed
of a linear array of reverse_cache_line_t. Each element of the array represents
a “line” of our reverse cache. Further details are provided by Table 3.3 and Fig-
ure 3.12 that depict the whole picture of the reverse cache graphically. Cache lines
are queried directly by the reverse code generator to determine whether the desti-
nation address was already involved in a previous reverse instruction generation.
The cache maintains also a counter of the number of subsequent accesses to each
address and the usefulness of the cache itself. We came back on this aspect further
in this section.

Each reverse_cache_line_t exploits a two-level bitmap approach allowing to
coalesce multiple addresses within a single word to optimize the space require-
ment for address mapping. A toggle bit is sufficient to indicate if some memory-
write instruction already references an address or not. The structure is a linear
array of elements treated as a bi-dimensional matrix. Each element of the array
is a quadword (i.e. 64 bits) used as the primary storage unit for a single range of
family’s addresses5.

4Again, we harness the string instructions class already discussed.
5This allows us to handle both 64-bit x86 architectures and 32-bit ones, at the cost of wasting

some space when running on older CPUs.

3.2 Addressing code instrumentation 59

reverse_cache_t
usefulness
cache_lines

lines
reverse_cache_line_t

tag

total_hits

distinct_hits

bitmap

Figure 3.12. Reverse cache graphical description.

Field Type Description

tag unsigned long long Holds the identification tag of the cache
line computed by masking the 26 more
significant bits of the address.

total_hits unsigned int Holds the total number of touches to the
same cache line, regardless of the spe-
cific destination address involved.

distinct_hits unsigned int Holds the number of touches concern-
ing only distinct destination addresses.

bitmap unsigned int Holds an array of address ranges.

Table 3.3. Descriptor of a single line of our reverse cache structure reverse_cache_t.

To access the map, the following two values are needed: (a) an index providing
the address family range, and (b) the offset which identifies the address’ bit within
the storage unit (i.e. the quadword). These two values are computed by properly
masking the address. A family range comprises all the addresses whose value starts
the same prefix. The length of this prefix depends on the number of flags the
storage unit can contain. Namely a quadword, in our case, which can store up
to 64 flags (2n where n = 7). Given the address’ value, the offset is computed by
extracting the least n− 1 = 6 significant bits, while index is computed as the result
of a bitwise AND with the remaining 58 most significant bits. Figure 3.13 shows an
example of the address’ binding for a 32-bit architecture—we do not report 64-bit
case for simplicity.

3.2 Addressing code instrumentation

The main subject in previous sections was an enhanced version of the native ap-
plication we want to reverse-transform, where a specific block of code is injected
just before a generic memory-write instruction. This block of code belongs to the
reversing toolchain and it is in charge of invoking the reversal engine at runtime.
In this section, we do a step back in order to understand how this block of code is
crafted and placed where it is. Addressing this issue, we laid on top static binary

60 3. The reversing framework

07152331

1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0
destination
address

{
︸ ︷︷ ︸

index
︸ ︷︷ ︸

offset

bitmap

0x36B42E3
{

0 0 0 0 0 . . . 0 0 1 0 00x36B4303
{

0x36B4323
{

0x36B4343
{

0x36B4363
{

1

2

Figure 3.13. The index bitmask is used to first compute the family range 1 of the des-
tination address ; then we harness the offset bitmask to displace within the reverse
cache to the related presence bit 2 .

instrumentation to look for any memory-write instruction, transparently both to
the original application and the user. Given the strong dependency with the un-
derlying machine architecture, it is important to note that our work’s context is a
Linux environment on top of a x86 compliant instruction set architecture (ISA).

Instrumentation is the fine art of modifying blocks of code, or more generally
a program, without affecting its outcome. Instrumentation may also refer to the
act of monitoring, profiling or diagnosing a program’s behaviour. Programmers
quite often insert code chunks, directly or not, in their applications to have an in-
sight at what is happening underneath; for example, to trace the execution path,
to record values of internal variables, or to profile the program by counting the
number of specific function invocations, for instance. Part of the instrumentation
process is commonly handled throughout the design phase by the programmers
themselves, who insert intelligible code snippets within any area they consider rel-
evant, according to some criterion. However, this process may be rather intricate
or exhaustive, for certain goals; instead there exist tools that address this process
automatically. In this case, modifications have to be transparent to the application
itself, which executes as if nothing were modified. Instrumentation process can
be broadly classified into two main families: (a) static and (b) dynamic. The main
difference between the two approaches resides on when instrumentation process
takes place. Intuitively, the former is done before the application runs, either at
compiling stage or at the source level. On the contrary, dynamic instrumentation
occur directly at runtime during the program’s execution. It means that the in-
strumentation process has to interpret the code to choose whether to trigger some

3.2 Addressing code instrumentation 61

Preprocessing

Included files,

replaced symbols,

macro expansion

Compiling

Procduces object

codes files

.c

.c

.h

...

.o .o

.o

...
Instrumentation

Apply rules, inject

code, etc.

Linking

Resolve relocations

and addresses.o' <exe>

Figure 3.14. The Hijacker workflow within the compilation toolchain.

additional logic. Dynamic instrumentation, hence, adds a layer of abstraction be-
tween machine instructions and processors, somehow similar to what happens in
a virtual machine.

Our static instrumentation approach, on the contrary, shifts as much as possi-
ble out of application’s runtime the overhead of parsing, interpreting, and mod-
ifying the binary code. We settle just after the compiler’s output and before the
linker’s one, in the compilation chain; hence at the machine code abstraction level.
Binary instrumentation at this level, though, poses two significant challenges:
(a) strong machine dependency and (b) user-side complexity due to the need of
manually providing details on how to modify the existing code.

The advantage of working at the machine instruction level originates from the
fine-grain information the binary structure provides, albeit it is not simple to treat
or handle. However, overcoming this hurdle, the information provided by the bi-
nary structure can be employed for subtle optimizations of the reverse window,
despite the overall reverse-generation procedure. This choice relieves from per-
forming complex operations to understand the high-level logic behind program-
ming languages, nor to infer in advance which information we have to store.

As the reader may observe in Figure 3.14, Hijacker is conceived to place it-
self within the compilation toolchain, specifically between the compiling and the
linking stages. Hijacker takes in input a program image, which is first parsed and
modelled through a high-level intermediate structure—to use the context’s lexi-
con this structure is shortly called IBR - Intermediate Binary Representation. At
this stage, the program image is not the final executable code yet; rather it is an
object file containing machine instructions and their reciprocal references, which
are partially evaluated into (relative) addresses. This kind of file is the so-called
relocatable object file6 that still needs linking phase to generate the final executable
program.

The choice of relying on an intermediate binary representation is somehow
obligated. It allows decoupling the machine architectural details of the target ma-
chine from the Hijacker’s ones, as it creates an interface layer to speak with. This

6Our work targeted x86 architectures on Linux operating systems, therefore embracing the ELF
representation for binary files

62 3. The reversing framework

layer ensures the solution to be portable and flexible. Whereas, the choice to work
on relocatable object files was mainly driven by the following two motivations:
(a) the availability of low-level information which facilitates the construction of
the internal representation by giving much more control on instructions, data and
cross-references; and (b) because it much simplifies the emit phase, relieving it
from the need to resolve relocation details explicitly. Linkable format7, by defini-
tion, provides no semantic but conveys instruction-grained details (e.g. relocation
placeholders) through which building the IBR is straightforward. The interme-
diate binary structure is used to interpret this “raw” relocatable object file and
produce multiple (yet different) versions of the same program image, according to
the configuration file provided by the user to the instrumentation tool. This tech-
nique, defined as “multi-coding”. It is aimed to embed in the same final executable
file different selectable behaviours of the same program that are not originally
conceived to be together. We can choose which of these behaviours to adopted, ac-
cording to the actual execution path and the relative objective we ought to pursue.
Although working on the relocatable representation of executable files increases
the user-side difficulties, relocations evaluation is still a responsibility of the stan-
dard linker. In such a way we do not only lighten the Hijacker’s architecture, but
we foremost ensure both modules’ compliance, with regards to the environment,
and software correctness, either syntactical and semantic.

Instrumentation tool Discussing the instrumentation process, we have to intro-
duce the Hijacker tool necessarily. Addressing one of the core parts of this re-
search, i.e. shaping the application’s assembly code, we strive on a preexistent in-
strumentation tool, albeit in an early stage of development8. Hijacker was born at
the HPDCS group of DIAG department of the University of Rome “La Sapienza”.
It is an open-source framework oriented at providing the necessary support for
generic code alteration via static instrumentation at the assembly level. Nonethe-
less, we first significantly improved its capabilities and worked on a refactoring of
its intermediate binary representation, which translates the assembly code into a
C structure for more convenient handling. The major effort was to develop it as
a modularized framework able to parse and emit the binary code, modified by a
rule engine, fed by simple XML configuration file. A configuration is a set of rules
that instructs the engine how and where manipulating the input program. In the
future, a parallel effort of the group will strive for conceiving a set of “pre-cooked”
configurations to be used “out of the box”.

7In the whole dissertation, terms linkable and relocatable are used interchangeably, where not
specified otherwise.

8Hijacker is available at the HPDCS website (https://www.dis.uniroma1.it/hpdcs).

https://www.dis.uniroma1.it/hpdcs
https://www.dis.uniroma1.it/hpdcs

3.2 Addressing code instrumentation 63

Back-end

Front-end

ELF

COFF

XML Parser File Loader File Writer

Executable

Interpreter

Assembly

Interpreter

x68

ARM

Rule Manager

Instrumentation

Engine

Internal Binary

Representation

rule

<xml>

input

asm

output

asm

Figure 3.15. The Hijacker’s architecture.

To give the reader a broader panorama of what is under the hood, it is de-
serving to spend some words about Hijacker’s internals, which involves two main
actors. Figure 3.15 shows the architectural schema of the Hijacker’s internals. A
front-end is responsible for handling the input and output relocatable object files.
It interprets the underneath software’s logic and the interactions among its parts
and produces what we call the Intermediate Binary Representation also referred with
acronym IBR. Through virtual references between descriptors, the IBR is a high-
level convenient C structure. The file parser resolves symbols and relocation ref-
erences between both instructions and data, and embeds the related information
into the IBR descriptors; whereas the file writer converts back the IBR into a plain
relocatable file. The IBR structure might evoke somehow the IR in LLVM or its
equivalent for gcc, though it is much simpler and do not provide yet any inter-
face APIs with who interact. Nonetheless, we employ the IBR interface structure
to handle the binary files conveniently, concerning the programmatic level, in a
similar way the mentioned IR do.

Besides, a back-end is in charge of instrumenting the program by means of
its binary representation. It embraces both the rule manager and its counterpart,
the instrumentation engine. The first read the XML configuration files and drives
the latter altering the IBR accordingly. Whenever a rule is applied, the references

64 3. The reversing framework

among instructions, functions and data are preserved since they are logical point-
ers. Harnessing the IBR, Hijacker can adds or remove instructions from the ex-
isting chain, regardless of the relations that other instructions have each other,
which remains unaltered. Nevertheless, we need to perform a bit of adjusting on
a subset of metadata. By far, the back-end is the module who introduces the most
significant overhead, but considering that is a pre-processing submerse cost, we
can consider it negligible. The instrumented application will not pays all this bur-
densome cost. Due to the extra instructions injected into the original executable
code, anyhow, the instrumentation process introduces a slowdown at runtime too,
which depends on the time spent along the diverted flow. It is not surprising,
hence, that we devised the preamble code injected such as to minimize both the
time and accessory memory usage, needed to accomplish the additional tasks of
preparing the future invocation of the reversal engine.

Intermediate binary representation Section 3.2 guides us in describing the ar-
chitecture of our Intermediate Binary Representation structure. A bare chain of
instruction’s descriptors represents the building block of our IBR structure. Each
descriptor wraps a single machine instruction’s binary encoding into a more con-
venient set of C data (Table 3.4). Providing just a high-level view on instruction
chain, the IBR has also a list of function descriptors, where each descriptor points
straight to the first and last instruction of the related function—we avoid to give
more details on function descriptors as they are less relevant to have a clue of the
instrumentation process. As the last ingredient, a list of symbol descriptors models
what the ELF format identifies as relocations, which are a set of cross-references the
relate other descriptors together. A single symbol descriptor (Table 3.5) defines the
location, type, visibility and other traits of variables and functions declared, mak-
ing possible to bind them also to raw data. Recall that ELF files are fundamentally
a plain representation of bytes, therefore every reference between two pieces of
code is expressed as a simple offset; likewise ELF format, it does the IBR.

3.3 Dealing with memory allocations

The last aspect to deal with in order to support a correct restoration of the compu-
tational state is related to the management of allocation/deallocation operations.
Moving toward a general-purpose direction, in Chapter 5 “Dealing with shared
libraries” we started to conceive an early memory management support for the re-
versing framework. In the mentioned case of study, we still rely on the memory
manger of the simulation platform. Nevertheless, libreverse provides a module
for memory management.

3.3 Dealing with memory allocations 65

function
name
...

insn_first

insn_last

next

function
name
...

insn_first

insn_last

next

function
name
...

insn_first

insn_last

next

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

symbol
...

position

next

symbol
...

position

next

symbol
...

position

next

Data

Figure 3.16. Intermediate binary representation

Field Type Description

flags unsigned long Keeps the family flag which the
instruction belongs to.

orig_addr unsigned long long Keeps the address where the
instruction is in the native code.

new_addr unsigned long long Keeps the address where the
instruction is during the
instrumentation process.

size unsigned int Keeps the size (in bytes) of the
instruction.

opcode_size unsigned int Keeps the size (in bytes) of the whole
instruction, except the possible
immediate value or embedded offset.

i union::<info_insn_*> Embeds the machine-dependent
descriptor of the instruction’s binary
encoding.

reference void * Keeps a pointer to the symbol
descriptor referenced by the relocation
(if any) during the instrumentation.

prev struct instruction Keeps the pointer to the previous
instruction descriptor.

next struct instruction Keeps the pointer to the next
instruction descriptor.

Table 3.4. The instruction descriptor’s fields table

66 3. The reversing framework

Field Type Description

type int Keeps the symbol’s type in the Hijacker own spec-
ification.

bind int Keeps the bind’s type in the Hijacker own specifi-
cation.

name char * Keeps the pointer to the string buffer containing
the symbol’s name.

size unsigned int Keeps the size of one symbol entry in the relative
relocatable file format.

secnum int Keeps the numerical ID of the original section to
which the symbol belongs.

index int Keeps the numerical ID of the symbol itself within
the original symbol section.

position long long Keeps the offset from the beginning of the section
identified by secnum.

offset long Keeps the addend in the relative relocation entry
(if any).

reloc_type int Keeps the type of the relative relocation entry (if
any).

duplicate bool Keeps the internal flag used to determine if the
symbol has duplicates; i.e. if there exists more
references to it via relocation entries.

referenced bool Keeps the internal flag used by the parser to de-
termine if the symbol has been resolved.

extra_flags long Keeps the info field of the ELF’s symbol (either
bind and type).

Table 3.5. The instruction descriptor fields table

3.3 Dealing with memory allocations 67

memory

#1 malloc()

#2 malloc()

free()

Figure 3.17. Subsequent invocations of malloc and free functions do not ensure the
same memory area is reassigned deterministically. The figure illustrates the case of
a sequence of malloc-free-malloc calls.

To better understand why this is needed, let’s assume the scenario in Fig-
ure 3.17. As the reader can observe, the invocation of the standard library’s func-
tion malloc is not piece-wise deterministic. If malloc is re-invoked after a call
to the counterpart free was issued, nothing guarantees that the same memory
area will be returned. To solve this problem, libreverse exploits a lazy policy
in memory area deallocation. Through an internal structure, it keeps track of the
deallocation requests but it does not really free buffers until the execution reaches
a point beyond which the deallocation can be considered committed.

Additionally, the libreverse component provides a set of APIs to wrap ex-
ternal functions supposed to manage memory. Chapter 5 “Dealing with shared
libraries” tackles in more details the challenges of a more general-purpose spec-
trum.

Chapter4
The hybrid rollback strategy

Life can only be understood backwards; but it must be lived forwards.
— Søren Kierkegaard

So far, we walked through the foundations of this work; hereafter, on the con-
trary, this chapter—likewise Chapter 5 “Dealing with shared libraries”—discusses
its main contributions, which leads from the work began in [29, 28, 31]. For the
realization of this contribution, we rely on the open source architecture ROOT-Sim
[85] developed by the HPDCS research group at the DIAG engineering department
of Sapienza, University of Rome. ROOT-Sim is the reference simulation engine
adopted throughout this text.

If Chapter 3 “The reversing framework” covered the process of crafting re-
verse code and its accessory structures, in this chapter we tackle how to exploit
it in “real life”. The contribution is not limited to a bare integration of our inno-
vative reversible computing strategy in the context of parallel simulation. Rather,
it goes beyond by proposing a new flavour of rollback support, which is realized
as the combination of conventional state saving and our reverse window-based
approaches. Leading from the famous Latin proverb “in medio stat virtus”, we con-
ceived the whole rollback support in such a way to leverage the mutual distance
between the current time and the restoration point to decide from which direction
it is more convenient to approach. Section 4.2 “State restoration process” largely
describes our new reverse scrubbing rollback operation, in contrast to the coasting
forward phase of the traditional state saving-based strategy. A mathematical model
supports this decision system by enhancing the simulation environment with an
autonomous behaviour. The resulting rollback support is able to tailor itself dy-
namically onto the workload of the application model, according to its variations.

The structure of the remainder of this chapter is as follows. We will first intro-
duce in Section 4.3.1 the hybrid strategy and its integration in the Parallel Event
Discrete Simulation realm, by a detailed digression on the implementation details.
Therefore we will proceed in describing the mathematical model developed and

69

70 4. The hybrid rollback strategy

employed to this extent in Section 4.2, finally we will deserve Section 4.3 to a dis-
cussion on the experimental results of this model.

4.1 Hybrid strategy basics

In Section 2.2 we early introduced Discrete Event Simulation (DES) as a method-
ology to model real world’s behaviours using a sequence of impulsive events that
occur at certain discrete points in time. In this direction, Fujimoto thoroughly
discusses in [55] Parallel Discrete Event Simulation (PDES), a set of techniques to
exploit the parallelism achievable from the underneath hardware architectures.
However, as the parallelism degree increases, the system needs a synchronization
protocol that ensures to preserve the consistency among logical or causal depen-
dencies. Time Warp [65] is one of the leading PDES synchronization protocol pro-
posed in the literature. According to classical PDES, also in Time Warp the sim-
ulation model is partitioned into distinct simulation objects mapped onto Logical
Processes (LPs). A single LP handles the execution of a sequence of discrete events;
each event, in turn, ultimately produce updates to the actual simulation model’s
state, and may schedule other events to occur in the future. Given its specula-
tive nature, also referred to as optimism, Time Warp leads the LPs to consume
events independently of their causal consistency. Albeit there is a potential for
great exploitation of the intrinsic model’s parallelism, violations of dependency
constraints can occur. Processing events out of the (virtual) time order, generates
the majority of the causality violations, due to the arrival of straggler events—note
that a violation, in the PDES paradigm, can occur within the realm of one LP.
If some processed event is a posteriori detected to be violating causality, then a
rollback operation must undo all its effects on the simulation state. A natural con-
sequence is that performing the rollback operation, both correctly and efficiently,
is a fundamental building block for an effective Time Warp system.

If a first consistent “preparatory” part of our research was to tackle how build-
ing reversing support transparently (see Chapter 3 “The reversing framework”), a
second great endeavour has been facing both autonomicity and efficiency. Albeit
the need for latter is more obvious to understand probably, autonomicity stems
from the following observation. Simulation model’s programmer—in general, tar-
get users are experts of a specific domain, not developers—should not care about
synchronization implementation details at the programming language level, let
alone at the machine instruction level. On the contrary, he/she focuses only on de-
scribing the real-world phenomena by means of mathematical models, which the
simulation engine is in charge of executing efficiently. By casting ourselves in the
context of this contribution, autonomicity and efficiency are ensured by the simu-
lation engine which exposes a clever rollback hybrid strategy that mixes together

4.2 State restoration process 71

Strategy Restore operation Description

State saving Coasting forward Upon a consistency violation, the
coasting forward operation re-aligns
the execution state from the nearest
previous checkpoint, according the
restore time.

Undo code block
(Reverse window)

Reverse scrubbing Upon a consistency violation, the
reverse scrubbing operation executes a
sequence of binary code blocks (i.e. the
reverse windows) that cancel the
updates, perpetrated on memory by
forward events, until the restore point
is reached.

Table 4.1. Rollback strategies and their respective restore operations.

the two main families of rollback approaches: (a) state saving, and (b) based on
reverse windows (i.e. the new reversible computing flavour we have introduced
in this writing). Table 4.1 briefly summarize the associated restore operation em-
ployed by each of the aforementioned strategies.

Before going farther, it is worth to make a brief digression on some notations
used in this writing. Hereafter, we will indicate with forward execution the tradi-
tional “top-down” execution flow of the application, in contrast to the backward
execution that refers generically to the rollback operation from one state to a pre-
vious one. Note that the rollback operation can be, though, conveyed either by
the traditional state saving or by the reverse execution. The latter term, in our case,
indicates the specific process of executing an undo code block (i.e. the reverse
window). Analogously, with old value we will refer to the value present in a given
memory and that will be overwritten by a new value, resulting by the execution
of a generic memory-update operation. Bearing in mind this introduction, we can
now proceed in describing the realization of this hybrid rollback strategy.

4.2 State restoration process

Any event e speculatively executed at LPi produces the state transition e(Si)→ S′i
on the private state Si of LPi. Our approach is basically to undo the effects of
e produced on memory during the forward execution, thus the reverse transition
re(S′i) → Si. As we discussed in Chapter 3, reversing memory side effects asso-
ciated with the transition e(Si) → S′i is the exact objective of the reverse window
associated with the event e. We recall that the reverse window (or undo code block)
is a set of machine instructions built at runtime that leverages the instrumentation
done on the code itself at compile time, as we described in Section 3.1.1 “The re-
verse window”. Each LP has a private memory area storing the relative portion of

72 4. The hybrid rollback strategy

the simulation state and has a private slab allocator for reverse windows as well.
Given the nature of a single simulation event, only two outcomes are possible. Ei-
ther the event is actually executed, and its effects on the simulation state take place
atomically, or the updates must be wholly undone due to the transient erroneous
execution of the event, i.e. a causality violation. Leading from this observation, we
developed the system so that each event e has associated one reverse window ube

that represents the event’s “antimatter”. Executing the reverse window annihilates
the memory effects perpetrated by the forward execution trajectory of the event e.
Since every memory update operation executed during the forward execution is
intercepted by the instrumented code, the effect of the operation on memory is
preserved by accessing the destination address location and saving its content just
before the operation overwrites it. The sequence of the inverse of this operations
composes the reverse window associated with the generic event e.

We emphasize that the reverse window is regardless of the operation/algorithm
performed during the forward execution. Leading from the nature of our ap-
proach, it focuses on the memory footprint produced by the updates. The runtime
generation process of negative instructions is, thus, unrelated to the knowledge of
how the updates are made, but rather only on actually what is the outcome written
to memory. As a result, the corresponding reverse execution of the undo code block
does not entail recomputing the old value, let alone the knowledge of the algo-
rithm that produced it. The reverse execution can be performed in constant time,
regardless of the algorithm’s complexity, anyhow it introduces a reduced overhead
and keeps bounded the time wasted in the rollback phase, which is unfruitful in
regards of the application’s point of view. Nevertheless, an algorithm may up-
date the same memory location multiple times, for example in case of algorithms
using simulation state’s variables as accumulators. Recalling the Property 3.1 in
Chapter 3, we exploit it to reduce the number of negative instructions that must
be generated, and therefore, the number of instructions be executed during the
reverse execution of ube, as well. We also stress that this property holds under
the assumption that a single discrete event is an atomic unit of computation. For a
deeper reading of this aspect, we redirect to Section 3.1.4 “Instruction and object
predominance”.

A baseline scheme to exploit our solution is to recover the simulation state
upon the detection of a causality violation, executing reverse windows associated
with all the events to revert from the current live image of the LP’s state. Figure 4.1
gives the graphical clue of this basic reverse scheme in rollback operation. The
rollback chain, in this case, is represented by the events that separate the current
simulation state where the causality violation (highlighted in dark grey) occurs
from the restore time (in light grey). In order to make the state-restore latency
independent of the rollback length, the exploitable approach is to rely on sparse

4.2 State restoration process 73

1 2 4 5 7 8 3
Forward

execution

Rollback length

Restore time Straggler event

LPX

Figure 4.1. Basic reverse schema to employ reverse window in a rollback operation.

state saving (e.g. periodic checkpointing) in combination with our undo code block
approach.

Let us recall how pure periodic state saving approaches achieve a restore la-
tency independent of the rollback length—for a thourough discussion, refer to,
e.g., [91]. Let us consider the case of a causal violation arising at time Tv associ-
ated with the event ev. The state recovery procedure is, thus, based on identifying
(a) the last causally consistent event ê, associated with the timestamp Tê < Tv,
and (b) one simulation state snapshot Ŝ such that TŜ ≤ Tê. However, once the
checkpoint Ŝ is taken, an arbitrary number of events may be executed before the
restore event ê; this is the typical case where TŜ < Tê. Hence, reloading Ŝ is not
sufficient to bring the simulation state back to the restore time Tê, since the effect
of one or multiple events in the interval

(
TŜ , Tê

]
would have been undone, as well,

and erroneously lost. Instead, to properly realign the simulation state exactly to
the time Tê, the rollback operation must silently replay every intermediate events
in the interval

(
TŜ , Tê

]
, before returning the control to the normal execution flow.

This specific replaying phase is the so-called coasting forward (recall Table 4.1). An
illustration of the described recovery operation to simulation time Tê is reported
in Figure 4.2a.

The cost associated with the coasting forward phase depends on two factors (as
results, again, in [91]): (a) the average granularity δe of any event to be replayed,
and (b) the actual number of replayed events. The event granularity δe is defined
as the wall-clock time required to consume the event itself, producing its outcome
on memory. Periodic checkpoint, is a variant of sparse state saving, as it relies on
the basic idea to taking a simulation state checkpoint periodically after a certain
number of events, rather than after every event. In such a context, a causality vio-
lation can occur at a generic point between two consecutive saved states. Denoting
with χ the number of executed events between two consecutive snapshots S1 and
S2, the coasting forward phase requires to reprocess χ−1

2 events on the average,
leading to a restore cost of δe · χ−1

2 . This makes the restore operation independent
of the rollback length, but proportional to the distance between two consecutive
checkpoints and the average event granularity δe.

74 4. The hybrid rollback strategy

1 2 4 5 7 8 3
Execution

Flow

Rollback length

Restore time Tr

C1 C2

Execution flow break

Coasting forward

...

(a) Rollback operation realized by the
Coasting Forward operation.

1 2 4 5 7 8 6
Execution

Flow

Rollback length

Restore time Tr

Reverse scrubbing

C1 C2

Execution flow break

...

(b) Rollback operation realized by our
new Reverse Scrubbing operation.

Figure 4.2. According to the relative distance of the generic checkpoint Cx to the restora-
tion point tr, our hybrid rollback strategy combines the coasting forward operation
employed by the conventional state saving strategy (a) and our new reverse scrub-
bing operation exploited by the approach based on reverse windows (b).

Embracing checkpoints, a complementary approach to coasting forward is what
we call reverse scrubbing, employed when relying on undo code blocks. Again, peri-
odic checkpointing make the state recovery operation independent of the rollback
length1. Complementary to what coasting forward does, the reverse scrubbing op-
eration reloads the checkpoint Ŝ associated with a timestamp TŜ ≥ Tê, from which
the sequence of undo code blocks annihilates the effects of each event that sepa-
rates chosen state snapshot TŜ with the restore time Tê. A corner case which might
occur with this approach is that such a checkpoint does not exist yet since the sim-
ulation time is still approaching a new checkpoint period χ. In this scenario, we
can simply promote the live state image of the LP as the starting scrubbing state
checkpoint and run reverse windows from this point back. Figure 4.2b depicts an
instance of reverse scrubbing operation where the restore point Tr, at virtual time
4, is two events before the fetched checkpoint, which coincides to the live state.
The rollback algorithm reloads the state image and executes the reverse window
associated with just one event (i.e. event at virtual time 8). Similar to the coasting
forward case, the number of events to revert is χ−1

2 , where χ still represents the
number of events between to successive checkpoints. Besides, the cost of the re-
verse scrubbing phase depends also on the average cost δub related to the execution
of a single undo code block, giving a total average cost of δub · χ−1

2 .

Let us now consider the relation between δe and δub. Undo code blocks are
not full reverse event handlers since they revert side effects with no explicit re-
computation of the values to be restored, so we may expect that especially for com-
plex event processing logic, δe would be greater than δub. As a result, via reverse
scrubbing we may achieve, on average, the same state recovery cost with larger
checkpoint periods χ, compared to coasting forward. Nonetheless, we have to take
into account that reverse windows produces a forward computation overhead due
to the instrumented additional instructions, absent in classical approaches purely
based on periodic checkpoint. The overhead to generate undo code blocks at run-

1Full independence would need avoiding full backward traversal of checkpoint chains, which is
an issue aside of the main techniques we are presenting.

4.2 State restoration process 75

time makes the average event granularity to be no longer δe, rather δe+δinst, where
δinst is the average per-event cost for executing the instrumentation code to gener-
ate undo code blocks.

In order to take the best of the two methodologies, including the benefits from
the relation δe > δub, a checkpoint interval χ can be selected where the initial por-
tion χ− ν of events in the interval are not covered by undo code blocks, while the
remaining ν are. Then, either coasting forward is executed, if one of the uncovered
events is to be restored, or reverse scrubbing, in the opposite case. Clearly, this ap-
proach is really effective only if no instrumentation cost is paid while processing
the first χ − ν events in any checkpoint interval. As we discussed in Section 3.2
“Addressing code instrumentation”, we achieve this via an optimized multi-coding
scheme, still transparent to the application level software.

The combination of the forward and backward restore capabilities within a
checkpoint interval is a topic that has already been investigated, particularly in
[34]. However, it is limited to the usage of incremental checkpoints (not undo
code blocks) for backward recovery starting from the upper checkpoint within
the interval. Re-adapting the performance model presented in that work to our
context, we can obtain an expression to determine the expected overhead of both
recoverability support and actual recovery operations. This expression is a func-
tion of the parameters discussed before, of the parameters δs and δr expressing the
average cost for taking/reloading a checkpoint, and of the LP rollback frequency
Fr. Overall, the final re-adapted expression of the per-LP expected overhead OH

is:

OH = (δs + ν · δinst)
χ

+ Fr

[
χ− ν
χ

(
δr + χ− ν − 1

2 δe

)
+ ν

χ

(
δr + ν

2 δub
)]

δs Average cost to take a snapshot.

δr Average cost to reload a snapshot.

δinst Average cost to execute instrumented events.

δub Average cost to undo event’s effects.

ν Average rollback length.

χ Frequency at which to save system’s state.

Fr Average frequency of rollback.

In Equation (4.1), the independent parameters are χ and ν, since all the other
parameters depend on the specific runtime dynamics of model execution. The val-
ues of χ and ν that minimize the overhead OH can be computed according to the
method provided in [34]. However, one aspect that is uncovered by that method

76 4. The hybrid rollback strategy

is whether the values δinst and δub need to refer to the per-chunk reversibility ap-
proach or not. In fact, selecting one or the other approach is an issue intrinsi-
cally related to our undo code block based technique. As we will discuss further
on in Section 4.3 “Experimental assessment”, our support for state recoverability
entails a heuristic allowing the runtime selection of either per-chunk or baseline
reversibility. Once the best-suited reversibility mode is selected, the runtime min-
imization of Equation (4.1) via the selection of χ and ν takes place by filling it with
values of δinst and δub sampled with the selected mode.

4.3 Experimental assessment

4.3.1 Test-bed platform

In the matter of rollback support, we have fully integrated our reverse code block-
based rollback support [30] within ROOT-Sim2 [82], which we use as the refer-
ence PDES environment in this experimental study (and for the work in Chap-
ter 5 “Dealing with shared libraries”). ROOT-Sim is a C-based open source sim-
ulation runtime environment, realized according to the ANSI-C standard and tar-
geting POSIX systems, which implements a general-purpose simulation environ-
ment based on the Time Warp synchronization paradigm. It supports a fully-
transparent checkpointing strategy (see [86]), based on the DyMeLoR memory
map manager [110]. The same memory map manager has been exploited while
integrating our reverse window-based approach to generate the combined (check-
point/reversibility-based) restore technique presented in this chapter. In order to
make the reader more comfortable with ROOT-Sim, Figure 4.3 gives a clue of the
architecture of DyMeLoR, behind the simulation engine. As a last note, this sim-
ulation engine offers a very simple programming model relying on the classical
notion of event’s handlers. Each handler enables both for processing simulations
events and for accessing a committed and globally-consistent state image, upon
the GVT calculation.

4.3.2 Test-bed environment

Our parallel runs have been carried out on a 32-core HP ProLiant server (equipped
with 64GB of RAM) running Debian 6 on top of the 3.16.7 Linux kernel. A ROOT-
Sim configuration with 32 worker threads has been used in all the experiments,
with Global-Virtual-Time (GVT) computation and fossil collection (of committed
data records and of no longer useful recoverability data) taking place every second.

2ROOT-Sim is available at http://github.com/HPDCS/ROOT-Sim.

http://github.com/HPDCS/ROOT-Sim
http://github.com/HPDCS/ROOT-Sim

4.3 Experimental assessment 77

Applicat ion Level Software

Sim ulat ion Plat form

Mem ory Map Manager

and Allocator

Third Party

Library Wrapper

Update

Tracker

Log/Restore Subsystem

m alloc()

free()

realloc()

Calls to 3rd

party funct ions

m em ory

accesses

take_full_log()

state_restore()

set_current_lp()

take_increm ental_log()
Mem ory Recovery

Subsystem
prune_log()

ASM_init ()

SetState()

set_chunk_state()

Figure 4.3. Architecture of the DyMeLoR memory manager of ROOT-Sim

Parameter Value

RAM 64GB
Cores 32
Worker threads 32

Operating system Linux Debian 6
Linux kernel 3.16.7-amd64
Architecture 64 bits

Table 4.2. Configuration of the environment for the test-bed application to assess the
performance result of the hybrid strategy presented.

A summary of the environment configuration used to assess the strategy discussed
until on is presented in Table 4.2.

4.3.3 Test-bed application

As a test-bed application, we chose a cellular system simulation model. The sig-
nificance of this model is due to its complex simulation workload, which can be
highly variable according to its configuration; for example, concerning memory
the access pattern to the states of the LPs, and the intensity of the write activity on
these states. Overall, this test-bed application allows us to assess our recoverability
support by exploiting a suite of different workload profiles.

The application composes of many mobile communication cells modelled as a
hexagonal coverage-area. Each LP handles the evolution of a single cell, by simu-
lating the state of its hosted N high-fidelity radio channels. Channel model bears
from the results provided in [68], where the authors describe how the interference
and fading phenomena affect the experienced Signal-to-Interference Ratio (SIR).
According to the results mentioned above, power regulation depends on the pre-
determined SIR levels to achieve, which is also explicitly modelled in this applica-
tion test-bed.

78 4. The hybrid rollback strategy

The current state of any channel is kept via a dynamically-allocated record,
placed into a list. As for the experiments, we consider two variants for the setup of
the LP state layout; each one exhibits different tradeoffs. In the first variant, each
channel’s record points to a power-management record, which is also dynamically
allocated upon call setup. In the second variant, power-management records are
dynamically allocated as a whole block and are used to serve multiple call instal-
lations. Each block is made up of 100 records, and the different memory stocks
are tracked by a hash-table, which is indexed by relying on the channel identifier.
We will refer to the second variant as clustered (or chunk-based). Recall the Prop-
erty 3.2 in Section 3.1.4 “Instruction and object predominance”; we can, hence, for-
mulate a simple heuristic for determining whether to switch the operating mode
of the undo code block-based recoverability support to per-chunk granularity or
not. The information kept by the hashmap entry associated with a chunk is used
to represent the so-called chunk fragmentation. This value expresses the percent-
age of elements of the chunk, which have not been accessed in write mode. If the
fragmentation factor fri for the i-th chunk falls below a given threshold α (set in
the interval [0, 1]) then locality of the accesses in write mode to different portions
of that chunk is to be considered low. Therefore, it would not be convenient to rely
on chunk-based reverse windows. Switching to clustered-based strategy needs to
consider the average fragmentation factor (among all the chunks) that can be easily
computed as:

FR =
∑n

1 fri
n

(4.1)

The clustered variant allows improving memory locality since multiple power-
management records belong to the same contiguous chunk. However, in this case,
if a block uses a reduced percentage of entries the internal memory fragmentation,
within the LP state, increases.

The latter aspect is linked to the workload intensity of simulated calls, which
is another parameter we have varied in our experiments. In more detail, the model
includes a parameter τA, which expresses the inter-arrival frequency of subsequent
channel assignment requests to any target cell, according to an Erlang stochastic
process [47]. The lower τA, the higher the workload. An additional parameter
τduration expresses the expected duration of a communication burst on a chan-
nel after its assignment; hence the channel utilization factor can be computed as
τduration/(τA ·N). Due to the number of channel and power-management records to
scan and update, increasing the utilization factors requires handling more power-
management records at each time instant; eventually this scenario affects both the
event granularity and the memory footprint on the LP state. The additional pa-
rameter τhandoff is used to express the residual residence time of a mobile device
into the current cell. This parameter determines, in combination with τduration, the

4.3 Experimental assessment 79

Read-Intensive Read-Write

Low-Load RI-LL RW-LL
High-Load RI-HL RW-HL
Low-Load Clustered – C-LL
High-Load Clustered – C-HL

Table 4.3. Summary of the test-bed configurations used.

interactions across the LPs, in the form of hand-off events cross-scheduled among
them.

In our study, we consider a scenario with 1024 cells covering a square region,
each one managing N = 1000 wireless channels (resembling macro-cell technol-
ogy). τduration is exponentially distributed with an average value 120 seconds,
while τhandoff is exponentially distributed with an average value 300 seconds. To
achieve two different values for the average wireless channels’ utilization factor,
namely 25% and 75%, we varied the mean value of the exponential distribution
of the inter-arrival time τA. These two scenarios will be referred to as Low-Load
(LL) and High-Load (HL). The goal is to diversify the execution pattern of the
application, both CPU and memory demand. Further, we consider two different
read/write operation profiles. The first one is based on computing the SIR value
only when performing power regulation upon new call setup. We will refer to this
profile as Read-Intensive (RI), since channel/power-management data records are
scanned (but not updated) while determining power regulation for the new call. A
second profile is instead based on updating SIR values (only depending on fading)
for all the on-going calls upon new call setup. This profile leads to updating all
the active power-management records upon the installation of any call; hence we
will refer to it as Read-Write (RW) profile.

On the basis of the varied parameters, a total number of six different configu-
rations have been run, which are summarized in Table 4.3. The Clustered variant
of the LP state layout has been tested only in the Read-Write profile, given that it
is intrinsically tailored to capturing the effects on the recoverability architecture
by locality of the updates (if any) into the LP state layout.

As a last preliminary note, the average event execution times have been ob-
served to be in the order of 80–100 µs for LL profiles, and in the order of 150–200
µs for HL profiles. The time to take a checkpoint has been observed to be in the
order of 30 µs for LL profiles and of 55 µs for HL profiles (slightly smaller val-
ues have been observed for the Clustered setting). The average time to generate
a single reversing instruction for an individual 64-bit memory location has been
observed to be in the order of 0.15 µs.

80 4. The hybrid rollback strategy

4.3.4 Performance data

In a first set of experiments, we compare the performance of either traditional pe-
riodic checkpointing, in combination with coasting forward for restoring the LP
state to non-logged values, or of periodic checkpointing in combination with re-
verse scrubbing. The latter recovery scheme is based on either applying the undo
code blocks starting from the current state image of the LP, or by applying them af-
ter reloading a conveniently-selected checkpoint. Also, for the configuration based
on reverse scrubbing, we generate undo code blocks for all the processed events,
thereby excluding the possibility of combined usage of coasting forward and re-
verse scrubbing within a same checkpoint interval. The effects of this combination,
and the optimization of the combination on the basis of the cost/benefit model in
Equation (4.1), will be assessed later via a second set of experiments.

For completeness, we also consider a configuration where state recoverability
is based on pure reverse scrubbing—no checkpoint is taken. All the configura-
tions entail the generation of reverse windows, we run the experiments by either
activating or disabling the hashmap to track already-updated memory locations
(or memory objects) in the processing of a single event. This allows us to evalu-
ate overhead and benefits by the hashmap (via the exploitation of dominance). The
hashmap is configured with 128 lines. Data referring to the pure reverse scrubbing
configurations are shown as bars, since they are independent of the checkpoint in-
terval.

We report in Figure 4.4 the execution speed variation of the simulation (eval-
uated as the amount of committed simulation time units per second) for both the
RI-LL and RI-HL configurations3. The curves for reverse scrubbing, either in com-
bination with checkpointing or not, refer to the case of baseline undo code block
generation (see Section 3.1.3 “The reverse code engine”), where every memory up-
date is reverted via a corresponding memory-move instruction. For the RI-LL con-
figuration, we observe similar peak performance for both coasting forward and
reverse scrubbing. However, reverse scrubbing shows higher resilience to per-
formance degradation vs. sub-optimal values of the checkpoint interval. This
is somehow expected, given that the RI profile produces undo code blocks with
very few instructions. Thus, the reconstruction of non-checkpointed state images
is a reduced-cost operation even if the distance between the state image to be re-
covered and the starting point of the reverse scrubbing operation is non-minimal.
This is also evident when looking at the performance provided by pure reverse
scrubbing, which stands slightly better than the configuration with reverse scrub-
bing in combination with checkpointing when the interval between checkpoints

3All reported samples refer an average value computed over 5 different runs of a same configu-
ration.

4.3 Experimental assessment 81

0

100

200

300

400

500

600

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Read Intensive - Low Load (RI-LL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(a) Execution with a Low-Load workload pro-
file.

0

50

100

150

200

250

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Read Intensive - High Load (RI-HL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(b) Execution with a Low-Load workload
profile.

Figure 4.4. Experimental results for the Read-Intensive profile.

is set to 40. Good resilience to performance degradation is instead not achieved
by classical periodic checkpointing with coasting forward. In fact, this configura-
tion shows a rapid performance increase when moving the checkpoint period from
one to five events, thanks to a significant reduction of the checkpointing overhead.
However, for larger values of the checkpoint period, the additional reduction of
the checkpointing overhead does not pay off, since the longer expected coasting
forward degrades performance due to the need for replaying events to restore the
target state, which is instead avoided by reverse scrubbing. Another interesting
point is that, for checkpoint period set to one, both classical coasting forward and
reverse scrubbing only need to reload one checkpointed state image upon a roll-
back operation. However, for the reverse scrubbing configuration all the processed
events give rise to the generation of their associated undo code blocks. Hence, the
reduced performance by reverse scrubbing vs. coasting forward in this configura-
tion is representative of the extra cost for generating undo code blocks and tracing
memory write operations. This cost does not allow reverse scrubbing to achieve
the same performance boost as coasting forward when moving a checkpoint inter-
val of five events—in fact the performance curve of reverse scrubbing is slightly
smoother. However, the cost to generate undo code blocks pays off for larger values
of the checkpoint interval, as discussed. Concerning the exclusion of the hashmap
with reverse scrubbing, it leads to a slight performance increase compared to the
scenario when it is used. This is because the RI configuration has no advantages
from the hashmap, since one event updates memory locations belonging to the
LP state only once. Hence, querying the hashmap leads to misses with high likeli-
hood. On the other hand, this is a good test case to assess the cost for manipulating
the hashmap, especially in relation to the operation of resetting it at the beginning
of the processing phase of any event, given the low intensity of write operations
within the LP state.

82 4. The hybrid rollback strategy

280

300

320

340

360

380

400

420

440

460

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Read Write - Low Load (RW-LL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(a) Execution with a Low-Load workload pro-
file.

130
140
150
160
170
180
190
200
210
220
230
240

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Read Write - High Load (RW-HL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(b) Execution with a Low-Load workload
profile.

Figure 4.5. Experimental results for the Read-Write profile.

For the RI-HL configuration, the advantages by reverse scrubbing are ampli-
fied. In fact, HL gives rise to coarser-grain events which are adverse to coasting for-
ward, especially for sub-optimal values of the checkpoint interval. In more detail,
avoiding to take checkpoints at each event does not provide the same performance
improvement as compared to RI-LL. Indeed, the costs for replaying coarser-grain
events in coasting forward become non-negligible, as soon as the length of the
coasting forward phase is non-minimal. As hinted, reverse scrubbing avoids at all
these costs. Hence, thanks to the RI profile generating per-event undo code blocks
with reduced numbers of instructions, the reverse scrubbing phase is still not
costly. This allows for a better performance boost while increasing the checkpoint
period. Overall, the reverse-scrubbing peak performance is about 10% higher than
the coasting-forward peak performance. Further, similarly to the RI-LL configura-
tion, reverse scrubbing still provides better resilience to performance degradation
vs. sub-optimal values of the checkpoint period. Also, pure reverse scrubbing
gives a performance that is slightly better than when using checkpointing with
an interval set to 40. This is an interesting phenomenon caused by the fact that
when the checkpoint interval is longer, reverse scrubbing is forced to reprocess
more undo code blocks, and the latency to restore the last correct checkpoint form
which to apply the undo code blocks does not pay off, compared to state recon-
struction via pure reverse scrubbing. This is clearly linked to (and amplified by)
the larger state footprint of the HL configuration, as compared to LL, which leads
to larger state/checkpint size, and more costly checkpoint reload. Finally, with in-
tensive events which lead to query the hashmap infrequently given the RI profile
of memory interactions, the overhead for managing the hashmap tends to disap-
pear, as compared to the LL configuration.

In Figure 4.5, we show the results from the RW profile. In this scenario, re-
verse scrubbing still undoes memory updates via single memory-move instruc-

4.3 Experimental assessment 83

tions placed into the undo code block. Compared to RI, this profile leads to in-
creased frequency of per-event generation of undo code blocks, given that more
memory-update operations are carried out by the events. For RW-LL, reverse
scrubbing allows for better peak performance (with a gain of about 5% compared
to coasting forward), and this time the performance of reverse scrubbing has a
trend similar to coasting forward, with a peak speed at checkpoint period set to
five. This is due to increased frequency of write operations, leading to larger per-
event undo code blocks, whose generation/processing costs penalize the state re-
store latency for longer reverse scrubbing phases (similarly to what happens with
longer coasting forward phases). However, reverse scrubbing still looks more re-
silient to performance degradation for sub-optimal values of the checkpoint pe-
riod (namely, excessively longer checkpoint periods). In fact, the pure reverse
scrubbing configuration does not degrade performance, if compared to reverse
scrubbing used in combination with checkpointing and large checkpoint inter-
vals. For RW-HL, coasting forward is instead able to provide better peak perfor-
mance (with a gain of about 6% over reverse scrubbing). This trend is due to
RW-HL leading to further increased intensity of per-event write operations (com-
pared to RW-LL), since a larger number of records are updated while processing
the events. This makes memory-tracing and undo code block generation over-
heads the dominating factors. In fact, for checkpoint interval set to one, i.e. when
the undo code block generation represents pure overhead with no benefit, we
have a performance decrease of reverse scrubbing vs. coasting forward of about
33%. However, for longer checkpoint periods (beyond the optimal value for the
coasting forward configuration), avoiding at all to replay events thanks to reverse
scrubbing still pays off, leading to better performance compared to coasting for-
ward. Also, the usage of pure reverse scrubbing again pays off compared to the
combination of reverse scrubbing with checkpointing and large checkpoint inter-
vals, because of the already-discussed reasons and possibly a decrease of locality
caused by the need for restoring larger states while still needing long reverse scrub-
bing phases involving a higher number of machine instructions within undo code
blocks touching memory sparsely. Finally, in the RW configuration we see a more
pronounced difference in the performance achieved with the inclusion or exclu-
sion of the hashmap. We remind that the RW profile still leads to memory updates
mostly scattered on different locations, which prevents the hashmap from provid-
ing significant benefits. On the other hand, the higher write intensity in the RW
configuration (compared to RI) leads to querying the hashmap more frequently,
which leads to an increase in the overhead. Such phenomenon has a higher rel-
ative incidence on HL due to the higher relative cost to manipulate and update
records within the LP state vs. other operations carried out by the events.

84 4. The hybrid rollback strategy

260

280

300

320

340

360

380

400

420

440

460

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Clustered - Low Load (C-LL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(a) Execution with a Low-Load workload pro-
file.

140

150

160

170

180

190

200

210

220

230

240

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

Clustered - High Load (C-HL)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + reverse scrubbing (no hashmap)
pure reverse scrubbing
pure reverse scrubbing (no hashmap)

(b) Execution with a Low-Load workload
profile.

Figure 4.6. Experimental results for the Clustered configuration (RW profile).

As hinted, in the baseline memory layout of the benchmark application, the
higher intensity of write operations in the RW profile is implicitly coupled with
reduced locality of the updates, since the data records that are updated are scat-
tered in memory. The Clustered variant of the memory layout is aimed at assess-
ing the undo code block based recoverability support when employing per-chunk
undo code blocks (recall that chunks represent this time blocks of records). We
show in Figure 4.6 the execution speed curve for the Clustered configuration for
both classical coasting forward and reverse scrubbing (either in combination with
checkpointing or not) with undo code blocks based on per-chunk granularity. In
the latter configuration, a single movs instruction restores the whole content of a
block. Also, when the hashmap is employed, multiple updates on a same block
performed while processing an event are discarded (in terms of generation of re-
verse instructions within the undo code block) thanks to the Object Dominance
property. By the results, we see how the exploitation of locality of the memory
updates, via the reliance on per-chunk undo code blocks, allows reverse scrubbing
to provide performance improvements for the Clustered configuration (which ex-
hibits a RW profile) in both LL and HL scenarios. Also, compared to the previ-
ous configurations, the resilience to performance degradation by reverse scrub-
bing is even more evident, given that longer checkpoint intervals lead to reduced
amounts of reverse instructions to be processed in a rollback phase, since a sin-
gle reverse movs instruction allows to restore the state of multiple records within
the LP state. Overall, when some locality is guaranteed for memory update op-
erations, reverse scrubbing is competitive even with higher intensity of memory
write operations by the events. On the other hand, the exclusion of the support
for tracing such locality, i.e. the hashmap, leads reverse scrubbing to provide def-
initely reduced performance caused by the work for generating/processing undo
code blocks. Overall, saving the cost to manage the hashmap does not pay off in

4.3 Experimental assessment 85

scenarios with actual dominance. As a last note, the usage of pure reverse scrub-
bing in combination with the hashmap, although revealing highly efficient, does
not outperform reverse scrubbing in combination with checkpointing with larger
checkpoint intervals. This phenomenon is due to the fact that with clustered al-
location a checkpoint is more compact, since a reduced amount of metadata are
involved. Hence, the cost of restoring a checkpoint from which to apply undo
code blocks still pays off thanks to the statistical incidence of the reduction of the
length of the reverse scrubbing phase (compared to pure reverse scrubbing).

In the final part of this study we provide data related to the combined usage of
reverse scrubbing and traditional coasting forward, according to the scheme pro-
posed in this chapter. The potential for further performance improvements when
generating checkpoint intervals where an initial portion of the events do not gen-
erate undo code blocks (i.e. restore is based on coasting forward) and a subsequent
portion generate undo blocks (i.e. restore is based on reverse scrubbing) looks
evident when considering that the undo code block technique makes the recov-
ery latency less influenced by the distance between checkpoints. So we might set
longer checkpoint intervals, while jointly avoiding long reverse scrubbing phases
thanks to coasting forward limited to the initial, possibly reduced, portion of the
checkpoint interval. To assess the advantages by the combined approach, we have
run the same six configurations of the benchmark by optimizing the partitioning
of the checkpoint interval according to the model in Equation (4.1). In our runs,
the model is resolved at runtime after having collected data for its input parame-
ters, which are also used to determine whether to switch to per-chunk based undo
code blocks. This is done using Equation (4.1) after setting the fragmentation fac-
tor threshold α to the value 0.75 (we remind that it determines whether a chunk
of memory has to be considered as fragmented or not, in terms of the updates oc-
curring on it). The competitor configuration is identified as one based on periodic
checkpointing, where the checkpoint period is still selected at runtime as the one
minimizing Equation (4.1) once fixed the parameter ν to zero. With this settings,
the equation boils down to one determining the optimal periodic checkpoint in-
terval in traditional coasting forward based recoverability [98].

The achieved results are plotted in Figure 4.7. We report the ratio between the
execution speed when using the mixed technique and traditional periodic check-
pointing. The data refer to the steady state speed observed after the model-based
performance optimization is already put in place. We simply discarded the initial
speed samples collected when (for both recoverability techniques) no optimiza-
tion of the parameters driving their behaviour was already actuated. By the data,
we see how the performance benefits from reverse scrubbing in combination with
coasting forward are further amplified, especially for RI-HL, and for the C-LL and
C-HL configurations (the latter being both RW in their profile). Further, relying

86 4. The hybrid rollback strategy

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

RI-LL RI-HL RW-LL RW-HL CL-LL CL-HL

s
p
e
e
d
 r

a
ti
o

(u
n
d
o
 c

o
d
e
 b

lo
c
k
 +

 c
o
a
s
ti
n
g
 f
o
rw

a
rd

 /
 p

u
re

 c
o
a
s
ti
n
g
 f
o
rw

a
rd

)

benchmark configuration

Figure 4.7. Execution speed ratio (new approach vs traditional periodic checkpointing).

on the model-based optimization allows the integrated recoverability support to
avoid performance penalties when running applications with more intense mem-
ory write activity and with updates that are scattered (thus not favouring locality).
In fact, for the RW-HL configuration, we observe that the model-based approach
leads to excluding the usage of undo code blocks (thus leading to a pure checkpoint
based recoverability scheme), hence avoiding the costs (and penalties) associated
with the reverse scrubbing approach evidenced by the data in Figure 4.5.

4.3.5 Comparison to state saving

The following additional performance data are related to the assessment of our
hybrid recoverability technique, and its employment in combination with clas-
sical checkpointing. This study complements the one presented previously be-
cause of the significantly different execution profile of the benchmark application
we used. In particular, we run experiments with a model of an in-memory data
platform, where a cluster of servers maintain the state of a set of data items, and
where transactional requests are delivered at the servers, whose simulation leads
to the detection of whether conflicting (read/write or write/write) accesses take
place, which gives rise to the abort of the transaction contending in an already
locked data item. This kind of models have recently acquired relevance, e.g. as a
support for (on-line) dimensioning/configuring of cloud oriented in-memory data
platforms in face of specific data sets and differentiated data access patterns [39].

An illustration of the layout of the state of each LP, which models an indi-
vidual server, is shown in Figure 4.8. The state is made up by a table keeping
basic metadata (e.g. related to statistics associated with the outcomes of simulated
transactions), an array of pointers to buckets, each one keeping the current state
of a given data item (associated with a specific key), and an array of pointers to the
state of the currently processed transactions.

4.3 Experimental assessment 87

...

...

statisticss on

transaction's execution

outcome

...

Item records

Transaction

records

Item's state Item's state Item's state Item's state

Item's state Item's state Item's state Item's state

Item's state Item's state Item's state Item's state

Transaction's state

Transaction's state

Transaction's state

Transaction's state

...

...

Item's state Item's state Item's state Item's stateItem's state Item's state Item's state Item's state

Item's state Item's state Item's state Item's state

...

...

read/write

locked

residual items to

access
Event processing

Figure 4.8. Layout of the LP state in the data store model.

We simulated a data store with 256 servers, each one managing a data parti-
tion made up by 104 items, for a total of more than 2.5 million items. Batches
of transactional data access requests are delivered to each server by proper simu-
lation events, which are scheduled following an exponential distribution of their
timestamps. The transactions may entail accessing the local partition or remote
partitions, and the access to remote data partitions leads to cross-LP exchange of
simulation events, carrying as payload the set of transactional requests that re-
quire access to the remote partition. In our experiments we set the batching factor
to 5, and the likelihood of accessing a remote partition to 0.2. Each transactional
request may access a reduced number of different data items within the data plat-
form, from 5 to 10. Also, the evolution of the transactions in each batch is modelled
by having their accesses processed in round-robin fashion. All the parallel runs
have been carried out by relying on the same platform already described above,
and by still relying on 32 worker threads.

One interesting point in the settings we used for this benchmark application is
that, differently from the case study presented earlier in Section 4.3.4, the average
latency to take a checkpoint of the whole state of an LP is definitely greater than
the average latency for processing and event, in fact the former is of the order
of 35 µs while the latter is of the order 15 µs. Also, the events are write intensive
since the access of each item by a transaction leads to updating both the transaction
record and the data item record.

88 4. The hybrid rollback strategy

6500

7000

7500

8000

8500

9000

9500

10000

 1 5 10 20 30 40

s
im

u
la

te
d
 u

n
it
s
 p

e
r

s
e
c
.

ckpt period (events)

ckpt + coasting forward
ckpt + reverse scrubbing
ckpt + coasting forward + reverse scrubbing (ν/χ = 0.75)
ckpt + coasting forward + reverse scrubbing (ν/χ =0.50)
ckpt + coasting forward + reverse scrubbing (ν/χ =0.25)
pure reverse scrubbing

Figure 4.9. Results with the data platform model.

We report simulation speed data related to the execution with checkpointing
plus coasting forward, with pure reverse scrubbing, with reverse scrubbing used in
combination with checkpointing, and finally with the combined usage of coasting
forward and reverse scrubbing within a same checkpoint interval, according to
the scheme presented before. For the latter configuration we selected 3 different
values of the ratio ν

χ : 0.75, 0.5 and 0.25.

The results are shown in Figure 4.9. As expected, for all the curves that relate
to the usage of checkpointing, we see a great performance gain when setting larger
checkpoint intervals, with no significant performance degradation for very large
intervals just due to the reduced event granularity for the case of coasting forward
based recovery. Such a fine granularity is also the reason why pure reverse scrub-
bing is not able to provide the same level of performance of coasting forward.
The same is true for reverse scrubbing used in combination with checkpointing.
However, the performance curves show the high potential for a combined usage of
coasting forward and reverse scrubbing, even in scenarios with fine grain events.
In more detail, the combined usage of the two techniques leads to the same (or
slightly better) performance when the checkpoint interval is partitioned into equal
portions, covered either by coasting forward or reverse scrubbing (νχ = 0.5). How-
ever, we see how a combination of the two techniques that tends to partition the in-
terval in such a way that a larger portion is covered by coasting forward (νχ = 0.25)
leads to up to 8% performance gain, thanks to the avoidance of excessive overhead
for the generation of undo code blocks, and the joint possibility to avoid exces-
sively long coasting forwards, which may lead to non-minimal overhead even with
fine grain events. Overall, in synergy with the results reported in the above exper-

4.3 Experimental assessment 89

iments described, these curves show how the introduction of the undo code block
based technique and its combination with more traditional techniques provides a
more efficient support for state recoverability with general workloads, such as fine
grain events with write intensive profile as in this tests case.

Chapter5
Dealing with shared libraries

Whenever a system becomes completely defined, some damn fool
discovers something which either abolishes the system or expands it

beyond recognition
— Finagle’s Fifth Rule

The reverse computing-based rollback operation, which tries to cancel the non-
negligible memory footprint of the state saving technique, relies on reverse events,
which can be generated either manually [26] or automatically [71, 29, 102, 103].
With respect to automatic generation of reverse events, the various proposals ad-
dress it by relying either on binary instrumentation [71, 29] or on source-to-source
transformation [102, 103]. Nevertheless, none of these solutions is able to deal
with third-party shared libraries, which could be regarded as an important build-
ing block for the development of complex simulation models, and applications
in general. Just to mention some libraries, ALGLIB [107], GSL [59], FFTW [54],
LAPACK [12], or BLAS [74] might be necessary for the description of statistical
or algebraic processes, proper of a large number of simulation scenarios. Indeed,
an endeavour in reversing the BLAS library is done by Kalyan Perumalla in [90].
The paper is focused on presenting performance and efficiency of two reverse ver-
sions of the library; a checkpoint-based solution vs. a computational-mode where
restoration is obtained via inverse computation. The difference from the approach
we propose here lies in the applicability of our solution, which we conceived to be
general-purpose, despite we started settling it down of the specific context of the
parallel simulation in this first proposal. It can be easily extended also to other
contexts, since we tackled the roots of the problem on purpose.

Generally speaking third-party shared libraries are not optimism-aware. They
are mostly devised for application scenarios which always operate on stable data;
something that does never entail to be undone. This assumption is exactly the
constraint speculative synchronization protocols, such as Time Warp, intention-
ally relax. Both the approaches of static binary instrumentation and source-to-

91

92 5. Dealing with shared libraries

source transformation can make shared libraries reversible. However, as the reader
may have noticed, their applicability might fail either (a) due to the lack of source
code (in the case of closed-source libraries) or (b) because instrumenting shared ob-
jects produce system-wide effects. As a result of the last observation, with a very
high probability, modifying shared libraries will also affect other programs not
related to instrumentation purposes (e.g. optimistic simulation support). Non-
speculative applications do not need exploiting this reversible-enabled version of
shared libraries, which may introduce a non-necessary overhead, or even worse,
could unpredictably hurt their behaviour. Further, for those speculative applica-
tions that demand reversible-enabled libraries, both the approaches would require
to instrument the whole library, even though only a portion is really used, hence
weakening the maintainability of the program.

We started from these observations to move a step further in the development
of our reversing framework (Chapter 3 “The reversing framework”), nonetheless
toward an orthogonal direction in regards to the contribution described in Sec-
tion 4.3 “Experimental assessment” of this chapter. The need for treating correctly
shared libraries brings us to discuss an alternative technique, which complements
static and source-to-source instrumentation for x86 systems [102] and founds its
roots on the concept of lazy instrumentation, resembling the lazy invocation of li-
brary’s services. Indeed, our proposal specifically targets all scenarios where the
source code is not available, that would prevent the source-to-source transforma-
tion from being a viable solution. The approach followed in this chapter borrows
from the one we proposed in [31], integrating this novel instrumenting library
manager into our reversing framework libreverse1. The core of our approach is a
module that intercepts any call to third-party shared libraries’ services and allows
to create a reversible-instrumented version. Besides, libreverse provides also a
set of management APIs that allow switching quickly between the instrumented
and non-instrumented (i.e. original) version of library’s services, opening to fine-
grained runtime self-optimizations of the application run—it is similar, in princi-
ple, to the technique proposed in [86]. Looking at the simulation context, the pos-
sibility of choosing different behaviours of the simulation engine enables dealing
platform code and simulation of the model separately. The former typically com-
prises housekeeping operations, so it does not require to embrace any reversible
behaviour along a defined (critical) path where synchronization is not a concern;
the latter, instead, is the scenario requiring to properly orchestrate distinct au-
tonomous living entities, which generate and execute a flux of events. Overall, by
relying on the approach proposed in this chapter, we enable speculative execution
of any hierarchical combination of third-party libraries within a Time Warp-based
simulation engine, significantly increasing the degree of programmability offered

1The source code of the library is available at https://github.com/HPDCS/libreverse.

https://github.com/HPDCS/libreverse
https://github.com/HPDCS/libreverse

93

to simulation models’ developers. We stress again that this instrumentation pro-
cess is transparent to the simulation model’s developer, in addition, no change
in the simulation model’s code is required for the integration and a set of APIs
allows tuning the reversible simulation engine at startup. Notwithstanding, the
reader will notice that our approach is orthogonal to simulation realm; through
our reversing framework, it is possible to extend this support to shared libraries in
broader application contexts, beyond the specific one we used for the experimental
assessment.

In [29, 30] we have used this support to generate “reverse events” as reverse
windows (see Chapter 3 “The reversing framework”). The approach we describe
here is orthogonal to the one mentioned in Chapter 3, where we do not address
the presence of shared libraries. Shared objects, indeed, limit the use of static bi-
nary instrumentation at runtime, as every modification to their code would prop-
agate system-wide. An approach similar in spirit to our proposal is that of Val-
grind [79]. This framework gains control of the program’s execution in a way
similar to what we do and generate instrumented versions of the program code
just-in-time (JIT). Nevertheless, since the goal of Valgrind is debugging, it relies
on a virtualized CPU which runs the user program. This choice introduces a slow-
down which can be affordable when debugging, but definitively not when exe-
cuting high-performance simulations—more generally in any context where we
cannot sacrifice performance. Conversely, we generate instrumented code which
runs on physical cores, and interacts with the library manager only when needed,
without relying on any virtualization. Our proposal is also related to many works
in the field of program execution tracing (see, e.g., [1, 13, 92, 124]) for debugging,
vulnerability assessment and repeatability. These approaches provide a detailed
analysis of changes in the state of the program and the execution flow. Neverthe-
less, these works do not explicitly deal with the possibility to reverse a portion
of the program’s execution by relying on runtime-generated reverse instructions.
The US patent in [62] explicitly deals with reversibility of shared libraries within
executables. Conversely to our proposal, the goal is to make reversible the link-
ing process, thus allowing for different versions of the library to be attached to
the same program. Differently, we are interested in undoing the effects of shared
libraries on the memory map and its content, to support a reversibility-based roll-
back operation.

The remained of this chapter first recalls, (Section 5.1), the basics of how the
system dynamic linker supports dynamic symbol resolution so as to allow the
reader to better understand the background behind our approach. Therefore, Sec-
tion 5.1.1 and Section 5.1.2 discuss the proposal’s internals and the methodology
employed to implement the technique in a real-world scenario.

94 5. Dealing with shared libraries

5.1 Resolve the symbol’s address

Before discussing the approach that we undertake to enact software reversibil-
ity of generic third-party shared libraries, let us summarize how third-party li-
braries interact with an executable, taking as reference Linux systems relying on
the Executable and Linkable Format (ELF). In complex systems in order to har-
ness as much as possible the main memory, it has been introduced the concept
of the virtual memory. Virtual memory is an abstraction provided by the Op-
erating Systems to give user programs the illusion of having a large amount of
continuously-addressed memory at their availability, which is achieved by map-
ping properly portions of code within the program’s address space. Besides, quite
often programs are built upon a plethora of modules that provide specialized and
yet optimized services; namely the (shared) libraries. They are a comprehensive
set of general-purpose facilities that developers can exploit as building blocks de-
signing applications. To make the output of the compiler as much dry as possible,
modern OS implement a sharing policy of these objects. Because of their nature,
shared libraries require runtime address evaluation to properly route the code to
the right managed entry point, according to the required facility. Albeit this task
could appear rather straightforward, it is a burdensome task; in charge of which it
is the dynamic linker runtime_symbol_resolver(). Note that, in this writing, we
will use the term dynamic linker and symbol resolver to refer the same entity.

In standard Unix-like systems, the startup of a generic process begins with
a call to the system-call exec* and passes through several nested calls to other
preparatory functions until finally reach the real application’s main function; Fig-
ure 5.1 depicts the whole picture. Without entering the complete details of this
“journey”—it would lay outside our scopes—the steps relevant to our goals are the
execution of preinitarray accessory functions and the constructors ones. We
will used these facilities to “hijack” the system symbol resolver toward our custom
resolver, by means of 2 injected functions, namely _libreverse_preinit() and
gotplt_hooking().

Before proceeding further and in order to better understand our approach, we
need a digression to recall some basic notions proper of the ELF object files this
solution heavily relies on. ELF file’s structure funds on the basic notion of symbols,
which is a rather generic term employed by the ELF format to describe different
entities such as functions and variables. From a practical point of view, a sym-
bol is just a pair 〈address, offset〉, which eventually translates into an effective
address (adopting the Intel’s lexicon). Hereafter, we refer to a symbol with its gen-
eral meaning conveying the subtle notion of a memory location identified by the
aforementioned tuple. Given that brief introduction on symbols, let’s move on and
unwind the dynamic symbol handling.

5.1 Resolve the symbol’s address 95

loader

preinitarray1...n _start

__libc_start_main

__libc_csu_init

_init

__gmon_start frame_dummy __do_global_ctors_aux

contructors1...n

_initarray1...n

main exit

at_exit1...n finiarray1...n destructor1...n

Figure 5.1. The whole picture of the functions call chain to start a new process in Unix-like
Operating Systems.

Whenever the compiler determines that some function referenced in the source
belongs to a shared library, it introduces in the ELF program’s image additional
pieces of information to let the system resolve any reference (at runtime) to that
function towards its actual implementation. As for the resolution of shared sym-
bols, the standard runtime environment relies on two accessory symbol tables that
are wired into the ELF file, (a) the Global Offset Table (GOT), and (b) the Procedure
Linkage Table (PLT). In particular, the compiler performs the following steps:

1. it records the name of the shared library in the program’s image. This name
often comes with the actual version of the library in it, so that if the ex-
ecutable is moved to a different environment where a compatible library’s
version is not present, the loader fails to resolve any call, so as to avoid un-
defined behaviours;

2. it reserves an entry in the Procedure Linkage Table (PLT), for each library func-
tion the code references. Any call to this function will refer the associated
PLT entry, which keeps enough space to host a couple of machine instruc-
tions;

3. for each entry in the PLT, it reserves the corresponding entry in the Global
Offset Table (GOT), which stores the memory address of the function’s entry
point.

The need for these tables arises from to the lazy binding policy adopted by the dy-
namic loader. PLT and GOT tables reference each other so that the system can
know whether the symbol associated to a specific library function is being called
for the first time or where it is located, otherwise. In the former case, the library
symbol is resolved, otherwise the (already-resolved) function’s symbol is simply
referenced by a call. A very high-level graphical overview of this is given by Fig-

96 5. Dealing with shared libraries

Call API Resolve Invoke API

Instrument Select version

Call API Invoke API

Select version

original load chain

diverted load chain

Later invocations

First invocation

Figure 5.2. High-level dynamic symbol’s address resolution flow for the shared objects.

ure 5.2, that briefly depicts the standard runtime resolution of a shared symbol
in conventional systems. It is exactly where our proposal acts so as to generate a
reversible-enabled version of third-party library functions.

Let us proceed illustrating the symbol resolution mechanism, by taking advan-
tage of some graphics, and suppose that a program relies on the shared library’s
function func; hence, GOT and PLT tables are organized as in Figure 5.3a. The
generic call to func actually translates into a call to the n-th entry of the PLT table
PLT[n], where n is the index associated with shared library function func. The
reader may have already observed that the first PLT table entry, namely PLT[0],
is a special entry reserved to a call instruction to the resolver function, which
represents the dynamic linker in charge of determining where the entry point of
the library function is actually loaded in memory. By PLT construction, each entry
of this table has an indirect jump to the address held by the corresponding GOT[n]
entry, which is initialized with the address PLT[n] + 8; namely, the instruction
just after the indirect jump of the relative PLT[n]. Once the very first call to func
is issued, the execution flow is redirected toward the code in PLT[n], which takes
control. At this point, the execution flow is at PLT[n]+8 and the subsequent code
snippet prepares (on the stack) a set of parameters before jumping to PLT[0] and
give control to the runtime environment’s symbol resolver resolver. In its turn,
the resolver will evaluate the effective address associated to the library function
demanded (i.e func) and will place it permanently into the corresponding GOT[n]
entry for subsequent references. Nonetheless, for the first invocation, this function
traverses a complex call stack of accessory system functions; basically it (a) maps
the shared object in the virtual address space, making it accessible to the caller
application, and (b) seeks the desired library function, within it. As the resolver
terminates successfully (i.e., the library function has been found), it updates the
GOT[n] entry with func’s address and returns the control with a jump to that ad-
dress. The GOT/PLT organization, after the symbol’s resolution, is depicted in
Figure 5.3a. Hereafter, any other future call to func will not cause the activation
of the dynamic resolver, as the address stored in GOT[n] now references the effec-
tive address of func.

5.1 Resolve the symbol’s address 97

Code

...

call func@PLT

...

...

GOT

...

...

GOT[n]:

<addr>

PLT

PLT[0]:

call resolver

...

PLT[n]: jmp

*GOT[n]

prepare resolver

jmp PLT[0]

1

2

3

Library

<func>:

 ...

 ...

 ...

4

5

(a) GOT and PLT, as organized by the
compiler, before any runtime reso-
lution is carried out. PLT points to
the corresponding GOT entry, which
in turn points to the same PLT en-
try. This circular reference allows
the activation of the resolver, stored
in PLT[0], in order to determine
where the symbol is actually placed
in memory.

Code

...

call func@PLT

...

...

GOT

...

...

GOT[n]:

<addr>

PLT

PLT[0]:

call resolver

...

PLT[n]: jmp

*GOT[n]

prepare resolver

jmp PLT[0]

1

2

Library

<func>:

 ...

 ...

 ...

3

(b) GOT and PLT organization after the
first call to a library function is is-
sued. The dynamic linker has re-
solved the virtual address of the
function, which is stored into the
corresponding entry in the GOT ta-
ble. Any other invocation to the
function will not activate the linker,
rather the address of the function
will be immediately available for ac-
tivation.

Figure 5.3. Dynamic symbols resolution procedure relying on the GOT and PLT tables.

The above described procedure is the system default path followed by the sys-
tem resolver, however we need to divert this normal flow toward a custom block
of code. This code is in charge of creating a reversible version of the library func-
tion to provide to the upper application, transparently. Again, even in this case
we employed the instrumentation technique, by extracting a compact version of
the Hijacker’s kernel so as to make the applications “self-instrumentable”. A di-
gression of how we do this is provided in the following Section 5.1.1 “Intercepting
dynamic linker’s resolver”.

5.1.1 Intercepting dynamic linker’s resolver

In order to instrument third-party library function calls, we specifically intercept
the above-described mechanism, by means of our reversing framework (Chapter 3)
that relies on the already mentioned library manager. This module contains a
program constructor, namely a function which is activated by the program loader
before giving control to the actual main program. The goal of this constructor is to
replace the call to resolver to a different function, exposed by the library itself,
which alters the behaviour of the latter part of the dynamic linking process. In
particular, the custom resolver takes the following steps:

98 5. Dealing with shared libraries

1. similarly to the dynamic linker’s resolver, it determines what is func’s entry
point virtual address;

2. once func’s address is identified, it creates a copy of the whole function in
memory, instrumenting any instruction which has a memory operand as the
destination (namely, a memory-write instruction);

3. the instrumentation is carried in a way such that before executing the actual
memory write operation, control is given to a trampoline which activates a
module of libreverse;

4. an entry in a custom table, called Library Activation Trampoline (LAT), is re-
served. This entry keeps a small portion of code to determine whether the
instrumented version of the library should be called or not;

5. the address of LAT[n] is stored into GOT[n], allowing any future activation
of func to directly give control to the code in LAT[n];

6. control is given to LAT[n], in order to perform the actual function call.

All these points above demand special care, and we therefore describe in the fol-
lowing of this chapter. This general scheme allows to intercept any call to any
function in any third-party shared library. Therefore, it is also eligible to support
rollback operation since aware of the reversibility requirements of Time Warp-
based simulations.

Although the steps taken by the dynamic linker’s resolver are mostly standard-
ized, there could be some variability across systems and versions of the linker re-
garding the actual steps taken. To make our support of general availability, we
want our custom resolver to execute the same steps as the system’s dynamic linker
does. To ensure portability across systems and linker versions, we leverage the
conventional program startup path of Figure 5.1) to clone the system resolver and
patch it according to our needs. When the program is launched, a hook to our
reversing framework’s constructor is activated (the light-grey highlighted step of
Figure 5.1), it replaces in PLT[0] the address of the resolver with a custom one.
Nevertheless, since this custom resolver should be compliant with the system’s
one, libreverse does not contain the custom resolver’s code itself, rather, it gen-
erates the code at program startup by creating a copy of the system’s resolver,
except for adding some additional logic. To understand how it works, we need
to introduce first what standard dynamic linker’s resolver has to perform. First,
it determines whether the image of the shared library is mapped into the pro-
gram’s image—in the case of an ELF format this is the .dynsym section,—if not
it has to be mmap’ed to be usable by the application. Once the library is ready
and mapped, the resolver locates the function’s entry point within the library im-

5.1 Resolve the symbol’s address 99

Call to
library function First call?

Jump to
symbol resolver

Locate and open
the shared object

Seek the
symbol required

Jump to sym-
bol address

no

yes

Figure 5.4. Flowchart of the dynamic symbol resolver.

age; this is commonly done via a mechanism based on a fast hash function, which
relies on data stored in the program’s image. At this point, the resolver can actu-
ally resolve the effective address of the required function and store it in relative
GOT[n] entry, where the index n has been passed as an argument on stack (i.e.
the prepare_resolver phase depicted in Figure 5.3). Finally, once the address is
ready, the standard resolver returns control by invoking the library function. The
whole procedure flowchart is presented in Figure 5.4.

It is just before returning control to the actual library service where we divert
the conventional flow toward our custom hook. To let the reader understand the
approach, we have to recall that the activation of a library’s function is made via
an indirect jump. On x86 systems, this is implemented by an instruction in the
form jmp *%reg; the address of the target function is stored into a register reg
used as the destination operand. Once our constructor takes control, it creates
a copy of the system resolver’s code, and starts scanning its bytes until such an
instruction is found. At this point, it is then replaced with a direct jump to the
library manager, which implements a compact instrumentation kernel, in charge
of instrument at runtime a copy of the demanded function just before the actual
library invocation. The instrumented version of the library will be mapped as part
of the program’s image, analogously to what the system normally does. Through
the library manager, we can deviate the invocation flow, instrument a clone copy
of the library’s service and choose which version to effectively run, whether the
original or the instrumented one, just by means of the LAT table, which holds the
address of both. This strategy allows libreverse to attach its library manager to
any version of the dynamic symbol resolver, independently of the actual way the
identification of the function’s symbol within the shared library’s image is carried
out. So far, we described how the dynamic linker is “patched”, let’s hence move on
to explaining what happens inside the library manager’s instrumentation function.

5.1.2 Instrumentation of library functions

Intercepting the dynamic linker, we can take control right after the resolution of
the function’s address; however we must determine its size, before to actual instru-
menting the function. Since the executable keeps track of the library file on disk,

100 5. Dealing with shared libraries

the library manager inquires the system to retrieve the information needed, i.e.,
the symbol’s metadata and starts the instrumentation process. We recall that this
process entails adding a portion of code for any relevant instruction that writes on
memory (Section 3.1.3 “The reverse code engine”) and inevitably generates an in-
strumented version which is larger than the original one. For this reason, we allo-
cate a memory area of double the original size via the mmap() system-call, making
it both writeable and executable. We then copy the whole content of the functions’
binary representation in the mapped area; this will be the working copy, which we
can inspect and alter privately.

The instrumentation process of shared library symbols entails two logical steps.
The first one requires determining the total number of assembly instructions which
compose the function; the second one is identifying the instructions which write
on memory. As widely described in Chapter 3 “The reversing framework”, these
instructions should be properly altered to generate reverse instructions on the fly,
arranged into a reverse window (Section 3.1.1 “The reverse window”). We note
that these two steps involve two different levels of detail and, thus, complexity.
Indeed, to determine the number of instructions, we do not need to get down into
their semantics. This is a non-minimal optimization on the x86 architecture. The
x86 ISA allows a variable-size one of the instruction binary encoding, meaning
that the length in bytes of a single assembly instruction is unknown beforehand.
Only by interpreting the opcode2, it is possible to determine the exact number of
instruction’s parameters, thus its length. For the sake of performance, libreverse
is equipped with two different disassemblers. The first one—we call it a length
disassembler3—is a fast table-based routine. It only tells what is the length of the
actual instruction in bytes and gives a reference to the actual opcode4. The sec-
ond disassembler included into libreverse is a full disassembler. It decodes the
whole instruction’s bytecode, populating an accessory structure that describes the
instruction’s semantic. The execution of the length disassembler is 3 times faster
than the full disassembler on any x86 instruction, regardless of its length. As a side
note, we refer to the instruction’s bytecode as its binary representation encoded in
the object file format, namely the ELF file in our case.

The library manager enacts the instrumentation process in the following way.
The length disassembler is invoked on the initial address of the function, returning
the size of the first instruction and a pointer to its actual opcode, which is matched
against a table telling whether the instruction could entail a memory-write opera-

2Please, refer to [64] for a description of the x86 instruction’s format.
3The source code of the length disassembler (lend) is available at https://github.com/

HPDCS/libreverse/tree/master/src/lend
4In fact, x86 instructions’ format allows an arbitrary number of prefixes to precede the instruc-

tion’s opcode. As a result, the first byte in a given bytecode representation is not necessarily the
opcode.

https://github.com/HPDCS/libreverse/tree/master/src/lend
https://github.com/HPDCS/libreverse/tree/master/src/lend
https://github.com/HPDCS/libreverse/tree/master/src/lend
https://github.com/HPDCS/libreverse/tree/master/src/lend

5.1 Resolve the symbol’s address 101

tion. In the negative case, the instrumentation process continues by scanning the
next instruction identified by inspecting the bytecode located n bytes after the ini-
tial address, where n is the length returned by the length disassembler. On the
contrary, the full disassembler is invoked. On the one hand, it first ensures the in-
struction is actually a memory-write and, on the other hand, it extracts the size (in
bytes) and the destination address parameters necessary to generate the inverse in-
struction (we redirect to Section 3.1.3 “The reverse code engine” for more details).
The instrumentation process replaces the memory-write instruction with a jump to
a code snippet generated at runtime. This snippet resembles the trampoline hook
we discussed in Section 3.1 “Architectural details”, but it is a slightly modified
version, conceived to comply with the different nature of the instrumentation pro-
cess we adopt here. Notwithstanding, this trampoline code snippet still keeps and
prepares the required information to generate the associated inverse instruction,
by calling the well-known reverse code generator (Section 3.1.3 “The reverse code
engine”), analogously to what described throughout the Chapter 3 “The revers-
ing framework”. The library manager places the trampoline snippet into an addi-
tional executable memory area, however the number of memory-write instructions
is unknown beforehand. The memory area assigned to trampoline snippets is pre-
allocated and keeps the space only for a certain number of trampolines; therefore
if space exhausts, a new memory area is silently allocated.

The trampoline’s code is organized as in Listing 5.1. The first required action
is to save the CPU context because the original library function is (and actually
must be) unaware of any injected code’s execution. Unfortunately, since the code
was placed after the program’s compilation, standard setjmp/longjmp functions
cannot be used, because we are explicitly breaking System V ABI’s calling con-
ventions [2, 3]. Hence, we need to save all the so-called caller-save registers man-
ually. Line 1 of Listing 5.1 does a fast CPU-context save by pushing all required
general-purpose registers and the flags register. Since the code is crafted directly
in assembly language, we do use only caller-save registers. Registers used by func-
tions called by the trampoline is not a concern, as their code is compiler-generated
and therefore respects the calling conventions, preserving the consistency of the
program’s execution. Guaranteed the CPU context is saved, we can call the same
reversal engine reverse_code_generator seen in Section 3.1 “Architectural de-
tails”, which computes the target memory-write address and generates the corre-
sponding reverse instruction.

The original instruction replaced by a jump to the trampoline is embedded
into the related snippet, just after the call to the reverse_code_generator. Nev-
ertheless, the original instruction might require contextual information in order
to execute correctly, because many instructions in the x86 ISA use relative refer-
ences. As an example, consider an operation used to store a value into a local

102 5. Dealing with shared libraries

1 save CPU context (except RIP register)
2 call reverse_code_generator
3 restore CPU context (except RIP register)
4 <original instruction >
5 jmp <address >

Listing 5.1. The instruction trampoline.

variable. These variables are stored on the stack and are often referenced using a
displacement from either the base frame pointer or from the stack pointer. There-
fore, before giving control to the copy of the memory-write instruction we need
to restore the CPU context (Line 3 of Listing 5.1), except for the value of the RIP
register (the program counter). The choice of excluding textttRIP allows to cor-
rectly execute a large set of instructions, although we must explicitly account for
the fact that the value kept by RIP is different from the original execution context.
This latter point deserves an additional discussion. Indeed, the 64-bit version of
the x64 architecture supports the RIP-relative addressing mode. It is a particu-
lar addressing mode that allows to target symbols (e.g. variables) by encoding a
displacement from the current value of the RIP register. Shared libraries heavily
use the RIP-relative mode, as an effective way to implement the so-called position-
independent code (PIC), to guarantee shared objects to be remapped to any virtual
address; in the 64-bit x86 ISA, this entails a massive usage of the RIP-relative ad-
dressing mode. To our goal, overcoming RIP-relative issue does not translate to
a mere restoration of the whole CPU context, including the value of RIP. In fact,
at the original address, we no longer have the original instruction. To execute its
copy RIP must point to the copy, which is at a different address. Therefore, to
correctly execute memory-write operations which rely on RIP-relative addressing,
the only option is to fix the displacement. To this end, we rely on the length disas-
sembler. In particular, this disassembler sets a global (per-thread) flag whenever
it encounters an assembly instruction which is using the RIP-relative addressing
mode. Once such an instruction is found, the full disassembler is invoked on it,
allowing to determine whether this addressing mode is used in the source or in
the destination operand. In both cases, the instrumentation process will realign
the displacement to the correct offset. This correction is trivial: we can at any time
determine what is the additional offset (either positive or negative) introduced by
the instruction shifting to a different location due to the instrumentation process.
Nevertheless, we create a whole copy of the original library function, so the cor-
rection of RIP-relative addressing cannot be limited to instructions copied into the
trampoline, rather, all RIP-relative addressing must be corrected. Besides, by rely-

5.1 Resolve the symbol’s address 103

...

mov %rcx, (%rax)

...

...

mov $0xc0de, (%rax)

Original library

...

jmp $0xFFB05020

...

...

jmp $0xFFB05080

Instrumented library

save CPU context

prepare parameters

call reverse_code_generator()

restore CPU context

mov %rcx, (%rax)

jmp $0xFF0301A0

...

save CPU context

prepare parameters

call reverse_code_generator()

restore CPU context

mov %rcx, (%rax)

jmp $0xFF0301A0

Copied
library’s
code

Tramplines’ area

Instruction
trampoline

1

C
op

ie
d

in
tr

am
p

ol
in

e

1a

C
op

ie
d

in
tr

am
p

ol
in

e

2

3

0xFF0301A0

0xFF030210

0xFFB05020

0xFFB05080

Figure 5.5. First the memory-write instruction is replaced by a direct jump to trampoline
1 ; this jump points to the runtime-generated trampoline snippet that contains the

original instruction 1a ; the jump points to te trampoline’s snippet 2 , and finally once
generated the inverse instruction trampoline’s code return control to next instruction
of the library’s function 3 .

ing on the above-described scheme, we can apply the adjustment in-place during
the copy of the instructions.

To complete the instrumentation process of the library function, we iterate over
all the instructions carrying on the aforementioned steps, until we reach the end
of the function. As mentioned, we can identify the end of the function by in-
specting the library’s ELF symbol table, to determine its total length in bytes. The
final instruction of the instruction trampoline must give control back to the library
function. Since there is a one-to-one mapping between the memory-write instruc-
tion and the entry in the relative trampoline snippet, the return from it is realized
with a direct jmp instruction. The landing address in the library’s code is the one
just after the jmp instruction that replaced the original memory-write. The whole
process hitherto described is illustrated in Figure 5.5.

104 5. Dealing with shared libraries

1 mov %fs: _dso_mode@tpoff ,% eax
2 cmpb $0x0 ,% eax
3 jz 1f
4 call original_function
5 ret
6 1: call instrumented_function
7 ret

Listing 5.2. Entry of the LAT table (x86 64-bit version).

After that the whole function is instrumented, it remains to hook the altered
version to the GOT/PLT invocation mechanism. As hinted before, we want to give
the possibility to activate both the original version and the instrumented one, de-
pending on the execution context. In particular, the reversibility facilities are only
related to the execution of the simulation models’ event handlers, while when exe-
cuting in platform mode (i.e. when the control is taken by the simulation engine) we
do not need to generate any reverse instructions. In this latter case, for the sake of
performance, we want to rely on the original version of the library functions. To al-
low a fast switch between the two versions, we rely on the aforementioned LAT ta-
ble. In particular, the n-th entry in the LAT, which corresponds to the current func-
tion being instrumented, is organized as in Listing 5.2 for a total of 24 bytes5. The
goal of this code is to check the (per-thread) global variable _dso_mode which holds
the execution mode required for the invocation; namely, whether a library function
is called (a) from the simulation engine or (b) from the application code. In the for-
mer case, the framework routes the call to the original (non-instrumented) library
function; in the latter case, on the contrary, it invokes its instrumented version. To
change the execution mode, libreverse’s library manager offers the internal API
function switch_operating_mode(int flags)—Table 5.1 gives a summary of the
possible operating modes supported and their relative use. From a practical point
of view, we use this API to tell the system whether the control will pass to an event
handler or it is returning from such a handler. It is the responsibility of the sim-
ulation engine to properly use this function, according to its needs. Overall, the
integration with the GOT/PLT invocation mechanism is simply done by placing
the address of crafted n-th LAT’s entry within the corresponding n-th one of the
GOT table. Figure 5.6 illustrates the whole instrumentation process we described
so far.

Libraries are often considerably optimized and nothing prevents to somehow
“break” the conventional idea of function, in terms of execution flow—with “con-
ventional idea of function” we refer to the execution confined within the bound-

5We, again, refer to the case of 64-bit x86 Linux systems.

5.1 Resolve the symbol’s address 105

Name Value Description Environment

MODE_PLATFORM 0 Tells the API to switch to the
platform execution mode,
namely the one used by the
simulation engine. The
libreverse framework will
route library calls toward the
original plain version.

Simulation engine

MODE_REVERSIBLE 1 Tells the API to switch to the
reversible execution mode,
namely the one application
code relies on. The libreverse
framework will route library
calls toward the instrumented
version.

Application code

Table 5.1. Definition of the possible libreverse’s execution modes.

aries of the related symbol’s size. This is a typical scenario happening, for instance,
in glibc where one function might jump into the middle of another one, just to
execute a portion of its code—albeit it might sounds strange, it happens under
specific conditions the host system can detect. While this scenario can be easily
detected while resolving code references as soon as they fall outside the function’s
symbol, handling this condition is less trivial, as it would entail some code flow
analysis like the ones presented in [42]. Since such an analysis is out of the scope
of this thesis, and considering that a library as complex as glibc shows this be-
haviour only in a handful of functions (like, e.g., memmove()), for the sake of sim-
plicity we replace these functions with less-optimized ones which are statically
linked to the executable. Future work entails generalizing the approach, in order
to specifically deal with this corner case with any third-party library.

So far, we described how the instrumentation process patched the GOT and
PLT system tables and how library’s function calls are delivered to the proper end-
point, according to the required operating mode; however there are some other
side aspects we have to handle and discuss. As for the linkage the instrumented
library’s code with the corresponding trampoline code, a jmp instruction replaces
the original memory-write one. Nevertheless, it may pose an additional problem
due to the variable instructions’ length of the x86 ISA. Two different cases may
happen; if the size of the jmp instruction (5 bytes) is smaller than the size of the
actual intercepted memory-write instruction, the remaining space can be easily
filled with a number of nop instructions. Conversely, the memory-write instruc-
tion’s might be shorter than 5 bytes. We cope with this case “making room” for
the jump to the trampoline by coalescing multiple consecutive instructions in the
same trampoline code. In this case, the disassembly of the library function con-
tinues until enough space for the jmp is found; if the process reaches the end of

106 5. Dealing with shared libraries

Code

...

call func@PLT

...

...

GOT

...

...

GOT[n]:

<addr>

PLT

PLT[0]:

call resolver

...

PLT[n]: jmp

*GOT[n]

prepare resolver

jmp PLT[0]

1

2

Library

<func>:

 ...

 ...

<func_instr>:

 ...

 ...

 jmp <0xffea5080>

 ...

 ret

3

LAT

...

LAT[n]:

 if(platform mode)

 call original function

 else

 <install new revwin>

 call instrumented

4

5

6a

6b

4a

Trampoline

...

<save CPU context>

call reverse_code_generetor

<restore CPU context>

mov %rax, (%rbx)

jmp <0xfffb7010>

...

7

8

First invocation flow

Successive invocation flows

Side-effects of resolver

Trap on trampoline execution

Figure 5.6. Organization of code, tables, and trampolines after instrumentation. The ap-
plication invokes the library function func, by calling into PLT[n] 1 ; initially GOT[n]
holds the resolver’s address 2 , which is invoked 3 and 4 ; the resolves replace the
address in GOT[n] 4a ; then, the program jumps to the corresponding LAT entry by
dereferencing the n-th pointer in the GOT (5); according to platform mode value, the
trampoline activates the original version of func 6a , or the instrumented one 6b , oth-
erwise. In case of step 6a the instrumented instructions is moved to the trampoline
are accessed via jumps 7 ; the instrumented function regains control 8 .

the function before finding enough room, the execution is “backtracked” to coa-
lesces instructions before the one we are substituting. Anyhow, since the length
of an assembly instruction is variable, it could be resource intensive to perform
this latter action. To this end, while performing the forward instrumentation, the
instrumentation engine builds an instruction index. This index has an entry for
each instruction and keeps, among others, its size in bytes. Since the number of
instructions that compose the function is not known beforehand, the instruction
index is implemented as a wait-free resizeable array, as described in [37]. Let us
suppose to have the code scenario as:

1 jmp 1f
2 movl $0x0 , %eax
3 movsl
4 1: leave
5 ret

The instrumentation process will detect that the movs (Line 3 of Listing 5.1.2) is
a memory-write instruction, and will trigger the replacement with a jmp. Since
movs is only 1-byte long, the coalescing procedure will try to expand over subse-
quent instructions. The next is the 1-byte long leave, so the coalescing procedure
continues, until the end of the function is reached. At this point, since the total

5.2 Experimental assessment 107

amount of bytes found amounts to three, the coalescing procedure inspects the in-
structions’ index to determine how many instructions behind the movs should be
taken to make enough room to the jmp. Since the movl $0x0, %eax is 5-byte long,
the coalescing procedure takes it and halts. This gives a grand total of 8 bytes,
sufficient to place our jmp. Nevertheless, this action will break the functioning of
the program. In fact, the initial instruction in the example is a jmp which targets
one of the instructions which will be moved into the trampoline entry, having the
jmp target the middle of the (newly-inserted) assembly instruction. To overcome
this issue, we extend the aforementioned instructions index, adding a reference
for each instruction to a different instruction (e.g., the case for a jmp instruction).
Whenever an instruction is moved to a new trampoline snippet, the referencing
instruction’s offset is corrected, simply applying the corresponding shift to the
displacement.

We recall, as a last note, the digression in Section 3.3 “Dealing with memory
allocations”. As for the handling of the memory management, libreverse offers
two API functions for wrapping the standard allocation and deallocation opera-
tions, namely register_alloc() and register_dealloc(). These functions ac-
cept as argument a function pointer each: void *(*allocate)(void *ptr) and
void (*deallocate)(void *ptr), respectively. These pointers allow to bridge
the internals of libreverse with the simulation engine’s memory manager, so that
whenever a library allocates some memory a call to the deallocate() function is
placed within the reverse window, while when a chunk of memory is deallocated,
a call to allocate() is similarly stored. We emphasize that having the allocate()
function accept a pointer is a strategic choice to allow piece-wise-deterministic re-
play of events upon a rollback operations, allowing to retrieve buffers at the same
virtual addresses, and therefore support a memory map laid out in a generic way.

5.2 Experimental assessment

In this section we present the experimental results deriving by the integration of
the presented work into the simulation engine ROOT-Sim. In the following Sec-
tion 5.2.1 “Test-bed environment” we introduce the working context we set in for
the this specific work. Thus, in Section 5.2.2 “Test-bed application”, we present
and comment the experimental results. As for the reference PDES platform, we
still used ROOT-Sim to assess the experimental data of this proposal (refer Sec-
tion 4.3.1 “Test-bed platform”).

108 5. Dealing with shared libraries

Parameter Value

RAM 64GB
Cores 32
Worker threads 32

Operating system Linux Debian 6
Linux kernel 2.6.32-5-amd64
Architecture 64 bits

Table 5.2. Configuration of the environment for the test-bed application to assess the
performance result of libreverse.

5.2.1 Test-bed environment

Our experiments have been run on top of a 32-core HP ProLiant server equipped
with 64GB of RAM and running Debian 6 on top of the 2.6.32-5-amd64 Linux
kernel. This is a common setup for HPC applications, as this is a software con-
figuration which offers a very good tradeoff between the services exposed to user
space applications and performance. Nonetheless, our approach is general and can
be used as well on more modern environments. A summary of the environment
configuration used to assess the strategy discussed so far is presented in Table 5.2.

From a practical point of view, to integrate libreverse with ROOT-Sim, we
have to cope with two aspects: (a) the models’ compilation toolchain (which relies
on the rootsim-cc custom compiler), and (b) the reversible computing facilities
already developed and plugged in the engine (refer to Chapter 3 “The reversing
framework”). As for the compilation toolchain, we statically link the final exe-
cutable against libreverse. As the name suggests libreverse is developed and
compiled as library object itself. The result is that the program constructor de-
scribed in previous Section 5.1.1 “Intercepting dynamic linker’s resolver” takes
control before the actual simulation engine starts. We recall that the constructor
is in charge of patching the dynamic linker. Nevertheless, we already integrated
the reversible computing support described in Chapter 3 “The reversing frame-
work” into ROOT-Sim, as in the work presented in Chapter 4 “The hybrid rollback
strategy”. Leading from the static binary instrumentation of the reversing frame-
work described, we further enhance the simulation system capabilities by simply
plugging libreverse into it. While the approach described throughout this chap-
ter is in charge of intercepting calls to external library and properly instrument
them, the “static” reversing framework handles any reversible-enabled applica-
tion event’s effect on memory.

To ensure that the reverse execution is performed in the proper order, we rely
on the get_mark() API exposed by libreverse, so that reverse code generated by
ROOT-Sim can be tagged with data which allow to determine the total order of

5.2 Experimental assessment 109

reverse actions to take. In this way, upon a rollback execution, ROOT-Sim is able
to undo the effects on memory by the forward execution of events by either rely-
ing on its internal reversibility management, or invoking the execute_revwin()
function.

5.2.2 Test-bed application

As a test-bed application, we rely on the Sensors Network Model (SNM), which
simulates the behaviour of wireless sensor networks (WSN). WSN are networks of
small devices that comprise a set of simple components like a power source, a mi-
croprocessor, a wireless interface, a generic amount of memory and one or more
sensors. They are used to gather information in a given location or region, accord-
ing to the sensor they are equipped by. Due to the limited radio communication
range, nodes can communicate relying on multi-hop routing protocols.

SNM implements the so-called Collection Tree Protocol (CTP) [58] to collect
data from wireless sensors networks. In particular, it relies on a variant of the
library offered by TinyOS [32]. CTP is a distance vector routing protocol, which
computes the routes from each node in the network to the root (specified destina-
tions) in the network. Each node forwards packets to its parent, chosen among its
neighbour nodes. In order to make a choice, each node must be aware of the state
of its neighbours: that’s why nodes continuously broadcast special packets, called
beacons, describing their condition. The metric adopted in CTP for the selection
of the parent node is the Expected Transmissions (ETX). A node whose ETX is equal
to n can deliver a data packet to the root node with an average of n transmissions.
The ETX of any node is recursively defined as the ETX of its parent plus the ETX
of its link to the parent; the root node represents the base case in this recursion,
and its ETX is obviously equal to zero.

CTP uses these three mechanisms to overcome the challenges faced by distance
vector routing protocol in a highly dynamic wireless network: (a) the link estima-
tor, which is in charge of computing incoming and outgoing quality of the links;
(b) the routing engine, which is dedicated to the selection of the parent node, i.e.
the neighbour with the lowest value of the multi-hop ETX, and (c) the forwarding
engine, which forwards data packets, detects and tries to fix routing loops, and
detects and drops duplicate packets.

It is interesting to note that the routing engine has to maintain a table, called
routing table, where it stores the last ETX value read in the beacons from each
neighbour. In this way, it is able to always choose the “best” neighbour (the one
with the lowest multi-hop ETX) as parent. Therefore, it has to continuously up-
date the table reading the information contained in the beacons received from the
neighbours. In the simulation model, each LP represents a wireless sensor. The

110 5. Dealing with shared libraries

routing table managed by the routing engine (along with other data structures
related to all three components of the CTP protocol) is kept within the LP’s sim-
ulation state. Upon the reception of a simulation event representing a beacon,
the simulation model passes the received information to the CTP library, which
recomputes all parameters related to the network and then updates the routing
table in the LP state, thus performing a set of memory updates. These memory
updates are intercepted by libreverse, which therefore enables for reversibility
the CTP library.

5.2.3 Performance data

In order to assess the overhead introduced by our proposal, we have relied on ex-
periments using two variants of the model. In one variant, the CTP algorithm is
dynamically linked to the simulation model, while in the other, the library’s code
is directly incorporated into the simulation model. In this latter configuration,
the actions to correctly restore a previous checkpoint are completely demanded
from ROOT-Sim. As mentioned, ROOT-Sim supports the rollback operation via
both checkpointing facilities and reversibility facilities. Therefore, in the experi-
ments we present data related to reversibility obtained when having the CTP li-
brary linked against the executable (LIB in the plots), by relying on the reversibil-
ity facilities offered by ROOT-Sim (REV in the plots), and by relying on traditional
sparse state saving (CKPT in the plots), with the checkpointing interval optimized
according to the results in [86].

We have run two sets of experiments. In one experiment, we have set the total
number of sensors to 300, while in a second one, we have set it to 2000. At the
same time, the area in which the sensors are deployed is kept fixed in both config-
uration, thus having a denser concentration of sensors in the second setup. In both
configurations, the sensors are randomly placed within a square region. Since the
CTP algorithm keeps a routing table within each LP’s state, and since it is updated
whenever a beacon message is received, the denser scenario has a twofold effect: i)
the size of the state of each LP is larger, and ii) the frequency of state update by the
CTP library is increased. Indeed, since when the number of sensors is increased
to 2000, the average distance between two sensors decreases, so the number of
beacons that can travel the transmission channel without being affected by fading
effects is higher. All the experimental results are averaged over 10 different runs.

Figure 5.7, we report experimental data when the model is run using 300 sen-
sors. By the results, we can see that the configuration presenting the best perfor-
mance profile is the one associated with reversible execution managed natively by
ROOT-Sim. This is mainly due to the fact that the memory-update profile associ-
ated with this configuration does not entail a large number of memory updates.

5.2 Experimental assessment 111

 0

 10

 20

 30

 40

 50

 60

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

LIB REV CKPT

Figure 5.7. Performance data with a workload configuration of 300 sensors.

When using libreverse, there is an overhead around 7%, while when relying on
checkpointing there is an overhead around 4%, which are both anyhow negligible.

The overhead introduced by libreverse is mostly related to the fact that the
simulation model performs memory updates as well. Therefore, since the amount
of data written by the CTP shared library is not very large, the time spent by the
simulation engine to switch among the two reversibility approaches in order to
guarantee the correct order of the actions is not paid off. At the same time, the
overhead of libreverse is slightly higher than that of the checkpoint-based state
restore exactly because both the size of the state and the amount of data updated in
it is reduced, thus optimized checkpointing facilities (especially is realized accord-
ing to autonomic facilities as in [86]) are able to fine tune themselves significantly.
In addition to this, the rollback length is reduced—sensors are sparse, the commu-
nication is organized according to a tree, and therefore the probability of cascading
rollbacks are small, and the number of LPs that can rollback each other is limited.
In this scenario, plain reverse computation is not surprisingly delivering a better
performance.

Figure 5.8 reports experimental data when running the configuration with
2000 sensors. In this configuration, the results slightly change: reverse compu-
tation managed by ROOT-Sim still has the better performance result, checkpoint-
based executions have the highest performance penalty (more than 12%), while
libreverse-based reversibility has a overhead slightly smaller than 10%. The
trend inversion among checkpoint based and reversibility based is due to the fact
that, since the amount of state updates is non minimal, the checkpointing system

112 5. Dealing with shared libraries

 0

 200

 400

 600

 800

 1000

 1200

 1400

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

LIB REV CKPT

Figure 5.8. Performance data with a workload configuration of 2000 sensors.

has to restore a large amount of data, either in a full or incremental fashion. At
the same time, the performance gain by the reversibility engine internal to ROOT-
Sim is again related to the fact that in this case there is no need for the continuous
switch to guarantee the correct order of the reversibility actions.

Overall, the overhead introduced by relying on libreverse is not extremely
high (10% in the worst case), considering that much overhead is introduced by the
fact that the simulation engine has the burden of ensuring the proper order of ex-
ecution of reverse activities. What is most important, anyhow, is that the approach
proposed allows to enable reversibility of generic third-party shared libraries in
a completely transparent manner towards the application level code, closing the
circle of automatic reversibility in the context of speculative Time Warp-based sim-
ulation.

Chapter6
Conclusions and future work

“Yes,” said Deep Thought. “Life, the Universe, and Everything. There
is an answer. But, I’ll have to think about it.”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this thesis, we have presented innovative contributions in the area of reversible
computing. We remark that our approach to reversible computing detaches from
the traditional concept found in the literature. As mentioned, while the traditional
approach focuses on the restoration of a generic previous computational state re-
verting all the computational steps that separate it logically from the current state,
we shift the focus on a completely different layer of abstraction moving down to
the memory substratum.

As we described, code instrumentation is the enabling factor for an effective,
transparent, and compatible implementation of our solution. Nevertheless, we
had to address first the development of a reasonably capable instrumentation tool.
The subject of this part of the work is Hijacker, which was on a rather early stage
of development and has seen a notable improvement of its features, fuelled by
the reverse window-based idea of reversible computing. A substantial redesign
of some internal components of Hijacker, now, allows to use it for our real goal:
instrumenting a generic program to intercept every instruction that accesses any
memory location in write mode. The result of this interception is not to produce
a log of dirty data, but rather to craft machine code dynamically, which reverts
side effects on memory perpetrated by the original instruction. Foreseeing a pos-
sible general-purpose perspective in the future development of this approach, we
refactored Hijacker to be as much flexible as possible to tailor on the user needs.

This choice gave us the possibility to conceive a combined rollback strategy
we settled into the parallel simulation context. Nonetheless, the proposal we de-
scribed in Chapter 3 can be easily extended and improved for a general-purpose
application. Within the context of parallel simulation, we proposed a solution that
combines traditional state saving with our flavour of reversible computing based

113

114 6. Conclusions and future work

on the reverse window. In addition to the envisage and realization of the build-
ing blocks for the concrete result of integrating it within the simulation system,
in Chapter 4 we also propose a mathematical model that paves the way for an
autonomic decision subsystem of growing power.

An additional contribution presented in Chapter 5 addresses the non-trivial
problem of instrumenting shared objects while efficiently guaranteeing that such
alterations impact on every program that is currently running in the system. Lever-
aging the startup chain of a program, we succeeded at redirecting the conventional
execution flow toward our custom logic. This logic temporarily diverts the execu-
tion so as to create (at runtime) a separate version of the target shared library to
alter in our own fence. As expected, since the instrumentation is no longer static
before the linking stage of the compilation process (recall Figure 3.14), the instru-
mentation cost appears higher with respect to what we did in the first contribution.
As for the efficiency aspect, we optimized the instrumentation process to our best,
leading the final solution to be not penalizing the performance side, while offering
radically innovative reversibility support.

Finally, in Appendix A, we just explore another kind of combination of rollback
strategy, still applied to the simulation context; the one between our reversible
computation and the Hardware Transactional Memory. We are interested in as-
sessing how software and hardware facilities can take advantages from each other.
In particular, the work leads from the observation that time advancement of the
commit horizon—the barrier that delimitates the safety boundary—impacts no-
tably the abort probability of speculative events (i.e. unsafe) that are far from
it. As presented in the experimental section, the results are not impressive, even
though it has to be considered that the size of the test-bed environment impacts
negatively. The reason for that is the preliminary stage of this research branch,
born more as an exploration than an intensive assessment of specific objectives.
Nonetheless, it demonstrates a rather interesting resilience of the abort probabil-
ity. We can envisage a potential for a more in-depth assessment in the near future.

Coming back to the core reversing framework presented, we want to remark its
potential to become a tool to use “out of the box”. Looking back at the path we fol-
lowed, albeit the starting direction was a specific application context (i.e. parallel
simulation), we orthogonally slide towards more general applicability and laid the
foundation for a comprehensive framework. Recalling our roadmap in Figure 1.1,
we begun from the idea of a compact effective way to trace the application’s mem-
ory footprint and moved towards this direction passing through the integration in
the ROOT-Sim simulator and tackling shared objects reversing. We stress the im-
portance of this last contribution, in our evolutionary path, as it lies partially out-
side the simulation context, embracing something not directly related to it. Thus,
following this trend of exploration we want to move again farther; first we plan

115

to finalize the libreverse component, whose weight on our reversing framework
grew significantly, becoming part of its kernel; then we plan to envisage solutions
in the context of reversible debugging leveraging the potentialities of the reverse
window to address even post-mortem debugging, and security by implementing a
solution for a “merciful” sandbox environment. Such a sandbox could potentially
avoid killing the process, upon misbehaviour, thanks to the ability to rewind its
state within its boundaries. We can glimpse a potential application of that in on-
line malware analysis.

Bibliography

[1] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/.

[2] System V Application Binary Interface, Intel386 Architecture Processor Supple-
ment, 1997.

[3] System V Application Binary Interface AMD64 Architecture Processor Supplement,
2007.

[4] U. A. Acar, A. Ahmed, and M. Blume. Imperative Self-Adjusting Computation. In
ACM SIGPLAN Notices, page 170. ACM, 2008.

[5] U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional programming. Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’02, pages 247–259, 2002.

[6] U. a. Acar, G. E. Blelloch, and R. Harper. Selective Memoization. In Proceedings of
the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming languages
- POPL ’03, number January, page 31, 2003.

[7] T. Akgul, V. Mooney, and S. Pande. A fast assembly level reverse execution method
via dynamic slicing. In Proceedings. 26th International Conference on Software Engi-
neering, pages 522–531, 2004.

[8] T. Akgul and V. J. Mooney. Instruction-level reverse execution for debugging. In
Paste, pages 18–25, 2002.

[9] T. Akgul and V. J. Mooney III. Assembly Instruction Level Reverse Execution for
Debugging. ACM Trans. Softw. Eng. Methodol., 13(2):149–198, 2004.

[10] I. F. Akyildiz. Performance analysis of a multiprocessor system model with process
communication. Computer Journal, 35(1):52–61, 1992.

[11] M. J. Ammer, M. P. Frank, T. Knight, N. Love, and C. Vieri. A scalable reversible
computer in silicon ? (November 1997), 2000.

[12] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Ham-
marling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK: A portable linear alge-
bra library for high-performance computers. In Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, pages 2–11. IEEE Computer Society Press, 1990.

[13] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. SIGPLAN Notices, 35(5):1–12, 2000.

[14] D. W. Bauer, C. D. Carothers, and A. Holder. Scalable time warp on blue gene
supercomputers. Proceedings - Workshop on Principles of Advanced and Distributed
Simulation, PADS, pages 35–44, 2009.

[15] H. Bauer and C. Sporrer. Reducing Rollback Overhead In {T}ime-{W}arp Based
Distributed Simulation With Optimized Incremental State Saving. In Simulation
Symposium, 1993. Proceedings., 26th Annual. IEEE Computer Society, mar 1993.

117

118 Bibliography

[16] S. Bellenot. State Skipping Performance with the Time Warp Operating System. In
6th Workshop on Parallel and Distributed Simulation, pages 53–61, 1992.

[17] S. Bellenot. State skipping performance with the Time Warp operating system. In
Proceedings of the 6th Workshop on Parallel and Distributed Simulation, PADS, pages
53–64, 1992.

[18] C. H. Bennett. Logical Reversibility of Computation. IBM Journal of Research and
Development, 17(6):525–532, 1973.

[19] C. H. Bennett. Demons, Engines and the Second Law. Scientific American,
257(5):108–116, 1987.

[20] C. H. Bennett. Time/Space Trade-Offs for Reversible Computation. SIAM Journal
on Computing, 18(4):766–776, 1989.

[21] C. H. Bennett. Notes on Landauer’s principle, reversible computation, and
Maxwell’s Demon. Studies in History and Philosophy of Science Part B - Studies in
History and Philosophy of Modern Physics, 34(3):501–510, 2003.

[22] A. Bérut, A. Petrosyan, and S. Ciliberto. Information and thermodynamics: Experi-
mental verification of Landauer’s Erasure principle. Journal of Statistical Mechanics:
Theory and Experiment, 2015(6):187, mar 2015.

[23] R. Brown. Calendar queues: a fast O(1) priority queue implementation for the sim-
ulation event set problem. Communications of the ACM, 31(10):1220–1227, 1988.

[24] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for reversible simu-
lation. Journal of Physics A: Mathematical and General, 34(35):6821–6830, 2001.

[25] C. D. Carothers, D. W. Bauer, and S. Pearce. ROSS: A high-performance, low-
memory, modular time warp system. Journal of Parallel and Distributed Computing,
62(11):1648–1669, 2002.

[26] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient Optimistic Parallel
Simulations Using Reverse Computation. ACM Transactions on Modeling and Com-
puter Simulation, 9(3):224–253, 1999.

[27] D. Cingolani. Application transparent and efficient mixed state-saving in speculative
simulation platforms. PhD thesis, Sapienza, Università di Roma, 2014.

[28] D. Cingolani, M. Ianni, A. Pellegrini, and F. Quaglia. Mixing hardware and software
reversibility for speculative parallel discrete event simulation. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 9720, pages 137–152, 2016.

[29] D. Cingolani, A. Pellegrini, and F. Quaglia. Transparently Mixing Undo Logs and
Software Reversibility for State Recovery in Optimistic PDES. In Proceedings of the
2015 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pages
211–222, New York, New York, USA, 2015. ACM Press.

[30] D. Cingolani, A. Pellegrini, and F. Quaglia. Transparently Mixing Undo Logs and
Software Reversibility for State Recovery in Optimistic PDES. ACM Transactions on
Modeling and Computer Simulation, 27(2):26, 2017.

[31] D. Cingolani, A. Pellegrini, M. Schordan, F. Quaglia, and D. R. Jefferson. Dealing
with Reversibility of Shared Libraries in PDES. In Proceedings of the 2017 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, pages 41–52, 2017.

[32] U. Colesanti and S. Santini. The Collection Tree Protocol for the Castalia Wireless
Sensor Networks Simulator. Month, pages 1–26, 2011.

Bibliography 119

[33] M. Cook. Universality in Elementary Cellular Automata. Complex Systems, 15(1):1–
40, 2004.

[34] V. Cortellessa and F. Quaglia. A checkpointing-recovery scheme for Time Warp
parallel simulation. Parallel Computing, 27(9):1227–1252, 2001.

[35] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Reversible execution and
visualization of programs with Leonardo. Journal of Visual Languages and Comput-
ing, 11(2):125–150, 2000.

[36] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, 1991.

[37] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-Free Dynamically Resizable Ar-
rays. In M. M. A. A. Shvartsman, editor, Principles of Distributed Systems, pages
142–156, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[38] C. Demetrescu, I. Finocchi, and A. Ribichini. Reactive Imperative Programming
with Dataflow Constraints. ACM Transactions on Programming Languages and Sys-
tems, 37(1):1–53, 2014.

[39] P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. Didona, P. Romano, R. Palmieri,
and S. Peluso. A flexible framework for accurate simulation of cloud in-memory
data stores. Simulation Modelling Practice and Theory, 58:219–238, 2015.

[40] D. Dice. TLRW: Return of the read-write lock. Proceedings of the 22nd ACM sympo-
sium on . . . , 2010.

[41] S. Dinesh Kumar, H. Thapliyal, A. Mohammad, and K. S. Perumalla. Design ex-
ploration of a Symmetric Pass Gate Adiabatic Logic for energy-efficient and secure
hardware. Integration, the VLSI Journal, 58(September 2016):369–377, 2017.

[42] S. Economo, D. Cingolani, A. Pellegrini, and F. Quaglia. Configurable and efficient
memory access tracing via selective expression-based x86 binary instrumentation.
In Proceedings - 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, MASCOTS 2016, MASCOTS,
pages 261–270. IEEE Computer Society, 2016.

[43] A. Ferscha. Probabilistic Adaptive Direct Optimism Control in Time Warp. In Pro-
ceedings of the 9th Workshop on Parallel and Distributed Simulation, pages 120–129.
IEEE Computer Society, 1995.

[44] A. Ferscha and J. Luthi. Estimating Rollback Overhead for Optimism Control in
Time Warp. In Proceedings of the 28th Annual Simulation Symposium, pages 2–12.
IEEE Computer Society, apr 1995.

[45] J. Fleischmann and P. Wilsey. Comparative analysis of periodic state saving tech-
niques in time warp simulators. Proceedings of the ninth workshop on Parallel and
distributed simulation, 25(1):50–58, jul 1995.

[46] J. Fleischmann and P. A. Wilsey. Comparative Analysis of Periodic State Saving
Techniques in Time Warp Simulators. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, pages 50–58. IEEE Computer Society, 1995.

[47] C. Forbes, M. Evans, N. Hastings, and B. Peacock. Erlang distribution. Statistical
distributions, pages 84–85, 2010.

[48] M. P. Frank. Reversibility for efficient computing. PhD thesis, Citeseer, 1999.

[49] M. P. Frank. The physical limits of computing. Computing in Science and Engineering,
4(3):16–26, 2002.

120 Bibliography

[50] M. P. Frank. Reversible Computing - Toffoli.pdf. Number January. Springer, 2004.

[51] M. P. Frank. Throwing computing into reverse. IEEE Spectrum, 54(9):32–37, 2017.

[52] E. Fredkin and T. Toffoli. Design principles for achieving high-performance submi-
cron digital technologies. In Collision-based computing. Springer, 1978.

[53] E. Fredkin and T. Toffoli. Conservative Logic. International Journal of theoretical
physics, 21(3-4):219–253, 1982.

[54] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT.
In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings, volume 3, pages 1381–1384. IEEE, 1998.

[55] R. Fujimoto. Parallel discrete event simulation. Communications of the ACM,
33(10):30–53, oct 1990.

[56] R. M. Fujimoto. Performance of Time Warp Under Synthetic Workloads, 1990.

[57] R. M. Fujimoto, K. S. Panesar, and K. S. Panesar. Buffer management in shared-
memory time warp systems. In PADS, pages 149–156, 1995.

[58] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree protocol.
In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems -
SenSys ’09, page 1, New York, New York, USA, 2009. ACM Press.

[59] B. Gough. GNU scientific library reference manual. Network Theory Ltd., 2009.

[60] J. S. Hall. An Electroid Switching Model for Reversible Computer Architectures.
Workshop on Physics and Computation, Laboratory for Computer Science Research Rut-
gers University, pages 1–9, 1992.

[61] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support For
Lock-free Data Structures. Proceedings of the 20th Annual International Symposium
on Computer Architecture, 21(2):289–300, 1993.

[62] G. C. Hunt. Reversible load-time dynamic linking, 1998.

[63] M. Ianni, R. Marotta, D. Cingolani, A. Pellegrini, and F. Quaglia. The Ultimate
Share-Everything PDES System. In F. Quaglia, A. Pellegrini, and G. K. Theodor-
opoulos, editors, Proceedings of the 2018 {ACM} {SIGSIM} Conference on Principles
of Advanced Discrete Simulation, Rome, Italy, May 23-25, 2018, pages 73–84. ACM,
2018.

[64] Intel. IA-32 Intel Architecture Software Developer’s Manual Volume 1: Basic Archi-
tecture, 2000.

[65] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Sys-
tems, 7(3):404–425, jul 1985.

[66] D. R. Jefferson. Virtual Time II: Storage Management in Conservative and Optimistic
Systems. In Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing, PODC ’90, pages 75–89, New York, NY, USA, 1990. ACM.

[67] V. Jha and R. L. Bagrodia. Simultaneous events and lookahead in simulation proto-
cols. ACM Transactions on Modeling and Computer Simulation, 10(3):241–267, 2000.

[68] S. Kandukuri and S. Boyd. Optimal Power Control in Interference-Limited Fad-
ing Wireless Channels with Outage-Probability Specifications. IEEE Transactions on
Wireless Communications, 1(1):46–55, 2002.

Bibliography 121

[69] L. B. Kish, C. G. Granqvist, S. P. Khatri, and J. M. Smulko. Critical Remarks on
Landauer ’ s principle of erasure – dissipation Including notes on Maxwell demons
and Szilard engines. (Icnf):1–4, 2015.

[70] R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM
Journal of Research and Development, 5(3):183–191, 1961.

[71] J. M. LaPre, C. D. Carothers, and D. R. Jefferson. Warp speed: executing Time Warp
on 1,966,080 cores. In Proceedings of the 2013 ACM SIGSIM conference on Principles
of advanced discrete simulation - SIGSIM-PADS ’13, page 327, New York, New York,
USA, 2013. ACM Press.

[72] J. M. LaPre, E. J. Gonsiorowski, and C. D. Carothers. LORAIN: A step closer to the
PDES "Holy grail". SIGSIM-PADS 2014 - Proceedings of the 2014 ACM Conference on
SIGSIM Principles of Advanced Discrete Simulation, pages 3–14, 2014.

[73] J. M. LaPre, E. J. Gonsiorowski, C. D. Carothers, J. Jenkins, P. Carns, and R. Ross.
Time warp state restoration via delta encoding. 2015.

[74] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for Fortran usage. ACM Transactions on Mathematical Software (TOMS),
5(3):308–323, 1979.

[75] J. I. Leivent and R. J. Watro. Mathematical Foundations of Time Warp Systems. ACM
Transactions on Programming Languages and Systems, 15(5):771–794, 1993.

[76] Y.-B. Lin and E. D. Lazowska. Reducing the saving overhead for Time Warp parallel
simulation. University of Washington Department of Computer Science and Engi-
neering, 1990.

[77] R. C. Merkle. Reversible Electronic Logic Using Switches. 1994.

[78] K. Morita. Theory of Reversible Computing. 2017.

[79] N. Nethercote and J. Seward. Valgrind: A Program Supervision Framework. Electr.
Notes Theor. Comput. Sci., 89(2):44–66, 2003.

[80] A. C. Palaniswamy and P. A. Wilsey. An analytical comparison of periodic check-
pointing and incremental state saving. In Proceedings of the 7th Workshop on Parallel
and Distributed Simulation, PADS, pages 127–134. ACM, 1993.

[81] A. Pellegrini. Hijacker: Efficient static software instrumentation with applications
in high performance computing. In Proceedings of the 2013 International Conference
on High Performance Computing and Simulation, HPCS, pages 650–655. IEEE Com-
puter Society, 2013.

[82] A. Pellegrini. The ROme OpTimistic Simulator : A Tutorial Discrete Event Simula-
tion (DES). In Euro-Par Workshops, volume 8374 of PADABS, pages 501–512. LNCS,
Springer-Verlag, 2013.

[83] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR: Logging only dirty chunks for
efficient management of dynamic memory based optimistic simulation objects. In
Proceedings - Workshop on Principles of Advanced and Distributed Simulation, PADS,
PADS, pages 45–53. IEEE Computer Society, jun 2009.

[84] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR: Logging only dirty chunks for
efficient management of dynamic memory based optimistic simulation objects. In
Proceedings - Workshop on Principles of Advanced and Distributed Simulation, PADS,
pages 45–53. IEEE, 2009.

122 Bibliography

[85] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme OpTimistic Simulator: Core inter-
nals and programming model. In Proceedings of the 4th ICST Conference of Simulation
Tools and Techniques (SIMUTools), SIMUTools, pages 96–98. ACM, mar 2011.

[86] A. Pellegrini, R. Vitali, and F. Quaglia. Autonomic state management for opti-
mistic simulation platforms. IEEE Transactions on Parallel and Distributed Systems,
26(6):1560–1569, jun 2015.

[87] K. S. Perumalla. Scaling time warp-based discrete event execution to 10ˆ4 processors
on a Blue Gene supercomputer. Proceedings of the 4th international conference on
Computing frontiers - CF ’07, (May):69, 2007.

[88] K. S. Perumalla. Introduction to Reversible Computing. CRC Press, 2013.

[89] K. S. Perumalla and V. A. Protopopescu. Reversible Simulations of Elastic Collisions.
23(2):1–38, 2013.

[90] K. S. Perumalla and S. B. Yoginath. Towards Reversible Basic Linear Algebra Sub-
programs: A Performance Study. Transactions on Computational Science XXIV, pages
56–73, 2014.

[91] B. R. Preiss, W. M. Loucks, and D. MacIntyre. Effects of the Checkpoint Interval
on Time and Space in Time Warp. ACM Transactions on Modeling and Computer
Simulation, 4(3):223–253, 1994.

[92] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks. In 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06),
pages 135–148, 2006.

[93] F. Quaglia. Event History Based Sparse State Saving in Time Warp. In Proceed-
ings of the 12th Workshop on Parallel and Distributed Simulation, pages 72–79. IEEE
Computer Society, 1998.

[94] F. Quaglia. A Cost Model for Selecting Checkpoint Positions in Time Warp Parallel
Simulation. IEEE Transactions on Parallel and Distributed Systems, 12(4):346–362,
2001.

[95] F. Quaglia and R. Baldoni. Exploiting Intra-Object Dependencies in Parallel Simu-
lation. Inf. Process. Lett., 70(3):119–125, 1999.

[96] D. Quinlan and C. Liao. The ROSE Source-to-Source Compiler Infrastructure. In
Cetus users and compiler infrastructure workshop, in conjunction with PACT, 2011.

[97] D. Quinlan, C. Liao, J. Too, R. P. Matzke, M. Schordan, and P. H. Lin. ROSE compiler
infrastructure, 2012.

[98] R. Rönngren and R. Ayani. Adaptive checkpointing in Time Warp. In ACM SIGSIM
Simulation Digest, volume 24, pages 110–117, New York, New York, USA, 1994.
ACM Press.

[99] R. Rönngren and R. Ayani. Adaptive Checkpointing in Time Warp. In Proceedings of
the 8th Workshop on Parallel and Distributed Simulation, pages 110–117. Society for
Computer Simulation, 1994.

[100] R. Rönngren, M. Liljenstam, R. Ayani, and J. Montagnat. Transparent Incremental
State Saving in Time Warp Parallel Discrete Event Simulation. In Proceedings of
the 10th Workshop on Parallel and Distributed Simulation, volume 26 of PADS, pages
70–77. IEEE Computer Society, 1996.

Bibliography 123

[101] E. Santini, M. Ianni, A. Pellegrini, and F. Quaglia. HTM Based Speculative Parallel
Discrete Event Simulation of Very Fine Grain Models. In Proceedings of the 22nd
International Conference on High Performance Computing (HiPC), HiPC, 2015.

[102] M. Schordan, D. R. Jefferson, P. Barnes, T. Oppelstrup, and D. Quinlan. Reverse
code generation for parallel discrete event simulation. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 9138, pages 95–110. Springer, Cham, 2015.

[103] M. Schordan, T. Oppelstrup, D. R. Jefferson, P. Barnes, and D. Quinlan. Auto-
matic Generation of Reversible C++ Code and Its Performance in a Scalable Ki-
netic Monte-Carlo Application. In Proceedings of the 2016 annual ACM Conference
on SIGSIM Principles of Advanced Discrete Simulation - SIGSIM-PADS ’16, pages 111–
122, New York, New York, USA, 2016. ACM Press.

[104] S. K. Seal and K. S. Perumalla. Reversible Parallel Discrete Event Formulation of
a TLM-Based Radio Signal Propagation Model. ACM Trans. Model. Comput. Simul.,
22(1):4:1—-4:23, 2011.

[105] C. L. Seitz, A. H. Frey, S. Mattisson, S. D. Rabin, D. A. Speck, and J. L. A. de Snep-
scheut. Hot clock nMOS, 1985.

[106] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27(April 1928):379–423,623–656, 1948.

[107] J. M. Shearer and M. A. Wolfe. ALGLIB, a simple symbol-manipulation package.
Communications of the ACM, 28(8):820–825, aug 1985.

[108] S. Skold and R. Rönngren. Event Sensitive State Saving in Time Warp Parallel Dis-
crete Event Simulation. In Proceedings of the 1996 Winter Simulation Conference,
pages 653–660. Society for Computer Simulation, 1996.

[109] P. Teichmann. Adiabatic logic: Future trend and system level perspective. Springer
Series in Advanced Microelectronics, 34(1), 2012.

[110] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic Memory Logger and Restorer Li-
brary for Optimistic Simulation Objects with Generic Memory Layout. In 2008 22nd
Workshop on Principles of Advanced and Distributed Simulation, pages 163–172, 2008.

[111] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units.
IBM Journal of Research and Development, 11(1):25–33, 1967.

[112] C. Vieri, M. J. Ammer, M. P. Frank, N. Margolus, and T. Knight. A Fully Reversible
Asymptotically Zero Energy Microprocessor. Power Driven Microarchitecture Work-
shop, pages 1–8, 1998.

[113] C. J. Vieri. Reversible Computer Engineering and Architecture. (1993), 1999.

[114] W. Vogels. Eventually Consistent. Queue, 6(6):14, 2008.

[115] J. Von Neumann. The general and logical theory of automata. Cerebral mechanisms
in behavior, 1:1–2, 1951.

[116] J. Von Neumann and A. W. Burks. Theory of Self Reproducing Automata, 1966.

[117] D. West and K. Panesar. Automatic incremental state saving. ACM SIGSIM Simula-
tion Digest, 26(1):78–85, 1996.

[118] D. West and K. Panesar. Automatic Incremental State Saving. In Proceedings of the
10th Workshop on Parallel and Distributed Simulation, pages 78–85. IEEE Computer
Society, 1996.

124 Bibliography

[119] S. Wolfram. A new kind of science, volume 5. Wolfram media Champaign, IL, 2002.

[120] T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a reversible programming
language. In Proceedings of the 2008 conference on Computing frontiers - CF ’08, CF
’08, page 43, New York, NY, USA, 2008. ACM.

[121] T. Yokoyama and R. Glück. A Reversible Programming Language and Its Invertible
Self-interpreter. In Proceedings of the 2007 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation, PEPM ’07, pages 144–153,
New York, NY, USA, 2007. ACM.

[122] S. G. Younis. Asymptotically Zero Energy Computing, 1994.

[123] M. V. Zelkowitz. Reversible Execution. Communications of the ACM, 1973.

[124] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W. F. Wong. How to do a
million watchpoints: Efficient Debugging using dynamic instrumentation. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 4959 LNCS:147–162, 2008.

AppendixA
Synergistic hardware and

software reversibility

In this appendix we present a preliminary exploration of the possibilities our re-
versible computation can offer. If in Chapter 4 we explored it in combination with
a non-reversible rollback support such as state saving; here, we investigate the or-
thogonal perspective of a synergistic exploitation of hardware-based and software-
based approaches to reversible computing. Thus, similar in spirit, to the work de-
scribed in Chapter 4 “The hybrid rollback strategy”, in this proposal we enable
the speculative PDES engine, representing our case study, to dynamically select
the best-suited rollback strategy. On the one hand, relying on HTM facilities, in-
spired to [101], and on the other hand, relying on the extensively discussed reverse
windows-based approach (refer to Chapter 3 “The reversing framework”). Since
this work is at an early stage, a small environment is used for the assessment,
nonetheless it may deserve a more substantial assessment in the future within a
scaled up environment.

We start from the consideration that the worth of events speculatively executed
in a HTM transactional context depends on several factors. A first issue regards
the implementation of this hardware support. The commitment of the transac-
tion needs to check/update causality constraints recorded by a set of metadata;
the higher the degree of concurrency in accessing these “shadow” metadata, the
higher the likelihood of yielding to conflicts, leading the HTM-based transactions
to abort. Further, related to the specific context of PDES, this metadata are up-
dated according to the commit horizon’s time progress, indirectly determined by
the simulation event with the lowest timestamp. Hence, speculatively-processed
events with HTM support that are farther ahead of the commit horizon will meet
higher abort probability, as the indirect updates on the shadow metadata is denser,
accordingly. This abort probability is even sharper if these updates are issued by
recent events, rather then elder ones (i.e. associated with lower timestamps). Fi-
nally, the HTM support is limited to transactions whose read/write set fits the

1

2 A. Synergistic hardware and software reversibility

transactional hardware cache available; otherwise a capacity conflict perpetrated
by other cores would occur. Hence, for models characterized by events (or phases
of events) having large data sets, the likelihood of successfully committing relative
HTM-based transactions may be (significantly) reduced.

In our speculative PDES engine, we overcome these drawbacks of HTM sup-
ports by dynamically enabling any worker thread to process an event both as
an HTM-based transaction, and via a (software) reversible version of the origi-
nal event handler, to reduce the likelihood of running non-valuable transactions.
According to what described Chapter 3 “The reversing framework” and further
implemented in Chapter 4 “The hybrid rollback strategy”, this version is transpar-
ently instrumented so that to feed at runtime the relative reverse window. Commit
success probability of events run with software reversible support is regardless of
the commit probability of HTM-based transaction. As a result, the engine can
fruitfully exploit computing resources relieving the HTM support of a part of the
invaluable work.

At the same time, the coexistence of HTM and software reversible supports
may incur in a negative interference. In particular, software-reversible events must
not hinder valuable HTM-based transactions. To this end, we introduced a prior-
itization mechanism allowing HTM-processed events to gain higher priority over
the others. In this way, the system guarantees that latter class of events would
concurrently access any portion of the data set possibly target by the HTM-based
transactions. On the other hand, we still enable inter-LP concurrency by exploiting
the so-called weak causality, drawn from [95], which allows multiple HTM-based
transactions to operate on disjoint data sets within the same LP state. It is note-
worthy that in our software reversibility scheme we avoid the usage of checkpoints;
rather we embrace the reverse window-based reversible computing approach. As a
result, since we reduce the typically large usage of memory require by checkpoint-
ing, so does the abort probability due to exceeded transactional cache’s capacity.

We developed a new simulation engine with a kernel relying on a single fully-
shared queue of pending events, inspired to the share-everything PDES paradigm
[63]. The simulation engine has been released as open source software1, and im-
plements the support for the combined rollback strategy as described further in
this section. In Appendix A.3 we also discuss the experimental data to assess the
effectiveness of this proposal, running the classical PHOLD PDES benchmark [56]
on an Intel Haswell processor, with HTM support, equipped with 4 physical cores.

1https://github.com/HPDCS/htmPDES/tree/reverse

A.1 Simulation horizons and value of speculative work 3

commit

horizon

high

likelihood

low

likelihood

ST

abort probability

delay required

Figure A.1. Three logical regions on the simulation time (ST) axis, with varying density of
pending events—those still to be processed, which will possibly generate new ones.

A.1 Simulation horizons and value of speculative work

Introducing our simulation platform, we recall the notion of commit horizon. In
speculative PDES, we can always identify a point along the simulation time rep-
resenting the so-called commit horizon—commonly referred to as Global Virtual
Time (GVT). This horizon is the simulation time instant that distinguishes be-
tween events which might be undone, as unsafe, and committed events. This time
instant can be logically identified by considering that any simulation event e ex-
ecuted at simulation time T can only generate some new event e′ associated with
timestamp T ′ ≥ T . In fact, violating this assumption would imply that an event in
the future might affect the past, which is clearly a non-meaningful condition for
any real-world process/phenomenon. The commit horizon is trivially identified
by the event with the smallest event’s timestamp among currently scheduled and
processed events, throughout the system—recall that having a single fully shared
event queue of pending events avoids at all the problem of in transit events/mes-
sages that might affect the determination of the GVT value. In fact, no event still
to be executed might produce a causal inconsistency involving the LP in charge of
the execution of the commit-horizon event2.

With our target engine organization, the commit horizon is associated with
the oldest event that is currently being executed (or has just been executed) at
any worker thread. Therefore, keeping track of the commit horizon boils down to
registering, for each worker thread, the timestamp of the event e currently being
executed, by replacing the value only after a new event is fetched for processing
from the event pool, so that any new event possibly produced by e has its times-
tamp already reflected into the event pool. The commit horizon can be computed
as the minimum among the registered values.

2Simultaneous events do not violate this assumption. Nevertheless, if not properly handled by
some tie-breaking function [67], they could give rise to livelocks in the speculative execution.

4 A. Synergistic hardware and software reversibility

At any time, the commit-horizon event can be considered as a safe (namely,
causally consistent) one, and therefore does not require any reversibility mecha-
nism for its execution. Let us now discuss about the likelihood of safety of other
events to be processed, which stand ahead of the commit horizon. Empirical evi-
dence and statistical considerations based on common distributions for the times-
tamp increment driving the generation of events in simulation models (see, e.g.,
[43, 44]) have shown that event patterns are, at any time, characterized by greater
density of events, say locality of activities, in the near future of the actual GVT.
This situation is depicted in Figure A.1. Also, such locality tends to move along
the time axis just based on the advancement of the commit horizon. The implica-
tion is that the risk of materialization of causal inconsistencies when speculatively
processing one event that is ahead of the commit horizon is somehow linked to
its distance from such horizon. This is also linked to the notion of lookahead of
DES models, a quantity expressing the minimal timestamp increment we can ex-
perience for a given model when processing whichever event that originates new
events to be injected in the system. Larger lookahead leads to produce new events
in the far future, hence those getting closer to the current commit horizon become
automatically safe.

By this consideration, the speculative processing of events that are closer to
the commit horizon looks more valuable in terms of avoidance of causality in-
consistencies. Hence in our approach we enable the processing of these events as
HTM-based transactions, say via the more efficient (lower overhead) recoverability
support. We also note that running events that are close to the commit horizon as
HTM-based transactions will also lead to a faster advancement of this horizon, as
compared to what we would expect if running them via software-based reversibil-
ity, since this would lead to longer processing times due to the overhead for pro-
ducing the undo code blocks. However, an HTM-based transaction can commit
only after events standing in the past have already been committed and the cor-
responding worker threads have already updated their entries in the meta-data
array keeping their current timestamp. So, in order to increase the likelihood of
committing the HTM-based transactional execution of some event, this transaction
typically needs to include a busy-loop delay enabling a waiting phase just before
checking whether the meta-data were updated3. Checking the meta-data at some
wrong point in time will in its turn lead to the impossibility to recheck these data
fruitfully in the future, since the updates occurring between the two checks will
lead to a data conflict and to the abort of the checking transaction. In Figure A.1 we
show how such a delay should be selected somehow proportionally to the distance
(in terms of event count) of the event processed via HTM support from the commit

3Other kind of delays, such as operating system sleeps, are infeasible since any user/kernel tran-
sition will lead an HTM-based transaction to abort deterministically on current HTM-equipped pro-
cessors.

A.1 Simulation horizons and value of speculative work 5

horizon. Overall, for events that are further ahead from the commit horizon, the
delay could not pay off, hence a more profitable approach to speculatively process-
ing them is to run them outside of HTM-based transactions, still with reversibility
guarantees achieved via software.

The problem of determining what is the threshold distance from the commit
horizon beyond which the HTM support does not pay off is clearly also related
to the interference between concurrent HTM-based transactions when using the
underlying hardware resources. In fact, if we experience a scenario where two
concurrent transactions both require large transactional cache storage for execut-
ing the corresponding dispatched events, and the cache is shared across the cores,
then even if an event would ideally reveal as causally consistent upon attempting
to finalize the transactions, it would anyhow be doomed to abort due to cache ca-
pacity conflicts. A similar cache capacity-due abort may even be experienced in
case of single HTM-based transaction instance, just depending on the transaction
data set, which might exceed the cache capacity. To cope with the runtime adaptive
selection of the threshold value, we rely on a hill climbing scheme based on the fol-
lowing parameters, easily measurable at runtime across successive wall-clock-time
windows.

THTM The total processing time spent across all the worker threads while pro-
cessing events (either committed or aborted) via HTM support.

COMMITHTM The total number of committed events whose speculative exe-
cution has been based on the HTM support.

Tsoft The total processing time spent across all the worker threads while pro-
cessing events (either committed or aborted) that are made recoverable via
the software-based support (here we include the time spent for instrumen-
tation code used to generate undo code blocks, plus the time for running the
undo code blocks in case the events are eventually undone).

COMMITsoft The total number of committed events whose execution has been
based on the software support for recoverability.

We compute the so-called work-value ratio (WVR) for both HTM-based and
software-based reversible supports as follows:

WVRHTM = THTM
COMMITHTM

WVRsoft = Tsoft
COMMITsoft

(A.1)

Equation (A.1) expresses the average amount of CPU time required for per-
forming useful work (namely, for processing an event that is not undone) with

6 A. Synergistic hardware and software reversibility

LP0

Simulation state

Event Handlers

LP1

Simulation state

Event Handlers

LPn-2

Simulation state

Event Handlers

LPn-1

Simulation state

Event Handlers

. . .

Priority

Queue

Figure A.2. Basic engine organization

the two different recoverability supports. Then, the threshold value THR deter-
mining the commit horizon distance (evaluated as event count) beyond which we
consider it more convenient to process the event via software-based reversibility,
rather than HTM-based one, is increased or decreased depending on whether the
relation WVRHTM ≤ WVRsoft is verified (as computed on the basis of statistics,
on the baseline parameters listed above, collected in the last observation window).
In order to avoid stalling in local minima (e.g. due to the avoidance of runtime
samples for any of the above listed parameters), we intentionally perturb THR by
±1 within the hill climbing scheme if its value reaches either zero or the number
of threads currently running in the PDES platform.

A.2 The simulation engine’s architecture

Before proceeding further to the assessment, we introduce the simulation sys-
tem designed and implemented for the purpose. We target a baseline specula-
tive PDES engine structure, that is independent of the actual reversibility support
adopted, whose architecture is provided in Figure A.2. In compliance with tradi-
tional PDES, the engine supports the simulation model partitioning into n distinct
LPs, each one associated with a unique identifier (ID) in the range [0, n − 1]. Each
LP is associated with a private simulation state and with one, or more event, han-
dlers realizing the application business logic. The delivery of a simulation event
to the correct handler is demanded to the underlying simulation kernel, which is
also in charge of guaranteeing the consistency of a shared event pool that keeps
scheduled events and of the updates occurring on the LPs’ states. As for the event
pool, we rely on a shared lock-protected calendar queue [23]. Multiple concurrent
worker threads can extract events from the event pool and can concurrently dis-
patch the execution of the corresponding LPs by activating some event handler as
a callback function.

As mentioned, our engine allows the coexistence of hardware-based and
software-based reversible computing facilities. Introducing hardware-based re-
versible computing facilities is somehow easy; recall it can be done using the prim-
itives TRANSACTION_START, TRANSACTION_END, and TRANSACTION_ABORT to drive
event processing. Instead, software-based reversibility requires a bit more care,

A.2 The simulation engine’s architecture 7

Algorithm A.1 Shared Lock Acquisition/Release.
1: int lock_vector[n]
2: double timestamp[n] . To avoid priority inversion
3: int thread_id[n] . To avoid priority inversion
4: procedure Lock_LP(e, LP, mode, locking)
5: acquired← false
6: do
7: if mode = EXCLUSIVE then
8: if CAS(-1, 0, lock_vector[LP]) then
9: acquired← true

10: else
11: old_lock ← lock_vector[LP]
12: if old_lock ≥ 0 then
13: if CAS(old_lock + 1, old_lock, lock_vector[LP]) then
14: acquired← true
15: if ¬acquired then
16: atomically {
17: if timestamp[LP] > T (e) ∨ (timestamp[LP] = T (e)∧ thread_id[LP] > tid) then
18: timestamp[LP]← T (e)
19: thread_id[LP]← thread_id
20: }
21: while ¬acquired∧ locking
22: return acquired
23: procedure Unlock_LP(LP)
24: if lock_vector[LP] = −1 then
25: lock_vector[LP]← 0
26: else
27: do
28: old_lock ← lock_vector[LP]
29: while ¬ CAS(old_lock − 1, old_lock, lock_vector[LP])

especially when targeting full transparency to the application-level developer. To
cope with this issue, we rely on static binary instrumentation as we already de-
scribed in Section 3.2 “Addressing code instrumentation”. The instrumented and
non-instrumented versions of the application modules coexists by using the men-
tioned multi-coding scheme, like in Chapter 4 “The hybrid rollback strategy”. As
for the software layer of reversible support, we again rely on our reverse window as
discussed in Section 3.1 “Architectural details”.

As mentioned before, to ensure consistency and minimize the effects of data
contention on HTM-based execution of events, we must ensure that at no time
two different worker threads can execute both software-reversible and hardware-
reversible events at once, which target the same LP state. In fact, if this would
happen, we might incur the risk of having less valuable work to invalidate more
valuable one (since the HTM-based transaction would be aborted if its data set
would overlap the write set of the event executed via software-based reversibility).
Also, we cannot allow two (or more) events run via software-based reversibility
to simultaneously target the same LP state. In fact, these events would not be
regulated by any transactional execution scheme4. To this end, we rely on a syn-

4The undo code blocks guarantee reversibility of memory updates limited to events executing
the updates on the LP state in isolation, which complies with classical PDES where each LP is an
intrinsically sequential entity.

8 A. Synergistic hardware and software reversibility

chronization mechanism similar in spirit to an atomic shared read/write lock [40].
Whenever a worker thread extracts an event from the shared event pool, it first de-
termines whether the event should be executed using hardware-based or software-
based reversibility according to the policy introduced in previous Appendix A.1. If
the selected execution mode is HTM-based, the worker thread tries to acquire the
lock on the target LP in a non-exclusive way, which fails (i.e., requires spinning)
in case any other worker thread already took it in an exclusive way. On the other
hand, if the selected execution mode is based on software reversibility, the worker
thread tries to acquire the lock in an exclusive way, yet this operation requires
spinning if at least one worker thread has non-exclusively taken the lock. Never-
theless, this approach might lead to some priority inversion, among the threads
which are running more valuable events via the HTM support and threads which
are running less valuable events via software-based reversibility. To avoid this, we
use a locking flag to instruct the algorithm to avoid spinning if it was not possible,
for any reason, to acquire the lock—namely, setting locking to false transforms the
lock into a trylock. If the lock is not taken, two additional values in two arrays are
updated atomically: timestamp and thread_id, which are exploited on a per-LP
basis. In particular, the worker thread registers the timestamp it has an event to
process at, and its thread id. The latter value is only used to create a total order
among threads in case simultaneous events are present, to avoid possible deadlock
conditions. These values are periodically inspected by other worker threads (upon
a safety check for the current processed event, which fails), so as to determine
whether some higher priority event is waiting. In that case, if the work carried out
is not likely to be committed shortly, thanks to the reversibility supports it gets
squashed, so that higher priority is given immediately to events with a smaller
timestamp.

Algorithm A.1 shows the lock management pseudo-code, which relies on the
Compare and Swap (CAS) read-modify-write primitive to increase/decrease the
value of a shared per-LP counter. The value -1 for the counter means that the
lock is exclusively taken, while the value 0 indicates that no thread is running an
event bound to the LP. A positive value is a reference counter indicating how many
worker threads are concurrently executing events bound to the LP via hardware-
based reversibility.

We can now discuss the organization of the main loop of threads within our
speculative PDES engine, whose pseudo-code is shown in Algorithm A.2. Essen-
tially, it is made up by three different execution paths, each one associated with
one of the different execution modes. Initially, a call to a Fetch() procedure allows
to extract from the shared event pool the event with the smallest timestamp. Then,
a statistical approximation of the number of events which are expected to fall be-
fore the currently fetched event (since others may still be processed or might be

A.2 The simulation engine’s architecture 9

Algorithm A.2 Main Loop.
1: procedure MainLoop

2: new_events = ∅ . Set of events generated during the execution of an event
3: while ¬endSimulation do
4: e← Fetch()
5: if e = NULL then
6: goto 3

7: events_before←
T (e)− commit_horizon

average_timestamp_increment
8: if Safe() then . Safe execution: on the commit horizon
9: Lock_LP((e, LP (e), NON_EXCLUSIVE, true))

10: new_events← ProcessEvent(e)
11: Unlock_LP(LP (e))
12: else if events_before ≤ THR then . HTM-based execution: high likelihood region
13: if ¬ Lock_LP((e, LP (e), NON_EXCLUSIVE, false)) then
14: goto 7
15: BeginTransaction()
16: new_events← ProcessEvent(e)
17: Throttle(events_before)
18: if Safe() then
19: CommitTransaction()
20: Unlock_LP(LP (e))
21: else
22: AbortTransaction()
23: Unlock_LP(LP (e))
24: goto 7
25: else . Software-reversible execution: low likelihood region
26: if ¬ Lock_LP((e, LP (e), EXCLUSIVE, false)) then
27: goto 7
28: SetupUndoCodeBlock()
29: new_events← ProcessEvent_Reversible(e)
30: while ¬ Safe() do
31: if timestamp[LP] < T (e) ∨ (timestamp[LP] = T (e)∧ thread_id[LP] < tid) then
32: Unlock_LP(LP (e))
33: UndoEvent(e)
34: new_events = ∅
35: goto 7
36: Flush(e, new_events)
37: atomically {
38: if thread_id[LP] = tid then
39: timestamp[LP]←∞
40: thread_id[LP]←∞
41: }

produced as a result of the processing) is computed as:

T (e)− commit_horizon
average_timestamp_increment

(A.2)

where average_timestamp_increment is computed5 as commit_horizon
total_committed_events . This

value, together with the threshold THR (refer previous Appendix A.1), is used
to determine whether a certain event might be more valuable or not, thus requir-
ing either HTM-support or software-based reversibility (line 12). Additionally, if

5For non-stationary models, where the distribution of the timestamp increment between suc-
cessive events can change over time in non-negligible way, this same statistic could be sim-
ply rejuvenated periodically, by discarding non-recent events commitments and subtracting from
commit_horizon the upper limit of the discarded simulation time portion.

10 A. Synergistic hardware and software reversibility

an event is executed exploiting HTM, this value drives as well the selection of a
delay before checking again the safety of the corresponding transaction (namely,
whether the timestamp of the event has in the meanwhile become the commit
horizon), so as to avoid making it doomed with a high likelihood (line 17).

In case of a safe execution, i.e. the execution of the event on the commit horizon
(lines 8–11), we take a non-exclusive lock, which is used to inform any other thread
that the destination LP is currently processing an event. This avoids that any other
worker thread starts processing an event via software-based reversibility at the
same LP while we are processing in safe mode. Moreover, we configure the lock to
spin because the worker thread in charge of executing this event has the highest
priority and any other competing thread will try to give it permission to continue
execution as fast as possible.

For a transactional execution (lines 12–24), we use the trylock version of the
per-LP lock. If we fail to acquire the lock, the execution resumes from line 7,
meaning that we check again whether the extracted event has become safe or not,
in the meanwhile. Otherwise, as already explained before, we start executing the
event within a HTM-based transaction, introducing an artificial delay—via the
Throttle(events_before) call—which is proportional to the estimated number of
events in between the commit horizon and the currently executed event. If the
transaction becomes doomed (lines 21–24) the execution restarts from line 7, so as
to check whether the just-aborted event has become safe.

The case of execution via software reversibility (lines 25–35) is a bit different.
In fact, first we have to take an exclusive lock—in a trylock fashion, for the same
consideration related to the HTM-based execution—and we have to setup the undo
code block, by allocating a reverse window buffer. At the end of the execution of
the event, similarly to the HTM-based case, we have to wait for the event to be-
come safe. Nevertheless, since this execution entails taking an exclusive lock, we
continuously check whether some other thread is registered at the same LP with a
higher priority (line 31). This situation might arise due to another event, executed
at any other worker thread, generating a new event to the same LP with a times-
tamp smaller than the one of the event currently processed via software-based
reversibility. Failing to make this specific check could either hamper liveness (a
thread waits its event to be the commit horizon, which cannot happen) or cor-
rectness (events are committed out of order). Line 31, paired with lines 15–20 of
Algorithm A.1, is able to ensure both correctness and liveness.

Whenever an event is executed, and then committed thanks to safety assur-
ance, in whichever execution mode, we first place into the calendar queue any
possible new event generated (line 36), and we then unregister the thread from
the timestamp and thread_id vectors which are used to avoid priority inversion

A.3 Experimental results 11

(lines 37–41). For the implementations of Fetch(), Flush(), and Safe(), we refer
the reader to [101].

A.3 Experimental results

We tested our proposal with the Phold benchmark [55]. We included 1024 LPs
in the simulation model, each one scheduling events for itself or for the others.
Specifically, upon processing an event, the probability to schedule a new event
destined to another LP has been set to 0.2, which is representative of scenarios
with non-minimal interactions across the simulated parts. Also, the initial pop-
ulation of events has been set to 1 event per LP, while the timestamp increment
determining the actual timestamp of newly scheduled events has been set to fol-
low the exponential distribution with mean value equal to one simulation time
unit. The model lookahead has been set to a minimal value computed as the 0.5%
of the average timestamp increment. Further, the overall simulation is partitioned
into 4 phases where the LPs exhibit alternate behaviors in terms of updates of their
states. Phases 1 and 3 are write-mild since each event only updates the classical
counter of processed events and a few other statistical values within the LP state.
Contrariwise, phases 2 and 4 are write-intensive, since event processing also up-
dates an array of counters’ values, still embedded with the LP state, by performing
500 updates on the array entries. Overall, the different phases mimic varying local-
ity and memory access profiles. A classical busy-loop characterizing Phold event
processing steps is also added which is set to generate an average event granularity
of about 25 microseconds. In this experiment, we compared the performance of
our hardware- and software-based mixed approach to both pure hardware-based
reversibility (as proposed in [101]) and pure software-based one exclusively rely-
ing on undo code blocks (this is achieved by preventing any thread to exploit the
HTM support in our engine). We did not compare with the performance achiev-
able by some last generation traditional speculative PDES platform just because
the data reported in [101] have shown that event granularity values of a few (tens
of) microseconds do not allow this type of platforms to provide significant speedup
values (due to the fact that they are based on explicit partitioning of the workload
across the threads, and on explicit message passing for event cross-scheduling,
thus resulting more adequate for larger grain simulation models). Overall, we as-
sessed our proposal with a workload configuration just requiring alternative forms
of speculative parallelization and reversibility support (like the one we propose),
as compared to the classical ones.

We have run this benchmark by varying the number of employed threads from
1 to the maximum number of physical CPU-cores in the underlying machine with
HTM support, which is equipped with two Intel Haswell 3.5 GHz processors, 24

12 A. Synergistic hardware and software reversibility

GB of RAM and runs Linux—kernel 3.26. For the case of single-thread runs, the
execution time values are those achieved by simply running the application code
on top of a calendar queue scheduler.

In Figure A.3a we report the observed execution time values while varying the
number of threads (each reported value resulting as the average over 5 different
samples). The data show how our mixed HW/SW approach outperforms both the
others, with a maximum gain of up to 10% vs the pure HW approach and of 30%
vs the pure SW approach (achieved when running with 4 threads). Such a gain by
the mixed approach is clearly related to the fact that write-intensive phases lead
the pure SW approach to become more intrusive, due to the cost of generating
larger undo code blocks, which does not pay-off compared to the reliance on pure
HTM-based reversibility. On the other hand, the pure HW approach does not
allow the maximization of the usefulness of the carried out speculative work for
larger thread counts. In fact, the slope of the execution time curve for the pure
HW approach becomes slightly worse than the one of the pure SW approach when
moving from 3 to 4 threads. Our mixed approach is able to get the best of the
two by just avoiding excessive aborts of HTM-based transactions when relying on
larger thread counts, also reducing the cost of undo code blocks’ generation thanks
to a fraction of events executed with HTM support. The data reported in Figure
A.3b show how the pure HW approach suffers from thrashing when increasing
the thread count, while the pure SW approach has minimal incidence of events
undo. The mixed approach avoids the thrashing phenomenon just like the pure
SW approach does, but has less overhead since executes a portion of the events via
the HTM support.

Although this study is preliminary, we think that is worth reporting it as a
pointer to possible optimizations of applications’ reversibility supports, via the ex-
ploitation of either consolidated or innovative software based techniques—like the
one we presented based on reverse windows—and emerging trends for reversibil-
ity in the hardware.

6The hyper-threading support offered by the processors has been excluded just to avoid cross-
thread interferences—due to conflicting hyper-threads’ accesses to hardware resources—which
might alter the reliability of our analysis.

A.3 Experimental results 13

 100

 200

 300

 400

 500

 1 2 3 4

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of threads

Mixed HW/SW
Pure HW
Pure SW

(a) Execution time - log scale on the y-axis.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

 2 3 4

U
n
d
o
 p

ro
b
a
b
ili

ty

Number of threads

SW undo (mixed)
HW undo (mixed)

HW undo (pure)
SW undo (pure)

(b) Undo probability for HW and SW speculatively processed events.

Index

position-independent code (PIC), 102

addressing notation, Intel x86, 49
application

native,original, 40

backward determinism, 15
backward execution, 71
binary instrumentation, 60

chuck-based reversal, 57
coasting forward, 69, 71, 73
code block

undo, reverse, 42
code blocks

undo, reverse, 35
code blocks, reverse undo, 9
commit horizon, 3
conditional instruction, 53

dark silicon, 14
descrtructive operations, 24
discrete event, 70
dynamic binary instrumentation, 60
dynamic linker, 94

effective address, 49, 94
ELF, 94
event, 42

forward determinism, 15
forward execution, 71

Global Offset Table (GOT), 95
GOT, PLT, 104

Hijacker, 40, 97
back-end, 63

front-end, 63
instrumentation engine, 63
intermediate binary representation,

IBR, 63
rule manager, 63

Instruction
bytecode, 100
opcode, 100

instruction dominance, 55
instruction encoding, 41, 49
Instruction entry, insn_entry, 48
instruction representation, 49
instrumentation, 40
Instrumentation tools

Hijacker, 40
intermediate binary representation, IBR,

48
Intruction

binary representation, 100
inverse instruction, 40
inverse instructions, 41
isntrumentation, 39

lazy instrumentation, 92
length disassembler, 100
Library Activation Table (LAT), 98, 104
Library Activation Table, LAT, 104
library manager, 92, 97
libreverse, 5
logical process, LP, 70

memory footprint, 35, 37
memory footrpint, 39

negative instruction, 41, 43
negative instructions, 41

15

16 Index

new value, 71

object dominance, 56
old value, 71
optimistic execution, 70
overflow, revwin, 45

Parallel Discrete Event Simulation, 33
positive instructions, 41
preamble code, 41, 46
preamble hook, 48
Procedure Linkage Table (PLT), 95

reactive programming, 31
relocations, 64
reversal engine, 41, 59, 101
Reverse cache

family range, 59
index, 59
offset, 59

reverse cache, 52, 58
reverse code generator, 41, 43
reverse execution, 71
reverse scrubbing, 69
reverse window, 41, 42, 71, 100

atomicity, 41
Reversibility

Constructive operation, 27
Destructive operation, 27

Reversible copmuting, 2
Reversing framework

Reverse window, 3
reversing framework, 5
reversing toolachain, 41
reversing toolchain, 48, 59
revese scrubbing, 71
revese window, revwin, 39
revrese scrubbing, 74
revwin, child, 45
Rollback operations

checkpoint-based, 33
incremental state saving, 34

reverse-copmuting based, 35
sparse state saving, periodic state sav-

ing, 34
State saving, 2

Simulation
Discrete Event Simulation, 55
Event, 55

simulation, 8
simulation applications, 3
simulation object, 33
Simulation Platform

event safety, 33
Logical Processes, LP, 33

Simulation platform
Discrete Event Simulation, 8

Simulation platforms
Discrete Event Simulation, 3
Discrete event simulation, 3
messages, 3
Parallel simulation, 2
safety, event, 3
virtual time, 3
wall-clock time, 3

Speculative execution, 1
state saving, 30

incremental, 30
sparse, 30

static binary instrumentation, 60
straggler events, 70
string instruction, 53
symbol, 94
symbol resolver, 94, 96

Time Warp, 70
trampoline

hook, 101
trampoline hook, 50

Undo code block, 8
undo code block, 71
usefulness, cache, 58

Index 17

x86 full disassembler, 100

	Abstract
	Ringraziamenti
	Acknowledgements
	1 Basics
	1.1 Motivation
	1.2 Thinking in ``reverse''
	1.3 Discrete event simulation

	2 State of the Art
	2.1 Reversible computing
	2.1.1 Physical perspective
	2.1.2 Reversible computational models
	2.1.3 Software perspective

	2.2 Reversible computation in speculative PDES

	3 The reversing framework
	3.1 Architectural details
	3.1.1 The reverse window
	3.1.2 Reversing toolchain
	3.1.3 The reverse code engine
	3.1.4 Instruction and object predominance
	3.1.5 Reverse cache

	3.2 Addressing code instrumentation
	3.3 Dealing with memory allocations

	4 The hybrid rollback strategy
	4.1 Hybrid strategy basics
	4.2 State restoration process
	4.3 Experimental assessment
	4.3.1 Test-bed platform
	4.3.2 Test-bed environment
	4.3.3 Test-bed application
	4.3.4 Performance data
	4.3.5 Comparison to state saving

	5 Dealing with shared libraries
	5.1 Resolve the symbol's address
	5.1.1 Intercepting dynamic linker's resolver
	5.1.2 Instrumentation of library functions

	5.2 Experimental assessment
	5.2.1 Test-bed environment
	5.2.2 Test-bed application
	5.2.3 Performance data

	6 Conclusions and future work
	Bibliography
	A Synergistic hardware and software reversibility
	A.1 Simulation horizons and value of speculative work
	A.2 The simulation engine's architecture
	A.3 Experimental results

	Index

