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Introduction
Rollback process is unavoidable in many complex systems, from parallel to distributed appli-
cations, to prevent system crashes and to undo portions of speculative execution belonging to
an inconsistent trajectory or misbehaving operations. The most consolidated way to realign the
system to a consistent state is to undo part of the computation which brought system to a generic
misbehavior. In database and distributed systems, colliding elements are typically transactions
trying to access shared resources simultaneously, but even in much simpler architectures conflicts
at instruction level can occur, i.e. speculative executions or branch predictions. Like other sys-
tems, parallel applications introduce a high contention factor on shared resources. Optimistic
parallel simulation applications, process millions of events speculatively, many of which might be
rolled back due to relaxed synchronization constraints. The largely adopted solution, for the all
the aforementioned cases, is to rollback whole system to a previous coherent saved state; name
the state saving technique.

Generally, consistency and fault-tolerance are fundamental properties that parallel or dis-
tributed systems must exhibit to ensure reliability. Analogously, parallel applications heavily
exploit available resources, increasing the likelihood to lead into out-of-time states. At the same
time, concurrency among generic memory transactions and nodes’ processes are subject to failures
which hurt the whole system causing it to lay into an incoherent state. In simulation platforms,
rollback is due to straggler events that overcame speculatively yet processed events. If one op-
erations causes system to misbehave, it leaves inconsistent data behind that have to be fixed in
some way. The naïve solution to cold restart from the very initial state, is clearly unfeasible in
complex application due to exceeding time requirement, beside the computational waste. To en-
sure a minimum performance level, systems must be rolled back to the nearest stored consistent
state’s snapshot, which requires to maintain a program history structure. Upon a misbehavior,
the framework rolls back to the nearest checkpoint in time, loosing a restrained portion of com-
putation. Once the system has been restored, forward execution flow is re-established. So far,
the simple and fairly expensive record&replay mechanism was employed, but what if the system
would be able to act “in reverse”? Contrarily to checkpointing, we could adopt a backward ap-
proach which realigns the whole system to a consistent state by simply rewinding computational
steps, instead of restoring a costly program snapshot.

Reversibility, on the other hand, is a very appealing alternative to classical state-saving
rollback. Despite one can imagine, reversibility is a quite ancient research field. However only
in latest years it has gained a growing attention, both for energy efficiency aspects and for
software performance. It may have several potential applications in computer security, transaction
processing, intrusion detection systems, debugging activities, developing aiding tools (or IDE1),
and backtracking reasoning.

In this thesis we focus on devising a reverse code generator and on its integration with specu-
lative simulation platforms, and specifically for Parallel Discrete Event Simulation (PDES). Spec-
ulative simulation platforms usually require a considerable storage allocation to model the reality
and to store partial results, which further experience several update per time; nonetheless, the
optimistic slant increases the likelihood of rollbacks. Simulation processes exhibit CPU-intensive
burst loads too, representing a perfect field of application to test our approach in all the possi-
ble cases at once. Simulation is a problem-solving technique to cope with complex mathematical

1Integrated Developing Editors

1



2 INTRODUCTION

models generally conceived from real (or hypothetical) phenomena, which are non-trivially repro-
ducible otherwise. Simulation applications handle a considerable number of parallel/distributed
objects interacting together by message passing. Each object is a logical entity which relies on
the virtual time concept, processing the incoming messages. The event-based simulation enforces
equivalency between those messages and the relative triggered events. Unlike other structured
processes, speculative simulation adopts optimistic heuristics, which allow to perform scheduled
events even if they are not safe. Event safety straightway depends on actual processing events
order with respect to global causality relationship they have been sent with. Optimistic ap-
proach looses event processing constraints and exploits much better computational resources,
nevertheless it might bring the system to violate the causal order, bringing the simulation to an
inconsistent state. The more complex simulation model is, the more likely it requires to rollback
out-of-order events. So far the most consolidated way is to employ checkpointing techniques,
which though exhibit considerable memory overhead and time latency as the simulation model
gets more complex.

This thesis specifically aims at realizing an efficient reverse code generator module for spec-
ulative simulation application within the High Performance Computing (HPC). We propose a
novel approach based on a hybrid strategy that interweaves classical state-saving technique with
reverse computing, conceived to reduce as much as possible computational and memory require-
ments. Present work’s main goal is to give the most comprehensive perspective of our proposal,
from high-level intuition deep into implementation details and performance assessments. Chap-
ter 4 “The reversibility architecture” dives into a thoroughly dissertation on how reversibility
is achieved through this mixed reversible state-saving technique, and how it integrates into the
simulation framework we adopted (Section 4.5 “The use case: ROOT-Sim”). As hinted above,
simulation requires a huge amount of memory which is, furthermore, intensively updated. State
saving could lead into exceeding memory overhead tackled by widening the checkpointing time
interval. This a quite solid working solution which, though, increases time effort to realign whole
system to a common virtual time. On the contrary, the reversible program’s history would be
basically constituted by the reverse of each executed instruction, allowing to go back to any prior
point in time just by re-execute them. No snapshot is required, and less overhead data structure
complexity for maintaining state attributes, from which follows a reduced time effort. According
to the instrumentation method, reverse code is statically predefined or dynamically generated
when needed. Nevertheless, in both cases it becomes part of the original code seamlessly.

The major challenge is to determine which instruction to reverse and how to compute its
inverse. We minimized the impact of latter factor at the expense of initial static pre-processing,
such to guarantee to not hurt runtime performance dramatically. We achieve reversibility through
a hybrid instrumentation strategy. We intentionally chose to instrument relocatable objects via a
static and rule-driven approach. According to user-provided rules (via simple xml configuration
file), input code is persistently enhanced by injecting well-structured code blocks, devised to emit
reverse executable code on-the-fly. Commonly, there are two main ways to realize instrumen-
tation, either statically or dynamically. Independently to which method is used (Section 1.4.1
“Ways to instrument the code”), the introduced overhead is mainly composed of (a) a bigger bi-
nary file due to the injected code, (b) the time required by the system to execute extra code, and
(c) an additional memory amount to store possibly dynamically generated code. To understand
this third element, it sufficient to consider instrumented self-modifying code which might enlarge
original binary at runtime. Indeed this is what our reversing module does. The reason behind
static instrumentation choice is to limit time overhead due to dynamically parse and interpret
ready-to-execute instructions to decide whether to reverse them or not. Unlike the dynamic
approach, it does not leads into an exceedingly time-consuming process, which would affect pro-
gram’s efficiency. Nevertheless, the static paradigm marginally introduces some challenges and
reduces tool flexibility (see Section 1.4 “Instrumentation”).

One of the big hurdles of common static instrumentation tools is that there is no simple way
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to infer software’s semantic which requiring a notable complexity in its handling. To understand
why the semantic is so fundamental, it is sufficient to bear in mind that unlikely machine in-
structions and logical operation are in a one-to-one mapping. The assembly code is a low-level
language, optimized by compilers for specific machine architecture. It does not provide any infor-
mation on logical operations, nor about which instructions they involve, thereby it is not possible
to straightway reverse assembly code ignoring the underneath semantic. To overcome aforemen-
tioned hurdle, we picked advantages from both strategies. Reverse computation’s strength, on
the one hand, and state-saving simplicity on the other. We focuses to reverse only those in-
structions which directly alter memory locations. In principle seemingly to what the incremental
state-saving technique does, instead of storing the whole state in a separate storage unit, our
module converts it in a reversed set of operations, generated on-the-fly by the runtime support.
Instructions execute faster with regard to any snapshot restoration process. Nevertheless, we
aim to best optimize resources, as well. However big the container might be, many drops even-
tually fulfill it, so even instructions have to be restrained. The reverse code generator focuses on
memory-write instructions only, which are reversed and directly stored into the program’s heap.
In this way, we create a dynamically growing module which provides to the final software, the
entry points in order to be self-reversible. Simulation program itself —or rather any other overlay
software in its turn, for a future interoperability— will rely on this support to dynamically invoke
or step the reversed functions, as needed. From an high-level perspective, inverse functions get
seamlessly part of the software, and therefore can be called as generic functions without means
of interrupts or wrappers.

The instrumentation process is transparent to the user, the system autonomously retrieve
input format and machine specifications, and remaps binary code into a more convenient repre-
sentation. We have been adopted an ad-hoc binary representation to decouple the input details
from the instrumented process. Since its modular design, this project is intended to be as ex-
tensible and flexible as possible, able to support any combination of executable file format and
machine instruction sets.

The efficiency of this approach is evaluated by supporting two practical experiments, dis-
cussed further in Chapter 5 “Experimental Assessment”. As benchmark we chose a personal
communication system simulation model which runs on the open source ROOT-Sim [?] platform
(Section 4.5 “The use case: ROOT-Sim”). We are foremost steered to unearth the bare overhead
introduced by our approach, giving a baseline efficiency; further, a major emphasis is given to
assess system’s performance in a real simulation process. We believe this approach would re-
duce time effort providing a valuable speedup, if compared to state-saving mechanism, as the
simulation complexity increases.

Beyond the scope of the present work, we are likewise interested in exploring possible future
applications of our module, e.g. debugging scenarios. This thesis paves the way to the devel-
opment of a comprehensive framework that provides necessary prerequisites to properly support
reversible computation for a range of applications. Even though this module is not straightway
related to program analysis purposes, it may pave the way to a new form of debugging support,
i.e. the reversible post-mortem debugging (Chapter 6 “Future application fields”). Future work
consists in extending this strategy to a more general debugging aspects, instead of implementing
it in a single-purpose environment, exploring how to revive a crashed program and its whole
environmental context.

The remainder of this thesis is structured as follows: Chapter 1 deals with reverse computa-
tion theory, giving a comprehensive perspective on the context within which this thesis resides.
Further, it analyzes rollback techniques, compared to reverse execution capabilities, to finally
describes instrumentation techniques, to better understand how it is used in the present work to
achieve reversibility. Chapter 2 gives an overview on related work on debugging and instrumen-
tation implementations. It highlight peculiarities of each relevant implementation encountered
during our research, highlighting features, difficulties and the way they solved them. Following,
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Chapter 3 discusses the instrumentation framework’s architecture —namely Hijacker—, from the
high-level viewpoint down to the inner implementation aspects. A particular attention is focused
on decisions to implement the reverse code generator module we devised. For the sake of clarity,
the chapter gives a description on the configuration files driving the reversing module. Chap-
ter 4 describes reversibility by means of the Hijacker’s instrumentation module. The chapter
is a detailed dissertation on our specific approach, unearthing challenges and solutions, along
with a reference to the introduced overhead. It deals with implementation aspects of the reverse
code generator from an higher point of view to a more detailed one. Specifically it represents an
insight on our hybrid reversible approach which realizes a mixed state-saving technique. To pro-
vide a thoroughly perspective of performance assessment’s context, Section 4.4 covers a detailed
description on parallel optimistic simulation environments. It further faces adopted solutions in
simulation landscape, relating them, on the other hand, to what reverse computation allows to
achieve. Finally, in the Chapter 5 we discuss experimental results achieved. The chapter describes
experiments’ structure and objectives, which are to not only insight the pure time and storage
overhead introduced by our module, but the influence on a real simulation process. Additionally,
Chapter 6 is dedicated to discuss about future employments of our approach, specifically towards
reversible debugging scenario.



CHAPTER1
Reversibility details

This chapter is intended to give an insight on the playground on which this project relies. The
main project’s goal, as mentioned in “Introduction”, is to focus on providing the necessary to sup-
port hybrid checkpointing system pursued through an advanced instrumentation approach. This
project, indeed, paves the way to build a modular enhancing architecture spanning over different
fields, from the improvement of debugging and profiling systems, to efficient rollback paradigms
by employing reversible computing techniques. Scope of this thesis is to describe and evaluate an
innovative hybrid approach to solve state-saving rollback approach by means of reverse compu-
tation. Though, our framework is fundamental an instrumentation tool, which provides a set of
modules targeting specific problem instances. Thereby this chapter aims to thoroughly unwind
instrumentation techniques proposed so far, but first it will explore the arcane beyond reverse
computation and the aforesaid state-saving paradigm. It is a crossroads to conceive how Hijacker
interweaves those different techniques and paradigms keeping the advantages from each one in
order to achieve a higher global efficiency. Although the project is, actually, still targeted to
the undertaken case of study, we would like to depict project’s possible future capabilities by
providing such an overview spanning over the evolution history of this research field.

Reversible computation provides valuable opportunities in a wide field of applications which
spans from database systems to bidirectional debuggers, and from intrusion detection systems
up to massive parallel and distributed systems. More generally, it applies to whatsoever system
which requires to undo erroneous or unwanted operations. The prevailing adopted solution to
provide rollback support is, actually, the widely affirmed state-saving based approach, though
it could be quite expensive. On the contrary, reverse computation could provides, in theory,
an interesting performance speedup. Nevertheless, state-saving much simplifies the architectural
aspects with respect to reversibility strategy; thereby, herein the purpose is to overcome common
hurdles and expenditures, which rollback-based systems exhibit, via the reverse computation
approach.

1.1 Reversibility

We intentionally open this section by giving the definition of what the reverse computation allow
to do, instead of what it represents in fact. This, to foremost give the concept beneath its
potentialities in order to easily understand how will be achieved.

Definition 1 (Reversibility). Any program is defined to be reversible if it allows to rebuild any
prior system’s state relying on the only knowledge of the current one by backward retracing all
the computational steps between them. In other words, reversibility implies that each state Sk has
a unique predecessor Sk−1.

Reverse execution is in fact the software implementation of the more general theory of Re-
versible Computing which, in turn, refers to computational models performing only logically

5
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Figure 1.1: Divergent computations

Bit value

Entrpy

0

1

0

2

0

3

0

4

0

5

. . .

. . .

0

N

. . . 1

1

1

2

1

3

1

4

1

5

. . .

. . .

1

N

Bit value

Entrpy

0

1

0

2

0

3

0

4

0

5

. . .

. . .

0

N

. . . 1

N+1

1

N+2

1

N+3

1

N+4

1

N+5

. . .

. . .

1

2N

Irreversible Computation

Figure 1.2: Entropy variation in bit-erasure computation

reversible operations. That is, instructions which allow to rebuild any previous state relying on
the only knowledge of the current one, proceeding backwards through the computational steps
performed. Fundamental requisites to achieve real software and physical (§1.2) reversibility are
the following two: (a) no information have to be lost or implicitly ignored during computation
and (b) the transition function, from a generic state Sn to state Sk, must be bijective. Neverthe-
less, there is no existing software implementation designed to be fully reversible, actually they
always exhibit a certain degree of irreversiblity as leading inheritance of the programming lan-
guages’ structure. One of the biggest hurdles in achieving software reversibility is indeed due to
the forward-determinism of our traditional computational models and, thereby, of their relative
programming languages; however some overcoming solutions were proposed, in the last decades
(§1.2.3).

Definition 2 (Logical reversibility). An operation is logically reversible whether its logical state
just before it is performed, is uniquely determined by the output sate; thereby, no information
must be erased, or otherwise lost. The straightway consequence is that a logical reversible program
is backward deterministic along its timeline.

Definition 3 (Physical reversibility). Processes are defined to be physical reversible if they do
not dissipate energy in heat at all, hence without generating entropy. Though, perfectly physical
reversible machines are unfeasible, as the quantum theory clearly explains. Any environment has
always a non-zero possibility to be irreversibly altered by an everlasting ground noise which creates
entropy.
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1.2 Physical reversibility

Although in the past it did not represent a major hurdle, nowadays power consumption gains
an increasing attention since the growing number of embedded and mobile devices featured
by a limited power supply and heat dissipation means. Therefore, besides the due respect to
our Planet, managing wastes with a much more careful perspective has became mandatory.
Relying on this aspect, aforementioned Reversible Computing theory is hence an interesting
field of research since it would allow to develop more efficient, but even powerful, hardware
devices. It does not represent a mere high-level implementation within software, programming
languages or algorithms, but it also straightway pursues physical reversibility. A quite wide
research area born in the ’60, is targeted at developing physical reversible devices which are
able to perform invertible operations; transformations carried out by physical mechanism that
are (almost) thermodynamically reversible, or rather which implements a zero-entropy operating
logic. Needless to say that it’s quite impossible to develop a perfectly reversible hardware devices
in reality. However the continuous evolving of this model will eventually land, and in fact it
already does, to very interesting practical results.Physical reversibility is a notable topic, but
it lies out of this thesis’ scope and even though software and hardware reversibility are deeply
related to each other (as Michael P. Frank shown in [?]), this chapter will only focus on the
former kind of model. Nevertheless this section is dedicated to give the reader an overview about
this topic, in order to keep not hanging up those concepts. For a deeper insight on this matter,
refer to [?, ?, ?].

Logical reversibility ⇐⇒ Physical reversibility (1.1)

Unfortunately, traditional models of computation are based on logically irreversible schemes
which entail the irreversibility property down to the machine instructions. Although reversible
hardware devices still remain more prototypes rather than real implementations, several endeav-
ors were made. Attempts to achieve reversibility in classical architectures could led into the
frustrating result of decreasing the overall computational efficiency. However, as P. Frank claims
in [?], traditional models ignores fundamental physical constraints which can lever on to obtain
a valuable gain. We quote from the abstract of his work:

“ [. . . ] This thesis gives the first analysis demonstrating that in a realistic model of
computation that accounts for thermodynamic issues, as well as other physical
constraints, the judicious use of reversible computing can strictly increase asymp-
totic computational efficiency, as machine sizes increase. I project real benefits
for supercomputing at a large (but achievable) scale in the fairly near term.
And with proposed future computing technologies, I show that reversibility will
benefit computing at all scales. Next, the thesis demonstrates that reversible
computing techniques do not make computer design much more difficult. [. . . ]

Conservative logic

Logical reversibility of whatsoever program is indeed strictly related to the underneath physical
reversibility as well. Traditional hardware models are actually irreversible since they dispose
information by performing computations. Relying on this forward-deterministic hardware archi-
tecture, it is not surprising that also high-level languages are irreversible in nature, since they
are developed over such a kind of architecture. Landauer’s principle [?], states the relation of the
heat dissipation with regard to the bit information erasure; he also argues the inevitable presence
of logic (thus physical) irreversible operations in traditional computational models.
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Theorem 1 (Landauer’s principle). The irreversible loss of 1 bit of computational information
requires the dissipation of the following quantity of energy:

Emin = kBTa ln 2 (1.2)

Where the kB is the Boltzmann constant (∼ 1.38 · 10−23 J/K) and Ta is the temperature of the
circuit in which the lost bit finally ends up.

Emin is the corresponding amount of energy that any computer will at least dissipate as heat for
each single bit of information erased, or otherwise disposed1. Going against Landauer’s claim,
Toffoli in ’80 realizes [?] a working hardware prototype of physical reversible logic gate. Sub-
sequently, Fredkin et al. in 1973 [?] investigated the possibility to build a complex reversible
and also conservative hardware architecture, by the employment of the Fredkin logic gate. A
conservative-logic gate, such as the Fredkin gate, is a Boolean function which is either invert-
ible and conservative. Former property regards the mathematical aspect to be able to find an
invertible function, whereas the latter refers to the real information conservation throughout the
elaboration process.

Definition 4 (Reversibility). Let A be an automaton, it is reversible if the transition function
from generic state Sk to generic state Sn is invertible.

Definition 5 (Conservative). Let N be a combinatorial network, it is defined to be conservative
if it conserves in the output the number of the 0’s and 1’s present in input.

C A B Ĉ Â B̂

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Table 1.1: Fredkin’s gate truth table

(a) Symbol (b) Operating logic

Figure 1.3: Fredkin gate logic

Conservative logic considers processing merely as a signal stream conditional routed within
the network. To create a parallelism with the quantum mechanic theory, matter cannot be created
nor destroyed, only transformed.

1About 3 · 10−21 joule at room temperature (21◦)



1.2. PHYSICAL REVERSIBILITY 9

1.2.1 Logical reversibility
Basically, the irreversibility property of current platforms is due to the destructive logic on which
they rely. Most often information is disposed throughout the operation. To quote from [?]:

“ Currently, computations are commonly irreversible, even though the physical
devices that execute them are fundamentally reversible. At the basic level, how-
ever,matter is governed by classical mechanics and quantum mechanics, which
are reversible. This contrast is only possible at the cost of efficiency loss by
generating thermal entropy in tot he environment. With computational device
technology rapidly approaching the elementary particle level it has been argued
many times that this effect gains insignificance to the extent that efficient oper-
ation (or operation at all) of future computers requires them to be reversible.

Branches, assignments or other non-deterministic functions (e.g. random number generators)
represent a subset of the instructions that implicitly gobble bits of information. In the reversible
computing theory those instructions are referred to as destructive operations —Table 1.2 reports
the most common operations. Besides entropy that those operation generates by flipping bits’
state, they basically prevent to rebuilt prior states by a backward retrace. For example, an if
statement is solved during forward execution basing on the conditional input value; however
that value will be just thrown away as soon as the proper branch is taken. On the contrary,
backtracing the if statement would require to keep the information of which branch has been
taken. Considering the following code snippets (in C-like syntax).

1 int foo(int value , int offset)
{

2 int value;
3
4 if (value < offset) {
5 value += offset;
6 } else {
7 value -= offset;
8 }
9

10 value *= 4;
11
12 return value;
13 }

Listing 1.1: Indeterimism of
code branch implies irreversibility

1 int foo(int value , int offset)
{

2 int value;
3 char b; // Global variable
4
5 b = value < offset;
6 if (b) {
7 value += offset;
8 } else {
9 value -= offset;

10 }
11
12 value *= 4;
13
14 return value;
15 }

Listing 1.2:
Reversible implementation of the
code branch

1 int reverse_foo(int value , int
offset) {

2 int value;
3 char b; // Global variable
4
5 value /= 4;
6
7 if (b) {
8 value -= offset;
9 } else {

10 value += offset;
11 }
12
13 return value;
14 }

Listing 1.3: Inverse function
that undoes foo
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Listing 1.1 clearly shows that it is impossible to know from which of the two branches the
statement at line 10 is reached, since this information will be definitively disposed. Once the
branch is taken, there is no longer the information suggesting whether was value to be less
than offset or rather the opposite. Therefore there is no possibility to trace backwards the
execution from line 10 but in the case we have knowledge of which branch has to be rewound.
On the contrary, Listing 1.2, depicts a reversible and semantically equivalent2 version of the
previous code snippet. In this case the b variable retains the output of the comparison, allowing
to properly undo operations, which are performed by the relative reversing function shown in
Listing 1.3.

Programming languages’ statements can be categorized in two general families, (a) construc-
tive and (b) destructive operations. The constructive operation are those in which no information
are lost, contrariwise destructive ones overwrite one or more operands making impossible to trace
them back. Table 1.2 shows a rough categorization of the most common C operands, along with
their possible inverses. Due to the traditional programming languages constructs’ nature, de-
structive operations are eventually employed in any program. Integer division, shift and modulo

Operator Statement Meaning Type Inverse
= a = b destructive SAVE(a)
+= a += b a = a + b constructive a -= b
-= a -= b a = a - b constructive a += b
*= a *= b a = a * b constructive a /= b
/= a /= b a = a / b destructive SAVE(a)
%= a %= b a = a % b destructive SAVE(a)
�=, �= a �= b a = a � b destructive SAVE(a)
|= a |= b a = a | b destructive SAVE(a)
&= a &= b a = a & b destructive SAVE(a)
++ a++, ++a a = a + 1 constructive a–-
−− a–-, –-a a = a - 1 constructive a++

Table 1.2: Assignment statement constructiveness

operations, in general cause loss of information for arbitrary variable values. Integer division
may cause truncation of result; remainder after division has indeed no information about the
dividend obtained, even if we know the value of the divisor. Analogously both shift and modulo
operations may result in bits getting shifted out, or truncated, and thus getting lost.

Several solutions have been proposed so far in the literature to address the logical reversibility
problem (§1.2.3), spanning over several abstraction levels and approaches.

• Program state recording

• Source code transformation

• Code virtualization

• Reversible languages

• Instruction reversion

Instruction-level reversibility is the finest one, theoretically allowing to walk back and forth
along the whole execution timeline (except for the aforementioned destructive instructions). A

2Research of reversible languages and semantically equivalent is a way towards reversibility, however it requires
to “understand” the code itself, namely infer its semantic.
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perfect instruction-level reversibility represent a kind of optimum in terms of time and memory
requirements, since every forward set of instructions may be undone by the relative inverse.
Therefore, no variable’s trace must be kept and no extra instructions would be required, hence
forward program’s execution would not be slowed down. However, this perfect instruction-level
reversibility is quite impossible to obtain due to the aforementioned structure of our traditional
computational models that inevitably rely on destructive operations (or instructions). Feasible
solutions unavoidably stain the purely reversion process by overcoming the information erasure
with some form of state saving, thus introducing a non-zero overhead. At a first glance, taking into
account aforementioned considerations, it might seem that a similar approach is definitively not
worth. In fact, from a theoretical perspective, rewinding the computation by overturn instructions
allows to better exploit computational resources. Herein we anticipate the Akgul’s work [?], where
he devised a instruction-level reversion algorithm, by quoting the achieved results. To understand
the quotation, ISS stands for Incremental State Saving and ISSDI is Incremental State Saving
for Destructive Instructions, whereas the RCG is the reversion technique algorithm adopted:

“ In order to test instruction level reverse execution on a debugging session, we
implemented a low-level debugger tool with a graphical user interface (GUI)
which provides debugging capabilities such as breakpoint insertion, single step-
ping, register display and memory display. The debugger runs on a PC with
Windows 2000. The PC is connected to the MBX860 board via a Background
Debug Mode (BDM) interface. [. . . ] However, even in this case, the runtime
memory requirement with RCG is 82X and 55X smaller than the runtime mem-
ory requirements with ISS and ISSDI, respectively. In general, RCG achieves
from 2.5X to 2206X and from 2X to 1404X reduction in runtime memory us-
age as compared to ISS and ISSDI, respectively. [. . . ] The slow down in reverse
execution with RCG as compared to ISS and ISSDI is between 1.16X and 1.89X.

Indeed, only a reduced subset of instructions are actually undone leaving the remainder unaltered,
but moreover it requires much less storage either to save and to retrieve values. Memory access
is quite expensive with regards to instruction execution (∼3 orders of magnitude), therefore
along with the memory thrift, it follows a time overhead saving. Reverse history has only to
keep track of a very reduced amount of information, such as the branch-path, and allows to
optimize the runtime slowdown. However reverse computation introduces other thorny issues
concerning common non-deterministic interactions or functions (e.g. random number generator)
which require to be rerun within the same first execution context.

1.2.2 Feasibility of the reversible execution

Usually digital computers perform operations that dispose information on the computing history.
Therefore the immediate predecessor of a computational state could be ambiguous. In other
words traditional general-purpose automaton lacks a single-valued inverse function.

In 1973 Charles Bennett [?], first showed the theoretical feasibility of logically reversible
computers, arguing that in fact it is practical to make any irreversible computation reversible.
Bennett, though, addressed only the logical and theoretical aspects, leaving open the problem of
how to precisely embed such a reversibility in real and complex hardware architectures. However,
his work was hinged to overcome Landauer’s claim [?] that irreversibility is an unavoidable com-
puting property. Bennett built a 3-tapes reversible Turing Machine which proved the reversibility
of general-purpose computers, which is not much more complicated than irreversible ones. In
fact, this is the first attempt in this direction. However Bennett’s reversible machine is based
on the state saving technique; basically he saved all the information that would be otherwise
disposed. Evidently, such a machine may require a very large amount of storage, fact which
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renders a real implementation in complex systems quite unfeasible.
In 2001 Buhrman et al. in [?] proved time adn space upper bound to reversibly simulate

irreversible computations:

“ Previous results seem to suggest that a reversible simulation is stuck with either
quadratic space use or exponential time use. This impression turns out to be
false: Here we prove a trade off between time and space which has the expo-
nential time simulation and the quadratic space simulation as extremes and for
the first time gives a range of simulations using simultaneously sub-exponential
(f(n) is sub-exponential if f(n) = o(n)) time and sub-quadratic space.

1.2.3 Approaches to reversibility

Program’s reversibility is a wide and general field which embraces lots of subtle viewpoints, form
logical to physical ones, such as the realization of hardware architectures able to perform naively
reversible execution. So far, Definition 1 of reversibility introduces only a conceptual perspective.
Reversible execution (or computation) is indeed achievable also on top of traditional irreversible
machine. Hence, how reversibility is practically achieved?

The obvious and foremost plain solutions is the state-saving. As the name suggests, program’s
history is periodically stored as checkpoints during the natural execution. Therefore as soon as the
system is prompted, any previous state can be reached by restoring the process state recorded in
the snapshot. Since checkpoints are discrete in time, though, this leads into a coarse granularity.
To restore a previous sate it has to be chosen the nearest checkpoint in time and then replay those
instructions which separates the checkpoint from the target time. Although this solution is quite
simple and requires low architectural complexity, it is highly time-consuming and moreover it may
require a very large amount of storage. Further a bounce of optimization were made to improve
the state-saving strategy leading to the incremental state-saving. In the incremental state-saving,
only the directly modified states are stored, therefore it slightly lightens the memory requirements
which, however, remains still considerable in complex systems, such as parallel and distributed
application. Further, unlike transactional applications, in general purpose computation or in
parallel simulation it is harder to recognize variable modifications, making more complex the
design of the state saver.

Program animation is another approach to reversible execution. It basically interposes a
virtual machine level with a reduced and reversible instruction set. Therefore each real assembly
instruction is uniquely mapped into a reversible one allowing to run it backwards. Since the
program must be dynamically interpreted, it slows considerably down the forward execution. In
order to reduce runtime slowdown a solution is to directly act at the source code level. Source
code transformation is therefore targeted to statically parse an irreversible code producing a
reversible version of it by excluding destructing instructions. For those instruction state saving
is applied. Even though, time and memory requirements are lightened, they still slow down the
forward normal execution since other extra instruction have to be performed.

A very interesting solution is the one proposed by Tankut Akgul and his teamwork in 2002
[?]. They proposed a novel approach which acts at the assembly level. It is an instruction-level
reverse code generator which statically parses an input program and computes their reverse,
instruction by instruction. Assembly level reversibility ensures a fine-grain rollback, without the
need to forward rerun any statements. Stepping back to some previous instruction can be trivially
done seamlessly, with regards to the user perspective. It simply diverts the natural control flow
towards the inverse code, and back to the forward one as soon as the former point in time has
been reached. Since no additional instruction has to be executed, this solution would theoretically
introduce almost-zero time overhead, except the time to rewind calculi; further it requires much
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less storage amount. A portion of memory is mandatory due to the aforementioned destructive
operations. Whenever the algorithm cannot to straightway reverse the assembly code, it will
fallback to state saving. Nevertheless, this kind of solution is also quite complex to realize and to
implement. The major hurdle in this way is to infer software logic. The semantic is mandatory
to known how to group assembly instructions that belong to the same logical operation. Akgul
relies on dynamic control flow information from which he builds a Control Flow Graph (CFG)
employed to properly reverse instructions blocks. In his work, he exploits a three-passes static
analysis to build a control flow graph in combination with a variable renaming algorithm which
emulates the SSA.

Another field of research in the direction of the reversibility hinges on devising reversible
programming languages. However, the major hurdle is that the writing of a reversible software
in nature overburdens the developer with an extra effort. It is difficult to achieve due to the
non-conventional concealing and the is unreasonably time-consuming. Rather, it would be much
more valuable to develop a system able to convert any irreversible program into a reversible one.

Research done on high-level languages has built a solid theory, although mainly focused only
on one-directional determinism structure, according to traditional machine architectures. On
the contrary, backward deterministic languages’ study is a quite new and thereby not much
explored research area. Yokoyama et al., in [?], face the principle that a programming lan-
guage (independently of the abstraction level) must to ensure in order to be reversible, fur-
ther they devise a reversible high-level language prototype. Noteworthy it is what they claim:

“ [. . . ] under the assumption that inverse constructs have the same computational
complexity as the forward ones, a language will be easily and locally invert-
ible, and the inverted programs will have the same complexity as the forward
programs. [. . . ]

However, devising a program directly in a reversible flavor is not a straightforward process. This
is why reversible languages, though feasible, are not really employed. It would be much more
convenient to circumvent the problem by using a proper interpreter which generates the relative
forward and reverse version of the program. As again [?] states:

“ Currently, almost no algorithms and other programs are designed according to
reversible principles (and in fact, most tasks like computing Boolean functions
are inherently irreversible). To write reversible programs by hand is unnatural
and difficult. The natural way is to compile irreversible programs to reversible
ones. This raises the question about efficiency of general reversible simulation
of irreversible computation.

However also this strategy poses the challenge of whether to instrument the native code or to
dynamically interpret it (§1.4.1).

1.3 The Rollback Operation

Rollback is required by any environment in which a prior state should be restored, to prevent
system crashes due to failures, to undo speculative steps which are subsequently considered
inconsistent, or in general to rewind erroneous or unwanted operations. Many systems exhibit
a certain level of concurrency; therefore, they need a rollback engine to solve the unavoidable
conflicts among those operations. The most effective way to realign the system to a consistent
state is to undo the part of the computation which brought the system to the faulty state. In
database and distributed systems, the colliding elements are typically transactions tying to access
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shared resources simultaneously, but even in much simpler architectures conflicts at instruction
level can occur, i.e speculative executions or branch predictions. Parallel optimistic simulation
platforms, process hundreds (or even millions) of events speculatively, most of which might be
rolled back due to the relaxed synchronization constraints. A solution to cope with all of these
challenges is to rollback the whole system’s state to a previous coherent one. Commonly, rollback
support is actually achieved through state saving techniques.

Definition 6 (State saving). State saving (or checkpointing) is the act of saving the relevant
state of a running program so that it can be lately restored.

State saving provides the backbone on which rely a great number of software tools and system
architectures. Database systems, fault-tolerant distributed systems, speculative techniques in
parallel application and microprocessors architectures. A middleware is usually in charge of
periodically taking a snapshot of the current system’s state before memory transactions3 take
place and traces any relevant operations belonging to them. Therefore creating a program’s
history maintaining persistent and volatile altered data. Although this kind of strategy allows to
provide a relatively transparent rollback support [?], it exhibits burdensome limitations. For quite
complex and long executions, the storage requirement would grow unreasonably due to possible
frequent state changes and memory saturation; further each memory access to store or retrieve
the data will increase the overall number of instructions to be performed also in the forward
flow. Thus, state saving could heavily affects program’s performance. Although this strategy
has evolved experiencing various improvements, several implementations focus and optimize only
application-dependent issues.

Prior to rollback is necessary keep track in some way of the program’s evolution, namely
its history. That program’s history is basically composed of a list of recovery records, roughly
classified as state- or operation- based, according to the kind of information they provide.

state-based → physical logging
Represents the physical memory record of one variable’s state or register value, along with
possible location in memory of that value.

operation-based → logical logging
Describes the operation which alters some variable rather than a memory state.

Many implementations of checkpointing engines have been developed and improved, aimed to
reduce overhead. A deeper insight on classical checkpoints and their implementation can be
found in [?]. A dynamic approach to checkpointing which does not require to instrument or
wrap any library is given in [?, ?] with the DyMeLoR and Di-DyMeLoR4 software, respectively.
They are software layer designed to minimize memory consumption due to meta-data describing
the current layout of the simulation process’s state, and to provide an efficient and transparent
facility to allow simulation objects scattering across non-contiguous memory chunks.

Narrow as it may be the gap between two successive checkpoints, the system always needs to
be realigned to the precise faulty point by a forward re-execution from the snapshot just restored,
namely the coasting forward process. In database systems, for example, when a transaction has
to be aborted, a rollback takes place. The rollback manager would find the nearest checkpoint
and rolls back the whole system to the previous consistent state, afterwards it redoes transitions
up to the current point ignoring the faulty one. Analogously, in simulation systems, state is then
reconstructed by the message log stored along with the checkpoint throwing away faulty branch
computation steps.

Generally, rollback results in a twofold time effort. First it slows down the execution speed in
order to update the program’s history, and second it introduces a computational waste due to the

3In this context we refer to memory transactions as a generic state transitions which involve one or more
variables’ change (i.e. memory region, register, stack, heap).

4DyMeLoR stands for Dynamic Memory Logger and Restorer, and Di-DyMeLoR refers to Dirty-DyMeLoR.
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Figure 1.4: General rollback scheme

coasting forward. Considering that in database systems, distributed or simulation environments
rollback is employed to realign the system back to even one faulty generic transaction, expense
becomes even more evident. In those cases, it would be sufficient to undo only the operations
related to that transaction, rather than to costly find and restore a previous state which likely
requires a partial replay. Overall, the waste is not only energetic but moreover in performance
due to the time required to realign the system and, from an higher perspective, in algorithm
complexity to maintain consistency in a distributed (or parallel) environment.

1.3.1 State saving

During a program execution, its state will change several times due to the operations performed.
As the name suggests, through sate saving each time an instruction alters the program state,
a generic structure containing all the relevant information will be saved. That structure is
basically represented by(a) the set of registers, (b) the set of global variables, (c) the current
stack and finally (d) the actual heap. The state-saving technique may require a considerable

Stack

Heap

Globals

Code

Kernel space

Figure 1.5: The process’ history snapshot elements

amount of memory to store such information, proportionally to the execution length and the
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memory image to be checkpointed. Therefore reversibility is basically bounded by the actual
system storage capabilities. In parallel and/or distributed systems, the overhead introduced could
be unreasonably high, so as to prevent an efficient and complete state restoring. For example,
instructions beyond the threshold due to system’s memory boundary, cannot be restored anymore.
To overcome storage boundary, a wraparound buffer solution may be employed; however in
this case an additional time cost required to reclaim old memory already enrolled by old state
snapshot must be taken into account. Thus, the overhead is mainly constituted by (a) the storage
requirement to store the process’ state, (b) the time cost to take the snapshot, which introduces
a delay between the natural execution and the checkpoint creation, and (c) finally, the cost of
communication and synchronization among processes to take consistent snapshots and. Let Tk
be the timestamp of last saved checkopint. It follows that restoring the systems to the generic
time t, such that t > Tk, requires to look for the nearest checkpoint Tk, to restore it, and than
re-executing each computational step until the wanted state at time t is reached.

Checkpoints must be thoroughly consistent within multiple nodes of the systems, and must
be complete with respect to the restoration process. A big effort is required to create and main-
tain those snapshots, so that it may hurt system’s performance considerably. In order to keep
checkpoints consistent, a relatively high number of information is required. In distributed sys-
tems, preserving consistency implies coordination among nodes throughout the snapshot process
and requires message causality to be enforced. However, since rollback are not so frequent, the
failure-free running overhead is considerable. Parallel simulation applications, on the other hand,
employ the state saving to ensure event causality. A quite interesting research on state saving
techniques applied to PDES platforms are presented in [?].

A checkpoint is logically a memory snapshot (Figure 1.5). Relevant state information is
collected in a log which represents the whole program’s history. An optimization is to save
only altered values, rather than the whole set, namely the Incremental State Saving. Therefore,
instead of saving the program’s state each time one operation modifies it, this approach takes
a differential snapshot of the incremental change set. In such a way memory consumption is
reduced, since checkpoints are discrete in time; nevertheless rollback requires to replay each step
forward form the previous checkpoint until the desired program point is reached.

Generally checkpointing process should be transparent with regards to the application’s pro-
grammer. He/she likely ignores the underneath state saving aspects, such as consistency issues.
Therefore it risks to overburden the developer with the devising of a complex architecture leading
to misleading checkpoints, resource wastes or dangerous behaviors. In the following, we provide
a very brief overview of the most common state saving techniques.

Copy state saving Copy State Saving (CSS) is the simplest technique firstly proposed by
Jefferson in [?]. Basically it consists in a plain copy of the whole program’s state and possibly
relative meta-data to restore it. Whenever an operation affects the state, a snapshot is taken.
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Figure 1.6: State-saving rollback
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Figure 1.7: Checkpoint rollback

Needless to say that storage requirement may rapidly increases, accordingly to the application
complexity. If, on the one hand, the CSS does not require any coasting forward, on the other
hand, its disadvantages is a massive expenditure. To bound memory consumption, the fossil
collection activity becomes fundamental.

Sparse State Saving Taking a new snapshot each time will overcharge the CPU with check-
pointing scheduled operations. Sparse State Saving (SSS) is an optimization of the previous
basic technique, which tries to reduce both storage and time overhead. Checkpoints are created
either periodically or adaptively according to tunable parameters. In both of the aforesaid cases,
program history is not “uniform” in time, on the contrary it results discrete. Therefore upon
a rollback issuing, state is likely restored to a certain point in time and space. To realign the
system, a coasting forward process is needed to rebuild the system state. Since each state change
has not a related snapshot anymore, during the coating forward process, it must be ensured the
computation will retrace the same previous executions trajectory. Non-determinisitc functions
may divert the execution to another trajectory, bringing the system to a misleading final state.
The correct behavior is firstly proposed in [?] as Piece-Wise-Deterministic (PWD).

The main difference between the Periodic State Saving (PSS) or Adaptative State Saving
(ASS), is the algorithm which drives the checkpointing engine. As its name suggests, the former
simply saves the program’s state according to a checkpointing interval. A proper sizing of this
parameter is fundamental to obtains the right tradeoff between the storage expenditure and
the coasting forward duration. Adaptative technique, instead, relies on heuristic algorithm to
dynamically adjust the aforesaid checkpointing interval to best approach optimum performance.

Incremental State Saving A further optimization of state saving is to strictly save punctual
changes only, instead of the whole state [?]. The program’s history is a form of “diff log” with
respect to the last checkpoint. There are several implementation versions of the ISS, that herein
we only list; for a further reading refer to [?].

Optimized ISS The original proposal

ISS with memory protection It adopts a memory security protection system relying on
the OS features

Transparent ISS This version features a grater flexibility by allowing the overloading

Automatic ISS An implementation that relies on code instrumentation

1.3.2 Reverse code generation
The underneath idea of reverse execution is to lever the fact that many instructions are con-
structive and thereby state-conservative in nature (Table 1.2). Such a set of instructions can be
easily reverted by computing theirs counterparts, e.g. x = x + 1 is straightforwardly reversed
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into x = x - 1. This method directly generates the reverse code of each constructive instruction.
Generation process can be accomplished either(a) through a static pre-processing of the source
code (b) or by dynamically emit the reverse code on-the-fly.

Static emitting The source code is statically parsed in order to create the program’s control
flow. Once the path-sensitive analysis has explored data and control dependences, the instruc-
tions are thus reversed, creating an inverse version of the program. An example of that approach
is widely described in [?] by Akgul and Mooney. It is a SSA-based method which handles non-
deterministic o destructive operations, i.e. branches or assignments, by embedding thrown bytes
within reverse code. To distinguish which path to follow while backtracking the program, condi-
tionals on those meta-data are used. To restore the value of a variable, they rely on combinations
of the following three techniques described.

Redefine As the name suggests, a variable’s value is restored by finding its nearest reaching
definition of and recursively restoring the values it depends on.

Extract-form-use This technique embodies the proper code generation approach. It reverse
executes an assignment command, whose function is invertible, by running the relative in-
verse function. Functions that involve more than one variable can be still inverted, provided
that other variables are restore beforehand.

State saving Whenever the above mentioned techniques cannot be applied, the system falls
back to the classic state saving (§1.3.1).

Memory overhead, in this case, is basically composed of the reverse code, which is statically
predefined as the output of the initial parsing. Though, in multi-threaded environments and,
in general, for highly non-deterministic programs, the overhead could grow unreasonably since a
massive interleaving of threads and modules. It might be needed to consider a very high number
of different possible paths from which unraveling, that would overburden preliminary parsing, if
not thwart it. Further, since non-deterministic functions could not be always predicted —thus
reversed— statically, this poses a second challenge to this strategy, which could be circumvented
through the following dynamic approach.

On-the-fly reversion Instead of pre-processing the original program and statically building a
reverse version of it, an alternative is to emit straightway at runtime the reverse code whenever
the relevant operations are met, according to some criteria. In contrast to the static approach, it
is well-suited for non-determinism since it exploits runtime information that the natural execution
provides. Further, the memory would be more efficiently employed. The inverse code is generated
dynamically on-the-fly, therefore the possibly untouched portions of code would not be generated
at all, without introducing any additional overhead, neither. Nevertheless, since the middleware
layer is in charge of producing the reverse code on-the-fly, it will inevitably slows down the
forward execution in order to undertake its task. There is a threshold between adopting the static
approach, which ensures a more slender process, and the dynamic generation which overcome
non-deterministic issues at the expense of an extra time overhead. An example is given in [?, ?].

The on-the-fly generation approach can be roughly accomplished both through a virtualized
environment or by relying on code instrumentation, as we will do. The former approach requires
that an on-line interpreter pareses the instructions to be executed and remap them into a simpler
virtualized instruction set. However this solution is quite expansive, as one can easily imagine.
The middleware layer heavily slows down the natural execution since it interposes the additional
effort of the just-in-time translation. Hence the virtualzed environment must have much more
computational power than the one being inspected. One advantage in adopting the virutalized
solution is the employment of a reduced and simplified instruction-set which can be properly
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devised to remap each destructive operation into a constructive one (see Table 1.2), simplifying
the instruction inversion process.

To overcome the aforementioned performance hurdle, instead of running a virtual interpreter,
our alternative is to instrument the code, in order to inject the assembly code chunks that act as
“call hooks” towards the reverse engine. Once the reversing engine is invoked it can relies on the
runtime information and data, which ease its task. This represents the novel approach towards
which we are steered throughout this thesis, and the we try to embody with our module (Sec-
tion 4.2). The reversion is accomplished in a two-passes process. First the code is instrumented,
therefore the code injected invokes the real reversion engine which produce the inverse assembly
instruction.

Specifically, our engine is in charge to produce at runtime the reverse code of instruction
as it is met. Whenever those relevant instructions, according to some criterion, are met, the
interpreter will produce the a block of code which realizes the inverse function. Likely the
dynamic instrumentation approach, it is possible (§1.4) to fine-grain filter the instrumentation
and thus the reversion process. Theoretically, the user can devise custom filters to produce reverse
code only of a specific set of instructions.

1.3.3 The Hijacker’s approach
Hijacker is a static binary instrumentation tool which relies on an proprietary intermediate rep-
resentation of the input. The aim of this tool is to provide a wide-spectrum flexibility, featuring
the support for several objects file formats and instruction-sets. The binary instrumentation at
the machine level poses the following two main challenges; either a high machine dependence,
and a user-side complexity due to the need to manually provide the code to instrument.
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Figure 1.8: Hijacker’s high-level instrumentation schema

In order to address these issues and to simplify source code handling, Hijacker maintains
an intermediate representation of the original code (see Section 3.1 “Intermediate binary repre-
sentation”). This internal binary representation allows to handle even complex instrumentation
processes efficiently, allowing very extensible support to several executable file formats without
the need to modify the inner engine. Further, the intermediate representation decouples instru-
mented instructions from the original ones, and abstracts code references between them. So
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that it ensures the program’s correctness throughout the instrumentation process and a complete
compliance with respect to external compiler tools. Hijacker modifies this internal representation
driven by a set of customizable rules provided through a xml file. A detailed description on the
configuration rule file is given in Section 3.3.1. The rule-based structure of the file allows the
user to customize the inner instrumentation engine which is thus highly modular and flexible
according to the user needs. The user can either provides handcrafted code or chooses prepared
code modules targeting purpose-specific aspects, such as memory inspection, I/O control, func-
tion call trace, etc. Such a way addresses the second challenge the instrumentation process poses,
relieving the user from the mandatory and non-trivial task of devising assembly code.

Though Section 3.2 will provide a much more detailed description about the overall process,
herein just an overview is given. Hijacker takes as input the relocation object file output by
the compiler, afterwards the front-end will parse provided object files in order to disassemble
its structure in basic blocks and mapping them to the corresponding representation. Once the
object file is mapped to the relative program map, the rules provided instruct the engine on the
specific instrumentation to perform. After the whole process is accomplished, the new object
representation of the program will be recompiled and relinked with the rest of the software and
the possibly employed extending modules.

We intentionally devise Hijacker to operate on the assembly level. Unlike higher abstraction
levels, it does not provide any semantic information about the software logic. Hence, to reverse
assembly instructions the instrumentation engine will eventually run into a challenge. By having
no knowledge about the underneath semantic, its code perspective is a mere sequence of assembly
instructions. The following example will explain better which is the real problem.

1 int main(int argc , char
**argv) {

2 int n;
3
4 n = 8;
5 n++;
6 n /= 3;
7
8 return 0;
9 }

Listing 1.4: Source code
example

1 0:push %rbp
2 1:mov %rsp ,%rbp
3 4:mov %edi ,-0x14(%rbp)
4 7:mov %rsi ,-0x20(%rbp)
5 b:movl $0x8 ,-0x4(%rbp)
6 12: addl $0x1 ,-0x4(%rbp)
7 16: mov -0x4(%rbp),%ecx
8 19: mov $0x55555556 ,%edx
9 1e:mov %ecx ,%eax

10 20: imul %edx
11 22: mov %ecx ,%eax
12 24: sar $0x1f ,%eax
13 27: sub %eax ,%edx
14 29: mov %edx ,%eax
15 2b:mov %eax ,-0x4(%rbp)
16 2e:mov $0x0 ,%eax
17 33: pop %rbp
18 34: retq

Listing 1.5: Assembly code
produced by GCC 4.9.2 idioms

Consider the C code in Listing 1.4 example. The snippet realizes a simple function that makes
some basic arithmetic operations on the variable n: an assignment, therefore an increment and
finally an integer division, which is quite linear. Listing 1.5 which reveals the machine code behind
the previous snippet. Although the simplicity of the operations involved, even a simple function
is not straightway reversible just by linearly scan its machine code instruction by instruction. In
this case, semantic would be compromised and actually guaranteed to be completely arbitrary. In
fact, the parser engine must foresee logic operations embodied by groups of instructions, in order
to correctly invert them. High-level logic is indeed necessary to properly treat instruction blocks,
otherwise there is no way to predict how to pack instructions together, or to foresee which logic
operation they would realize. A valuable research in this direction is faced by [?] in which the
authors analyzed the possibility to reinterpret the assembly code back to the original high-level
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logic. Though they provide a valuable tool able to correctly undertake the task, they likewise
encountered several problems; which are actually the same issues Hijacker would have to deal
with by handling the assembly code itself.

Each compiler, indeed, produces a different code ensemble that can be interpreted as the
“fingerprint” of the compiler itself. The chief challenge is therefore that the same high-level
statement, such as an integer addition, would be treated differently by different compilers, or even
worst be different versions of the same compiler framework. This is quite upsetting, actually this
means that once the source code has been translated into the assembly code by the compiler, along
with the high-level semantic we lost likewise the possibility to backward reinterpret instruction
blocks. But, why semantic is so important in the instrumentation stage? To answer this question
is sufficient to look at the example 1.9 which well depicts the problem. The darker rectangle
encapsulate the assembly instructions block that realizes the integer division by three. Machine
instruction sets are much less concise than the high-level languages, and further no straightway
division instruction is employed. A generic operation likely needs a block of several instructions,
even though it is embodied by a single one statement in the programming language. Compilers
are optimized to produce compact and efficient code, therefore the translation is not straightway
plain. Every compiler generate a different sequence of instruction for the same logical operation.
This is what in the literature is referred to as compiler’s idiom. The knowledge of which compiler
and version of it was used, may help in tracing back the operation correctly. However beside that
this introduces a certain level of non-determinism, remains the problem of properly recognize
logical operation from a bounce of assembly instruction. Another valuable contribute in this
direction is given by the Tankut Akgul in his work [?]. He devised a powerful tool able to reverse
instruction at the machine level. It employees a CFG (Control Flow Graph) in order to properly
recreate the semantic beneath the assembly code.

We circumvented this problem by narrowing the set of reversible instructions to specific ones
that would be easily “self-invertible”. Indeed, our primarily objective in this thesis is to devise a
reversible rollback support for parallel simulation environments. Therefore drove by this aim we
concentrate the attention to exploits some caveats.

Non-deterministic parallel environments, such as multiprocessors or multi-threading systems
and simulation platforms, would demand for an unfeasible amount of resources in order to keep

int main(int argc, char **argv) {

  int n;

  n = 8;

  n++;

  n /= 3;

  return 0;

0: 55                    push   %rbp

1: 48 89 e5              mov    %rsp,%rbp

# Loads actual arguments

4: 89 7d ec              mov    %edi,-0x14(%rbp)

7: 48 89 75 e0           mov    %rsi,-0x20(%rbp)

# n = 8

b: c7 45 fc 08 00 00 00  movl   $0x8,-0x4(%rbp)

# n++

12: 83 45 fc 01           addl   $0x1,-0x4(%rbp)

# n /= 3

16: 8b 4d fc              mov    -0x4(%rbp),%ecx

19: ba 56 55 55 55        mov    $0x55555556,%edx

1e: 89 c8                 mov    %ecx,%eax

20: f7 ea                 imul   %edx

22: 89 c8                 mov    %ecx,%eax

24: c1 f8 1f              sar    $0x1f,%eax

27: 29 c2                 sub    %eax,%edx

29: 89 d0                 mov    %edx,%eax  

2b: 89 45 fc              mov    %eax,-0x4(%rbp)

# return 0 

2e: b8 00 00 00 00        mov    $0x0,%eax

33: 5d                    pop    %rbp

34: c3                    retq

Figure 1.9: Example of compiler’s idiom
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track of the computation history. On the contrary in Hijacker, we have devised an hybrid approach
consisting in dynamic generating a reverse code which is not the real translation of the native
one, tough; rather it is a more concise form. A detailed digression is given in the further section
Section 4.1 “The reversing code approach”. For the reader’s sake however, the underneath idea is
to blend the benefits of the reverse execution together with the state saving approach to overcome
destructive operation without entangling overall architecture. We further optimize the solution
by narrowing as much as possible the number of instructions to be inverted. Our foremost
objective is to support reversible execution in speculative simulation platforms. It does not need
a fine-coarse precision for a punctual back-stepping, on the contrary simulation process require
an efficient way to restore previous state values. Nevertheless our projects paves the way to a
powerful and easily extendable solution also in debugging field.

1.4 Instrumentation

Some programmer considers a matter of pride to solve problems writing as few lines of code
as possible, however this practice might result in even more cryptic code. Experience suggests
to comment the code, to make it self-explainable. In the same way, as comments are used
to assist code comprehension, instrumentation is the activity to monitor and profile program’s
performance or to diagnose possible errors by means of embedded instructions.

Instrumentation can be performed at source code or machine code levels, each one providing a
different subset of information to rely on, as Table 1.3 shows. The former provides more semantic
details which aids code comprehension and decouples it from the machine-specific instruction-set
used. The structure of programming languages straightway provide the high-level perspective
on the software logic, whereas assembly code level lacks of semantic information, which thwarts
to infer which operation a block of instructions realize. However the assembly code has the
advantage of ease architectural design of the instrumentation engine. Our strategy settles at
assembly level to have a more direct control over extra instruction and data exchanged. Hitherto
explained what instrumentation process is, but why it is useful? To answer to this second question
a simple example will aid.

Let us consider a very simple car without any indication lights whose engine suddenly stops.
There are several plausible causes, such as an engine failure due to high refrigerant’s temperature,
a spark plug breakdown, or rather gasoline has finished. However, trying to guess which is the
right one is just as tossing up. Therefore, to solve the problem necessarily more information
is needed either provided by the car’s control system itself or by manually exploring under the
hood. In the aforementioned example, since that car does not provide any information, what is
left to do is to manually inspect the engine, deeper and deeper, until the failure is revealed, does
not matter how long it will takes.

Actually this represents what a debugger allows to do. It aids the user to inspect instruction
by instruction the whole code. However, coming back to the example, if our car would had at

Source code Assembly code
Level High Low
Detail High Low
Statement type Complex Simple
Structure Structured Unstructured
M. Dependency Yes No
Comprehension aids Yes No

Table 1.3: Instrumentation’s abstraction levels comparison
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least the gasoline indicator, probably one could easily understand that the tank is running empty
and the problem can be solved in few minutes simply betaking ourselves to a gas station. The
gasoline indicator represents why instrumentation in code is so useful, since even tough debugger
allow to physically solve the failure, time and feasibility to locate it is completely up to what
kind of information we rely on.

Definition 7 (Instrumentation). Instrumenting is the fine art of injecting purpose-specific code
into a generic program (or environment) to achieve several objectives, such as providing relevant
status information during program execution, tracing function or library calls or patching the
software to arbitrarily change its behavior.

What code instrumentation is indeed used for? The application fields to which the instrumenta-
tion process can be applied spans over a wide landscape from debugging to profiling and computer
security, further it can be employed for several purposes:

• Execution flow tracing

• Data or function logging

• Software profiling and optimization

• Program patching

• Simulation and parallel application

• Error detection

• Automated debugging

• Testing and correctness checking

• Collecting metrics

• Binary translation

• Virtualization and emulation

• Deobfuscation

• Sandboxing

• Control flow and behavior analysis

• Malware analysis

• Vulnerability detection

• Reverse engineering

The aim of this digression was to underline instrumentation importance during software anal-
ysis. A very primitive form and example of instrumentation is the common practice of fulfilling
the code with status output print statements. Although it is still useful and widely used, it cannot
provide deep insights. Further it could be much inefficient since the code-flooding of debugging
instructions may heavily affect performance. Extra code must be injected judiciously. Finding
clever instrumentation algorithms is still an active research field [?, ?, ?, ?, ?]. Figure 1.10 de-
picts where the instrumentation process lies within the generic program’s development workflow.
Generally, instrumenting a target object involves to find proper points where injecting the own
code, and taking control over the program. Therefore, the code has to be devised in order to
properly save the program’s execution context and restore it transparently afterwards it executes.
Once the context has been restored, control can return to the program. Therefore Nevertheless,
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Figure 1.10: General instrumentation’s tool workflow
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the process may occur at several abstraction layer, therefore at a different developing stage: (a) at
hardware level, (b) at machine level, (c) at byte code level (i.e. interpreted languages), and (d) at
source code level. The former kind of instrumentation is the lower abstraction level. It leverages
on real hardware elements or devices to interact with the system. It is used to commonly debug
embedded systems, or low level devices that need a raw access to the electronic logic. On the
contrary the machine level instrumentation rises up to the software level by acting straightway
on the assembly code. Although it allows a tight control on the instrumentation by exploiting
powerful machine-dependent tricks, it does not provide any suggestion on the high-level seman-
tic. Bytecode instrumentation is quite similar to what is achievable with virtualization. Some
high-level programming languages (e.g. Java) are not straightway compiled into the assembly
code. The intermediate representation allows a virtual machine to interpret the code that are
mapped at runtime to the machine-specific instruction set. This is chiefly done for portability
reasons. Finally latter kind of instrumentation acts at the top abstraction edge on the source
code. The instrumentation engine manipulates the high-level language (HLL) altering in place of
the programmer. Source code instrumentation has been widely used in interpretative languages
and has the valuable advantages to hold the program semantic; each operation can easily rec-
ognized and altered, further the same address space is shared, thus allowing to refer variable
and symbols directly. However from an implementation perspective, it requires an additional
parser able to create a non-ambiguous symbol map to work on. Furthermore, at this abstraction
level fundamental information about relocation is not known until the early stages of compiling.
Source and machine level binary instrumentation approaches are complementary. The former is
platform independent and provides access to high-level information; on the other hand machine
instrumentation is language-independent and can rely on low-level information which may be
require for some tasks and furthermore does not need original code.

Software instrumentation is, thus, widely used to diagnose and optimize applications since
it allows to collect a lot of inward information otherwise not available. It allows to identify
bottlenecks, to estimate program’s performance, such as branch mis-predictions, and to trace
evolution path which is fundamental in symbolic software debug.

1.4.1 Ways to instrument the code

As previously mentioned, software instrumentation refers to code chunks which developers insert,
directly or not, in the application in order to have a deeper insight, such as trace execution path,
record values of inner variables, or profile the program by counting the number of specific function
invocations, etc. Part of the instrumentation process is commonly handled throughout the design
phase by developers, which insert code blocks within any area considered relevant, according to
come criterion. Though, it is quite impossible to precisely foresee where debugging or profiling
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Instrumented code

(a) Program instrumen-
tation

Program

Environment

Instrumented code

Program

...

(b) Environment instru-
mentation

Figure 1.11: General instrumentation’s tool working schema
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Figure 1.12: Bytecode instrumentation example

instructions may be useful, therefore the early software instrumentation has to be “handled with
care”.

Lots of tools address automatic instrumentation. There are two main ways to automatically
instrument the code, static and dynamic instrumentation. The main difference relies on the time
at which code manipulation is performed. Before to proceed, let have an overview about how it
is performed from a high level perspective. Automatic instrumentation can be done at several
levels of deepness, from higher programming language to machine-dependent instruction level.
Figure 1.10 depicts how code injection is performed. The two approaches are complementary,
each one providing its own advantages according to the specific purposes. Generally, static
analysis involve correctness checking, optimization and performance-improving activities, whereas
dynamic analysis is suitable for profiling and debuggers.

Static instrumentation

The static instrumentation approach inserts code at compile time by permanently altering the
native program. Since, the insertion occurs at compile time, a recompilation step is needed
each time debug instructions or custom redirecting functions are injected. This approach has
better performance if compared to the dynamic one, since there is no extra computational effort
required that will burden program’s runtime. The only additional cost is the one needed to
perform instrumented operations. Nevertheless, static instrumentation is less flexible. Since the
instrumented code persists thoroughly the program execution, it does not support to dynamically
switch on and off debugging code according to developer needs. Further, static instrumentation
does not allow to instrument external modules like shared libraries, because would require to
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Data Segment

Modi ed Header

Code Segment

Data Segment

Extra Segment

Extra Segment

Figure 1.13: Assembly instrumentation example
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recompile them too.

Dynamic instrumentation

Unlike the aforementioned paradigm, dynamic instrumentation injects the code dynamically at
runtime according to a set of criteria. Dynamic binary instrumentation has the advantage to be
reconfigurable at runtime, throughout whole program execution. It allows to enable or disable
instrumenting features at runtime according to whether they are useful or not. Further, it usu-
ally does not require to prepare target program in any way, and allows to cover all client code.
Since it executes at runtime, even dynamically generated code may be caught. Although dynamic
instrumentation provides a more advanced and flexible insight tool, it introduces two main disad-
vantages, first of all an higher overhead due to the handling of the instrumented code itself, which
affects runtime. Indeed, original code must be parsed, interpreted and matched against provided
criteria in order to generate the instrumented code, which can be time-consuming. Second, it is
not straightforward to handle executable code at runtime.



CHAPTER2
State of the Art

Contrariwise to what might be expected, program reversibility research is an ancient branch. The
theory was born in the early 1970s, nevertheless it has experienced a new thrust rather recently,
when the computational power and technology allowed it to grow up. Several works have been
presented, from pure researches to the design of implementation tools targeting debugging or,
generally, instrumentation purposes. What the present work pursues, is to overcome the most
common problems that generally affect efficient reversible tool realization, specifically targeted
to simulation processes. This section will give a survey on the related work’s landscape, retracing
logically the evolution beginning from one of the first reversibility notion appearance, and pro-
ceeding throughout the history by touching the more noteworthy works. For each one, we present
the underneath architecture’s overview, and furthermore which hurdles have been faced and how
they have been solved. Beyond the overview on reversible debuggers, we focus the attention on
the instrumentation tools, in order to give a detailed perception about where our actual work
settles.

As further analyzed in the Section 1.4, the act of instrumenting the code alters the original
one by injecting blocks of instructions to disclose useful information, which otherwise remain hid-
den. It spans from debugging scope, to performance evaluation up to software’s security breaches
analysis. Although several attempts which is possible to find around the matter, their diffusion
as real working implementation is quite circumscribed. This is mainly due to an intrinsic archi-
tectural complexity and furthermore due to the burdensome computational and time overheads,
if not prohibitive.

The aforesaid projects’ objective will progressively drive throughout a novel instrumentation
approach to finally touch performance evaluation of our framework as a mixed strategy for efficient
rollback in speculative applications. Nevertheless, Hijacker is indeed a more general performance
enhancer targeted to aid debugging and performance analysis tools by providing them advanced
and modular features. Actually, for the sake of completeness, this chapter recalls what has been
just presented by diving into a survey of proposed products towards a final section dedicated to
the parallel simulation framework related work. Table 2.1 and Table 2.9 schematically report the
highlights of each project.

Unlike debuggers endeavors —still more prototypes then real implementations—, advanced
code instrumentation seems to be a more comfortable branch where several projects succeed
in achieving thorough inspecting instruments, though onerous overheads. Valgrind (§2.2), for
example, leaps among instrumentation tools as a powerful and valuable mean in order to inspect
memory profiling secret chasms. Pin (§2.2) is another notable example of a complete binary
instrumentation tools set developed by Intel R©, highly capable of inspecting inner aspects of
beneath assembly. On the debugger side, instead, some interesting results were achieved by
IGOR (§2.1) which works only on a specific machine instruction-set, or URBD (§2.1) which aims
to create a universal middleware layer between the inquired program and whatsoever debugger
the user chooses. A really fascinating outcome is presented by T. Akgul [?] where he deals
straightway with instruction reversing problem, providing an efficient way to cope with.

27
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2.1 Reversible and Post-mortem debuggers

Reversible (Post-mortem) debuggers exist since the 80’s, thereby they are actually not a new
matter of research. However, oldplatforms, characterized by poor computational capabilities,
have prevented a real evolution of reversible debuggers which still nowadays introduce burdensome
overheads. Further, at the time, there was not the real need to develop powerful instruments to
debugrelatively simple programs. Nowadays instead, the growing software complexity brought to
new landscapes. Parallel and distributed systems involve subtle interactions with several actors
and software modules, which thwarts users to cleanly follow the logical execution flow. In the
following we present some of the most relevant projects whose aims are to realize reversible
debuggers, and in same cases even post-mortem, support. To give an idea we quote from [?]:

“ [. . . ] Faced with a stack overflow in a depth first search routine, or a related
symptom, the programmer will examine the final state of the computation (the
post mortem dump) and discover huge numbers of loops, though this will take
a lot of work unless the debugger has a good way of picturing graphs. The
programmer wants to ask:
“When did this tree first get an illegal cycle?”
The tricky parts of this question are: “when”, “this tree”, “first get”, and “cycle”.
The first and third questions require being able to look back in time. The second
requires identifying particular data structures, whose locations in memory will
change with time but for which there must be some identifying property (location
of the root of the tree perhaps). The fourth requires introducing a complicated
test condition that is unlikely to be present in a standard debugger.

Instant Replay In 1987 LeBlanc and Crummey present an implementation of a repeatable
cyclic debugger. Although this project does not represent a real reversible computation example,
it is one of the first attempts to debug highly parallel applications. Those applications have
quite complex interactions that render near impossible to directly focus what the problem is.
Instant Replay save the events occurring during the natural execution only, without the related
state changes. In this way, the authors guarantees a reduced space and time overhead. As a bug
happens —or the program has to be rerun for some other reason—, Instant Replay debugger will
reprocess saved events in the same exact order, preserving possible external inputs that might
divert the execution trajectory. Instant Replay is not dependent to any form of intercommu-
nication process, and avoids to any synchronization bottleneck by adopting a fully distributed
algorithm. Further, Instant Replay provide a program-grain reply rather than process oriented
one.
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Project Year Basic technique Highlights
IGOR 1988 State saving Needs a modified compiler, library, loader and

require to run on a patched kernel.
EPDB 2011 State saving Employees a variant of the checkpoiting tech-

nique based on the forking mechanism pro-
vided by the operating system to create differ-
ent timelines.

URDB 2011 State saving Represents a universal reversible layer to en-
hance existing debuggers, based on a modified
version of the program history.

RevGen 2011 Reversing instruction A retargetable tool which interprets assembly
code back to the LLVM’s intermediate repre-
sentation. It is not a debugger, but faces a
quite similar challenge.

LORAIN 2014 Reversing instruction Specifically developed for PDES platforms, it
supports reversible execution by dynamically re-
verse constructive instructions.

LEONARDO 2000 Virtual machine Supports program’s reversibility and foremost
its graphical visualization.

Table 2.1: Instrumentation tools report

The prototype implementation was developed on the BNN Butterfly, a tight coupled parallel
processor comprised of 128 MC68000 units. Performance obtained are briefly presented in Ta-
ble 2.2 below. The authors chose two applications for performance assessment, the Knight’s tour
and the Gaussian elimination,. In both of cases the overall slowdown is less than 5%.

Knight’s tour A knight’s tour is a path on a chess board for a knight that successively visits
each square once and only once using legal chess moves.

Gaussian elimination Gaussian elimination (also known as row reduction) is a linear algebra
solving algorithm for systems of linear equations. It is usually understood as a sequence of
operations performed on the associated matrix of coefficients. Tested on a 400x400 matrix.

Application Processors Time (s) Space (Kb)

Knight’s tour
16 52 60
64 43 48

Gaussian elimination

16 17 –
64 20 –

Table 2.2: Description of the two case studies for the Instant Replay debugger

IGOR IGOR [?] is a prototype of reverse and post-mortem debugger developed on the Motorola
68000-based architecture1 running DUNE [?] distributed system. The basic underneath idea
which aims its authors, is basically similar to what Hijacker would provide. A system assumption
is that program are written in C language, such that it can relies on a transparent calling
mechanism and a rudimentary variable scoping.

IGOR’s major goal is to restart program’s execution by providing (a) either a post-mortem
reviving program feature and a (b) reverse backstepping support during a legal execution by

1The architecture used supports the UNIX System V ABI semantic
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adopting a checkpointing technique.. Former feature relies on the automatically generated mem-
ory dump from the operating system as the program crashes, it is targeted to parse the core file
in order to restart the whole execution beginning at the first instruction statement beyond the
faulty one. Needless to say that a core dump is not sufficient to guarantee a proper restart for
some wayward failures. The second feature provides a backtracking support, it relies on a peri-
odical checkpointing of the used pages within the program’s address space. Process’ execution
is restarted by restoring the nearest checkpoint in memory, afterward an interpreter will forward
re-execute code statements until some selection criterion is met.

The introduced overhead is quite expensive. Snapshots are taken periodically according to
user’s tuning parameters, but it could exceedingly grows depending on the software character-
istics. IGOR does not handle the checkpoint much efficiently, and no particular optimization
technique is really adopted, but narrowing the storage to the only dirty pages. Further it re-
quires to use a modified version of compiler, library and loader over a patched operating system.

Table 2.3 shows the runtime performance for the sort testing program. The execution time
of the modified compiler was 17% greater than the standard compiler for a typical source file,
and 37% greater for the compilation and linking of a 47OO-lines program.

Checkpoint interval (seconds) Execution time (seconds) Overhead
None (baseline) 22.2 –
1.0 31.7 1.43x
0.3 37.3 1.68x
0.1 47.5 2.14x

Table 2.3: IGOR runtime overhead for the sort program

Real time (seconds) User CPU (seconds) System CPU (seconds)
Regular execution 31.9 17.6 1.2
Restart time 54.5 5.7 6.9

Portion in user program 10.1 3.9 0.3
Overhead 44.4 1.8 6.6

Table 2.4: IGOR restart time overhead for the sort program

EPDB EPDB (Extended Python DeBugger) [?] is an extension of the yet existing reverse
debugger for Python programs. It supports post-mortem inspection of core dumps and further
allows to step backwards along the program execution path. This represents a new feature if
compared to the aforementioned tool, even though also EPDB provides a reverse execution feature
by adopting a very similar snapshot&replay technique. Snapshots are achieved by forking the
running process. Each fork generates a new timeline, the former is paused in order to be retrieved
in future, while latter branch is instantly resumed transparently. Through timeline approach,
EPDB guarantees to efficiently handle dynamic functions of instructions, such as user-input
ones, by creating a new branch whenever the user wants to alter the input provided, otherwise
the original one is rerun. Performance of EPDB is shown by Table 2.6 by taking a sample set of
five programs as described in Table 2.5.

URDB Universal Reversible Debugger (URDB) [?] is a framework layer which enhances de-
bugging tools by providing a uniform middleware layer for reversibility. Currently, it provides
support for the following four debuggers: (a) GDB, (b) Python debugger, (c) MATLAB, and
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Name Description
fankuch Takes a generic permutation and computes all the possible n other permutation,

where n is the first element of the input permutation.
n-body Models the physical problem of solving gravitational interactions between celes-

tial bodies.
gcd calculates the greatest common divisor for two very large integers using Eu-

clidean algorithm.
call_snap Models the insane scenery where the program repeatedly call a non-deterministic

function.
create_array The program will create a very large integer list array.

Table 2.5: EPDB performance table

Program Runtime (s) Debugging
runtime (s)

# Snapshots Base Mem-
ory usage
(MB)

Debugging
Memory
usage (MB)

fankuch 0.034 37.7 13 3 44
nbody 0.051 366.4 65 3 106
gcd 0.115 49.5 10 3 37
call_snap 0.029 8.6 501 3 1010
create_array 0.93 0.98 3 766 785

Table 2.6: EPDB performance table

(d) Perl. URDB interposes itself between the user and the debugger intercepting checkpoint or
reverse commands. In those cases the framework acquires the control and performs relative ac-
tions. Again, also URDB relies on checkpointing techniques, whose engine is realized through an
enhanced version of the DMTCP (Distributed MultiThreaded CheckPointing) supporting ptrace
utility. URDB provides a “reverse wrapper” for each of the basic debugging command, (a) step
(b) next (c) continue (d) finish, in the form of reverse-cmd , where cmd is one of the above
forward commands. Like the aforementioned tools which rely on checkpoiting approach, again
reversibility is achieved by restoring the last checkpoint to which follows a forward instructions
re-execution2. Each URDB’s checkpoint collects a debugging history. Therefore, analogously to
the aforementioned tools who rely on checkpoiting approach, every time a reverse commands is
issued, (i.e. reverse-cmd ), the framework clones the last checkpoint’s history and produces a
new history to run in order to place the user at the proper point in time.

In [?], performance has been evaluated by taking 4 debuggers as benchmark, classical GDB
v7.2, Matlab, Perl, Python. Table 2.7 suggests that URDB is fast enough for the interactive use
in reversible debugging.

Command gdb v7.2 Matlab Perl Python
checkpoint 1.86 2.02 0.17 0.18
restart 1.20 1.65 0.20 0.17

Table 2.7: URDB time overhead in seconds for checkpoint/restart

LLVM LLVM (Low Level Virtual Machine) [?] is not properly a debugger, instead it represents
a compiler collection, similarly to what GCC is. The underneath LLVM’s idea is to provide a

2The forward re-execution process is also known as forward coasting
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universal compiler relying on an intermediate representation (IR) in order to completely decouple
architecture dependencies. LLVM, hence, is a complete collection of tools from compiler through
optimizer up to the analyzer, which aims to make lifelong program analysis for arbitrary software
in a transparent way. LLVM exploits (a) an internal code representation which decouples it from
architecture’s and language’s peculiarity and (b) a compiler design which properly leverages this
representation. The internal LLVM’s representation (IR) is a RISC-like instruction set relying
on the Single Sate Assignment (SSA) technique in order to eliminate register ambiguity. Because
of its characteristics, LLVM could be considered as a complement to high-level virtual machines,
not an alternative to them.

RevGen Again, also RevGen [?] is not properly a debugger, though it is designed in order
to translate x86 code into LLVM Intermediate Representation (IR). The underlying idea is to
support reversibility for external IR-based debugging tools. We report this work as it has to
cope with very similar challenges we encountered in assembly-level reversing code generation:
(a) extracting binary code’s semantic and (b) inferring type information. Instruction level, as
discussed in later chapters on this thesis, does not provide any indication on how to interpret
a generic assembly block. In RevGen, the authors proposed an interesting technique steered to
face retargetable compilation. That is, to interpret assembly code into an another representation;
in this case, the LLVM’s IR.

RevGen firstly translate the input code into a LLVM translation block (TB), representing a
sequence of micro-operations. This is subsequently splitted into basic blocks (BB) that allow to
finally build the control flow graph (CFG) relative to the original binary code. The CFG allow
to infer the high-level semantic. RevGen, as LLVM, relies on the Single Statement Assignment
(SSA) to remove symbol reference ambiguity. Each variable’s name is translated into a unique
one, therefore a reversible approach can be adopted.

LORAIN LORAIN3 specifically designed for PDES (Parallel Discrete Event Simulation) [?]4.
It relies on the LLVM’s intermediate representation and supports a rollback without the state-
saving technique by emitting the reverse code. LORAIN leverages the fact that many operations
which alter the state are constructive, and therefore reversible. In order to properly handle
destructive instructions, overwritten related variable’s value is saved. However, since not all
the operations are constructive, for those that dispose useful information during the execution,
LORAIN resorts to classical state saving. The intuition is to undo altering instructions instead
of rollbacking to a prior checkpoint.

LORAIN makes the assumption that only instructions that directly affect the memory can
produce a state change. In those cases, it reverse the CFG, build via the LLVM architecture,
along with the basic block path taken during the forward execution. This ensures to correctly
reverse the if statements, for example.

The results demonstrate that the generated models are able to execute at a valuable rate that
near the on obtained with the hand-written model. Specifically, the authors considered three
version of both PHOLD and Airport models:

• (O0) Unoptimized

• (O3) Optimized

• (HW) Hand-written

The following Table 2.8 depicts the results in terms of events per seconds.
3LORAIN stands for Low Overhead Runtime Assisted Instruction Negation, so it is not the Marty’s mother

as in Back to the Future.
4The authors used as PDES framework the Rensselaer’s Optimistic Simulation System (ROSS) [?].
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Model O0 O3 HW
2 core PHOLD 946,164.80 971,834.45 974,658.30
32 core PHOLD 6,070,813.30 6,155,326.35 6,178,446.40
2 core Airport 1,921,355.20 2,039,775.40 2,062,018.85
32 core Airport 6,713,835.70 6,854,997.75 7,044,712.05

Table 2.8: LORAIN’s performance

LEONARDO Leonardo [?] is a visual representation tool designed to enhance debuggers ca-
pabilities by providing a real time visualization of the actual program’s state. Along with visu-
alization, reversibility is supported by employing a virtual hardware system which fully support
instructions reversibility. LEONARDO realized reversibility similarly to what LORAIN does,
without relying on checkpoints.

2.2 Software instrumentation approaches

Instrumentation process can be static or dynamic according to whether code injection takes
place in compilation or linkage stage, respectively. Generally, the goal is to deviate the natural
execution flow through control statements or interrupts traps towards some instrumented function
which, in turn, performs whatsoever inspecting purposes; afterwards control yields back to the
native code. However this approach will inevitably incur in overheads, that are sensible to the
abstraction level at which the instrumentation is preformed.

To recap the Section 1.4 “Instrumentation”, static instrumentation introduces a restrained
overhead since the burdensome part of the work is performed before program get running, hence
without hurting execution performance. Nevertheless, it provides less features compared to the
dynamic instrumentation which, rather, may exploits runtime environment’s information. How-
ever, the dynamic approach will clearly introduce an heavy overhead, since the tool interposes
itself as a sort of middleware. It parses all the instructions and generally translates them into a
more convenient intermediate representation.

In the following, Table 2.9 reports a brief highlighting schema of each project considered in
this section, emphasizing the instrumentation approach adopted.

PEBIL PEBIL [?], or rather PMaC’s5 Efficient Binary Instrumentation toolkit fo Linux, as its
name suggests, is static binary instrumentation tool which insert a branch instruction to debug
code at the entry point of each functions. PEBIL provides a set of APIs to insert a lightweight
custom assembly code, rather than relying only on basic instrumentation utilities.

PEBIL was designed for Linux platforms to handle ELF executable format only, either x86
and x86_64. It first analyzes the whole source code in order to interpret text code and separates
it form data. This code’s discovery algorithm can be either control-driven or a naïve linear
disassembler, which exploits the symbol table to identify each function’s entry point. Though,
the engine is not fully deterministic, in fact PEBIL’s disassembly algorithm reach a coverage of
99.0% on the CPU2000 Integer Benchmarks. Once the code is properly interpreted, the PEBIL’s
instrumentation engine creates an extra text segments containing debugging code along with a
possibly new data segment.

Likely other tools, PEBIL inserts a branching call instruction towards the instrumentation
function at the entry point of the native one. Therefore upon the function call, the control
passes to the instrumentation code which typically performs some debugging and/or performance

5PMaC stands for Performance Modeling and Characterization.
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Project Year Instrumentation type Highlights
PEBIL 2010 Static Developed for ELF format only in

the Unix-like environment, it em-
ploys a double (control-drive or
naïve) algorithm to disassemble in-
structions for entry point function
finding.

BIRD 2006 Static Built for Window/x86 standard bi-
naries, exploits code trap by inject-
ing a 5 bytes jump instructions to
hook instrumented code; if 5 bytes
are not sufficient an interrupt is
used.

DIOTA 2002 Dynamic Uses a double code approach. It
generates a clone copy by dynami-
cally emitting reverse code without
altering the native one; in reverse
mode the new copy is used.

DynamoRIO 2003 Dynamic It adopts instructions caching
techniques in order to guarantee a
fast translation of frequently exe-
cuted basic blocks.

Pin 2005 Dynamic Intel R© framework providing a wide
range of inspecting tools. It is
based on Just-In-Time injection
strategy.

Valgrind 2003 Dynamic Multipurpose tools, according to
the “skin” dressed, basically pro-
viding memory inspecting analysis.

Table 2.9: Instrumentation tools report



2.2. SOFTWARE INSTRUMENTATION APPROACHES 35

operation: (a) saves the context register, (b) executes debug code and (c) finally restores the
context register along with the control given back to the native function.

Figure 2.1 illustrates a compared chart of the PEBIL’s performance achievable throughout a
set of benchmark programs. As can be seen PEBIL’s overhead is bounded, if compared with the
other tools.

Figure 2.1: PEBIL’s performance compared chart

BIRD Built for Window/x86 standard binaries, BIRD [?] relies on a hybrid instrumentation
strategy, both static and dynamic and does not require debugging information. In order to divert
the execution flow, BIRD uses a similar approach to the aforementioned PEBIL by adding branch
instruction towards a debug function. Those uncontitional jump instructions take 5 byte at the
instrumentation point to be inserted, however space is not always enough, therefore, unlikely
PEBIL, BIRD employs an interrupt trap. Before the program is executed, the static disassemble
engine tries to cover as much code as possible of the text section as known areas; once the
program is running, the unknown remainder of code is processed by the dynamic disassembler.
BIRD adopts a double-staged disassemble process to interpret instructions from data which build
a confidence score, beyond a certain threshold a binary unit is definitively considered as code
rather than data.

As in [?], Table 2.10 presents BIRD’s effectiveness expressed by the following two parameters:

accuracy Measures the error in correctly interpreting the instruction for block of bytes rec-
ognized as code.

coverage Represents the fraction of bytes in the binary file that are not recognized neither as
code nor as data.

Further the Table 2.11 presents an overview of the overhead that BIRD introduces for a set of
common programs.
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Application Coverage (%) Accuracy (%)
lame 96.7 100
ncftp 84.4 100
putty 96.1 100
analog 88.7 100
xpdf 86.1 100
make 95.5 100
speakfreely 70.0 100
tightVNC 74.9 100

Table 2.10: BIRD’s effectiveness table

DIOTA Authors of DIOTA (Dynamic Instrumentation, Optimization and Transformation of
Applications) [?] specifies that its name derives form Latin and refers to an old Romans double-
handled drinking vase, which well describes the underneath idea the tool relies on. DIOTA
instruments code dynamically by emitting code on-the-fly but leaving unaltered the native pro-
gram. It progressively generates a clone, thereby during the program’s execution, binary code is
picked from the clone whereas the data is read from the original source. In such a way, DIOTA
ensures the instrumentation correctness even for hard-to-instrument programs, containing data
in code and vice-versa. Since DIOTA maintains code separate from data it is not possible they
hurt to each other or the overall semantic. DIOTA’s approach guarantees to properly treat either
code embedded data and polymorphic program at the same time.

DIOTA’s authors state that their framework is relatively fast. It introduces a slowdown ranges
from 20x up to 400x. When using memory or code instrumentation, the overhead naturally
increases, especially with the former since in that case every instruction that accesses memory is
accompanied by a call to the installed callbacks.

DynamoRIO DynamoRIO [?] is an evolution of the prior Dynamo [?] project developed for
Linux/Windows x86 platforms. The goal is to provide a very wide application field, spanning from
debugging through optimization up to emulation. DynamoRIO is a framework for implementing
dynamic analysis and optimizations. It parses and manipulates program’s instruction at runtime,
transparently, adopting an instructions caching techniques in order to guarantee a fast translation
of the frequently executed basic blocks. It further exports an API constituted by a wide set of
functions and data to manipulate binary instructions. The basic idea of DynamoRIO is to support
not only instrumentation traps but also to allow a flexible and dynamical manipulation of the
code.

Application Runtime (s) BIRD’s run-
time (s)

Static instr.
overhead

Dynamic in-
str. overhead

Total over-
head

comp 0.068 0.086 15.1 0.1 15.2
compact 3.671 3.907 6.4 0.0 6.4
find 2.657 2.825 6.2 0.0 6.2
lame 0.425 0.479 12.0 0.0 12.0
sort 0.093 0.111 17.5 0.4 17.9
ncftpget 0.379 0.389 3.4 0.0 3.4

Table 2.11: BIRD’s performance table
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Pin Pin [?] is an architecture independent instrumentation systems which provide a set of APIs
in order to profile, optimize and inspect programs. It relies on a very similar model as ATOM
which is built only for the Alpha architecture. The Pin distribution provides several Pintools
including profilers, cache simulators, trace analyzers, memory bug checkers and allows access
to architecture-specific information. It adopts the Just In Time compilation strategy to inject
and/or optimize code and heavily relies on several optimization techniques in order to guarantee
valuable efficiency. Unlikely the aforementioned DynamoRIO or Valgrind, Pin aims to be fully
automated relieving the user to manually hand write specific functions.

Valgrind Valgrind [?] is a program supervisor framework which relies on dynamic instrumen-
tation, supporting the ELF file format and running on most of the x86 Linux environments. It
is structured in a twofold architecture,(a) a main core and (b) a series of pluggable modules,
namely skins. Those “skins” represent specific-purpose sub-tools that can be selective plugged
to specialize the instrumentation process. Out of the box, Valgrind comes with several default
skins:

Memcheck A purify-style memory checker for C and C++. Traces all the memory accesses.

Addrcheck A more lightweight memory checker which only checks whether the referenced
address is within the addressable space.

Cachegrind A cache profiler which traces instructions and data cache accesses and misses.

Helgrind A data-race detector that uses the Erase algorithm [?].

Nulgrind A “null” skin that performs no instrumentation at all.

Valgrind’s core, on the contrary, contains the main support for the program instrumentation.
It is constituted by a set of wrapper libraries, a scheduler and a just-in-time (JIT) compiler. It
translates original x86 instructions into an intermediate two-bytes opcode representation (UCode)
to simplify program handling. The UCode representation is expressed in term of virtual registers.
After an initialization setup, Valgrind will not run any part of the client program on the real
CPU, rather the execution is moved on a simulated environment. The just-in-time compiler
translates one basic block at a time, where a basic block is a set of instructions which ends upon
a control-transfer instruction, such as a jump, call or return. Each basic block which needs
to be optimized is disassembled in the UCode instruction-set, instrumented, mapped to the real
registers and finally translated back to the native x86 code. Signals are handled by diverting
traps to the Valgrind’s own handler which adds signals to a pending queue. The delivery of those
signals is performed periodically by Valgrind, except for the non-resumable POSIX ones.

Valgrind is a customizable framework, allowing hand writing of custom skins according to the
user needs. Nevertheless, for this reason it could be prone to larger overheads, depending on the
developer cleverness. Table 2.12 depicts the slowdown introduced in various program for each
of the previous default skin. As one can observe, Valgrind is a quite expensive tool, though it
highly depends on the actual skin used.
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Program Runtime (s) Nulgrind (ra-
tio)

Memcheck
(ratio)

Addrcheck
(ratio)

Cachegrind
(ratio)

bzip2 10.7 2.4 13.6 9.1 31.0
crafty 3.5 7.2 44.6 26.5 107.4
gap 0.9 5.4 28.7 14.4 46.6
gcc 1.5 8.5 36.2 23.6 73.2
gzip 1.8 4.4 20.8 14.5 50.3
mcf 0.3 2.1 11.6 5.9 18.5
parser 3.3 3.7 17.4 12.5 34.8
twolf 0.2 5.2 29.2 18.5 53.2
vortex 6.5 7.5 47.9 32.7 88.4
mean – 5.2 27.8 17.5 55.9

Table 2.12: Valgrind’s slowdown ratio with regards to the runtime



CHAPTER3
Reference instrumentation tool

As already mentioned, Hijacker is a framework oriented at providing the necessary supports to
generic code alteration, specifically in High Performance Computing applications. It addresses
this issue by implementing a static instrumentation at the assembly level, which augments the
executable code to generate at runtime the reversing instructions according to user needs. Al-
though dynamic instrumentation is more flexible with respect to the static one (Section 1.4
“Instrumentation”), it is much more time-expensive, and therefore clashes with the objective to
allow a feasible implementation of reversible execution in High Performance Computing (HPC).
Nevertheless also the static approach has its disadvantages, such as the impossibility to directly
instrument third-party libraries; although, it can be overtaken by some tricks.

Within the software developing process, Hijacker lays between the compiling and linking
stages. It hence operates on the intermediate phase onto the relocatable object files. Such a choice
allows to decouple the architectural details of the target machine from the Hijacker’s constructive
ones, therefore ensuring the solution to be portable and flexible. Section 3.1 “Intermediate
binary representation” investigates implementation details of the binary representation, by which
we tried to build a uniform abstraction layer for severals different formats and operations. The
choice to work on relocatable representation of executable files was mainly driven by the following
two motivations: (a) the availability of low-level information which ease the construction of the
internal representation by giving much more control on instructions, data and cross-references;
and secondly (b) because it much simplifies the emit phase, relieving it from the need to explicitly
resolve relocation details. Linkable1 format, by definition, provides no semantic but conveys
instruction-grained details —e.g. relocation placeholders— through which is straightforward to
build the IBR. It is basically constituted by basic blocks, the same provided by linkable files. On
the other hand though, working on relocatable representation of executable files increases the
user-side difficulties. Relocation resolution issues are left to the classical linker. In such a way
we do not only lighten the Hijacker’s architecture but we foremost ensure modules compliance,
with regards to the environment, and software correctness, either syntactical and semantic.

Preprocessing

Included files, 

replaced symbols, 

macro expansion

Compiling

Procduces object 

codes files

.c

.c

.h

...

.o .o

.o

...
Instrumentation

Apply rules, inject 

code, etc.

Linking

Resolve relocations 

and addresses.o' <exe>

Figure 3.1: Hijacker’s stage

Hijacker takes as input a relocatable object file which is parsed in order to create a program

1Terms linkable and relocatable are used interchangeably.
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map maintained by an internal binary representation (IBR). By means of that representation, Hi-
jacker keeps the relevant references needed to navigate the whole code throughout its instructions
and to dynamically alter it as required (§3.1). The instrumentation is realized by a rule-driven
engine (§3.3) whose directives are provided by the user through a xml file (§3.3.1). Those rules
drive the engine in tweaking the input program acting straightway on the internal representation;
for example, by injecting additional custom instructions or code blocks, or rather by diverting the
original control flow through user’s wrappers. Section 1.4.1 “Static instrumentation” previously
discussed about the typical drawbacks of static paradigm, such as the impossibility of dynamically
enable instrumented features or to instrument third-party libraries and modules. Compared to
the dynamic approach though, much of the computational overhead introduced will burden only
the pre-processing stage rather than hurting the runtime program’s performance. Aside from for
debugging purposes, it is a fundamental requirement for real-time parallel applications.

Finally, Hijacker will rebuild the output file from the altered the IBR, which holds the instruc-
tions’ references needed to remap it back onto the object format. Such a file, is again a relocatable
object entirely compliant with any compiler framework; thus allowing to easily re-link it together
with the remainder of the software. In this way, modules can be separately instrumented and
linked according to developers needs.

By adopting an internal representation, binary code is decoupled from the intrinsic limitations
yielded by the Object File Format (OFF ). Because of the offset-based fixed structure, working
right on relocatable files is hazardous and it might likely results in an incorrect output. On
the contrary, Hijacker rebuilds the object file from scratch, ensuring consistency (§3.2.2) is kept
in a safer way. Relocatable files have, in fact, a structure purely based on displacements in
order to realize cross-references among units of storage (see Chapter 7 “Appendix C”). Therefore,
altering them would require a burdensome effort to keep offsets consistent within sections and
data. Consequently the overall complexity of such an architecture would be quite uncomfortable
and complex to handle.

Hijacker is composed by of two modules: a front-end which directly interacts with the user,
interprets and emits objects files, and a back-end that is basically constituted by the rule manager
and the instrumentation engine.

Back-end

Front-end

ELF

COFF

XML Parser File Loader File Writer

Executable

Interpreter

Assembly

Interpreter

x68

ARM

Rule Manager

Instrumentation

Engine

Internal Binary

Representation

rule

<xml>

input

asm

output

asm

Figure 3.2: Hijacker’s architecture. Front-end provides file parser and emitter supporting vary
relocatable object files; rule manager and instrumentation engine is in the back-end
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As depicted in Figure 3.2, the front-end is in charge of reading the input file. Therefore it
translates the relative program’s structure into the IBR by interpreting the underneath software’s
logic and the interactions among its parts. File parser resolves each symbol and each relocation
reference among instructions, or between instructions and data, and embeds the relative infor-
mation. Basically, Hijacker represents the executable code as a chain of instructions, which in
turn, are maintained by a logical structure holding cross-reference data; namely, the descriptor
(Figure 3.6).

Conversely, the back-end basically comprises the rule manager and its counterpart, the in-
strumentation engine. Each rule is interpreted by the manager and therefore applied to the
aforementioned binary representation. Given the linear, and likewise dynamic, structure of the
program map, the instrumentation can be straightway performed. Whenever a rule is applied,
the references among instructions, functions and data are preserved since they are realized as
logical pointers. Instructions can be simply added to (or removed from) the existing chain leav-
ing unaltered all the unrelated links. Nevertheless, an update process is still required in order to
realign some of the node’s fields within the representation, such as the nominal address of each
instruction. So far, back-end is the module who introduces the major overhead due to progressive
renew of each address reference field; however this one may be considered negligible since it is a
pre-processing submerse cost.

The instrumentation process at the assembly level, although allows a grater compatibility and
portability, it likewise requires more effort to provide all the necessary modules. By operating
at the machine level, it involves a strong dependency with the relative instruction-set, further
it also shifts a considerable complexity degree on the user side. Indeed, to instrument at such
an abstraction level, the user itself would be asked to provide the code to inject, such that it
would also be compliant with the target architecture. A task anything but harmless, since lot
of underneath details the user ought be aware of, such as (a) the instruction-set itself (b) the
architectural design (c) the specific ABI (Application Binary Interface) implemented. Never-
theless, Hijacker still allows users to build custom instrumentation codes via specific rule tag
(refer to Section 3.3.1 “XML configuration rule file”), provided that code is straightway hand-
written in the assembly language. However, since what we just hinted before, Hijacker comes
with a set of precooked modules to address the most common instrumentation issues, such as
the reversing-monitor module. This is specifically designed to support the reverse execution,
which implementation deserves a dedicated dissertation (§4.2). Nevertheless to give the reader
an overview, our module is conceived to reverse instructions that affects memory. In this way,
we aim to optimize additional requirements. The module is based on an hybrid instrumentation
strategy that blend together static and dynamic aspects. During a first static instrumentation
stage our framework adds specific assembly blocks which are functional to dynamically invoke the
reverse code generator. Further, we adopted a mixed reversibility approach which interweaves
both state-saving and reversible intuitions.

3.1 Intermediate binary representation

Hijacker builds a program map of the executable file relying on a internal ad-hoc intermediate
representation. Adopting an internal representation, it decouples technical and architectural
details of the underlying machine from the semantic high-level code aspects. In this way we are
able to easily construct the map by treating cross-references within the code, simply as memory
pointers. Thereby there is no need to care about of relative offsets since they will be correctly
rebuilt in the final emit stage. ELF format, as the other relocatable files actually, has in fact an
offset-based structure which is quite awkward to cope with.

By parsing the input file2, the front-end maps it into such an intermediate representation,

2At the time of this writing Hijacker framework supports only the ELF format, though other supports are
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namely the internal binary representation (IBR). Each instruction is disassembled by the proper
interpreter such that its meta-data can be retrieved and stored into a logical high-level structure,
which are doubly linked together such that the whole program can be easily navigable, back
and forth. Instructions are split into separate blocks —each representing a function— only in a
further step of the file parsing, when symbols and references will be available. Once the references
among instructions, and between instructions and data are resolved, they are therefore linked to
the relative symbol descriptor, that keeps the pointer to the target instruction or data structure.

In such a way, code interconnections are decoupled form the native object’s section they
belonged to, which much simplifies the instrumentation process and the manipulation of the
code to be altered. Through the internal representation, relocation entries are resolved as memory
pointers maintained by the descriptor. Therefore the appliance of the instrumentation rules will
result in a straight process of inserting and removing —or otherwise modification— nodes within
a high-level linked list of descriptors. Logical memory pointers ensure that target descriptors
will be always consistent throughout the whole process. Figure 3.3 depicts the logical process of
inserting an instruction (the removal one is specular).

By altering the IBR structure, for example by inserting a new node, it has likewise necessary
to update the new_addr field with the new logical address the instruction actually have taking into
account the new just inserted. The new_addr member can be seen as the shadow of the future
position that instruction will have in the output object file. Further, the update of each real
instruction’s address requires the instrumentation engine to check the following issues: (a) that
jump instructions have enough space to embed the new offset as immediate value and (b) to
update any static references to data sections. Since the address information is intentionally not
computed as relative displacement from the virtual address, it needs to be recalculated each time
a new insertion or modification is undertaken.

insn_info insn_info insn_info insn_info insn_info

insn_info

Figure 3.3: Example of adding an instruction to Hijacker’s binary representation

Our aforesaid binary representation is not the LLVM one, as discussed in the chapter Chap-
ter 2 “State of the Art”, but it is an ad-hoc structure. Likely to most of similar tools, this
representation is proprietary; though this could be a hurdle in merging features belonging to
different tools. Figure 3.7 depicts very well the structure of the Hijacker’s binary representation.

Funding elements of the Hijacker’s internal representation are the following

• Instructions

• Symbols

• Functions

• Raw data

Hijacker represents the object input code, basically, as a chain of instructions. Each instruc-
tion in the chain is wrapped by an high-level descriptor which holds the relevant information

under development.
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needed to navigate throughout the whole code. Basically, the instruction descriptor keeps trace
of the disassembly code itself and a pointer to its symbol reference, allowing to easily rebuild
relocation displacements in the future emitting step. That reference pointer can be either another
instruction, such in case of a jump instructions, or a relocation symbol. Actually the IBR does
not employ real relocation entries, rather it realizes them by means of pointers among the high-
level infrastructure. This would give a better flexibility and efficiency in instrumentation. In fact,
relocation is simply handled by cloning the target symbol descriptor to which relocation applies
and embedding it into the relative instruction descriptor (§3.2). In such a way, it is possible to
arbitrarily alter the code without the need to recompute each time all the displacements. Aside
from the computational waste in which this method would turn otherwise, it furthermore could
hurt syntactic correctness of the emitted object.

Symbols Symbols are organized in a simple linked list. A logical descriptor is composed of a
sequence of meta-information, from its name to the position it occupies in the object file. Since
a symbol may refer several kind of entities, position field provides a fast way to associate it back
to a relocation entry as needed. This allows to dynamically alter code and it still guarantees to
recompute relative offsets between the instruction and the symbol to which relocation applies.

symbol
type

bind
name
size

secnum
index

position

offset
reloc_type

duplicate

referenced
extra_flags

next

symbol

...
next

symbol

...
next

. . .

Figure 3.4: Symbol descriptor

Table 3.1 provides a brief description on each field of the symbol descriptor.

Functions Function descriptors basically hold the pointer to the entry point from which it
begins and the reference to the relative symbol it belongs. Functions are basically used in the
back-end by the rule manager in order to easily trace the instrumentation process. To simplify
the user side, rule specifications are functions-based, as Section 3.3 depicts.

function
passes
name

orig_addr

new_addr
insn

passed
next

function

...
next

function

...
next

. . .

Figure 3.5: Function descriptor

Table 3.2 provides a brief description on each field of the symbol descriptor.
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Field Type Description
type int The hijacker’s local type specification of the symbol.
bind int The hijacker’s local bind specification of the symbol.
name char * Pointer to the string buffer containing the symbol’s name.
size unsigned int The size of one symbol entry in the relative relocatable file

format.
secnum int The numerical ID of the original section to which the symbol

belongs.
index int The numerical ID of the symbol itself within the original sym-

bol section.
position long long The offset from the beginning of the section identified by

secnum.
offset long Represents the addend in the relative relocation entry (if any).
reloc_type int The type of the relative relocation entry (if any).
duplicate bool Internal flag used to determine if the symbol has duplicates;

therefore more references to it through relocation entries.
referenced bool Internal flag used by the parser to determine if the symbol

has been resolved.
extra_flags long Maintains the info field of the ELF’s symbol (either bind and

type).

Table 3.1: The instruction descriptor fields table

Field Type Description
passes int Number of instrumentation passages that the rule man-

ager has to undertake for that function.
name char * The function’s name.
orig_addr unsigned long long The original code logical address of where the function

begins in the object file.
new_addr unsigned long long The logical address the function would have in the in-

strumented object output file.
insn insn_info * Pointer to the first function’s instruction descriptor of

the doubly linked list that represents the function’s body.
passed Function ** Pointer towards the reference of the instrumentation en-

gine function descriptor which realizes the rule.
symbol symbol * Pointer to the relative function’s symbol descriptor.
next function * Pointer to the next function descriptor in the linked list.

Table 3.2: Function’s descriptor table
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Instructions Instructions get stored into a logical descriptor which holds the relevant informa-
tion regarding the one just parsed. That structure actually is folded into two abstraction layers in
order to hide the instruction-set dependency (a) a high-level descriptor, referred to as instruction
descriptor and (b) a machine-dependent descriptor, namely the disassembly descriptor . The field
i of the instruction descriptor embeds the machine-dependent structure, which maintains the
original disassembly byte-code along with several attributes describing the instruction’s specific
implementation; such as the invocation flags, SIB bytes, immediate values, etc. The instruction
descriptor, instead, holds generic information needed to perform logical operations on the binary
representation. At the same time, the disassembly descriptor is useful in order to perform com-
plex manipulation during the instrumentation process. Further a reference field is reserved to
hold the memory pointer of a multiplexed type of target descriptor. In fact it realizes connections
between instructions or between instructions and data; that are due to code branches, function
calls or data movements, respectively. Specifically, the reference field may keep a pointer to-
wards another instruction, or rather to a function’s symbol. Raw data values are treated by
wrapping them into a stub section’s symbol descriptor, which will be relocated to the proper
data section by the emitter.

Field Type Description
flags unsigned long Collects the actual family flag the instruction be-

longs to (§3.2).
orig_addr unsigned long long Holds the original address the instruction has in

the native code.
new_addr unsigned long long Holds the actual address the instruction has

throughout the instrumentation process.
size unsigned int Maintains the size of the instruction itself.
opcode_size unsigned int Holds the size in byte of the whole instruction

but the possible immediate value or embedded
offset.

i union::<info_insn_xyz> Embeds the machine dependent low-level de-
scriptor.

reference void * Holds the memory pointer towards the target to
which refers its relative relocation (if any).

prev struct instruction Maintains the pointer to the previous instruction
descriptor.

next struct instruction Maintains the pointer to the successive instruc-
tion descriptor.

Table 3.3: The instruction descriptor fields table

Each instruction descriptor holds a pointer either to another instruction descriptor or to a
symbol one, according to which kind of relocation applies, namely the reference field. This
allows to maintains connections within the virtual representation itself. However, it does not to
be forgot that the Hijacker’s internal representation have to interface to both a virtual descriptor
and the raw offset-based structure, as the one of the object file. Hence, the fields orig_addr
and new_addr keep, respectively, the logical address the instruction naively has in the object file,
and the one it will have in the instrumented one. Those fields are used as identifiers in both
the parsing and emitting stages. However, one should not confuse the address fields with the
reference one, though they seems to be in contrast with each other. In fact, via the reference
memory pointer —specifically used to denote a virtual descriptor— the instrumentation engine
can navigate the executable’s binary representation, to finally provide to the emitter the logical
address held by the new_addr field. In order to ease the output file generation, the emitter
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Figure 3.6: The instruction descriptor

uses the relative field to embeds offsets into the assembly code, instead of recomputing them.
Otherwise, addresses have to be computed on the fly each time. In that case, the addresses may
be solely retrieved from the relative distance between the instructions in the chain. Therefore,
the emitter should count how many “hops” separate one instruction from the other and should
take into account the size of the inner ones. A quite expensive task.

3.2 Front-End

Front-end module is constituted by the file loader, which parses the input relocatable file, and by
the file writer, which emits the instrumented version. Further, the parsing engine is designed to
support several object file formats (OFF), from ELF to PE and COFF, ecc. Therefore the front-
end is also equipped by an executable interpreter and an assembly one. Those two subsystems are
triggered by the file reader whenever a machine-dependent stage has to be undertaken, allowing
to parse combination of object formats and instruction-sets. Each of the aforesaid modules is
bidirectional since the they serve either in the read stage and during the emit phase.

As mentioned above, the front-end takes as input the relocatable object files. This is an
intentional choice intended to give more flexibility to hijacker which lays directly between the
compiling and linking stage. In this way the instrumentation engine can rely on a wider collec-
tion of low-level information. Section 1.4 overviews several instrumentation’s abstraction level.
The assembly level, even though it provides less semantic information about the logical pro-
gram’s structure, indeed allows a deeper analysis of the interrelation among instructions and
their references.

The file loader module is in charge of reading the configuration file, containing user-defined
instrumentation rules, and instructs the rule manager on the back-end. Therefore it reads the
input file to retrieve its native format. Currently Hijacker fully supports only ELF relocatable
format, though are yet under development other formats, such as PE and COFF. According
to the format detected, the loader triggers the relative executable interpreter which starts to
decompose the object file’s structure by analyzing each section. The output of this process is a
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binary representation, also referred to as program map (§3.1). Virtually it is composed by (a) a
code section, realized as a chain of instruction descriptors, (b) a data section which keeps trace of
program’s referenced data and finally (c) a sequence of raw sections. The latter kind represents
those sections which do not have to be instrumented; therefore they are straightforward rebuilt in
the following emitting step. Along with the format information, input file parser will also retrieve
the proper machine instruction-set employed. According to it, when a code section is found, the
parser will invoke the relative disassembly engine. Currently, Hijacker provides a x86/x86_64
disassembler.

Once triggered, the assembly interpreter linearly scans the code section’s content to trans-
late it as a sequence of instructions. Bytes within the section are progressively parsed by the
disassembler engine in order to interpret them as a sequence of instructions. Whenever the dis-
assembler correctly interprets a new instruction, it builds the relative descriptor. As previously
observed, it holds original instruction bytes (in raw bytes) along with a set of attributes de-
scribing the instruction itself in a more convenient way. Figure 3.6 provides a snapshot of the
machine-dependent descriptor. Further each instruction will be marked with a local family flag
which delineates its behavior (Table 3.4). Any of the previous flag can be OR’ed in whatever

Name Description
I_MEMRD The instruction reads from memory.
I_MEMWR The instruction writes to memory.
I_CTRL The instruction performs some check on data, such as test.
I_JUMP Family of jump instructions which alter the execution flow.
I_CALL Instructions who call a different function
I_RET Instructions who return from a callee.
I_CONDITIONAL The instruction performs only if certain condition are met (e.g. conditional jumps).
I_STRING Instructions who operates on strings.
I_ALU The instruction perform logic/arithmetic operations.
I_FPU The instruction perform floating point operations.
I_MMX Instructions who use MMX registers.
I_XMM Instructions who use XMM registers.
I_SSE Instructions belonging to the SSE instruction-set.
I_SSE2 Instructions belonging to the SSE2 instruction-set
I_PUSHPOP push or pop instructions.
I_STACK The instruction operates on memory within the stack.
I_JUMPIND Instructions who realize indirect branches.

Table 3.4: Family instruction flags

combination (e.g. I_MEMRD|I_MEMWR is an instruction that either reads and writes on
memory). Those families are used by the rule manager to specify where to focus and how to
perform the instrumentation process.

During the assembly scan, the interpreter checks each instruction cross-reference, temporarily
stored for a later pass when is ensured that symbols are parsed. In the further passage the
executable interpreter will effectively resolve and therefore links each instruction descriptor with
the relative reference. By this way, Hijacker generates a structure depicted in Figure 3.7. The
instruction descriptor maintains a pointer to a multipurpose reference field, which is linked by the
disassembler either to another instruction descriptor or rather to a symbol descriptor. Once the
relocatable file is fully read, the control passes to the back-end, and therefore to the rule manager.
This latter will invoke the instrumentation engine module relative to each rule encountered, which
in turn will alter the internal representation. A deeper insight on the instrumentation stage will
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Figure 3.7: Hijacker’s internal representation

be given in the following section about the back-end (§3.3). The control returns to the front-end
as soon as the rule manager has properly instrumented the program map; thus a new relocatable
object file will be generated from the altered program map (according to the input’s format).

The output relocatable file is fully compliant to any compiler frameworks, (e.g. GCC), allow-
ing to relink the newly instrumented module together with the remainder of the software. In this
way, instrumentation can be modularized providing more efficiency and flexibility in its appli-
ance. Each software’s module can be instrumented in a different way according with developers
needs and linked as required.

Shared libraries or other third-party external module support is only provided by allowing
developers to create custom rules which injects hand-crafted assembly code. Those rules can be
used to divert library invocation through a user-defined wrapper, even though it is not possible
to instrument the library itself.

3.2.1 Object file
Object files are concise representations of applications’ attributes, providing an efficient access
to that information needed throughout the compilation process.

We intentionally chose to work on relocatable object files in order to maximize the extensibil-
ity of our tool and to further simplify the code handling process. By adopting this approach, the
instrumentation engine can rely on machine-specific information otherwise not provided by any
higher abstraction level. Although the relocatable representation lacks program’s semantic refer-
ences, on the contrary it provides a tight control over the assembly instructions. For the specific
purpose of instrumentation at machine level, having a precise view about underneath details of
each instruction is fundamental, since it allows to act directly on them. Unlikely the source level
instrumentation (Section 1.4.1 “Ways to instrument the code”), assembly manipulation focuses
the intervention producing an optimized instrumentation.

Executable which holds code and data suitable for linking

Relocatable which holds code page-aligned executable segments

Loadable binary code to be dynamically loaded and embedded in other programs
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For the sake of completion, this section traces down a brief overview about the object files (ac-
tually, for a deeper insight in the ELF format refer to Chapter 7 “Appendix C”). Conforming
with the information they provides, object files may be relocatable, treated by linker to produce
executable ones, loadable as in case of external libraries that have to be embedded into a pro-
gram, or executable. According to the specific purpose, the object file contains a structured set
of information needed to perform the required tasks. Generally, those objects are structured in
sections, that are segments of various size containing precise kind of data belonging to the follow-
ing list. Relocatable objects are generated by the compiler as the output of the first compiling
stage, (see Figure 3.1) they will be the future input for the linker. This one, in turn, extracts
from the relocatable the relevant information to compute relocation’s displacement for each entry
and finally builds an executable file. In general, an object file thoroughly comprises the program,
that is structured in different cross-referenced sections.

There are several kinds of format, each of one storing slightly different information either in
content or in structure. Nevertheless, they basically have to keep track of a predefined set of
meta-data.

Header information Overall specifications about the file size, its initial address (in case
of executable files), and furthermore all the references to reach each of the other
sections composing the object.

Object code Herein is stored the binary instructions of the assembled source code

Relocation Cross-reference section which bind symbols together with target code address
where linker has to intervene adding dynamic references.

Symbol table A table listing local and global symbols, either functions and variables, belong-
ing to the current module dynamic libraries and external reference to be imported.

BSS data Uninitialized static variable storage unit

Debugging information Source file line number, symbols and other meta-data employed by
the debugger to visualize to the user program’s execution flow.

Object files may be relocatable, which are treated by the linker, loadable as in case of the ex-
ternal libraries that need to be dynamically embedded into a ready-to-run program, and finally
executable. According to the purpose, an object file contains structured information. Generally,
object files are structured in sections or segments containing precise kind of data, aligned to
the previous description list (Figure 3.8). Relocatable (or linkable) files basically hold sections
containing data and a not-yet-complete binary code, along with a list of relocation sections. This
file is suitable to be linked with other relocatable object files to produce executable files, shared
object files, or other intermediate relocatable objects. The relocatable format is the output of
the compilation stage, therefore it makes a very extensive use of symbols and relocation entries
as placeholders to fix up addresses and references known only at linking time. Shared libraries
and external symbols belonging to other modules, for example, belong to this category. Through
a relocation entry the linker resolves instruction references and offsets into real addresses or dis-
placements with respect to a unique entry point address, assigned to the executable by the linker
itself. The output of the linking stage is thus an executable file, which holds needed information
to load the program’s map in memory and run it. Executable files, unlike relocatable ones, do not
have to store much detailed information, since they are self-contained and ready to be executed.
Therefore, they are no more than a page-aligned set of code segments which can be loaded and
straightway run.

Our project currently supports only the ELF format [?, ?] which is the one most used in Unix
environment. Other file format supports are currently under development, such as COFF and
PE.
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In order to give a more valuable view, in the following a brief insight about the ELF file
format is presented. Our choice lands on the ELF format because of its broad diffusion within
Unix-based environments —which is actually the one used to develop this project. An ELF
(Extensible Linkable Format) file3 is quite flexible and extensible structure not bounded by any
processor or architecture details. It is realized by different sections that are linked together via
offsets, as Figure 3.8 shows. Generally, an ELF file consists of a variable number of sections,

ELF

ELF Header

Program Header (optional)

.text

.symbol

...

.data

...

Section Header

Figure 3.8: An overview on the ELF structure

accordingly to the specific characteristics of the program it represents. As its name suggests,
the ELF file may represents either a linkable or a relocatable file, respectively. According to
the type, the overall structure changes a bit. Both types are characterized be an ELF header
block at the very beginning of the file. The header contains several attribute that specify the
format itself and the architecture the program has compiled for. It represents a “road-amp” to
describing the file organization. The relocatable type is further composed by sections, containing
the intermediate data to allow the linker in solving relocation references; whereas the former type
is only composed by segments containing the binary code, aligned to the page size for a more
efficient memory loading Further the ELF header holds the offsets to one optional program header
and to the section header table4. Former section is mandatory only for the executable type, since
it maintains the necessary information to create the process image, to load it in memory and
to launch it. Section header table, in turn, contains information describing the file’s sections.
The table maintains an entry for each section registered. A single entry holds the offset to the
relative section’s content along with several attributes describing itself, such as the section size,
the content’s type, the section name, etc.

Sections are referred to as storage units and hold plain binary data. The interpretation of that
bytes depends solely on the section’s attributes kept in the relative table’s entry. have meta-data
associated to them, further maintained within the header of the ELF file. The previous list cited
the most common ones.

In the following, a brief description of the common sections.

3ELF format is firstly published in the System V Release 4 ABI, and in the 1999 it becomes the official standard
for the Unix-based systems

4The section header table always closes the ELF structure
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Header Which contains generic specification about the ELF file itself, such as the architecture
for which the file is compiled to, the version number, etc. Further it holds fundamental
information about how many sections or segments are registered and where the relative
table is located.

Program header table Provides information about how to create the process image when
requested its execution, such as the entry point address.

Sections Each section contains different kind of data according to its own type:

• .text
• .data
• .rodata
• .bss

• .strtab

• .symtab

• .rel/rela

Section header table Provides information to properly handle each section, how to reach it
and what it contains, according to its type.

3.2.2 Parser of the relocatable object
So far, we have provided an overview of Hijacker, a sketch on its architecture and how it works.
This chapter, on the contrary, focuses on the object parser and its emitter counterpart, giving a
richer description about they are implemented.

Both of them retrieve the input file’s format in order to properly interpret the information
they provide. Herein, as previously mentioned, the focus is on the ELF format. Once the
proper executable interpreter is invoked, it linearly parses sections one by one. To our purposes,
basically only text, data and relocation sections are considered, in order to build the internal
binary representation (§3.1). Other sections, generally do no contain relevant information for the
instrumentation stage, and do not have to be instrumented themselves, therefore Hijacker will
mark them as raw sections. A raw section is straightway rebuilt in the emit step by leaving it
completely unaltered. In order to properly build the IBR, more passes are needed. The ELF
structure is very compact in design, thereby information stored are deeply coalesced; they must
be progressively rebuilt:

1. Linear scan to disclose sections

2. Resolve symbols and binding them to the corresponding entity

3. Resolve relocation entries linking the virtual descriptors

In the first step the input file is thoroughly scan, the parser stores each section’s content into
a partial representation that will be refined in future passages. The output is a temporary list
of virtual section descriptor. Hijacker marks each entry with a internal flag wrapper in order to
identify the type of the relative section, to create an abstraction layer. Table 3.5 describes the
bind between ELF section’s flags and the Hijacker ones. According to the section type different
actions have to be undertaken.

Text section ELF’s text section are marked by the SHT_PROGBITS|SHT_EXECINSTR value held
by the relative section header (see Chapter 7 “Appendix C”). Whenever such flags are encountered
the parser interprets machine dependent information in order to discover which instruction-
set has been used. Then, control pass to the disassembler engine which linearly scans and
decomposes all the raw bytes into instruction descriptors. Those descriptors are doubly linked
together in a instruction chain. So far, instructions have been correctly interpreted and stored
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Flag Description ELF Flag ELF Attributes
SECTION_CODE Section containing

executable code that
may be instrumented

SHT_PROGBITS SHF_EXEC

SECTION_DATA Section contains
plain data it can map
either read-only sec-
tion and read-write
ones

SHT_PROGBITS SHF_ALLOC and/or
SHF_WRITE

SECTION_NAMES Section that contains
strings of literals,
such as section’s
names or symbol’s
names

SHT_STRTAB none

SECTION_RELOC Relocation sections,
either REL or RELA
type are coalesced
into a single type

SHT_REL

SHT_RELA

none

SECTION_RAW Section irrelevant
to build the bi-
nary representation
and/or has not to be
instrumented, rebuilt
as is

SHT_NOBITS

SHT_DYNSYM

SHT_HASH

SHT_DYNAMIC

none

Table 3.5: Binding between the ELF’s section flags and Hijacker wrappers

in the representation. No functions are detected, and no reference at all are known. Only in a
subsequent pass this information can be properly retrieved.

Once the whole file is read, Hijacker leans to all necessary information to identify and split
up each function into a sub-chain of instructions. Simultaneously Hijacker’s parser checks for
jump instructions, which are linked to the target one descriptor. In this way, it is possible to
correctly rebuild the reference network even when those instructions are altered or displaced as
consequence of the rule applying phase.

Relocation Relocation entries are the only mean through which it is possible to properly
rebuild the reference network among instructions. Therefore, great attention must be paid in
their handling. Beside short jumps, every other reference unknown at compile-time has to be
relocated at link-time. Since the alternate of the version and updates, relocation sections can
either be represented by rel or rela entries. Basically, they differs form each other in the presence
of an explicit structure’s member (for a detailed description refer to Chapter 7 “Appendix C”).
Whenever the parser meets a relocation section, it generates a temporary list of all its entries.
The list is functional to bind instructions and symbols together in future passes. However, we
still don’t have enough information to solve relocations5.

Once the parser has read the entire object, partial binary representation holds enough in-
formation to allow relocation to be correctly interpreted. Function resolve_relocation is in
charge to check, entry by entry, at which address they refer to among instruction descriptors
piking up the correct one. Instruction descriptor has a member (check Figure 3.6) to hold a

5We refer to the solving relocation action in a broad sense meaning to bind each target instruction descriptor
to the relative symbols descriptor, within the internal binary representation.
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Flag Description ELF Flag
SYMBOL_FUCNTION The symbol is associated with a function defined

within the user software
STT_FUNC

SYMBOL_VARIABLE The symbol is associated to an data object (e.g.
variable, array, structures, etc.)

STT_OBJECT

SYMBOL_UNDEF The symbol’s type is not otherwise specified; it
can be an external library function or an extern
symbol

STT_NOTYPE

SYMBOL_SECTION The symbol refers to a section; those symbols are
used in relocation to displace within a specific
section

STT_SECTION

SYMBOL_FILE The symbol conveys the name associated with
the current object file

STT_FILE

Table 3.6: Symbol flags binding

generic reference pointer to the target descriptor, either instruction or symbol or, rather, raw
data. Thereby, current instruction will be linked to the symbol descriptor to which the relo-
cation applies. This allows to arbitrarily alter that symbol ensuring correctness in the rebuild
stage. In fact, references are computed from the new addresses, maintaining the correct relative
displacement.

Data section To our scope, data section type generally merges together .data, .rodata,
and .bss section types which fall into the raw category, along with others special sections,
such as .dynsym, .hash and .dynamic. No particular operation has to be performed on those
sections, since they are not directly involved in the instrumentation process. Nevertheless, data
sections are not ignored, but indirectly referenced into the internal representation and throughout
the parsing process. As depicted in the Figure 3.7, data sections contains global variables or
other (un)initialized data that code references through the relocation entries. Therefore raw
sections need no special treatment but to be “embedded” into the binary representation as memory
pointers to the proper target descriptor.

Once all the sections are found, the second step is to resolve symbols. As for section’s type,
also symbols a flags are remapped into a more convenient abstraction level. Table 3.6 shows the
possible bindings of each ELF’s symbol flag into the internal one. Generally a symbol may be
either a function or a plain variable —in fact, the other types are not strictly relevant for the
instrumentation aims. In case a new function symbol is met, a new function descriptor is created
and linked to the relative symbol descriptor so that it can internally be referenced. Instructions
chain is linearly scan to find function’s extents in order to cut the chain down. Simultaneously
whenever a jump instruction is identified it is linked to its target. At the end of this pass, each
function has its own sub-chain of instruction representing the body. Otherwise, if the symbol
represents a variable, the parser resolves it by displacing within the target section containing its
data; therefore that value is linked to the symbol descriptor in the internal representation. The
Hijacker’s binary representation profoundly hinges on the notion of symbol. Basically, symbols
are used as conveyors of the relocation notion, to substantiate references among entities in the
representation. Indeed, the final step is to resolve relocation entries saved into a temporary list
of descriptors. Once references are thoroughly translated, this list is disposed. This choice is
aimed to create an abstraction layer to decouple object’s entities from the notion of relocation.
Because of hard-coded offset, relocation entries are unpractical to handle in for our instrumen-
tation purposes indeed, therefore we collapsed it into the symbol descriptor itself. Nevertheless,
one symbol descriptor ought be duplicated whenever a relocation entry to it is found, otherwise
different relocation to the same symbol would overwritten by the last. Further, since instruction
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and symbol descriptors are linked together, each instruction descriptor whatsoever modification
of that symbol, would affect many other instruction as well; hence the reference to the symbol
descriptor must be unique.

3.2.3 Hijacker’s Emitter
So far Hijacker’s IBR has correctly been structured as a chain of cross-referenced instructions.
Control is thus given to the instrumentation engine driven by the rule manager. Each rule has
been previously parsed and scheduled for the future instrumentation step. Now, the represen-
tation is ripe to be tweaked, as the following section faces. Once the instrumentation is done,
control returns to the executable interpreter which in turn will invoke to the code emitter. The
file emitter will output a new relocatable file perfectly compliant with the external linker so that
it can properly build the remainder of the software modules. In order to ensure correctness,
the emitter rebuilds the ELF structure from scratch. A set of canonical sections are recreated
starting by default. Nevertheless, currently Hijacker does not support multi-text section objects,
meaning that this type of file, will be reconstructed by straightway coalescing all the native text
sections in a single one. Emitter starts by creating the stubs of the canonical sections which are
subsequently filled up by successive passes. Data sections are straightway written in the new
container, as well as string tables. Whereas symbols and text sections require a more refined
treatment.

Symbol list maintained by the program’s map is not the real one that will be written on the
file, it is rather a virtual representation. Symbols, in fact, have been cloned in order to settle
references towards instructions. Since more references can be made to a single symbol, each
descriptor is cloned, so that the instrumentation be slender. The structure maintains the same
semantic and allows to correctly identify the relocation reference in the emit step. Though only
one copy for each symbol will be written in the output ELF file.

Instructions are scanned linearly during the emit phase, for each one the emitter will invoke
the specific machine code emitter. Raw bytes packed into the instruction descriptor, will be
written to the corresponding target section, in the meanwhile the emitter checks jump, call or
other type of references in order to build the relative relocation entry to write out along with the
instruction itself.

3.3 Back-end

Back-end is constituted by a rule manager which drives the instrumentation engine. Once the
internal binary representation is successfully created by the front-end, the rule manager will
instruct the inner engine to properly instrument the code according with the rules provided by
the user in the configuration file. The configuration file is simply an xml file through which the
user can directly drive the instrumentation process by choosing functions or instructions to be
added, diverted or muted. The user can straightway specify instrumentation modules to pin or
handwritten assembly code blocks to be injected. In this way the user is able to create arbitrarily
custom snippets to achieve more efficiently his/her objective. A more detailed description of xml
rules format and usage is provided in the further section (§3.3.1).

The rule manager will scan the configuration file and will apply each rule in the order it would
be met. A set of internal functions allow to add or substitute low level instructions within the
IBR. In the following a brief description.

insert_instruction_at() It creates room to add a new instruction in the code, provided the
raw bytes which represents the machine code.

substitute_instruction_at() Provided the instruction description pointer of the target in-
struction, it substitutes this one with the raw bytes passed as its argument.
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Each new instruction added will require to update the entire set of relocation references in
order to preserve the semantic consistency. This process is quiet expansive, since an instruction
could references another one which is previous to it, then it is not possible to only update the
instruction within the same function and successive to it. This will employ a huge time with
respect to the other task, however it is done before the real execution, hence it does not hurt
program’s performance.

Reference update process starts by checking each instruction within the IBR independently
of its parent function. It performs the following steps:

1. Shift instruction addresses beyond the one instrumented, through all functions

2. Check and update jump instruction displacements

(a) In case of short jumps, Hijacker tries to use the original instruction. If the displacement
is oversized, then the short jump will be substituted by a long jump.

3. Check and relocate symbols that references the instrumented instruction

Altering the chain by adding or even substituting one instruction, will require to realign addresses
according with the shift amount due to the newly added instruction size. Therefore in the first
step, the instrumentation engine will performs an update of each instruction beyond the one
instrumented (replaced) by shifting them by the new size or the difference between the old
one and the new substituted. As a minor optimization only the instruction beyond the one
instrumented are checked. The IBR is structured in such a way to replicate the ELF linear
structure of the text section, it is thus possible to update only successive instruction without
hurting the correctness. Despite this optimization, the cost in time is still linear with respect to
the input size, namely the number of instruction held by the IBR.

Herein, although instructions have the correct new address placeholder within the IBR, cross-
references among them are not more valid since even relative displacement might be no longer
aligned to each other. Due to the bytes added or removed in between, the second step is manda-
tory to keep code consistency by looking for each jump instruction to update its displacement.
The update process should be straightforward, however it hides a challenge. Compilers, ob-
viously, try to optimize as much as possible the executable file size, short jump instructions
are therefore preferred whenever applicable. Nevertheless an arbitrary amount of bytes can be
altered between two instructions. By altering the binary structure, offsets may likely become
oversized with respect to the original jump’s size. In such a case, the short jump must be up-
graded to a long jump. A nested instrumentation loop takes place by transparently invoking the
substitute_instruction_at() instrumentation function. It apparently seems to lead into a
possible infinite loop, but it does not, indeed. Let us consider the case of four short jump instruc-
tions placed at the maximum distance, to each other, allowed by their offset size, and suppose to
adds a generic instruction between the first and the second short jump operations. Consequently
to the instrumentation action, second jump instruction shifts down causing the first one to be
substituted with a long jump. By undertaking both of the previous actions, last two jumps will
subsequently shift by the same amount of bytes, without changing the relative distance between
them, and thus avoiding to issue any other nested substitutions. Again the time cost is linear
with the number of the instructions registered.

The final update step will look for the other relocation references which apply to the .text
section. The engine will look for the symbol .text within the IBR and recompute relative
displacement held by the addend field. Time cost is function of the number of symbols held by
the representation.
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Figure 3.9: Nested instruction instrumentation

3.3.1 XML configuration rule file
Hijacker’s back-end is driven by a simple xml file containing the instrumentation rules. Each
instruction comes with a set of attributes that describes its scope, the instrumentation target,
the number of passages, and so on and so forth. Each rule is provided as a xml tag, further
illustrated in the Table 3.7 Table 3.8 eloquently exposes possible attributes for each entry along
with a brief description. In such a way the user can widely customize the instrumentation engine
according to its specific needs. With Hijacker we left open the opportunity to manually provide
custom assembly code to inject, through the <Inject> tag. In such a way, the user is allowed
to best refine the instrumentation; though it requires that he/she is informed about the specific
machine to work with, and able to provide a compliant code. Injecting blocks of assembly
instructions is a double edged sword: on the one hand it is a very powerful tool, but on the other
hand, it may strain the user-side with a considerable effort. To cope with this issue, Hijacker
provides a set of ready-to-use pre-compiled modules realizing the most common inspects, so that
even less expert users can approach to it. The monitor module for reverse execution extension
is one of those modules (refer to Section 4.2).

The configuration file is structured in such a way to progressively refine the action field. The
user can exert a very fine-grained control over functions and instructions, by asserting which
target have to be instrumented and how they must be altered.
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Tag Description Scope
<Inject> Allows to inject directly assembly

code which should be written in the
target machine specific instruction
set, or compliant with some compiler
installed so that Hijacker can compile
it for you

<Function> Specifies a target function to which
apply some instrumentation opera-
tions

<Instruction> Allows to specify a target type of in-
structions to be instrumented

<AddCall> Adds a new instruction whenever the
aforementioned condition are met

Table 3.7: XML rule’s tags description

Scope Tag Attribute Description

Executable
reverseDebug Enable the reversing module to produce revertible code on-

the-fly
entryPoint Declare the executable’s entry point

Function
maxPasses Instruct the engine to instrument the current entity no

more than x times
exactPasses Instruct the engine to instrument the current entity exactly

x times

Instruction

injectAfter
injectBefore
replace
instruction The family flag (see Table 3.4) of the kind of instruction

to instrument

AddCall

where
function
arguments
convention

Range
depthCall
callRepeatRule

Table 3.8: XML rule’s tags description
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CHAPTER4
The reversibility architecture

Speculative simulation, requires lots of rollbacks in order to undo out-of-order events. So far
the most common and consolidated way was to employ checkpointing techniques, which though
have large overhead either in time and in memory. Other researches in this field attempted
to statically or dynamically reverse the code instruction by instruction, independently of the
machine architecture. However, it turns out to be a challenging task. As previously hinted, it
foremost necessary to figure out which logic is beneath a group of assembly instructions. Devising
an architecture capable to effectively retrieve semantic from low-level machine information, such
the one provided by object files, is not straightforward. In many works tackling this issue, this
task is accomplished by first computing the control flow graph of the executable. It therefore
allows to infer which logic result it has been computed. Nevertheless, as different human beings
have their own writing style, so compilers have different ways to produce semantically equivalent
code blocks, namely idioms. Henceforth for illustrative purposes, let consider Listing 7.3 and its
relative assembly code (Listing 4), produced by GCC-4.9.2 compiler, which is reported in the
Chapter 7 “Appendix D” for the sake of brevity. Lines 21–29 show an example of a compiler
idiom which embodies an integer division.

1 int foo(int num) {
2 int x;
3
4 x = 10;
5 x *= 2;
6 x++;
7 x = x >> 2;
8 x /= 3;
9

10 x--;
11 x *= 3;
12 x = num + 8;
13 x %= 2;
14
15 return x;
16 }
17
18 int main(){
19 foo (5);
20 return 0;
21 }

The first approach we attempted is to fine-grain reverse each assembly instruction during the
static binary analysis. By following this plain approach of reverse code generation, one could
invert step by step each instruction met. However, this would turn into a misbehaving code
whose semantic would be likely different to the original one. Hereafter, we refer to instruction
as a single assembly statement, whereas operation is set of instructions which embody a logic
calculation on data.

Let us consider the Listing 4 representing the set of assembly operations that realize integer
division at line 8 of Listing 4. Without the knowledge of the high-level operation, namely x /=
3, we would have to treat a generic assembly block of code of which we even ignore the extents.

59
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But let suppose to solve this first and non-trivial hurdle, the subsequent challenge would be to
invert the following assembly block:

1 8b 4d fc mov -0x4(%rbp) ,%ecx
2 ba 56 55 55 55 mov $0x55555556 ,%edx
3 89 c8 mov %ecx ,%eax
4 f7 ea imul %edx
5 89 c8 mov %ecx ,%eax
6 c1 f8 1f sar $0x1f ,%eax
7 29 c2 sub %eax ,%edx
8 89 d0 mov %edx ,%eax
9 89 45 fc mov %eax ,-0x4(%rbp)

If we simply reverse each instruction from the bottom to the top we would obtain a completely
different behavior. Table 4.1 traces registers’ value change according to each assembly instruction.
Lets suppose, for the example, that x variable holds a value of 5. The above example clearly

Step Instruction RAX RCX RDX Description
1 mov -0x4(%rbp),%ecx ? 0x5 ? Move the value in x

into register RCX.
2 mov $0x55555556,%edx 0x55555556 Move constant

0x55555556 in
register RDX.

3 mov %ecx,%eax 0x5 Copy RCX’s value
into RAX.

4 imul %edx 0x0xaaaaaaae 0x1 Multipy RAX by
RDX, and store
the result into
RDX:RAX (RDX is
sign extension).

5 mov %ecx,%eax 0x5 Move RCX in RAX.
6 sar $0x1f,%eax 0x0 Shift right by 31.
7 sub %eax,%edx Subtract RDX from

RAX.
8 mov %edx,%eax 0x1 Move RDX in RAX.
9 mov %eax,-0x4(%rbp) Store the result

back into x.

Table 4.1: Assembly instructions’ steps of the integer division by 5

enlightens that is ambiguous how to handle the reversion process. Foremost, one can be observed
that GCC does not employed the idiv division instruction to perform the operation, rather a
multiplication surrounded by a set of seemingly unrelated instructions. The constant value of
0x55555556 used in step 4 to perform the integer division is the result of a trivial mathematical
optimization [?, ?], firstly proposed in [?] by Granlund and Montgomery which allow to achieve
a speedup up to 4x. A more detailed digression is given in Chapter 7 “Appendix B”. From the
example would result clear that the instructions sequence are functional to perform the optimized
integer division, however it is far from being self-explainable. Further, the operation performing
likely disposes some information, which prevent the instruction reversibility. In such a case there
is no other way to achieve reversibility but to save the intermediate results. The above integer
division employees a shift operation which is a destructive instruction in nature: Hence, without
knowledge of the logic result behind the sequence, there are roughly two mixable operating
ways: (a) building a control flow graph through a static (or even dynamic) complex analysis, or
(b) saving partial result so as they could be restored in future.

The knowledge of the semantic result is fundamental in order to properly reverse the forward
code, otherwise some information might be lost. However this must not to be confused with
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0 7 15 23 31

1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0 0original value
{
0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1shift right by 5

{
1 0 0 0 0︸ ︷︷ ︸

Lost

Figure 4.1: Information lost through shift instruction

constructiveness property of logic instructions. Instruction’s constructiveness is a perpendicular
—though related— aspect with respect to the depicted problem, since it regards correlation
among instructions. Indeed a constructive operation could result in a destructive assembly idiom.
Lets consider the Listing 4.1 which embodies the x *= 3 operation, and suppose x variable holds
a value of 2, at the beginning. Table 4.2 describes each computational steps and shows registers
value changes. The operation involved is constructive in nature, but the instructions sequence is
not.

1 8b 55 fc mov -0x4(%rbp) ,%edx
2 89 d0 mov %edx ,%eax
3 01 c0 add %eax ,%eax
4 01 d0 add %edx ,%eax
5 89 45 fc mov %eax ,-0x4(%rbp)

Listing 4.1: An example of a descructive operation’s idiom

Step Instruction RAX RDX Description
1 mov -0x4(%rbp),%edx ? 0x2 Load x value into RDX.
2 mov %edx,%eax 0x2 Copy RDX into RAX.
3 add %eax,%eax 0x4 Double the initial value.
4 add %edx,%eax 0x6 Add once more the initial value, so that to

realize the third addition.
5 mov %eax,-0x4(%rbp) Store back to x the new value.

Table 4.2: Assembly instructions’ steps of the multiplication by 3

Most of the work done in other papers, such as in [?, ?], is targeted to find a suitable way to
efficiently reverse the whole assembly code generating a logically reverse clone that would be able
to undo exactly what the forward code does. A burdensome effort is required to understand code
instructions sequences and to build a control flow graph able to represent the logical program’s
semantic. Nevertheless, handling so much information introduces a considerable effort and could
incur in heavily overheads, even though some interesting results were achieved.

Unlike the aforesaid paradigm, our approach is not aimed at producing a perfect logically
reverse binary clone of the input. Rather, Hijacker relies on a novel technique which much
simplifies the problem solution and the computational overhead required to achieve reversibility.
A MOV-oriented reversing approach. From an high-level viewpoint, it represents a hybrid form
which mixes together either reversibility and checkpointing paradigm. The following section will
deeply deal about how it is implemented.

4.1 The reversing code approach

The idea beneath this approach tackles the unavoidable requirement to save disposed data pack-
ing it into an instruction rather than a memory location. We therefore blend together state
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saving mechanism with instruction reversibility. Backward rerun instructions will, in fact, re-
store previous data.

Bearing in mind target applications, we observe as the only instructions relevant to our
objective are those which may destructively alter the program’s state1. Creating a detailed
instruction-step reverse map could be functional to recover register values as well, which would
not be worthy in the present case. On the contrary, the relevant element to our scopes is the
net data flow towards memory, which directly translates to focusing on write instruction only.
In particular, we currently operate on write MOV instructions. This represents a good trade-off
that allows to achieve reversibility without the burdensome architectural complexity to build up,
neither the need to statically parse executable’s control flow graph. On the one hand, generating
the inverse of a MOV instruction is quite linear, beside not straightforward. In fact, this process
requires runtime information that relocatable files do not provide. It has to borne in mind that
most of code references, values and parameters could be known only at link-time or runtime,
thereby it is not possible to straightway reverse from the native code ignoring the underneath
semantic. Basically, a MOV instruction will write a known amount of bytes to a runtime memory
address overwriting a previous value we need to store. Although the first information can be
easily gathered from relocatable format, the successive two are available only at runtime. From
this consideration follows the hybrid instrumenting approach which blends static instrumentation
with on-the-fly reversion. The former is functional to properly adds an assembly preamble code
functional to prepare the reverse code generator’s call which, in turn, does the real job at runtime.

As hinted above, static instrumentation process will add the call to a monitor module just
before each memory-write MOV instructions. During this stage, Hijacker extracts relevant known
meta-data from the targeted instruction and stores them into the info_entry data structure
which holds the following information2:

• Size of the memory write operation (in bytes)

• Flags describing the addressing mode

• Address offset to which to write

The info_entry is packed on the stack along with the module’s CALL instruction, so that at
runtime, the control passes to our monitor. Upon its invocation, the monitor firstly retrieve the
value residing at the address provided as argument, therefore it builds a new MOV instruction
according to the written data size. Table 4.3 describes insn_entry’s fields. Newly created
instruction has built-in the value that will be overwritten by the forward instruction. Since
a former MOV will always predominates the rollback history within specific semantic-window, a
further optimization is to effectively reverse only those instruction whose target address was not
referenced yet. In such a way it is possible to reduce the total number of the reversed instructions.

4.2 Monitor: a reversing code module

As an important part of this thesis, we have designed and implemented a reverse code generator
module for Hijacker. In particular, we want to evaluate its impact in the simulation environment.
The monitor, is a compact module which generate reverse instruction on-the-fly, though it is not
to be confused with a dynamic instrumentation tool (see Chapter 3 “Reference instrumentation
tool”). Herein we want to focus about the implementation of the monitor module.

Previous static instrumentation stage inserted a call to this module just before each destructive
MOV instruction so that to preserve old values to be definitely overwritten. Inverse instructions

1Also the CPU’s context belongs to the program’s state, however we are interested to memory only, since the
actual execution of one event is usually considered atomic in standard PDES.

2This is a “disassembly-information caching” which aims to enhance performance, as discussed further.
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are stored straightway on a private heap region. This is an entry point to reversible functions
that the forward code can access in any time.

4.2.1 Interpreting the instruction
During this stage, Hijacker instruments the native code by inserting an assembly block constituted
by the following instructions:

1. pushfw Save the FLAGS register’s status

2. sub Move the current stack pointer. It makes room in the stack for the subsequent
insn_entry structure injected by mean of movs instructions.

3. mov Push the size field

4. mov Pack and push fields flags|base|idx|scale.

5. mov Push 4 bytes of offset field.

6. mov Push 4 bytes of offset field.

7. add Restore the stack pointer. The transition must be transparent to the running program.

8. popfw Restore the FLAGS register’s status

This assembly block is functional to call the monitor and to instruct it. Once invoked, the module
will find instruction data on the stack. At runtime, the module needs to know (a) the address at
which the instruction will write, and (b) the size of data to be written, in order properly generate
the reverse MOV. Those two pieces of information are retrieved by the Hijacker’s instrumentation
engine that disassembles and inspects the instruction itself. Computed data are prepared for
the call to the monitor module, so that needed arguments are correctly passed to it. Engine is
developed under the ABI System V specification, therefore rdi and rsi registers are used to
respectively pass to the module the address value and the write size. From now on, the module
has all the necessary information in order to properly generate reverse instruction on-the-fly
during runtime execution.

This module is logically constituted by two parts: (a) the inspecting monitor and (b) the
code generator. Former block is written directly in assembly code, in order to achieve maximum
efficiency and is pursued to retrieving instruction meta-data. The latter, is indeed the one in
charge to runtime generate the code further stored into the program’s heap. In the following we
propose the monitor’s code snippet relative to the x86 machine architecture only.

Field Type Description
size unsigned int How many bytes the operation will write.
flags char Which kind of addressing mode the MOV operation uses.
base char The base register (if present).
idx char The index register (if present).
scala char The scale register (if present).
offset unsigned long long The address offset, relatively to the instruction, to which

the operation will write on.

Table 4.3: Description insn_entry’s flags
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Figure 4.2: Assembly instructions to push insn_entry on the stack

1 monitor:
2 push %rax
3 push %rcx
4 push %rdx
5 push %rbx
6 mov %rsp , %rax
7 sub $8, %rsp
8 add $32+16, %rax
9 mov %rax , (%rsp)

10 push %rbp
11 push %rsi
12 push %rdi
13 mov %rsp , %rbp
14 add $64 -8, %rbp
15 lea 16(% rbp), %rdx
16 movsbq 4(% rdx), %rax
17
18 .PlainWrite:
19 xor %rdi , %rdi
20 testb $4 , %al
21 jz .NoIndex
22 movsbq 6(% rdx), %rcx
23 negq %rcx
24 movq (%rbp , %rcx , 8), %rdi
25 movsbq 7(% rdx), %rdi
26 imul %rcx , %rdi
27
28 .NoIndex:
29 testb $2 , %al

30 jz .NoBase
31 movsbq 5(%rdx), %rcx
32 negq %rcx
33 addq (%rbp , %rcx , 8), %rdi
34
35 .NoBase:
36 add 8(% rdx), %rdi
37 movslq (%rdx), %rsi
38
39 .CallDymelor:
40 cmp %rdi , %rsp
41 jb .End
42 call reverse_code_generator
43
44 .End:
45 pop %rdi
46 pop %rsi
47 pop %rbp
48 add $8, %rsp
49 pop %rbx
50 pop %rdx
51 pop %rcx
52 pop %rax
53 ret

Listing 4.2: Inspecting monitor
disassembly

The Listing 4.2 depicts the real monitor module assembly code. First it performs a dump of
all registers, therefore it computes the base address for the structure info_entry which holds
current instrumented instruction’s meta-data to retrieve. The rdx register is used to point the
structure. Data pack is placed within the stack in the following order:

The structure is placed in the stack by preserving its natural flow. Therefore, whenever
invoked at runtime, the monitor will displace from the base address in order to check which
flags the instruction has, and accordingly to them it jumps to the proper code statement. From
line number x-y, module rebuilds the offset by interpreting the displacement form used. In the
x86, addressing mode are quite complex to understand, operand := offset [base, scale,
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Figure 4.3: The insn_entry’s bytes arrangement within the stack

index].

offset An immediate offset to adds to the remainder of the address

base An optional register holding the base value to which adds optional values

scale An optional register holding the value by which multiply the index

index An optional register holding an integer value

Machine microcode will compute the address as: address = offset+ (base+ scale ∗ index).
To subsequently call the higher-level part of the module, the assembly monitor preamble

computes the destination address and retrieve how many bytes the instruction will write. Once
this quest is completed, it checks whether the address falls outside the current stack window,
otherwise no special action is undertaken. This is a duly optimization that leverages simulation
application caveats. A further discussion is faced in Section 4.2.4 “Optimizations”. If destina-
tion address is not within the process’ stack, therefore the assembly preamble finally calls the
reverse_code_generator() function, that represents the “second half” of the module.

4.2.2 Runtime code generation

Until now, the inspecting monitor has interpreted the instruction to be reversed and has properly
built the call instructions sequence towards the complementary part of the module, the one in
charge to effectively emit the reverse code. As previously mentioned, code generator will allocate
a private region on the program’s heap to dynamically store generated instructions. Namely the
reverse window, described by the revwin structure.

Monitor’s assembly fragment ends its execution by calling the reverse_code_generator()
C function. Following the ABI System V calling convention, registers rsi and rdi keep, re-
spectively, the first and second argument of the called function. Instructions at lines 36–37 in
Listing 4.2 store the destination address and the amount of bytes to be written, respectively, in the
aforementioned registers. The reverse_code_generator() function will perform the following
three tasks:

• Checking whether the address is already referenced

• Retrieving parameters and checks to-be-written data size

• Computing the instruction’s inverse

It retrieves the two parameters describing the actual address to which the subsequent instruction
will write on, and the size in bytes of data ready to be written. This parameter is basically
needed to correctly interpret and store the actual data present in memory. The function checks
whether the target address is already referenced by invoking the is_address_referenced()
function, in which case write instruction will be ignored since it is not straight relevant (see
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discussion in Section 4.2.4 “Optimizations”) to our objective. Indeed, any former MOV instruction
involving the same address is predominant and will be the last restored, therefore it would be
not worthy to reverse the following ones, too. Otherwise, if the address has not be referenced
yet, create_reverse_instruction() function is called which finally builds a new instruction
according to the write size.

4.2.3 Reverse code window
Simulation process is composed by many logical processes executing events in parallel, therefore
the dynamic code generator is specifically designed to handle multiple instances of the reverse
window structure, according to the current running epoch. Epochs are related to the notion of
process’ logical virtual time, and each event is associated to a distinct logical time value. The
whole set of all those reverse windows represents the program’s history. The reverse code is
generated according to this schema ensuring each logical process to have its own private copy of
the structure. Table 4.5 describes the structure used to keep track of multiple revwin structures.
Figure 4.4 depicts a logical structure of this window. The reverse window is a descriptor for the

Field Type Description
size int The actual size of the reverse window.
address void * Address to which it resides.
pointer void * Pointer to the new actual free address.

Table 4.4: Revwin structure’s fields description

revwin
size

address
pointer

Heap

revwin

Figure 4.4: Revwin descriptor

meta-data needed to correctly handle on-the-fly code generation. Its structure is showed in the
Figure 4.4. The structure resides directly into the running program’s heap to allow a uniform
and efficient way to invoke reverse functions whenever required. The allocation of a new reverse
window is handled by the allocate_reverse_window() function. As default a ret instruction
is added to the of the window; this is subsequently used during the restore process.

The reverse code generator uses the mmap standard library function to map and handle the
revwin. To prevent security flaws, a heap window protection system is adopted. Generally,
reverse window is kept under write permission only; upon a reverse execution has to be issued,
a switch mechanism transparently grants a temporary executable permission to pages containing
the reverse generated code. Suppose a MOV instruction is being reversed by our module while
another execution thread would to invoke a reverse code block. Actually, this scenario would
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lead into an inconsistency, since the new code might not be generated yet. Hence, to prevent
critical sections, the protection mechanism is structured to grant either executable or writable
permissions at same time. The add_reverse_instruction() function arbitrates the security
mechanism by relying on the remap system call.

Field Type Description
era revwin * Holds an array of revwin.
last_free int Index of the last available slot.

Table 4.5: Eras structure’s fields description

Each time a new instruction is inserted current pointer’s value is updated to the first available
byte beyond the last reverse instruction stored. Since heap operations are much more restrained
than ones operating on the stack would allow, the window size cannot be altered after the first
initialization phase. This could impose a challenge in tuning the right allocation size for target
simulation model.

Hashmap To allow a consistent integration of the reverse generator module within multi-
threaded applications, all the data structures related to the handling of reverse windows have
been declared relying on thread-local storage (TLS), which allows to transparently use different
copies when a separate thread is being run by the original native application. This optimization
has been specifically done considering that the final framework where we have integrated our
solution is a multi-threaded simulation platform which explicitly benefits from this separation.
While this, we emphasize that presented solution is much more secure in the general case, and
that multiple revwins per each thread can be easily exploited by any application willing to rely on
this module. As spatial locality teaches, most of the MOV instructions insist on the same address
ranges. As hinted above, in case of a rollback the former instruction dominates latter changes.
Simulation applications process events as “atomic” entities, if one event has to be discarded,
it must be undone in its entire. Let us suppose to have a sequence of same-addressing MOV
instructions history as in Figure 4.5, by proceeding backward each instruction will be progressively
reversed until the event’s beginning is reached. The last instruction to be restore is indeed
the first emitted during natural execution flow. Thereby, generating two successive reversing
instructions which alter the same address twice would be quite redundant and would introduce
an extra overhead. To tackle this extra and unnecessary effort, we employ an ad-hoc structure
to keep track of referenced addresses. This simple structure is a kind of hashmap described
by the addrmap descriptor (Table 4.6). The hashmap is handled by is_address_referenced()
function of the reverse generation module. Basically it exploits a two-leveled bitmap approach
allowing to coalesce multiple addresses within a single long- or quad-word —namely 32 or 64
addresses, accordingly to the machine architecture—, so that to optimize space requirement for
address mapping. A toggle bit is sufficient to indicate if an address is already referenced by
some memory-write instruction or not. The structure is a linear array of elements treated as
a bi-dimensional matrix. For this application, we assume a 64-bit architecture. Each element
of the array is a quadword of 64 bits used as basic storage unit for a single range of family’s
addresses. To access the map, the following two values are needed: (a) an index providing the
address family range, and (b) the offset which identifies the address’ bit within the storage unit

Field Type Description
map unsigned long long [] Holds an array of range address entries

Table 4.6: Hashmap structure’s fields description
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Figure 4.5: Instruction predominance

(i.e. the quadword). Aforementioned two indexes are computed by properly masking the address
value. A family range is therefore composed by all the addresses whose value starts the same
prefix. The length of this prefix depends on the number of flags the storage unit can contain.
Namely a quadword, ina our case, which can store up to 64 flags (2n wheren = 7). Given the
address’ value, the offset is computed by extracting the least n−1 significant bits, while index is
computed as the result of a bitwise-AND with the remainder of most significant bits. Figure 4.6
Shows an example of address’ binding for a 32-bit architecture —we do not report 64-bit case for
simplicity.
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Figure 4.6: The index and offset bitmasks of revwin’s hashmap

4.2.4 Optimizations

This section briefly describes implementation and constructive optimization guidelines we fol-
lowed throughout the realization of this module.

First implementation of the reverse code generator was designed to heavily relying on malloc
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external library which introduces a considerable latency due to the calling convention initialization
phase. Conversely, to narrow as much as possible the runtime overhead inevitably introduced
by the module, most of the memory operations can be simply solved by assignments. This
noteworthy reduce the overall reaction time within a factor of 1.5x. The following Table 4.7
reports a first rough overhead evaluation in either the two cases, (a) first unoptimized version
and (b) the second optimized one. The writes coefficient ranges in [10, 0.2], where at lower values
correspond an higher write density.

Writes coefficient Unoptimized Optimized
10 0.74 0.5
5 1.34 0.92
1.8 2.23 1.39
1 10.23 6.82
0.8 15.57 12.36
0.5 25.58 17014
0.2 160.54 134.63

Table 4.7: Optimized version runtime comparison

A further optimization is made at runtime by the monitor module itself. MOV instructions
which accesses addresses within the current process’ stack window are dropped, as previously
hinted. Those instructions are not useful for rollback goals, since they affects only local runtime
variables of the current process which belong to the actual in-processing event. By storing also
stack-write MOVs we would increases overall memory requirement pointlessly. Simulation events
are indeed treated as atomic entities, and in case a straggler message causes to rewind the
simulation, no event will be rolled back partially. Every involved event will be restarted from
scratch, relieving from the need to recover its execution context. Yet from the first static analysis,
it is not possible to infer whether an instruction accesses the stack or not, since relocatable file
cannot provide such runtime information. Therefore during simulation processing, upon a call
to the reverse code generator, it retrieves the destination address and checks if it falls within
the current process’ stack window. If this is the case, it simply returns control back to the
native code, ignoring the instruction. Described mechanism is basically oriented to memory
optimization rather than to curtail time effort. Table 4.8 reports the percentage of stack-write
MOV instructions with respects to the total number of instrumented MOVs, varying the event density
factor3. As it results, for significantly complex runs, stack-write instructions account for about an
half of the total, that translates into a considerable memory saving. Marginally, this optimization

Event density Stack-write Total instrumented
instructions

Percentage

10 2833 3802 74.5%
100 302096 567541 53.2%
1000 8614631 16561626 52.0%

Table 4.8: Percentage of stack-write instruction with respects to total instrumented

could statistically give a restrained time speedup, if we consider that a limited number of extra
instructions would be executed. Further, just to have an insight on the actual weight of the static
instrumentation, Table 4.9 shows the number of instrumented memory-write instruction, for our
simulation models, with regards to the whole number of MOVs in the binary.

3Event density factor is related to the simulation model used, see Section 5.1 “The Simulation Model and its
Configuration” for more details on actual experiments.
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Instruction Value
Total instructions 1718
Instrumented instructions 34

Table 4.9: Memory-write instruction instrumentation statistics

4.3 Selective reversing instruction

The work presented in this thesis leverages some caveats of the specific target application, namely
PDES. As previously discussed, in our case there is no need to undo instructions that will
be undone anyway by ancestor ones. Instruction predominance is a property that holds only
under certain conditions. Specifically, when the rollback has to be performed in its entirely to
the beginning of its recording state. In those cases, it is straightforward that any leading MOV
instructions which write on a memory location will predominate over newer ones on the same
address. Nevertheless, this is not a general case, and different approach has to be adopted to
cope with partial rollbacks. As a future optimization reverse operations, we will devise a selective
technique to dynamically choose only the right instructions to be undone in order to reach wanted
state.

Our approach generates a reverse code in such a way to allow conditional execution of the
inverse instruction relying on the current timestamp information and the target one.

4.4 Parallel Simulation Platforms

Simulation is a problem-solving technique to cope with complex mathematical models generally
conceived from real (or hypothetical) phenomena, which are otherwise not trivially reproducible.
Let us consider few examples, such as determining physical constraints to build a bridge or a
skyscraper, fluid dynamics simulation to realize airfoils or wind-sails, or rather in medical field
to predict a viral diffusion, or again the description of a meteorological evolution for weather
forecast, and so on and so forth. In many cases, real phenomena may not be empirically analyzed
in nature, either due to their complexity4, or because they are potentially dangerous. The only
way to measure or assess the operating characteristics of a system is thus to observe it in actual
operation. Simulation basically mimics real-world, therefore it provides best-effort approximate
solutions; whether they are good or not depends on the knowledge and the cleverness of the
model’s creator. Computer simulation applications can be roughly described by the following
perpendicular properties:

• Stochastic (e.g. Monte Carlo Simulation) vs. Deterministic

• Continuous vs. Discrete

• Local vs. Distributed

In particular, we are interested in the Discrete Event simulation (DES) which is defined by Nance
in 1993 as follow:

4Many of the microscopic phenomena in fact cannot be analyzed due to insufficient information irreproducibility
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“ Discrete event simulation utilizes a mathematical/logical model of a physical
system that portrays state changes at precise points in simulated time. Both
the nature of the state change and the time at which the change occurs mandate
precise description. Customers waiting for service, the management of parts
inventory or military combat are typical domains of discrete event simulation.

A further evolution to cope with complex models that require considerable computational and
storage requirements, is the Parallel-DES (PDES) which exploits the load distribution within
clusters of different computing nodes. Parallel simulation can be broadly classified as (a) con-
servative and (b) speculative, according to the causal consistency property strength they ensure.
Conservative simulation relies on locking strategies to avoid out-of-order events ever occur. On
the other hand, speculative simulation exploits optimistic paradigm which eagerly tries to maxi-
mize underlying parallelism by relaxing message causality constraint.

Conservative technique adopts a locking mechanism on the scheduling queue until the sim-
ulation object is considered safe again. The object safety is determined by the causality order
relation. It is evaluated by the lookahead value, which is the number of the LVT units that a
generic LPi can just “look ahead” in order to predict if a generic unprocessed event would hurt
the causality order. By quoting [?]:

Definition 8. (Lookahead) If a logical process with LVT of T can only schedule new events
associated with timestamp of at least T + L, then L is referred to as the lookahead value for that
process.

Therefore in conservative approach, each queued event has to be processed in a non-decreasing
order. If this property cannot be ensured, then the simulation object is considered unsafe and
“locked” until the overall simulation process realigns to a further safe state. The larger is the
lookahead value, the more will be the performance, since less locks are needed. On the contrary, if
the lookahead value is too small, it generates a bottleneck. Tuning the lookahead is possible both
statically and dynamically by automatic adjusting algorithms. Some techniques was developed to
dynamically keep this parameter large enough, basing on events pre-computing techniques or on
the object distance. This is a kind of lookahead metric value, computed from the time difference
between LPs, such that two events can be reasonably considered unrelated.

Conservative approach ensures that no event will ever violate the causality property. How-
ever, this entails performance losses since parallelism would not be really exploited, indeed. By
adopting a locking mechanism the system partially serializes the events processing, and according
to the application characteristics, even if it is not strictly necessary. Let us suppose two logically
unrelated events e1, e2 the system actually misjudges to predict; therefore e1 and e2 will be seri-
alized, even though they could be processed in parallel. Further, this approach involves deadlock
issues that necessitate to be properly treated. Locking the execution of simulation objects can
lead to the mutual awaits for an unlocking event, which though cannot be delivered since no
more LPs are actually active.

Contrarily to the conservative approach, the optimistic one is based on the speculative pro-
cessing of all the scheduled events ignoring logical and causal relationship between them. In such
a way, the system cannot ensure that events are actually performed in the causality order, but
guarantees to exploits parallelism and whole computational resources. Since there is always the
possibility that a straggler message comes up with a timestamp lower that the current LP’s time.
The system has to be silently recovered back to a coherent state. From a logical perspective,
each LP locally rolls back all the events associated with a LVT value grater than the straggler’s
one. Further, for those events that have been caused, in turn, a remote message to be sent,
the so-called anti-message has been generated and sent to the same destination. Anti-messages
convey sufficient information to issue a rollback on the target process, too.
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On the one hand the speculative approach guarantees higher performance by entirely exploit
parallelism, and further to not incur in deadlock situations. Since it does not rely upon the
lookahead value —which needs to be computed each time— to decide if to start a recovery
procedure, it entails a simpler architecture. Synchronization among processes is transparent with
regards to the final user and does not require much more effort to be implemented. On the
other hand, it requires an optimal strategy to periodically save the sate for the recovery support.
Speculative simulation, therefore, significantly burdens storage demand and introduces additional
overheads due to the management of those subsystems.

As discussed in Section 1.3 “The Rollback Operation”, most applications need to eventually
rollback a faulty state to a consistent one. The common technique for realizing rollback is the
state saving, whose naïve implementation stores the state’s value whenever it is altered. Scope
of this thesis is to assess the performance achievable by employing the reverse execution strategy
as an alternative to pure state saving, and specifically targeted to our proposal.

4.4.1 Parallel Discrete Event Simulation
Generally, the simulation evolves by computing either continuous or discrete events which alter
a set of memory items representing the state associated to the simulation.

Definition 9. (Discrete event) An event is defined to be discrete if it occurs at precise point in
time and its execution is impulsive. That is, it has no notion of time during its performing.

The underneath idea of PDES is to partition the main simulation model into several sub-
problems held by as many simulation objects. They interact with each other by exchanging
information messages in the form of discrete events5. The whole simulation process has a hierar-
chical structure where the bottom level is represented by simulation objects, embodied by Logical
Processes (LP) which are in charge to process events. LPs, in turn, are managed by a simulation
kernel which runs each on distinct physical CPUs, according to the initial configuration. The
simulation process has a global state associated with it, that thoroughly describe how the model
is evolving. On the other hand, the generic LPi modifies its own simulation’s local state, Si.
Local states must be disjoint to each other, and such that they form a complete partition with
respect to the global simulation state.

Si 6= Sj∀i, j ∈ N (4.1)

∪Ni=0 {Si} = Sglobal (4.2)

The notion of time in discrete simulation is still fundamental, though it is unrelated to real-world
one. Time is marked by logical units according to simulation model’s characteristics. Within
each real-time unit can be processed several logical time ones. In the PDES, as the global state is
partitioned among LPs, likewise each LP has its Local Virtual Time (LVT), which describes the
causal order of the events delivery. During the processing of one event, other can be delivered at
the same logical time due to the parallel nature of the application. Each event is thus marked with
a timestamp grater or equal to the virtual time associated with the one currently in processing.
Let ek be the event generated during processing event ej , the associated timestamp respectively
tk and tj must ensure that: tk ≥ tj . However due to the communication layer, messages could
experience latency and not delivered consistently. It can be likely happen that two events ex and
ey violate the causal property, meaning that ty ≤ tx.

Definition 10. (Causal consistency) Two events ej and ek delivered to process pn, which respec-
tively occur on time tj and tk, are causally consistent if they ensure the following relation:

tk ≥ tj (4.3)
5From a logical point of view, PDES environment enforces message and event concepts’ identity. Therefore,

hereafter we use them interchangeably.
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As previously hinted, two are the approaches to cope with causal consistency: (a) conservative
and (b) speculative. We focus on the latter strategy though it allows messages to possibly violate
the property —the so called straggler messages. This will happen upon the delivery of an event
es with a timestamp ts lower than a tp associated with an already processed event ep. In such a
case, the application will leads into an incoherent state, which requires a rollback process to be
undertaken in order to restore the system. Events with a timestamp t ≤ ts are no more causally
consistent and must be undone (Figure 4.7).
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Figure 4.7: Example of rollback due to a straggler message

Events in the aforementioned logical time interval represents the so called rollback distance
which can be arbitrarily high, according to the relationship among events. To avoid to rewind an
excessive —and foremost unnecessary— number of messages, Jefferson in [?] proposed to adopt
a Global Virtual Time (GVT) which corresponds to the lowest common LVT among all the LPs.
The GVT represents a sort of committing frontier, before that events will not be rolled back
anymore. The GVT subsystem is in charge to periodically compute a new common minimum
event’s timestamp among the LPs’ queues. If a new GVT value is actually available, it will be
notified to all kernels, that can issue a fossil collection process. All the memory buffers associated
with previous events, with respect to the new GVT, can be securely released, optimizing the
overall storage requirement.

GV T = min{tk|ek ∈ UnprocessedEvent} ∀k ∈ N (4.4)

Where N is the set of all the LPs, and LV Tk is the virtual time associated to the LPk.
Whenever a rollback takes place, (a) the current processing event must be discarded and (b) a

previous snapshot must be restored. The second point is the quite thorny, since it challenges
either the program performance and the application transparency. Programmers, indeed, should
not to be aware of the rollback mechanism whose implementation should hide its complexity
away. On the contrary, in this thesis we are interested in a more attractive solution embodied
by the reverse execution. One of the first approach was devised by Carothers, Perumalla and
Fujimoto in [?], where they address the issue in compliance with the Time Warp protocol [?].

Suppose two active LPs, LP1 and LP2, running at a certain time distance each other and
such that LP1 is running faster than its mate. Therefore the probability that a straggler message
is delivered to LP2 form the former process is proportional to the temporal distance between the
two. If the straggler message does not cause a cascading rollback, only a local rollback will be
issued by the simulation kernel of the latter process. However in this scenario distance between
LP1 and LP2 will increase due to the latency introduced by the local rollback on LP2, which
cause the time distance to grow again and thus the probability a new straggler message will
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Figure 4.8: PDES’s architecture block diagram

be delivered in the future. Even worst is that the higher the distance will be, the higher the
probability that the straggler message would generate a cascading rollback. Parallel simulation
is a non-deterministic process in nature. A rollback process will look for the nearest checkpoint
in time such that all the messages before the straggler are undone. However since the snapshots
are discrete in time, once a previous checkpoint is restore it is likely needed a coasting forward
process; the forward re-execution of correctly processed events that have been collaterally undone.
Once the system is realigned the simulation can proceeds normally. In order to properly rewind
the overall state it is necessary to guarantee that non-deterministic operation, such as ones that
relies on asynchronous inputs, or like random number generators, would execute in the same way
as they previously do.

How CPU are assigned to the actual LP, is another challenging issues to cope with. As the
figure 4.8 illustrates, each simulation kernel — which is statically assigned to each physical avail-
able CPU in the systems— hosts a set of logical processes which have to be properly scheduled.
CPU-scheduler can considerably affect the simulation performance, therefore it has been chosen
cleverly, according to the specific application purposes. Although there are some artistic imple-
mentation, the common choice is the Lowest Timestamp First (LTF), which selects the LP whose
“next” event has the lowest timestamp within the set of ones managed by the local kernel.

4.5 The use case: ROOT-Sim

ROOT-Sim (The ROme OpTimistic Simulator) [?] is an open source simulation kernel developed
as a static library which can be linked to any other executable6 for general purpose simulations.
This chapter shows the framework’s architecture which is roughly composed by three layers;
an application level, on which resides the final user’s application represented by the simulation
model. The top level relies onto the kernel mid-level, which represents the core set of subsystems
in charge of managing the simulation process. Finally a communication layer allowing LPs to
exchange messages. ROOT-Sim employees the MPI (Message Passing Interface) library [?, ?].
Following the Time Warp protocol, ROOT-Sim enforces a logical identity between events and

6ROOT-Sim is developed in ANSI-C programming languages
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messages, which convey the sufficient information to schedule a new event. Once the very first
INIT7 event is broadcast, the simulation proceeds through the LVT of each LP that serves
incoming scheduled events. The choice of the scheduler is another thorny issue to cope with,
since it can heavily affect the overall simulation efficiency.

4.5.1 API

Simulation model resides on the application layer, where the final user deploys his/her program.
The user interacts with the ROOT-Sim library through a small set of functions provided by the
library’s API. Through them the application layer is allowed to communicate with the simulation
kernel which is in charge of managing inner aspect of the simulation regarding the maintenance
of the framework rather than the advancement of the process itself. Chapter 7 “Appendix A”
reports an example based on the one provided in [?].

ScheduleNewEvent() Allows to generate and send a new simulation event to whichever LP.
Destination kernel will undertakes the new message by scheduling it within the relative
queue.

ProcessEvent() It is a callback function —which is mandatory to implement for the applica-
tion in order to be compliant with the library— invoked by the simulation kernel. Actually
it is the specific user implementation of the processing function performing whatsoever ac-
tion the problem requires. It allows to deliver a scheduled event to the relative recipient
LP, in order to be processed. ProcessEvent() will give back the control to the application
layer which will processes the message. The causality order and the delivery is completely
up to the kernel which is in charge either to keep events consistent —or transparently issues
a rollback otherwise— and to choose the next message to deliver according to its typology.
ProcessEvent() has no notion of parallelism, therefore the final user can implement it

7The INIT event is transparently scheduled to all the LPs, at simulation startup.
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almost serially. Semantic coherence is guaranteed by rollback mechanism provided by the
simulator itself.

OnGVT() Represents the second callback which is mandatory to implement. It is invoked upon
the completion of a GVT phase reduction, which allows the simulation kernel to pass each
LP a committed and consistent simulation state, which could be used either for inspec-
tion and generation of statistics during the simulation execution, and/or for (distributed)
termination detection.

Name Type Description
me int The ID of the LP on which the event is scheduled
now time_type The timestamp of the local clock
event int Integer code describing the event type in the application context
content void * Pointer to the structure representing the application-dependent con-

tent of the event delivered
size int The size (in bytes) of the event’s payload
state void * Pointer to the structure describing the application-dependent LP’s

sate

Table 4.10: Parameters of function ProcessEvent()

Name Type Description
receiver int The ID of the LP to which deliver the event
now time_type The logical time of the event at which the receiver must execute it
event int Integer code describing the event type in the application context
content void * Pointer to the structure representing the application-dependent con-

tent of the event delivered
size int The size (in bytes) of the event’s payload

Table 4.11: Parameters of function ScheduleNewEvent()

Name Type Description
snapshot void * The last consistent simulation state, which can be used by the LP to

decide whether the simulation can terminate or not
gid int The ID associated to the LP which is being scheduled for termination

check

Table 4.12: Parameters of function onGVT()

4.5.2 Internal features
ROOT-Sim provides a set of configurable features, such as the GVT period which drives the
fossil collection process. The narrower this interval is, the less memory requirement the system
will need; though the simulation will experience a slower execution, since the collection will be
issued more frequently.

As previously faced, since parallel simulation is intrinsically non-deterministic, ROOT-Sim
provides a set of internal numerical library that wrap the original ones in order to guarantee
the Piece Wise Determinism (PWD) paradigm. It is quite fundamental to correctly rollback



4.6. INTEGRATION WITH REVERSE EXECUTION 77

those events that carry non-deterministic operation, such as input-dependent ones or random-
based, obtaining exactly the same output during the forward retrace. Otherwise, each restoration
processes would hurt the semantic of the overall simulation; in other words unfeasible. Piece-
wise-determinism paradigm is firstly proposed by Elnozahy in [?]. The internal library features
the most common distribution functions:

Random() Returns a number in between [0,1], according to a Uniform Distribution.

Expent() Returns a random number according to an Exponential Distribution of mean value
mean.

Poisson() This function returns the waiting time to the next event in a Poisson process of
unit mean.

Normal() Returns a number according to a Normal Distribution with 0-mean.

Gamma() Returns a number according to a Gamma Distribution of Integer Order ia, i.e. a
waiting time to the ia-th event in a Poisson process of unit mean.

Zipf() Zipf probability distribution.

Internal numerical library should be used instead of the standard one. During the initialization
phase, a master seed has been chosen in order to set the remainder of the library. This seed can be
either provided manually through the configuration file or picked randomly by the system itself.
In fact, to ensure a correct rollback operation, the internal state of the random library should
be restored as well. Since the standard numerical library is not aware of the rollback operation,
this process would not be done, driving to an incorrect reprocessing of the simulation trajectory,
e.g. in the case of the reprocessing of a set of events during the coasting forward phase. When a
LP is rolled back, ROOT-Sim transparently restore the (per-LP) random seed, which therefore
results in a transparent rollback of the random library as well.

As PDES framework, ROOT-Sim lays on a distributed protocol to initialize a new kernel on
each machine configured. It is based on the aforementioned MPI library. Through the configu-
ration file, the user can instruct the system about the available machine the can be used for the
simulation process; therefore as many new simulation kernels will be created on each machine
and assigned to its available physical CPUs. Finally each kernel is in charge to host an arbi-
trarily number of Logical Processes. During this initialization phase, ROOT-Sim tries to evenly
distribute the spawned LPs among all available nodes, if the option block is provided or rather
in a circular fashion, otherwise.

Like other parallel simulation frameworks, also ROOT-Sim adopts the common LTF schedul-
ing strategy, though it also allows the user to choose on two different variants, (a) a linear
scheduler good for relatively small simulations or (b) a probabilistic constant-time scheduler that
is better suited for large set of LPs. Former linear scheduler reminisces the old Linux 2.4 state-
less paradigm, which computes the goodness parameters for each issued operation. Whereas the
latter is a more refined scheduler which keep a state representation of itself consistent along time.

Concerning the state saving method, ROOT-Sim supports the simulation’s state scattering
among memory segments and provides two operational strategies regarding logging operations. It
supports either incremental or non-incremental technique (refer to Section 1.3 “The Rollback Op-
eration”), and a further optimization that relies on the self-adaptive algorithms that interchanges
between the aforementioned twos.

4.6 Integration with Reverse Execution

Our reverse code generation module has been integrated within the ROOT-Sim simulation kernel,
following two steps. On the one hand, we have altered the final executable generation proper



78 CHAPTER 4. THE REVERSIBILITY ARCHITECTURE

of ROOT-Sim, adding one additional step which involves the actual invocation of Hijacker to
instrument the application-level code. On the other hand, we have added some logic to the
simulation kernel in order to execute the rollback operation adopting our hybrid approach.

As for the first step, ROOT-Sim relies on the rootsim-cc custom compiler to generate the
final simulation model’s executable, following through several steps in order to correctly link to
the set of static libraries proper of the simulation engine. In particular, during the compilation
of a simulation model, rootsim-cc performs the following steps:

1. All the sources from the model are compiled using the standard gcc compiler, and one
single relocatable object file is produced.

2. This relocatable object file is then incrementally linked via ld to the DyMeLoR static li-
brary. In this process, all the calls to the malloc standard library are redirected to the proper
DyMeLoR allocator (see [?] for a thorough description of DyMeLoR and this compilation
step).

3. Then, the produced incrementally-linked relocatable object is again incrementally linked
to an additional static library (called libwrapper) which allows for the redirection of all
stateless library function proper of the C standard library to a set of wrappers which allow
for a correct integration with the DyMeLoR library.

4. Finally, this new relocatable object is linked to the final librootsim library.

We have altered this compilation process by inserting an additional step right after Step 1
in the previous list. In particular, during this additional step we explicitly call Hijacker, passing
an ad-hoc configuration rule set. By the rules passed to Hijacker, all the mov instructions using
as destination parameter any memory operand are instrumented, placing before them a call to
the monitoring routine, along with several push instructions which allow to pass the monitoring
module all the cached disassembly information required to reconstruct the target address, as
described in Section 4.2.1.

This is the bridging point between the actual reverse generator module and ROOT-Sim,
as the revwin data structures will be directly visible to the engine. As a note, we emphasize
that calling Hijacker before linking the model with DyMeLoR does not pose any issue regarding
memory management, as the reverse generation module relies on mmap to allocate memory to
keep reverse instructions, which is not instrumented by DyMeLoR itself, and therefore allows to
keep these buffers away from the LPs’ simulation state.

The monitoring module exposes to any instrumented program the following C functions in
order to interact with the reversing module:

monitor_initialize()
This function initializes monitor’s data structures for the very first use, therefore it is
mandatory to call it at the beginning of the execution.

increment_era()
This function increments the current era’s counter. If the current era is grater than the last
one when the module is called, a new reverse window will be created.

free_last_revwin()
This function frees the last reverse window from the program’s history.

Simulation objects perform events according to the local virtual time (see Section 4.4 “Parallel
Simulation Platforms”), and each event lives within a unique LVT. The eras data structure
enforces this property, allowing to build a local event’s reverse history (see Table 4.5). The
aforementioned structure has a fixed —yet configurable— number of slots available, representing
pointers to revwin descriptors.
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At the beginning of the simulation, we call the monitor_initialize() API function exposed
by the reverse generation module, which initializes monitor’s data structures for the very first
use. Then, before the actual execution of one simulation event at a specific LP, we call the
additional increment_era() API function. This call increments the current era’s counter, so
that upon the next invocation of the reverse generation module, a new reverse window will be
created. Internally to the module, it allocates8 a new revwin descriptor to handle a current
event’s reverse binary “snapshot”. This allows ROOT-Sim to keep all the reverse instructions
generated during the execution of one simulation event at a specific LP into a different revwin.

Once the execution of a simulation event is completed, the reverse code generation module
ensures that in the current revwin all the reverse instructions are stored in the relevant buffer.
We have therefore augmented the set of API offered by the reverse code generation module
including the get_last_era() function, which allows to retrieve the id of the last used buffer to
keep reverse instructions. This information is then stored by ROOT-Sim in a vector kept in the
last taken snapshot.

Once the simulation engine detects that an out-of-order event e associated with timestamp
Te has been received, the rollback operation is actually executed according to the following
algorithmic steps:

1. Similarly to the traditional restore operation, the simulation engine scans the log queue in
order to find a checkpoint C associated with a timestamp Tc ≤ Te;

2. The simulation engine then selects the checkpoint Cnext associated with timestamp Tcnext

such that Tc < Tcnext ≤ Te, if any.

3. If this checkpoint does not exist, then it means that Tc = Te so a traditional restore is
executed. If Cnext is found, then the simulation engine computes how many events Nb

should be executed in reverse mode (namely, the events between Cnext and e) and how
many events Nf should be executed in forward mode in coasting forward (namely the
events in between C and e). If Nf < Nb, then traditional coasting forward is executed
to realign the simulation state to a timestamp T < Te. Otherwise, if Nb ≤ Nf , reverse
execution is selected.

4. Assuming that Nb ≤ Nf , then the array in the simulation state is used to query the reverse
code generation via the get_era(int era) API function, in order to retrieve the initial
address of each set of instructions to invert a specific event.

5. Once the address of this buffer of instruction is retrieved, the execution directly jumps
to the first instruction at that address, using a function pointer call. By the fact we end
this buffer using a ret instruction, after one event is correctly undone via the execution of
reverse instructions, the control is returned to the rollback algorithm.

6. Step 4-5 are repeated for every entry in the state snapshot vector keeping the eras.

This algorithmic steps allow to benefit from the reverse instructions generated during the
forward execution of events, in order to reduce at most the time required to restore an event.
Yet, a possible extension to this algorithm would be to estimate the times δf and δb associated
with a forward or backward execution of the events, so as to switch between the two realignment
actions using a more precise heuristic.

So far, the integration has dealt with the generation and usage of revwins to support reverse
execution of simulation events. Nevertheless, this solution can still have a significant impact on
memory usage as revwins are never released. To recovery memory, we have augmented the logic
associated with the traditional fossil collection operation. Specifically, during the fossil collection,

8This is the only case in which a malloc system call is called.
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the chain of logs is traversed in order to release memory buffers associated with logs which belong
to a committed portion of the simulation trajectory. During the execution of fossil collection,
whenever such a log is found, before releasing its memory we scan the vector of revwin ids, and we
repeatedly call the free_revwin(int id) API function, which releases the the memory buffers
previously mmap’ed to keep reverse instructions. In this way, we are able to recollect memory,
which can be used again during forward execution to maintain reverse instructions related to the
execution of additional simulation events.



CHAPTER5
Experimental Assessment

This chapter is dedicated to the analysis of our overall approach, aiming at assessing the overhead
due to the reverse code generator and at evaluating the benefits in the context of optimistic
simulation, when running the rollback operation using the aforementioned mixed solution. This
analysis will be carried out by using a real-world simulation application, modeling the behaviour
of a GSM system.

5.1 The Simulation Model and its Configuration

As hinted above, our reverse code generator is tested against a mobile network model adhering
to GSM technology, running on the ROOT-Sim environment (refer Section 4.5 “The use case:
ROOT-Sim”). A GSM network is structured in cells which represent the access points for mobile
devices, and whose coverage is modeled as an hexagon (Figure 5.1).

Cells

Base
stations

(Random) path of
mobile device

Figure 5.1: GSM area network example

Each LP models the state’s evolution of an individual hexagonal cell, and the whole set of cells
ensures wireless coverage on a variable size region. Cells handle a tunable number N of wireless
channels, whose simulation models real power regulation and consumption taking into account
attenuation factor and interference phenomena due to cell status and meteorological conditions,
according to the results proposed in [?]. Each GSM cell keeps track of several attributes describing
its current status, channel mapping, power consumption, registered devices and active calls. Upon
the forwarding of a new call towards some device, the relative cell will catch it by instantiating
a new record, therefore appended to the list of active calls. Whenever a call ends or the device
moves out of its cell’s range, it releases the corresponding record. In the latter case, the device
will register to another cell which is in charge of handling the active call by instantiating the
relative record. Upon call record creation, the active cell checks and regulates actual power
transmission which involves a linear scan of the active calls list to compute the minimum value
such that allows communication. Simultaneously to this scan, data structures holding fading

81
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coefficients are updated according to meteorological conditions. Therefore, this scan entails an
amount of memory-write operations which is directly proportional to the number of calls being
currently active in a given cell.

Table 5.1 describes events handled by LPs during the simulation process, whereas Table 5.2
delineates configurable application’s parameters.

Event Description
START_CALL Simulate a new call forwarding to a target cell
END_CALL Simulate a call termination
HANDOFF_LEAVE Model an active call transfer out from the current cell
HANDOFF_RECEIVE Model the arrival of an active call from an adjacent cell
RECOMPUTE_FADING Simulate a climatic variation which affects ongoing communications on

current cell

Table 5.1: PCS simulation model’s allowed events

Parameter Description
N The number of wireless channel
τA The inter-arrival time of subsequent calls to any target cell
τduration The expected call duration
τchange The residual residence time of a mobile device into the current cell

Table 5.2: Configurable PCS simulation model’s parameters

The utilization factor of available channels, expressed by Equation (5.1), highly impacts the
granularity of the events.

utilization factor =
τduration
τA ∗N

(5.1)

By increasing the channel occupancy, more power-management records are allocated which
have to be scanned and updated, with a consequent grater latency in event processing and
an increased number of activations of our reverse code generation module. Analogously, also
the LP’s memory requirement likewise increases, though it does not directly impacts reversing
module’s performance. If all channels are busy, any new call arrival is simply dropped, mimicking
real-world scenarios.

To study the response of our proposal we use the following configurations of the PCS appli-
cation. The foreseen call duration τduration is set to 120 seconds, while the residence time for a
generic active call in the relative cell τchange is set to 300 seconds. Further the inter-arrival time
τA can vary throughout the process to simulate a load variation according to the period of the
day, following the relation:

τA = initial τA ·DAY_FACTOR (5.2)

Where DAY_FACTOR represents the coefficient relative to a specific time slot; possible constant
values allowed in the simulation application and its meaning are reported in Table 5.3.

Two different incarnations of this simulation model has been run. On the one hand, we have
run a sequential model, build on top of an optimized O(1) calendar queue scheduler. In this
scenario, we have instrumented the simulation model’s code using hijacker to silently insert the
reverse code generator model, yet the reverse instruction are not used at all. This configuration,
therefore, lies as a worst-case scenario for our final mixed rollback approach, as all the work
done is never fruitful, mimicking e.g. a situation where all the rollback target simulation time
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instants where a log is already available. Therefore, we are able to measure what is the overhead
introduced by our approach. To have a more comprehensive view of the behaviour of the reverse
code generator, we have varied the PCS’ parameter initial τA in the interval [0.1, 10] which, as
mentioned before, produce a varied number of memory accesses and, in their turn, a different
number of reverse code generator activations—smaller number of activations is actually associated
with a higher value of τA. In this configuration, the number of active GSM cells has been set to
1024, each one managing up to 1000 wireless channels.

On the other hand, we have run a parallel simulation on top of ROOT-Sim, deployed on a
64-bit NUMA machine, namely an HP ProLiant server, equipped with four 2GHz AMD Opteron
6128 processors and 64GB of RAM. Each processor has 8 cores (for a total of 32 cores) that
share a 12MB L3 cache (6 MB per each 4-cores set), and each core has a 512KB private L2 cache.
The operating system is 64-bit Debian 6, with Linux Kernel version 2.6.32.5. The compiling and
linking tools used are gcc 4.3.4 and binutils (as and ld) 2.20.0.

In this parallel simulation, we have used 32 Worker Threads in the ROOT-Sim kernel, each
one bound to one CPU core of the underlying hardware machine. We have then run two different
configurations of the benchmark, one simulating again 1024 cells, and another involving only 256.
In both cases each cell was in charge of managing 1000 wireless channels. These two scenarios offer
a different degree of parallelism, allowing to assess the behaviour when increasing the probability
of rollback. In particular, the configuration involving 1024 cells has shown a rollback probability
of about 3%, while the one with 256 has shown a rollback probability of about 15%.

Specifically, in these two contexts the application has been configured in order to simulate
17 hours of cellular system operation, from 00:00 AM to 17:00 PM. Therefore producing a τA
variation in the interval [0.64, 3.20], with one workload peak from the morning to lunch time, and
one minimum load very early in the morning. According to previous variation, the utilization
factor oscillates in the interval [0.31, 0.06].

When running traditional state saving-based simulations, we have explicitly varied the check-
pointing interval χ in order to compare the execution time of the reverse code generation-based
simulation with different checkpointing dynamics. Specifically, the parameter χ has been varied
in the interval [1, 40]

5.2 Experimental Results

In Figure 5.2 we show the execution time for the PCS model run on top of the sequential
scheduler. In the plot, we compare the time required to complete a small number of calls (i.e.,
1000 calls) when using the plain PCS model (referred to in the plot as Non Instrumented) and
when instrumenting the model using Hijacker. By the results, we can see that running the
instrumented version does produce an increase in the execution time.

Nevertheless, in Figure 5.3 we present the ratio between the intrumented and the non-

Constant Value Description
EARLY_MORNING_FACTOR 4 Simulates traffic density between 8:00 AM to 8:30 AM.
MORNING_FACTOR 0.8 Simulates traffic density between 8:00 AM to 8:30 AM.
LUNCH_FACTOR 2.5 Simulates traffic density between 8:30 AM to 13:00 PM.
AFTERNOON_FACTOR 2 Simulates traffic density between 13:00 PM to 15:00 PM.
EVENING_FACTOR 2.2 Simulates traffic density between 15:00 PM to 19:00 PM.
NIGHT_FACTOR 4.5 Simulates traffic density between 19:00 PM to 21:00 PM.
WEEKEND_FACTOR 5 Simulates the mean traffic density during weekend time.

Table 5.3: Day factor values according to time slots
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Component Type Amount

Memory
RAM NUMA 64 GB

Cache
L3 12 MB (4-core shared)
L2 512 KB (private)

CPU
Processors

64-bit
4

Cores per processor 8
Total 32

Table 5.4: Testing hardware’s specifications
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Figure 5.2: Reverse code generator’s time bare overhead

instrumented execution time, in order to evaluate what is the actual slowdown introduced by
our instrumenting architecture. By the results, we can see that in the worst case the slowdown is
on the order of 5, but when the workload is increased (we therefore move from τA = 10 towards
τA = 0.1, the effect of the overhead is reduced, giving a slowdown which is on the order of 1.5.
This shows us that although the number of invocations to the reverse code generator increases,
this effect is mitigated by the more complex nature of the events (related to the list scanning and
fading recomputation, proper of the PCS application) and the overall cost is better amortized.

We have therefore selected τA = 0.8 as the reference initial τA for the subsequent set of
experiments, as it stands as good reference point for a configuration where the overhead due to
the instrumentation is not enormous with respect to the actual global workload of the bench-
mark, thus making it interesting to evaluate what is the benefit of the mixed approach for state
save/restore.

In particular, using this value of initial τA, we present in Figure 5.4 the execution time of
the various parallel configuration when varying the checkpointing interval χ, the execution of
the reverse generation-based simulation. We range this parameter in [1, 40], where a value of
1 represents the basic copy state saving (refer Section 1.3.1 “State saving”) technique, which
takes a new snapshot at each event update. We additionally present the total execution time
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of the very same simulation model on top of the aforementioned constant-time calendar queue
scheduler, yet without any kind of instrumentation of the application-level code. This, as reported
in Figure 5.4a, confirms that our comparison is done among competitive parallel runs.

By the results in Figure 5.4 we can see that the best configuration, in terms of execution
time, is the parallel one associated with χ = 25. Nevertheless, the slowdown between this
optimal configuration and the reverse code generation-based is on the order of 40%, while the
speedup with respect to the worst configuration (with χ = 1) is around 85%. Therefore, although
not showing optimal, the reverse generation based simulation allows for a non-minimal speedup,
e.g., in the case of non-piece wise deterministic simulations, where the user is forced to set χ = 1
in order to obtain a correct simulation. Nonetheless, finding the optimum χ value is not often
straightforward, it likely requires different tuning attempts or complex automatic algorithms
that might not reach the objective as well. On the contrary, reversible rollback ensures more
convenient way to proceed, and furthermore a more stable solution.

As event density increases, so does the likelihood straggler messages have been delivered and
thus model gets more rollback-prone. By comparing the results in Figure 5.4 with the results in
Figure 5.5, we can see that when the degree of parallelism is increased (namely, we move from
1024 hexagonal cells to 256, keeping the other parameters the same) the situation changes. In
fact, while the reverse generation-based simulation is still not the best performing one, it shows
a slowdown of only around 15% with respect to the optimal configuration found when χ = 5. By
the way, it follows grater memory consumption due to more frequent checkpoint interval.

Furthermore, the comparison between the results in Figure 5.4 and Figure 5.5 highlights that
the reverse generation-based simulation is more resilient to variations of the optimal checkpoint-
ing χOPT in a given execution phase. This makes this approach more reliable if compared to
other techniques which find the optimal checkpointing value χOPT relying on closed analytic
formulas (see, e.g., [?]) which could nevertheless ignore secondary parameters which might play
an important role in certain execution phases to correctly predict the execution dynamics.

As a final note, we report in Figure 5.6 the memory usage by several configuration of the
ROOT-Sim platform when running the PCS benchmark with 1024 cells. Specifically, we have



86 CHAPTER 5. EXPERIMENTAL ASSESSMENT

 0

 1000

 2000

 3000

 4000

 5000

 6000

Serial χ=1 χ=5 χ=10 χ=15 χ=20 χ=25 χ=30 χ=35 χ=40 Reverse

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Configuration

(a) Execution time

 0

 5

 10

 15

 20

 25

 30

χ=1 χ=5 χ=10 χ=15 χ=20 χ=25 χ=30 χ=35 χ=40 Reverse

S
pe

ed
up

Configuration

(b) Speedup

Figure 5.4: Parallel Simulation using 1024 Cells



5.2. EXPERIMENTAL RESULTS 87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Serial

χ=1
χ=5

χ=10
χ=15

χ=20
χ=25

χ=30
χ=35

χ=40
Reverse

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Configuration

(a) Execution time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

χ=1
χ=5

χ=10
χ=15

χ=20
χ=25

χ=30
χ=35

χ=40
Reverse

S
pe

ed
up

Configuration

(b) Speedup

Figure 5.5: Parallel Simulation using 256 Cells



88 CHAPTER 5. EXPERIMENTAL ASSESSMENT

 0

 100

 200

 300

 400

 500

 600

 700

 800

Full
Increm

ental

No M
onitor

Full
Reverse

M
em

or
y 

O
cc

up
an

cy
 (

M
B

)

Figure 5.6: Memory Consumption—1024 cells

compared the memory footprint by the reverse code generation module only to store inverse
instructions, with the memory footprint (both checkpoint data and metadata) by the various
configurations of the traditional ROOT-Sim’s memory manager [?]. By the results we can see
that the memory footprint of the reverse-based solution is comparable to that of the incremental
checkpointing, placing itself as a valid alternative (in terms of memory usage).



CHAPTER6
Future application fields

This chapter is dedicated to future perspective outside the simulation environment. In particular
we believe that our approach can be easily extended to other fields with a particular attention
to debugging aiding tools.

Some architectures or systems do not allow an efficient debugging process to take place owing
to an intrinsic structural complexity which thwarts canonical instruments to provide sufficient
information to precisely determine the issue. Further, most of the test environments are vir-
tualized or downscaled, with respect to the reality, to get developing and debugging processes
cost-effective. For example, debugging ad-hoc system solutions may require to build a virtual
execution environment to simulate them. Rather, parallel applications span over large clusters
of powerful machines with hundreds of processors and concurrent threads, that could be very
challenging to debug. Aside from the those bugs (e.g. due to communication exchanges) which
can be easily solved during the early developing stages, deployed applications leave the program-
mer with a possibly huge data from which to fumble. To get out of such a fix, a solution is to
scale down the problem on a more comfortable size; nevertheless, simulated environments do not
always allow such a trick. Failure can be consequence of the input partition among clusters or
processors which is not deterministic, or rather if the problem derives from rare conditions due
only to large input scale. Much more bugs than would expected, remain hence “latent”, due to
an intrinsic irreproducibility; literature refers to it as the bug reproducibility problem.

Reverse Post-Mortem Debugging represents a new frontier not yet thoroughly explored, in this
direction. Its application fields have a noteworthy impact in software development and moreover
in code analysis. The approaches proposed allows to overthrow real time requirement (thereby
money expenditure) by optimizing analysis’ strategies, and providing a set of advanced tools
which simplify developers’ life.

Thus, taking into account such achievable time and economical benefits, why the reversible
(post-mortem) debugging is not so widespread employed? The naïve answer to this question
resides on the inadequacy of real implementations because of their complexity, but it is mainly
due to the significant overhead brought by such an architecture. To gather enough information
allowing to backtrace the execution, in the most general case debuggers might rely on pure state-
saving techniques. Namely, it records each change within the program history so that it can be
rerun in future. The aforesaid “record-replay” strategy is quite expensive due to the recording
process, which considerably slows down the execution and further consumes much more memory
to store the necessary data, with many similarities with the traditional state saving techniques in
PDES where we have shown that our solution is feasibly applicable. So far, there are roughly two
main ways to achieve reversibility:(a) by saving the execution history in its entirely or (b) through
a reversible computation approach. The former is quite intuitive, whereas latter exploits a subtle
intuition. Instead of recording memory states, the code itself may be reused to rewind the actual
output as far as desired. Nevertheless, inverting code instructions is a non-trivial problem due
to thorny syntactic and semantic language properties (see Chapter 3 “Reference instrumentation
tool”). The overhead is basically composed of the time to either record memory changes or to
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generate the inverse code, and the storage requirement itself. Needless to say that latter strategy
might much more time efficient, though complex in its devise.

6.1 Reversible (post-mortem) debuggers

Reverse execution is commonly implemented relying on some state saving rollback&replay tech-
niques. However, it exhibits a considerable storage amount which highly bounds performance
and reversing capabilities, further it introduces a scalability problem.

Reversible debuggers allow to have a tight control on the program’s execution. A very ap-
pealing solution for code debugging analysis, which is a tedious process requiring a considerable
amount of time, spent on bugs disclosure. When a failure occurs, the very first action is the
attempt to reproduce the bug, and generally, the source lines in the nearby of the failure firstly
appears is the entry point where programmers start from. Most of the insidious bugs do not cause
errors immediately, rather they likely cause the program to crash much later. Furthermore, bugs
are much often weird, they hide themselves in nested loops or within complex interaction among
software’s modules or specific inputs, which may require an unpredictable number of iterations
to reproduce them again. Traditional debugging methods are generally speculative-based and
prompt the developer to choose where it is better to place breakpoints or print statements, and
step forward the program’s execution, even one loop per time, until the failure is reached. How-
ever, it is pretty common that even the most clever developer could overstep several times the
bugs itself, without catching it. The higher is the complexity of the program, the greater is
the probability to overstep the bug. Figure 6.1 clearly illustrates this time-consuming attempt.
Cyclic debugging requires several rounds of program replays to finally reproduce the defect. Due
to non-determinism further, the bug may likely do not befall again for several rounds, or even
worst a different bug happens. As in physic, the observation of a process may be affect the process
itself producing collateral faults unrelated to the original one, namely Heisenbugs. Analogously,
different bugs could occur since the attempt to scale down the problem into a more comfortable
size, which though alters inner interactions. Even though this approach is bearable for short
running, it is unsustainable in parallel execution. Parallel applications (a) need much more time
to run, and further (b) parallelism introduces a non-determinism issue1.

6.1.1 Forward debugging

Traditional forward debuggers allow to only step the execution forward. This is the classical
cyclic debugging approach, in which the failure is diagnosed by iteratively rerunning the program
several times. It relies on the underneath idea to progressively gather data to zoom into the
problem. To locate the bug, the user has no choice but to cyclically restart the program from the
beginning, stepping through its execution and guessing whether to step over or into each function
met. A single misjudgment leads in overstepping the bug causing to restart the program from
the beginning, again. For very complex applications moreover, the failure can occur deep into;
thereby the risk of spending too much time and to overstep the bug grows exponentially. It is
therefore heavily funded on a user’s guesswork. Trying to reach the point just before the bug
occurs requires several re-executions of the program to progressively approach to the problem
until it is got; a very painful and time-consuming work further affected to determinism problems.

To properly work, cyclic debugging requires that applications are fundamentally deterministic,
such as non-interactive single-threaded programs. Parallel or distributed real-time applications,
involve some kind of non-deterministic interaction, such as such asynchronous I/O or random
functions, that cannot be reproduce each time in the same way. In fact, rerunning over and over

1Non-determinism is not a prerogative of parallel applications, there are lots of cases in which the debuggers
itself affects failure occurrence by observing the state. That are the famous Heisenbugs
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the program it does not ensure to succeeds in reproducing the problem itself or, rather, not to
get into another one, as well. In those cases it is quite impossible to find the exact location of
the bug without the risk of spending an eternity.

6.1.2 Reverse debugging

In contrast, reverse (or bidirectional) debuggers much shortens this awkward process allowing to
step back to any prior statement just as the failure occurs, within the same execution context.
Rather than trying to guess and to reproduce the error, it allows to diagnose just the failed
run. Reverse debugging is an abstract generalization, but what are the real implementations?
There are mainly few general approach, either (a) to log the whole program’s history or (b) to
rebuild the target state from some previous checkpoint or (c) to retrace backwards the same
computational steps. The former solution represents the naïve and the simplest implementation,
which in turn can be deeper differentiated into trace-based and record-replay strategy.

The program evolution checkpointing is a “middle-stage” solution. Whenever a bug befalls, the
more recent snapshot is restored and the program re-executed up to the statement just before the
crashing point. Since it is no more necessary to replay the program from scratch, a considerable
part of the process can be skipped. However, it likewise introduces a time and memory overhead
to compute and store, respectively, the snapshots (refer Section 1.3 “The Rollback Operation”)
during the forward run. Reverse debugging, on the contrary, overcomes the traditional error-prone
process. It provides the most natural way to find and thus fix bugs, by allowing to naturally go
back up straightway to the source. As human beings, we likely think in a reversible fashion as
[?, ?, ?, ?] show. Thereby would be quite natural, for us, to find the root causes of a problem by
unwinding it in reverse. To quote from [?]:

“ As a simple example, if you lost something valuable, you would go back to
the places you visited during the day, one by one starting from the last place
you visited. When a program goes wrong, it is tempting to do the same for
debugging. One would wish to trace backwards an erroneous execution path to
find the cause of unexpected behavior of a program.

Just upon a crash, the user can step back the execution flow until the misbehaving statement is
reached in much less time and with much less effort.

To better understand the problem, we quote the following simple allegorical example of every
day life, which properly catches process debugging difficulties and underneaths aspects of non-
determinism.

“ Train passengers have to take their seats. Either they have a seat reservation or
not, in such a case those passengers randomly pick a free seat. Since passengers
get aboard one at a time, those who have a reservation could find that the seat
who they are entitled for is already occupied by another passenger, thereby they
have to pick an available seat, too. Finally, it should not happen that some
passenger X with a reservation remains standing up, since its seat is already
taken and no other free ones are available. Such a case represents a bug in the
system, thereby some action might be taken in order to find the passenger who
had first stolen the seat.

This scenario, enlightens the power of reverse computation. As soon as a passenger remains with-
out a seat it is possible to just backtrack the execution to find who peaked former’s entitlement.
Rather than trying to reproduce the issue in a separate run, which may lead into pretty different
execution, one can fix the bug immediately.
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6.2 Just a foresight

Hitherto given a brief overview on the debugging common techniques and challenges, this section
is just an intuition on how the idea beneath our reversibility proposal could be exploited to
achieve a more comprehensive notion of reversibility, namely “revivability”.

Hijacker is an advanced instrumentation tool which aims to provide all the necessary sup-
ports to achieve execution reversibility and “revivability” through external debuggers. So far, we
have seen how Hijacker parses an object file in order to build the internal binary representation
which then has to be instrumented (Chapter 3 “Reference instrumentation tool”). Instrumen-
tation allows to inject, or otherwise alter, purpose-specific code snippets to enhance debugger
capabilities. Once Hijacker instrumented and rebuilt the object output file, it is possible to link it
with the remainder of software’s modules. According to provided instrumentation configuration,
for example, the debugger can leverage those hooks to efficiently inspect the program in deeper
detail.

Basically the idea is to provide sufficient information to whichever framework to achieve
“revivability” of a crashed process, within the same execution context. Generally upon a crash,
the operating system creates a core dump file which is no more than a memory map of the
dead process’ context. Nevertheless, since the very restricted amount of information provided,
core dumps are just an hint for programmers during speculative breakpoint-based debugging
process. On the contrary, the idea is to employ the reverse code generator so that at any time
it would be possible to rely on a enhanced core dump. Following the same criterion used to
emit and straightway push reverse instructions into process’ heap, a single core dump file could
become a sort of assembly program’s executable footprint, retaining binary executable files. From
the knowledge it would provide, clone context could be generated by backward running dump
instruction. Once the program is again at runtime, the user as the possibility to freely step back
and forth the same timeline at his/her will.

To achieve such an objective, the framework must have the following capabilities:

• It has to properly interpret crashed program’s core dump, which can be straightforward if

Program crashes

Rerun, no bugs occur

Rerun: di erent bug happens

Rerun: Initial bug occur

Rerun, no bugs occur

.

.

.

(a) Cyclic debugging

Program crashes

Checkpoint replay, initial bug occur

(b) Checkpoint debugging

Program crashes

Backward execution

Fix bug, continue running

(c) Reverse debugging

Figure 6.1: Comparison between debugging techniques
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we consider Hijacker is already able to handle ELF binary files. This would represent a
quite linear extension to what already implemented.

• It must have notion of where Hijacker’s reverse modules have been stored, actually, the
reversibility information within memory.

• Finally, it has to provide some user-friendly mean, such as an interactive shell, that allows
to control program execution flow in both directions.

Basically, the work’s main difficulty is to tackle arguments far away from each other. They
span over different aspects of the information technology in its entire, from the lowest binary level
up to the human interaction embodied by the final user that is performing the debugging activity.
In particular, each of the above listed subjects introduce several challenges that require ad-hoc
solution to be conceived, which can be successfully integrated for general-purpose software.
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CHAPTER7
Conclusions

In the this thesis we presented a fast and solid support to reversibility for the parallel optimistic
simulation, as alternative to state-saving rollback. We have devised a reversible module for the
High Performance Computing environment which dynamically emits reverse code straightway on
the program’s heap accordingly to an optimized criterion to filters hurting instructions.

We have achieved our purposes through an hybrid instrumentation approach of relocatable bi-
nary files. At compile-time the instrumentation engine injects few instructions that are functional
to call our reverse code generator module just before the altering instruction is performed. Once
invoked, it has all the information to compute the inverse instructions, which are pushed into
the process’ heap. By adopting this two-passes approach, we have obtained several advantages,
to abate time effort required by dynamic instrumentation and to overcome hurdles in solving
complex control flow graphs to infer high-level software logic, which is needed to properly reverse
instructions.

The proposal has been assessed on a real-world simulation model, targeted at the analysis of a
GSM network of non-minimal size, in the presence of devices moving around the covered region.
We have shown that, as the simulation complexity increases, the ratio between real simulation
work process and reversible effort tends to a constant value. This indicates that the overhead
grows much lesser than real work. As the second experiment demonstrates, reversible version
allows to achieve very competitive speedups, though sub-optimal with regards to sparse state
saving. Nevertheless, our approach guarantees a more stable gain for a wider range of simulation
contexts, where the percentage of rollbacks increases or thwarts to find an optimal interval timing
for checkpointing. Further, contrariwise to sparse state saving, our reversible rollback allows as
well out of the box the correct execution of applications that are not Piece-Wise-Deterministic,
still ensuring a considerable speedup.

Finally, we have investigated further improvements both in time and memory effort, and
possible future applications fields, such as in debugging aiding tools. In fact, by the many
similarities between state saving in the context of optimistic PDES, and reversible debugging, we
have been able to devise a feasible work path to apply our current results to this little explored
field.
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Appendix A
The present section shows a working example of the ROOT-Sim framework usage in a context
of a very simple simulation model. The example models a very mesh of nodes that randomly
send events to each other. To correctly behave, it is mandatory to implement at least the two
following callback functions: ProcessEvent() which undertakes incoming events, and OnGVT()
which checks both whether termination condition is met and handle the commit frontier, it
guarantees to eventually stop simulation.

Since the fairly simple model logic, the only two event type handled by ProcessEvent() are:

INIT It is the default event type to bootstrap the simulation process. When a INIT event
arrives the framework allocates the LP’s state.

PACKET It simply describes the delivery of a new message from some other process.

Any event type other than INIT is fully customizable by the user. In the present case, to the
PACKET type is associated a simple routine that generates a new message to forward again. In
this example some random distribution generator routines are employed, such as Random() and
Expent(), which calculates the relative statistical distribution.

1 #include <ROOT -Sim.h>
2
3 #define PACKET 1 // Event definition
4 #define DELAY 120 // Application parameters
5 #define PACKETS 1000*1000 // Termination condition
6
7 typedef struct _event_content_t {
8 time_type sent_nt;
9 } event_t;

10
11 typedef struct _lp_state_t{
12 int packet_count;
13 } lp_state_t;
14
15 /**
16 * Callback invoked by the kernel whenever there is a scheduled

and unprocessed event in the LP queue.
17 * Therefore the local process undertakes the event passed by

performing user implemented logic.
18 * Note that the INIT integer event code is reserved to the

library.
19 */
20 void ProcessEvent(unsigned int me , time_type now , unsigned int

event , event_t *content , lp_state_t *state) {
21 event_t new_event;
22 time_type timestamp;
23
24 switch(event) {
25 case INIT: // Reserved integer code to represent the

initialization packet
26 state = (lp_state_t *) malloc(sizeof(lp_state_t));
27 state ->packet_count = 0;
28 timestamp = (time_type) (20 * Random ());
29 ScheduleNewEvent(me, timestamp , PACKET , NULL , 0);
30 break;
31
32 case PACKET: // Custom integer code defining that a new

packet is incoming
33 state ->packet_count ++;
34 new_event.sent_at = now;
35 int recv = FindReceiver(MESH);
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36 timestamp = now + Expent(DELAY);
37 ScheduleNewEvent(recv , timestamp , PACKET , &new_event ,

sizeof(new_event));
38 break;
39 }
40 }
41
42 /**
43 * Callback invoked by the kernel whenever a frontier of commit is

reached. Therefore the control is passed
44 * to the application layer. In this case the application will

only checks if the termination condition is met.
45 */
46 bool OnGVT(int gid , lp_state_t *snapshot){
47 if(snapshot ->packet_count < PACKETS)
48 return false;
49 return true;
50 }

Listing 7.1: Example for the ROOT-Sim environment



Appendix B
Since integer division instruction are still costly for micro-code, in 1994 Granlund and Mont-
gomery proposed an optimized alternative to perform integer signed and unsigned division with-
out the straightway employment of the IDIV division machine instruction. They resorts to a
sequence of addition, multiplication and shift instruction that realizes the same operational logic.
The algorithm assumes a two’s complementary machine architecture. In the case that multi-
plication instruction run faster than division, is convenient to realize integer divisions through
multiplication by invariant. Table 7.1 offers an insight of the statistical employment of each
arithmentic instruction in a generic program. It based from the static analysis Knuth performed
on FORTRAN programs in one of his previous work [?].

There are other previous researches aimed to achieve faster integer division [?, ?, ?], though
they only works for 2k − 1 dividend, and for relative small k values.

Nowadays most of the compilers adopts this optimization. GCC compiler collection has been
updated from the .

Let us suppose to perform the following integer division in an N-bit two’s complement archi-
tecture:

q = bn
d
c (7.1)

Where 0 < D < 2N , 0 ≤ n < 2N and N is the word size. The idea it to try to find a rational

approximation
m

2N+l
for the divisor

1

d
, such that:

bn
d
c = bm · n

2N+l
c ∀ 0 ≤ n ≤ 2N − 1, 0 ≤ l ≤ N − 1 (7.2)

Substituting in equation (7.2) the possible extents n could assume, d and the generic q · −1, it
follows that:

ifn = d→ 2N+l ≤ m · difn = q · d− 1→ (m · d− 2N+l) · (q · d− 1 < 2N+l) (7.3)

Therefore, the following theorem 2 holds:

Theorem 2. Let us suppose m, d, l are non-negative integers, such that d 6= 0 and

2N+l ≤ m · d ≤ 2N+l + 2l (7.4)

Then follows that
bn
d
c = bm · n

2N+l
c ∀0 ≤ n ≤ 2N (7.5)

Theorem 2 holds because the maximum relative error (1 part in 2N ) is too small to affect the
quotient when n < 2N .
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Operation Percentage
addition 39%
subtraction 22%
multiplication 27%
division 10%
exponential 2%
total 46466 ins

Table 7.1: Statistical arithmetic operation composition

Operation Signed Unsigned
addition 1–8 –
subtraction 1–8 –
multiplication 5–9 4–8
division 22–47 17–41
shift 1–2 –

Table 7.2: Number of cycles needed to perform arithmetic operations



Appendix C
This appendix is dedicated to ELF object file format description, in order to give the reader a
more valuable comprehension of what did in the present thesis work.

Overview

ELF (Executable and Loadable Format) file format was first proposed in the System ABI IV.
ELF files can be of three types:

Executable which holds code and data suitable for linking

Relocatable which holds code page-aligned executable segments

Shared object which are binary files to be dynamically loaded and embedded in other pro-
grams

ELF files are produced by compilers during the different stages of computation.
Generally, those objects are structured in sections, that are segments of various size containing

precise kind of data aligned to the following list. Relocatable objects are generated by the compiler
as the output of the first compiling stage as input for the linker. This, in turn, extracts from
the relocatable the relevant information to compute relocation’s displacement for each entry and
finally builds an executable file.

Structure

Figure 7.1 shows the structure of an ELF file in both variants, relocatable and executable. Ac-
cordingly to the purpose, it provides different information structured in a slightly different way.

ELF format is an offset-based file that embodies a compact and efficient representation for
compiled binary programs.

Independently of the purpose, both files must have a ELF header section which tells how
to access the remainder of the file. It holds information on registered sections or segments and
where the relative header table is located, further is maintain low-level information on machine

ELF Header
Program Header

Segment 1

Segment 2

...
Section header table (optional)

ELF Header
Program Header (optional)

Section 1
...

Section n
Section header table

Figure 7.1: ELF structure
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architecture. The program header is mandatory only for executable files and contains useful
information on how to create the program’s map to load in memory. Analogously in the sections
header table are stored information regarding specifically registered sections, such as the size
or the content type. Sections are the basic storage unit in ELF files. They contains several
kind of data according to the specific purpose. A complete list of section’s type are provided in
Table 7.6. For the sake of brevity and according to the work’s perspective, this appendix provides
implementation details’ description of the relocatable type only.

Table 7.3 describes data type wrapper used in the ELF structure. Types’ name differ from
32-bit to 64-bit architecture for the 2 digits suffix; in the table, for brevity, are reported both
architectures in the form of Elfxx, where “xx ” represents either 32 of 64.

Name Purpose 32-bit Size 64-bit Size
Elfxx_Addr Unsigned address 4 8
Elfxx_Half Unsigned short inte-

ger
2 2

Elfxx_Off Unsigned file offset 4 8
Elfxx_Sword Signed large integer 4 8
Elfxx_Word Unsigned large inte-

ger
4 8

Table 7.3: 32/64-Bits Data types

Sections

Sections are the basic storage unit which contains code, string, data, references or other infor-
mation needed to program to be linked and/or executed. Sections are registered in the section
header table which holds one entry for each section. Section header’s entries have all th same
size, therefore it is straightforward to access them. Table 7.5 describes fields of the Elfxx_Shdr
descriptor. Note that sections themselves are bulk container described by relative entries held by
the Elfxx_Shdr table.

In the Table 7.9 are reported the most relevant special sections used in the present work.

String table

String tables simply hold an array of raw chars. To access them the it is sufficient to index the
initial character to which to start. All the descriptor that involve a name field relies on this
char-offset method to associate one entity to a string. This section starts and ends with a null
character. Likewise, each string in the table end with a null character, in order to allow a proper
parsing of the string itself.

Symbol table

Symbols entities are employed to correctly relocate symbolic reference within the code, such as
instruction that affects memory locations, call or jump instructions, etc. Each symbolic reference
in the high-level programming language is translated into a symbol entry, therefore compiler
and linker can properly identify each entity. Thereby, each symbol in the ELF file is defined in
relation to some other section to which it refers.
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Field Type Description
e_ident unsigned char [16] Magic signature that identify an ELF file
e_type Elfxx_Half Identifies the file type, e.g. loadable, relo-

catable, shared object, etc.
e_machine Elfxx_Half Specifies the machine architecture
e_version Elfxx_Word Identifies the object version
e_entry Elf_Addr Hold the virtual entry point for an exe-

cutable file, zero otherwise
e_phoff Elfxx_Off Specifies the offset from the beginning of file

at which the program header table is located
e_shoff Elfxx_Off Specifies the offset from the beginning of file

at which the section header table is located
e_flags Elfxx_Word Holds processor specific flags
e_ehsize Elfxx_Half Holds the section header’s size in bytes
e_phentsize Elfxx_Half Holds the entry’s size for the program

header table
e_phnum Elfxx_Half Specifies the number of entries in the pro-

gram header table
e_shentsize Elfxx_Half Holds the section header’s size in bytes
e_shnum Elfxx_Half Specify the number of the entries in the sec-

tion header table
e_shstrndx Elfxx_Half Holds the index of the entry in the sec-

tion header table associated with the name
string table

Table 7.4: Header descriptor’s fields



104 APPENDIX C

Field Type Description
sh_nme Elfxx_Word It is section’s name, specified as the string table en-

try’s index within the section header
sh_type Elfxx_Word Describes section’s type: see Table 7.6 for the main

types
sh_flags Elfxx_Word Represents miscellaneous attributes according to the

section’s type
sh_addr Elf_Addr For executable files, this fields holds the virtual ad-

dress at which the section resides, zero otherwise
sh_offset Elfxx_Off Holds the offset in bytes from the beginning of file

where sections resides
sh_size Elfxx_Word Holds the section’s size in bytes
sh_link Elfxx_Word According to section’s type it assumes a different

semantic, see Table 7.8
sh_info Elfxx_Word According to section’s type it assumes a different

semantic, see Table 7.8
sh_addralign Elfxx_Word Holds the address alignment
sh_entsize Elfxx_Word Specifies the size of each sections header’s entry

Table 7.5: Section descriptor’s fields

Name Description
SHT_NULL Inactive section
SHT_PROGBITS Holds program information
SHT_SYMTAB, SHT_DYNSYM Symbol table
SHT_STRTAB String table
SHT_RELA Relocation table. It supports Elfxx_Rela structure
SHT_HASH Symbol hash table
SHT_DYNAMIC Holds information for dynamic linking
SHT_NOBITS Represents a SHT_PROGBITS with no size associated
SHT_REL Old relocation table. It supports Elfxx_Rel structure

Table 7.6: Section’s types table

Name Description
SHF_WRITE The section contains data written during execution
SHF_ALLOC The section occupies memory during execution
SHF_EXECINSTR The section contains executable code
SHF_MASKPROC The section contains reserved for processor specific semantic

Table 7.7: Section’s attributes table
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Section’s type sh_link sh_ info
SHT_REL, SHT_RELA Index of the associated

symbol table
Index of the section to
which relocation applies

SHT_SYMTAB, SHT_DYNSYM Index of the associated
symbol table

Number of the local sym-
bols

Table 7.8: Section’s sh_link and sh_info fields

Name Type Attributes Description
.text SHT_PROGBITS SHF_ALLOC +

SHF_EXECINSTR
Sections containing
the executable binary
code

.data SHT_PROGBITS SHF_ALLOC +
SHF_WRITE

This sections con-
tains initialize data
(e.g. global vari-
ables) involved in
the program’s map
creation

.rodata SHT_PROGBITS SHF_ALLOC Holds read-only data,
such as embedded
strings, or constants

.rel SHT_REL May include
SHF_ALLOC if
file is loadable

Contains relocation
entries in the form of
Elfxx_Rel structure
entities

.rela SHT_RELA Contains relocation
entries in the form of
Elfxx_Rela structure
entities

.symtab SHT_SYMTAB May include
SHF_ALLOC if
file is loadable

The section contains
the symbol table

.strtab SHT_STRTAB May include
SHF_ALLOC if
file is loadable

The section contains
raw strings as an array
of characters

.bss SHF_NOBITS SHF_ALLOC +
SHF_WRITE

This sections contains
uninitialized data in-
volved in the process’
image creation

Table 7.9: ELF’s special sections description
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Name Type Description
st_name Elfxx_Word Holds the index corresponding to

the first byte in the string table
st_value Elf_Addr In relocatable files this member

holds the offset from section’s be-
ginning identified by st_shndx or
the alignment constraint if this
holds SHN_COMMON, namely generic
section.

st_size Elfxx_Word Holds the symbol’s size in the pro-
gram semantic

st_info unsigned char Specifies both the symbol type and
the binding attributes (which can
be local or global)

st_other unsigned char Currently unused, holds 0
st_shndx Elfxx_Half Index of the section at which the

symbol belongs

Table 7.10: Symbol descriptor’s fields

Name Description
STT_NOTYPE The symbol type is not otherwise specified
STT_OBJECT The symbol is associated with an object (variable, array, etc.)
STT_FUNC The symbol refers to a function or executable code
STT_SECTION The symbol refers to a section within the ELF file

Table 7.11: Symbol’s type table
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Relocation

Relocation connects symbolic references to relative definitions. For example a call instruction to
a specific code region is embedded through a relocation entry which bind the specific instruction
towards its destination by means of a symbolic reference. There are two structure: an older
Elfxx_Rel and Elfxx_Rela. This section provide a table fields descriptor for the latter only.

Field Type Description
r_offset Elfxx_Off Holds the location to which the relocation applies, either

as an offset from the beginning of the section affected,
or as a virtual address

r_info Elfxx_Word Specifies both the the symbol table index with respect
to which relocation applies and the relocation’s type

r_addend Elfxx_Sword Holds a signed offset value used to compute final relo-
cation value

Table 7.12: Relocation descriptor’s fileds
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Appendix D
Herein is reported the complete assembly code snippet relative to Chapter 4 presented in Sec-
tion 4.1 “The reversing code approach”. For the sake of completeness here is likewise reported
the C code as well. Listing 7.3 illustrates the assembly output of the GCC-4.9.2 compiler. We
have added inline to the assembly code also the C statements to allow a fast binding between
the logic operation and the relative assembly idiom.

As one can easily observe, GCC compiler dose several non-trivial optimizations that render
code quite weird to understand. Moreover integer division does not employ any division assembly
instruction, instead a multiplication is performed. The reason behind this kind of optimization
is discussed in Chapter 7 “Appendix B”.

C source code is listed below:
1 int foo(int num) {
2 int x;
3
4 x = 10;
5 x *= 2;
6 x++;
7 x = x >> 2;
8 x /= 3;
9

10 x--;
11 x *= 3;
12 x = num + 8;
13 x %= 2;
14
15 return x;
16 }
17
18 int main(){
19 foo (5);
20 return 0;
21 }

Listing 7.2: C source code of a generic function

In the following the relative assembly translation is provided:

1 0000000000000000 <foo >:
2 int foo(int num) {
3 0: push %rbp
4 1: mov %rsp ,%rbp
5 4: mov %edi ,-0x14(%rbp)
6 int x;
7
8 x = 10;
9 7: movl $0xa ,-0x4(%rbp)

10
11 x *= 2;
12 e: shll -0x4(%rbp)
13
14 x++;
15 11: addl $0x1 ,-0x4(%rbp)
16
17 x = x >> 2;
18 15: sarl $0x2 ,-0x4(%rbp)
19
20 x /= 3;

21 19: mov -0x4(%rbp),%ecx
22 1c: mov $0x55555556 ,%edx
23 21: mov %ecx ,%eax
24 23: imul %edx
25 25: mov %ecx ,%eax
26 27: sar $0x1f ,%eax
27 2a: sub %eax ,%edx
28 2c: mov %edx ,%eax
29 2e: mov %eax ,-0x4(%rbp)
30
31 x--;
32 31: subl $0x1 ,-0x4(%rbp)
33
34 x *= 3;
35 35: mov -0x4(%rbp),%edx
36 38: mov %edx ,%eax
37 3a: add %eax ,%eax
38 3c: add %edx ,%eax
39 3e: mov %eax ,-0x4(%rbp)
40

109
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41 x = num + 8;
42 41: mov -0x14(%rbp),%eax
43 44: add $0x8 ,%eax
44 47: mov %eax ,-0x4(%rbp)
45
46 x %= 2;
47 4a: mov -0x4(%rbp) ,%eax
48 4d: cltd
49 4e: shr $0x1f ,%edx
50 51: add %edx ,%eax
51 53: and $0x1 ,%eax
52 56: sub %edx ,%eax
53 58: mov %eax ,-0x4(%rbp)
54
55 return x;
56 5b: mov -0x4(%rbp) ,%eax
57 }
58 5e: pop %rbp
59 5f: retq
60

61 0000000000000060 <main >:
62 int main(){
63 60: push %rbp
64 61: mov %rsp ,%rbp
65
66 foo (5);
67 64: mov $0x5 ,%edi
68 69: callq 6e <main+0xe>
69
70 return 0;
71 6e: mov $0x0 ,%eax
72 }
73 73: pop %rbp
74 74: retq

Listing 7.3: Assembly
translation of GCC-4.9.2 compiler
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