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Abstract

We are living in a hot period in which the intense competition among chip-
makers is turning into an explosion of new hardware-level features. Among
the innovations, modern processors embed a hardware support able to iden-
tify the footprint on the hardware caused by the execution of software.

In this thesis, we propose novel techniques to leverage the Performance
Monitor Units (PMUs) hardware facilities offered by modern off-the-shelf
CPUs to gather hardware-level footprint data at runtime, and exploit this
information on-the fly.

Our solutions aim to collect hardware-level information while minimizing
the perturbation experienced by the software applications and foster its
online analysis and exploitation.

Throughout this thesis, we show how our methodology can be employed
to address different problems in different domains. In particular, we pro-
vide the operating system with a module to master this integrated hardware
support in order to perform dynamic corrective operations in malware de-
tection, CPU-scheduling consolidation and functional hardware-accelerated
tasks. Moreover, working at the lowest software layer has the extra benefit
of enforcing the transparency property of our approach, strengthening both
the adaptability and the dependability of the whole solution.

Beyond demonstrating how PMUs can be exploited for security, per-
formance and functional activities, in this thesis, we additionally present
our profiling infrastructure, which implements versatile mechanisms for the
exploitation of PMUs in modern contexts.
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CHAPTER1
Introduction

Modern computing systems are complex. Historically, the evolution of com-
puting architectures has followed Moore’s law principles [109]: provide each
new product generation with more transistors and faster working frequen-
cies. However, in the last two decades, the technology bumped into physical
limitations [144, 68, 105] pushing the industry to adjust its strategies to
meet the hardware capabilities expected by the market. As a result, hard-
ware solutions nowadays are based on sophisticated multi-core designs and
deeply structured memory layouts. Furthermore, the ubiquitous integra-
tion of specialized components inside processing units makes the concept of
heterogeneous systems more pervasive, even in commodity hardware.

At the same time, hardware capabilities aim to support software needs,
which, in turn, are driven by the demands of trending topics such as sci-
entific computing, e-commerce, computer vision, artificial intelligence, big
data computing and computer graphics. Simultaneously, applications evolve
to comply with the new facilities that the industry supply within new hard-
ware generations, giving rise to new programming environments and frame-
works meant to achieve the best HW-SW cohesion and reduce the overall
complexity of programming. Nevertheless, the two domains are not always
aligned. The increasing complexity of computer architecture makes it chal-
lenging to provide a transparent interface, often forwarding the burden of
dealing with the low-level details directly to software designers.

In such a complex scenario, understanding the actual impact of the code
structure and of its execution on the hardware represents a fundamental yet
challenging task to carry out crucial operations such as security enforcement,
energy optimization and software-performance consolidation.

Actually, the importance of software analysis has brought many vendors
to improve the hardware level capabilities provided on board of off-the-
shelf processors. More specifically, for several years, we have witnessed
the growing diffusion of Performance Monitoring Units (PMUs) as built-in
support able to provide valuable hints about micro-architectural activity—
hardly perceptible to software approaches—throughout the execution flow of
programs. Furthermore, these elements enable a higher level of transparency
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to software, also incurring a restrain overhead and external perturbation, if
compared with pure software-based approaches.

While PMUs have been available since very old architectures like Intel
Pentium and AMD Athlon, their importance has made them see a consider-
able expansion over the last decades. As a result, nowadays, many modern
chipsets leverage these facilities to boost the flexibility of their functionali-
ties. Indeed, supplying a larger set of features makes a tool more versatile,
empowering it to deal with different conditions.

A widespread approach concentrates the hardware-based profiling ac-
tivity on a specific application of interest to analyze its characteristics.
Therefore, hardware-level information is generally collected by executing
the code within a sterilized environment where minimal external perturba-
tion improves the quality of the analysis. On the one hand, this strategy is
advantageous when carrying out program-oriented analysis in order to iden-
tify performance issues and culprit code sequences quickly. On the other
hand, when an application is actually executed on a hardware platform, it
is not isolated, since the coexistence with other applications leads to con-
tention on the hardware, whose final behavior can be no longer correctly
represented by the outcomes of per-application analysis. The actual tra-
jectory of the hardware footprint in such a scenario can therefore lead the
hardware to be not optimally or unsecurely exploited.

In this respect, the ever-increasing complexity of the ecosystem of soft-
ware modules and the sliding towards an ever-growing usage of resource
sharing (e.g., Cloud application hosting) demands more specific instruments
for understanding the actual impact of software on the hardware footprint.
Furthermore, a pervasive requirement is to deal with churn. The number
of applications in a generic system is highly variable, making it quite dif-
ficult to foresee the real workload in a long-time period. As a solution,
more recent research lines have highlighted the opportunity to adopt near
real-time monitoring/tracing activities combined with in-place online data
exploitation to overcome the limitation of local/offline strategies. Still, it
presents new challenges. Even though the well-established profilers offer
a rich feature set, their general structure doesn’t make them proper data
providers for online data consumption and exploitation. They are generally
devised to gather application information for post-mortem processing which
doesn’t demand runtime exploitation.

Despite the inherent complexity of acquiring and handling runtime infor-
mation to optimize applications or system activities, this is something that
most software components do still need nowadays. Indeed, performance op-
timization and security defense are aspects that modern IT systems cannot
ignore. Therefore, built-in hardware supports are a key element in pro-
viding on-the-fly system-level data while containing the cost of performing
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such a data-gather operation. This characteristic plays an important role
in online activities such as self-tuning. Notwithstanding, current tools aim
for different objectives and limit PMUs assistance without fully exploiting
their potential.

In this scenario, this thesis has a twofold intent. On the one side, we
want to explore techniques to provide computing systems with adaptive
online capabilities based on PMU-provided data. The operating system,
and more specifically, its main kernel components, represent the ideal can-
didate to host this support. Besides indiscriminate access to the underly-
ing hardware features, the low-latency communication among different OS
parts is intrinsically advantageous when targeting system-wide explotation
of hardware-level footprints. On the other side, we deem that PMUs’ charac-
teristics can be exploited beyond the mere profiling activity. Consequently,
we investigate methodologies and approaches to employ such support as an
on-demand information provider for online data consumption and system
level exploitation—such as system reconfiguration.

As we shall describe PMUs are strictly glued to the micro-architectural
design introducing an emphasized heterogeneity in both the interface and
capabilities each processor model delivers. Therefore, without loss of gener-
ality, the contributions we present in this work can be deployed on a system
equipped with different processor models. Nevertheless, to decrease the ef-
fort required to meticulously combine higher-level software with lower-level
capabilities and get the advantage of one of the most advanced implemen-
tations available on the market, we built and tested our solution on Intel-
based machines. As a final note, a significant effort of this thesis is put into
extending the devised solutions to very different application domains, like
security, performance and functional tasks. Although such a choice entails
a detailed study of the target problem domains, it backs the validity of the
PMUs versatility.

The rest of this thesis is structured as follows. Chapter 2 provides an
overview of PMU solutions, encompassing their basic and advanced imple-
mentations. Furthermore, it examines connected limitations that hinder the
adoption of this support as well as intrinsic factors that should be considered
when relying on such elements. Also, in the final section of the chapter, we
present the baseline state-of-the-art in the area of PMU exploitation. How-
ever, given the relatively ample set of applications of PMUs we propose
in this thesis, we will provide further discussions on the literature in the
chapters specifically focused to the different applications.

Chapter 3 discusses various practical strategies to exploit PMUs beyond
post-mortem profiling, suitable for different application contexts. This out-
come directly stemmed from this long-journey experience and embraced
the internals of the software solutions at the base of the contributions pre-
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sented in this thesis. Although all of them deal with different contexts,
the adaptability of our solutions goes beyond the proposed application do-
mains. Generality represents one of the main characteristics of our tools,
whose scaffold is devised as the combination of essential functional blocks.
Furthermore, in the subsequent chapters, we present how to take advantage
of the presented strategies to address different challenges.

Chapter 4 presents a kernel-level infrastructure that allows system-wide
detection of malicious applications attempting to exploit cache-based side-
channel attacks to break the process confinement enforced by standard op-
erating systems. This infrastructure relies on hardware performance coun-
ters to collect information at runtime from all applications running on the
machine. Furthermore, we derive high-level detection metrics from these
measurements to maximize the likelihood of promptly detecting a malicious
application.

Chapter 5 introduces a methodology to exploit the hardware-level foot-
print to assist operating system CPU-scheduling decisions—hence we con-
solidate CPU-scheduling activities. This support dynamically performs the
score evaluation of different co-scheduling strategies by combining micro-
architectural information with energy consumption indicators. Consequently,
process placement on CPU doesn’t follow the statically defined heuristics
of the OS, rather it dynamically self-tunes according to the features of the
active workload and the processor capabilities.

Chapter 6 promotes a new way of adopting built-in hardware supports
to extend the processor computing capabilities. In particular, we present a
hardware-assisted memory tracing support that transparently assists roll-
back operations in speculative computing—specifically in speculative par-
allel discrete event simulation.

Chapter 7 concludes this thesis and outlines possible future research
work.

The work presented in this thesis is based on the following original con-
tributions:

• Stefano Carnà, Serena Ferracci, Emanuele De Santis, Alessandro
Pellegrini and Francesco Quaglia, Hardware-assisted Incremental Check-
pointing in Speculative Parallel Discrete Event Simulation. In Proc.
of the 2019 Winter Simulation Conference (WSC’19) - 2019

• Stefano Carnà, Serena Ferracci, Alessandro Pellegrini and Francesco
Quaglia, Don’t be paranoid: dynamic detection and mitigation for
threats exploiting cache-based side-channel attacks. Advanced Com-
puter Architecture and Compilation for High-performance Embedded
Systems (ACACES’20) - 2020
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• Stefano Carnà, Serena Ferracci, Alessandro Pellegrini and Francesco
Quaglia, Fight Hardware with Hardware: System-wide Detection and
Mitigation of Side-Channel Attacks using Performance Counters. ACM
Digital Threats: Research and Practice - 2022. Accepted for publica-
tion

• Stefano Carnà, Alessandro Pellegrini and Francesco Quaglia, Ex-
ploiting Hardware Performance Counters Beyond Profiling. Software:
Practice and Experience. Under review

• Stefano Carnà, Alessandro Pellegrini and Francesco Quaglia, CPU-
scheduling Consolidation: Application Co-scheduling using Performance
Counters. In preparation for journal submission

Additionally, during my PhD, I contributed to the reproducibility of
computational results initiative producing the following publication:

• Stefano Carnà, Reproducibility Report for the Paper: Partial Eval-
uation via Code Generation for Static Stochastic Reaction Network
Models. In Proc. of the 2020 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, SIGSIM-PADS 2020



CHAPTER2
Performance Monitor Units

Background
Most modern CPUs are equipped with hardware-based profiling capabil-
ities granted by specialized Performance Monitoring Units. PMU is an
Intel term initially used to indicate these hardware-assisted capabilities,
but it was later considered an umbrella term to denote any dedicated cir-
cuitry implementing monitoring objects. Hardware Performance Counters
(HPCs) represent the most common implementation of such units. HPCs
were already available on old CPU architectures, such as AMD’s Athlon [5],
Motorola’s PowerPC [45], Compaq’s Alpha [32], Sun’s UltraSparc I [107],
Intel’s Pentium [67], and Itanium [139]. They provide a valuable instrument
for hardware introspection as a resource for debugging and optimization ac-
tivities. Unlike other techniques relying on a time-based mechanism, which
collects processor-state snapshots at regular time intervals, HPCs enable an
event-based sampling (EBS), allowing a profile generation complying with
specific event occurrences.

The events driving the execution of HPC operations are so-called hard-
ware events. They define the classes of phenomena in architectural elements
by observing the processor state evolution during code execution. Examples
of hardware events are the occurrence of a write operation in memory, an
L3 cache miss, an L1 line replacement, or the fact that a conditional branch
in the execution flow of the program has been taken.

The events that a processor is aware of (and can be triggered) are highly
coupled with the actual processor architectural family. This is because the
generation of a hardware event is physically triggered by data paths or con-
trol signals implemented in the actual control unit of the CPU, and its
management is handled by the processor’s firmware, which is often subject
to partial or complete re-implementation across different families of process-
ing units. In the literature on hardware profiling, this extremely low-level
information is often referred to as micro-architectural events. The benefit of
relying on micro-architectural events is that they can be highly optimized
and work at the speed of the CPU. At the same time, micro-architectural

6
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events are directly linked to design choices. Indeed, they may vary among
different manufacturer products, accounting for innovative features shipped
with new design generations. Also, there is no guarantee that a micro-
architectural event can be monitored in two different processor models or
can be associated with the same hardware phenomenon.

The complexity of these low-level micro-architectural events is some-
times masked by hardware manufacturers, which try to select a set of
events—called architectural events—that are deemed common to different
architectural models. Relying on architectural events increases the porta-
bility of solutions based on this support.

Modern CPUs support hundreds of micro-architectural events, but only
a handful of HPCs are actually available1. Among the rich set of events
that can be monitored, it is possible to find:

1. Time events : these are events that can track time evolution. They are
often based on a particular hardware counter, often called TimeStamp
Counter (TSC)2, expected to be incremented at each clock cycle. Nev-
ertheless, in many architectures, its activity depends on the processor
state, and, in some cases, it may skip some counting.

2. Instructions progress : a dedicated counter tracks the retired instruc-
tions during CPU activity, providing a primary form of processor
throughput—for instructions composed of multiple micro-operations,
the counter is incremented when the last micro-operation is retired3.

3. Memory access patterns : caches can be monitored at several levels,
and counters can be incremented for each miss/hit event.

4. Branches : a counter can provide further information on branch in-
structions such that it is possible to notice events, such as branch
mispredictions or retired branch instructions.

Each HPC can track exactly one micro-architectural event at a time.
Despite all the implementation differences, the software interface to control
an HPC is typically based on a couple of model-specific registers (MSRs):

1. a selector (or control) register, which is used to specify the HPC
operating mode, and the architectural event to be observed;

2. a counter register, which is incremented every time the associated
architectural event is triggered—of course, the counter can overflow.

The common way to access these counters is through a read/write on
model-specific registers (MSRs) exposed by the underlying architecture.

1At the time of this writing, almost all off-the-shelf x86 CPUs offer up to 16 general
HPCs per physical core.

2On x86 architectures it can be accesed by the RDTSC instruction.
3On x86, the REP prefix does not effect the number of times the counter is advanced.
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MSRs differ from traditional registers (like general-purpose ones) because
they are used to configure and toggle specific features on the CPU that
may not be present in other models. On x86 architectures, it is possible
to operate on MSRs via rdmsr and wrmsr [67, 5] instructions (which are
privileged instructions), or by directly reading the counter from userspace
via the rdpmc instruction [67].

The control register can be used to activate two different operating
modes. When the HPC is configured to work in counting mode, the counter
register simply accumulates the number of target architectural events ob-
served while any program is running on the CPU. On the other hand, when
the HPC is working in sampling mode, the system generates a hardware in-
terrupt when the counter register overflows. The operating system handler
associated with this interrupt can be programmed to take a CPU snapshot
to understand what is currently going on in the profiled application and
investigate the context that generated the hardware event.

Nevertheless, when the interrupt service routine is activated, the pro-
gram counter stored in the interrupt frame on the stack might not be asso-
ciated with the actual instruction whose execution triggered the overflow of
the counter, possibly making the whole approach useless if exact information
is desired for profiling. This problem is exacerbated mainly in modern su-
perscalar architectures that rely on out-of-order execution engines to speed
up the execution of applications. Here, multiple operations are executed
concurrently—as an example, the AMD Fam 10h processor can have up to
72 in-flight operations at any time. Therefore, due to the high number of
concurrent pipelines and the different order associated with micro-operation
execution and instruction retirement, the actual sampling notification may
be late with respect to its generation point. This delay is called skid. It es-
sentially states the maximum error interval between the current instruction
pointer and the one causing the interrupt firing. As a result, the triggered
event may not be precisely associated with the instruction that generated it
but with one of its neighbours. Overcoming skid-related side-effects is one
of the motivations that led hardware designers to improve the Performance
Monitor Units by extending the HPCs with extra advanced capabilities at
the expense of increased hardware complexity.

2.1 Intel’s Precise Event-Based Sampling

Precise Event-Based Sampling (PEBS) [67, 7] is an Intel extension to tradi-
tional HPCs to increase their precision. It is an EBS solution that introduces
the concept of precise events, i.e., events exposed at a minimal (mostly zero)
skid effect. Even though PEBS is built on top HPCs, it does not take com-
plete control over them: it is, therefore, possible to exploit both PEBS and
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traditional HPCs simultaneously4.
PEBS introduces a new hardware-based mechanism that automatically

saves the processor context when an active HPC overflows. This solution,
called PEBS assist, is implemented at the firmware level, and it avoids any
code interruption to gather extra processor information related to the event
itself—no hardware interrupt is required to save the CPU context, which
can be inspected at a later time. PEBS is still based on the usage of the
standard counters to work in a combined manner. In particular, a HPC can
still be configured to work in sampling mode. In this way, when the counter
reaches the configured threshold, a hardware interrupt is fired.

When gathering the event-related data, the information is packed into a
structure called PEBS record which represents the base element of the PEBS
buffer. This buffer is located in the Debug store (DS) save area, whose size
can be defined at setup time by writing into the DS model-specific register.
Every time a monitored architectural event triggers the PEBS support, a
data sample is produced to snapshot the whole CPU state. The PEBS index
identifies the next record to be filled with a newly-generated sample in the
PEBS buffer. When the PEBS index reaches the PEBS threshold, which
can be configured at setup time, a hardware interrupt informs the operating
system that the buffer is almost full, and a read operation should be carried
out as soon as possible to avoid losing samples.

2.2 AMD’s Instruction-Based Sampling

Instruction-Based Sampling (IBS) [5, 75] is a precise support that adopts a
different methodology for generating data, that in some ways, can be con-
sidered as a variation of Time-Based Sampling (TBS). The yardstick of this
sampling technique is the instruction5: the counter increments every time
an instruction is executed and, similarly to the HPC’s strategy, an interrupt
is sent to the processor as soon as the threshold is reached. The hardware-
firmware cooperation is in charge of collecting the CPU state combined
with additional information at the precise moment the culprit instruction is
fetched from the CPU frontend6 and following its walk through the entire
pipeline until retirement. All the events generated by the instruction execu-
tion are recorded into dedicated MSRs, realizing a complete snapshot of all
the observed events. IBS defines an orthogonal solution to PEBS, providing

4The compatibility among PEBS and available hardware events is an ongoing process
that only in the latest versions of the support is not limited to specific domains.

5Actually the user can define if the counting process has to be based on either executed
micro-operations or elapsed clock cycles.

6IBS is split into the fetch and the execution units that provide information concerning
the processor frontend and backend, respectively.
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a detailed information that aims for a comprehensive and complete analysis
rather than focusing on studying more specific dynamics.

AMD’s Lightweight Profiling

Lightweight Profiling (LWP) [5, 3] has been a promising advanced sup-
port targeting improvement of the IBS capabilities and introducing several
features, some of which were already implemented in competitor’s solutions
(e.g. buffering in PEBS). Contrarily to performance counters and IBS, LWP
focuses only on user activity7, reducing the overall profiling overhead and
enhancing the accuracy of collected data. Compared to PEBS’s strategy,
it extends the concept of thread context to the data collection, relieving
the software of the burden of performing this operation. Consequently, not
only different threads can be simultaneously and transparently monitored
without conflicts, but even profiled and not profiled processes can run si-
multaneously without an additional overhead to turn off the support for
the second ones. Unfortunately, LWP did not have much success, and even
AMD’s official support was limited. The presence of some hardware is-
sues (see Section 2.3) and the low users’ interest have likely been some of
the reasons which led AMD to remove this support from future processor
generations—LWP is not available anymore since the first ZEN architecture
release—to take advantage of die space to foster other features.

2.3 Technical/Scientific Problems and Needs

Monitoring tools are very old elements that are nowadays employed to ac-
complish disparate purposes. There are many solutions available in both
commercial and research contexts, giving different profiling capabilities and
built-in analysis logic. However, if we look for a complete tool to perform
prompt actions at runtime, while the process being monitored is still alive,
our search won’t find an exhaustive result.

The tools combining profiling support with data processing, like for
example perf_events [100], primarily focus on the latter phase, generally
targeting local and static optimization and ignoring the system resource
consumption. Conversely, research instruments operating for online sys-
tem tuning are often designed to accomplish specific tasks, so they cannot
be immediately generalized to face other applications. In the following we
summarize the problems embedded in currently available solutions, method-
ologies, and techniques:

7LWP works only for code running at Code Protection Level (CPL) 3.
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Heisen-Monitoring

The tight correlation between accuracy and cost of profiling may cause the
rising of the Heisen-monitoring effect [113]. Such an effect, also known as
Heisenberg Monitoring Uncertainty Principle, reflects the fact that the more
closely you observe something, the more you affect it. Whenever the system
is asked for its state, regardless of the analysis objective, the system must
suspend the current task to provide the requested context-information snap-
shot. Of course, data consistency must be kept and the system will resume
paused work only when the snapshot is correctly created which, depending
on the requested data size, is going to take time. Additionally, if the data is
demanded at high frequency, the activity may cause a system overload. This
problem not only lowers the performance of the whole execution responsive-
ness but also impacts the quality of the monitoring accuracy by sullying the
data quality with values deriving from monitoring activity itself.

Lack of standard

Even though two architectures designed to provide the same ISA guarantee
the same interface between hardware and software, the built-in monitoring
support, in each of its variants, may supply different capabilities. These
elements work at a lower level and are strictly connected to the design in-
ternals which, indeed, may provide different characteristics depending on
the considered project. Setting up and managing the support follow model-
dependent rules which, commonly, require accessing of a set of model-specific
registers (MSRs)8, also demanding detailed knowledge of the hardware at
issue. Furthermore, the deeply-rooted nature of these components cannot
always guarantee uniform capabilities among different architectural imple-
mentations ascribing a low portability level to solutions employing them.

Hardware support flaws and issues

The high complexity of modern computing architectures makes the evolu-
tion of processor designs harder and harder, requiring a set of not trivial
steps to guarantee several properties: correctness, security, reliability, per-
formance, backward compatibility. Furthermore, some of them turn out to
interfere with each other (e.g. security and performance, see Chapter 4) so
that introducing a new element or improve an existent one may break the
desired behavior of other components. Hardware vendors are aware of the
problems that may arise in a new product, some due to a not fully verified

8MSRs are special registers used to query and manage peculiar processor features
which may be proper to specific architecture design.
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design9, some others stemming from side-effects after physical implementa-
tion. Such a drawback reflects on PMUs too. On the one hand, the support
may not be able to properly collect profiling information so that the gener-
ated data does not fully represent the machine activity. On the other hand,
the interaction with the support may not follow the specification rules, re-
quiring ad-hoc procedures to avoid the onset of runtime problems. Even
though there is a tight collaboration among vendors and users to find and
report these bugs [70, 72, 4, 6, 11, 12], sometimes the workaround may not
be implemented through a firmware update but would require a hardware
redesign, which is impractical for already produced processors. As a re-
sult, in affected models, monitoring supports linger in this unstable state
compelling software developers to provide software patches to bypass the
hardware flaw, of course reducing the overall effectiveness of the dedicated
circuitry. Contributions presented in this thesis consider this problem, and
we discuss, at the occurrence, how we tackled it.

Architectural internals knowledge

Although both software- and hardware-based profilers provide proper tools
to carry out detailed analysis on different targets, ranging from a wide
study of the system activity to a fine-grained inspection of the process ex-
ecution, the key requirement is the identification of the right metrics, i.e.
the quantitative measurements describing the properties of the task to be
accomplished. Generally, users need metrics very close to the high-level
description of the problem to maximize the effectiveness of the analysis
but, especially when dealing with hardware supports, available metrics are
not representative information for the selected problem also demanding a
high user familiarity degree with the underlying architecture. This question
makes the entire process more complicated, resulting most of the time in a
considerable effort to identify the right way to design the study.

2.4 Literature Review

Since their initial implementations, Performance Monitor Units have been
largely investigated in literature providing a complete spectrum of their
capabilities. Even though PMUs can monitor hardware events with high
precision, their accuracy is subject to non-determinism effects which highly
depend on the combination of the architecture design and the selected metric
[85] [165]. Weaver et al. showed in [156] that part of this inaccuracy de-
gree is generated by uncontrollable system phenomenons such as interrupts

9Inside a high non-deterministic system, edge cases may be hard to be verified)
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or speculative executions10, thus possibly affecting the profile differently at
each run. At the same time, despite their implementation is based on dedi-
cated circuitry, the overhead introduced is not always negligible [115] [155]
and can sensibly vary according to the profiling mode, the frequency, and
the techniques adopted to collect and read the gathered data. This rein-
forces the well-known accuracy-overhead relation which at high rates not
only slows down the entire system execution making the monitoring activ-
ity too invasive for continuous sessions but also introduces side-effects such
as profile data perturbation which turn out to tamper with the goodness of
the measurement [111] [7].

As described in Section 2.3, PMUs lack of a standard interface and
the interaction policies not only differ across processor vendors but can re-
quire different actions even among models of the same vendor. As a conse-
quence, most hardware-enhanced software-analysis programs rely on exter-
nal libraries or tools to nimbly combine functionality and portability of the
PMU-based support. OProfile [90], Perfctr [126], Perfmon2 [48], PAPI [23]
represents the most used interfaces hooked by software applications to take
advantage of hardware supports. PAPI is undoubtedly the most adopted
solution whose design evolution is directly supported by major semiconduc-
tor companies such as Intel, AMD, ARM, IBM, and Nvidia. However, it
provides just a help to merely work with performance counters on several
architectures, but the knowledge on how to visualize and interpret gener-
ated information is still demanded to the user. AMD code analyst [47], Intel
VTune [98], HPCTool [2] and LikWid [146] are advanced tools which do not
export a PMU interface, but grant a complete set of functionalities. In fact,
they not only rely on a "helpful" graphic UI that drives non-experts during
session configuration, but also have a built-in analysis tool that pinpoints
critical problems of analyzed execution to carry out disparate tasks such as
debugging a performance optimization. Nonetheless, they do not provide
any means for external software interaction, limiting their activities to local,
though very precise, application profile which cannot be exploited for online
tuning. The most versatile framework in the Linux system is perf_events.
It is directly integrated inside kernel modules and can be engaged in either
system-component activities or user applications to leverage both software
and hardware instrumentation. Moreover, it is coupled with a user-space
utility accounting for the same high-level capabilities of the aforementioned
advanced tools. Even though perf_events has all the makings to support
the realization of self-tuning software elements, Weaver [155] demonstrated
how its evolution path introduced system performance degradation in fa-
vor of more advanced features integration. Generally, profilers do not care

10The execution of speculative paths is recorded even if the computing progress is
finally dropped, e.g. due to misprediction.
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about this drawback because they just gather data in order to perform post-
mortem analysis. Even so, this represents a real limitation for techniques
acting in an on-line fashion, which requires the identification of the right
trade-off between the generated data and the polling frequency of such in-
formation, without overloading the system and perturbing original program
flow with the profiling activity.

Despite the highlighted problems, hardware monitoring supports have
been used to address disparate research challenges. HPCs have been em-
ployed to improve energy efficiency [106] of systems. In this context, Singh
et al. [140] proposed a new methodology to estimated real-time power con-
sumption and devise a power-aware system scheduler.

Wang and Boyle showed that hardware instrumentation can drive com-
pilers to achieve optimal mapping of program parallelism on the underlying
architecture by performing automatic profiling runs [154]. Many supports
have been designed to diagnose several elusive problems [18] and anomaly
detection [13] in a large-scale production system.

Memory management is fundamental to achieve the desired system re-
sponsiveness and novel strategies for runtime memory allocation on NUMA
systems [97] adopted PMUs to retrieve low-overhead and accurate infor-
mation on allocator choices and memory access paths [87]. However, the
solutions are based on either a hybrid approach — which collects data in
preliminary analysis and uses results as a hint to conduct the runtime opti-
mization in a next phase [101] — or a pure on-line logic exploiting experi-
mental measurement for parameters tuning which indeed doesn’t represent a
flexible solution over general application domains [39]. Molka et al. studied
the memory footprint of an application detecting its memory-boundedness
[108], also highlighting the complexity to choose the right metrics [156].
Hardware introspection provided by this built-in profiling probes have been
shown to be suitable to address several security challenges [37][62], ranging
from identification of Return-Oriented Programming (ROP) attacks [168]
to the detection of several exploits of side-channel vulnerabilities [114] [56].
Furthermore, the design of countermeasures for new transient execution vul-
nerabilities [28] present in most processors required new strategies featured
by hardware instrumentation [127] to trickily observe the stealth activities
performed by attackers.



CHAPTER3
Exploiting hardware beyond

offline analysis
The evolution of HPCs has always been related to performance profiling,
and well-established profilers have extensively used them (e.g., Linux perf
or Intel V-Tune). In this context, the data collected from HPCs have been
chiefly used post-mortem: at the end of the profiled application’s execution,
performance values are collected from HPCs, and later analyzed to construct
a program’s profile. In the case of more advanced flavours of HPCs, such
as the Intel PEBS mentioned above, this post-mortem activity might also
entail scanning through a memory area that keeps the more detailed sam-
ples generated during the execution. This strict separation between sample
generation and sample collection/analysis is one of the fundamental reasons
why HPCs are considered a lightweight solution to profiling. Indeed, as
mentioned before, the generation of samples relies on dedicated data paths
and firmware on the CPUs, making it efficient. Conversely, sample acquisi-
tion and analysis (which can be regarded as the most time-consuming step)
is made after the application’s execution is completed. This two-phase ap-
proach has the additional benefit of inducing minimal interference to the
application’s execution, thus avoiding the so-called Heisen-monitoring ef-
fect.

Nevertheless, more recent research lines have highlighted the opportu-
nity to rely on HPCs for online self-tuning of applications or to carry out
near real-time monitoring activities. In this scenario, the capability to ef-
fectively monitor the behaviour of applications using non-intrusive facilities
enables new applications of the Autonomic Computing paradigm [81, 60].
In this direction, HPCs have been used in a myriad of applications, such
as dynamic software profiling [10], children privacy protection [16], failure
prediction in computing systems [117], random number generators [143], or
for the generation of test programs via fuzzing to enhance code coverage [37]
just to mention a few diverse applications.

These solutions share the need for an efficient analysis of the generated
performance samples, which is the activity associated with the most con-

15
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siderable overhead in traditional profiling applications. Indeed, while HPCs
are fast and non-intrusive at generating samples, consuming these samples
to create higher-level information to be exploited by any online application
is costly.

The overhead introduced in the system to collect HPC samples is thus
relevant for many modern applications. This overhead is exacerbated if an
application requires to collect these samples at a higher frequency. There-
fore, great care must be taken to control the collection frequency (otherwise,
thrashing phenomena might be experienced), or it becomes fundamental to
devise less-intrusive solutions to gather the samples.

At the same time, there is still the need to face other problems such
as those described in Chapter 2. Althought, many of these aspects are
explicitly dealt with by standard tools exploiting HPCs, such as Linux perf
or Intel V-Tune, yet, if an application wants to perform online optimisations
based on data gathered from HPCs, relying on these post-mortem profiling
frameworks might incur too high overhead.

In this chapter, we discuss several approaches which can be used to pro-
gram, control, and read data from HPCs. Our strategies try to solve some or
all of the limitations mentioned above or risks related to the usage of HPCs,
thus serving as building blocks for online monitoring/self-tuning systems.
Every approach is accompanied by code samples, enabling developers and
practitioners to find a comprehensive guide to HPC usage in the context of
online exploitation of the samples, e.g., for self-optimization. We couple our
reference implementations with an extensive performance assessment, which
shows the benefits and limitations of each solution. We tailor our solutions
for x86 architectures, encompassing both Intel and AMD chipsets. More-
over, our approaches can be easily ported to other architectures, although
various CPU models present technical differences.

3.1 Efficient Collection of PMU Data

As we already introduced, one of the main problems affecting profiling ac-
curacy is collecting the profile data themselves. Typically, profiling agents
share the computational resources with the monitored application, and per-
fectly separating the execution effects can be arduous. Thus, the ability to
reduce data pollution, minimising both the direct and indirect impact of the
profiling activity, represents one of the critical capabilities demanded from
a profiler. On the one hand, the direct influence is more straightforward to
be recognised and, consequently, less complicated to be mitigated. It refers
to the observation of the profiling agent code execution and its recording
within the under-construction profile combined with targeted application
data. Indeed, this pitfall introduces an additional variance (combined with
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that coming from other sources), propagating its effects to the following
steps, such as data analysis.

On the other hand, correctly identifying indirect perturbations can be
convoluted because they are related to actions that produce side effects on
the hardware state, altering the system conditions for the other processes.
This phenomenon is intrinsic to almost all high-end processor architectures
whose CPU time sharing represents a practical example. Although it can
transparently guarantee isolation and resource assignment to all the pro-
cesses from a software perspective, this comes at a cost at the hardware
level. Cache pollution is part of it. The cache state may significantly vary
between the moment at which a process is preëmpted and when it is resched-
uled on the same core, introducing locality penalties to reload data replaced
during another process’s execution.

In this context, it is essential mastering the mechanisms that regulate
the software/hardware interaction to fully exploit the PMU support while
minimising the aforementioned undesired effects. Software routines can ac-
cess PMU registers only running at the highest privilege, namely ring 0 on
x86 processors. This constraint holds for almost every support except the
HPC counter register that can be read from userspace under certain condi-
tions via the specialised rdpmc instruction—we discuss in Section 3.3.4 how
to interact with HPCs from userspace.

We can consider running at ring 0 a fundamental requisite to unleash
the full PMU potential. When running in kernel mode, there are two main
ways to access data collected by these units: polling and interrupting. As
the name suggests, the polling mode tries to access the support at some de-
fined points in time, trying to read the information that may not be ready or
too rich to discriminate factors generating a particular event. Furthermore,
polling reads can happen only during kernel-mode execution, whose tran-
sition stems from an interrupt generation or a system call invocation. All
in all, we can consider the polling mode as a subset of the interrupt-based
strategy with minor frequency control. The main advantage is that it does
not (directly) pay the cost of a ring change because it exploits the ongoing
kernel-mode execution.

Nevertheless, the generation of an interrupt, namely a performance mon-
itor interrupt (PMI), is typically the most used strategy. It guarantees bet-
ter control of the PMU activity and related overhead. Moreover, the period
between two PMIs can be easily configured by setting up the dedicated
registers adequately at a single interrupt basis.

Generally, PMUs are configured to generate PMIs on the Non-Maskable
Interrupt (NMI) line. This vector is commonly used to register routines
linked to exceptional hardware events related to low-level machine man-
agement or more complicated hardware faults. Consequently, it demands
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a more advanced software routine than an ordinary interrupt line to han-
dle different events. On the x86 architecture, each core has a single non-
maskable interrupt line1. Linux implements the NMI handler as a dispatcher
that iterates over a chain of handlers whose elements are explicitly regis-
tered. The NMI routine starts walking through the chain upon an NMI
generation, and all the enrolled handlers get called until one handles the
interrupt. Each one shall assess the interrupt causes by querying specific
registers (or memory locations), revealing whether the NMI was intended
for it or another handler. For instance, the PMI handler must check fixed
bits in specific MSRs to determine if HPCs or other supports overflowed
and thus generated the NMI.

Of course, NMI management can be complicated [136], and some condi-
tions may arise, causing concurrent execution of NMI handlers. Nonethe-
less, the largest part of the management of these issues is done by the Linux
kernel general NMI management subsystem, while the only responsibility
left to the interrupt handler programmer is to implement the associated
logic appropriately. On the one hand, NMIs provide excellent flexibility
because, in the general case, they can preëmpt other interrupts, ensuring
timely processing of the profiling data coming from PMUs. In contrast, a
priority-based policy regulates the normal interrupts precedence. On the
other hand, the execution of the NMI handler requires the development
of more code and introduces an overhead that may cause a delay in all
planned activities, especially at high PMI frequencies. Furthermore, the
NMI generation should be deemed as an extraordinary event, and paying
this articulate handler’s cost may be helpful only when the NMI priority
plays a crucial role.

As mentioned, PMUs have been designed to support debugging and
punctual performance optimisation sessions in an offline manner. In this
context, pinpointing unoptimised code sections or the execution bottlenecks
can be perpetrated through different runs by exploiting a top-down ap-
proach that accurately marks the boundaries of the culprit instructions at
every instance execution. This flow allows the analyser to adjust the pro-
filing parameters, e.g., sampling rate and data amount, by analysing the
previous measurement outcome and then adapting the next session to pur-
sue the code of interest. The prerequisites are different when dealing with
an online data collection that points to a complex system and feeds routines
that act in place while the observed dynamics are ongoing. In this setting,
the system overhead, the sampling frequency and the data processing start
playing an essential role and demand a combined optimisation because they
influence each other.

Directly modifying the interrupt management strategy can be an effec-
1All NMIs go into interrupt line 2.



Chapter 3. Exploiting hardware beyond offline analysis 19

Listing 1 Local NMI Handlers Chain Iteration.
1 static int nmi_handle(unsigned int type, struct pt_regs *regs)
2 {
3 struct nmi_desc *desc = nmi_to_desc(type);
4 struct nmiaction *a;
5 int handled = 0;
6

7 rcu_read_lock();
8

9 /*
10 * NMIs are edge-triggered, which means if you have enough
11 * of them concurrently, you can lose some because only one
12 * can be latched at any given time. Walk the whole list
13 * to handle those situations.
14 */
15 list_for_each_entry_rcu(a, &desc->head, list) {
16 int thishandled;
17 u64 delta;
18

19 delta = sched_clock();
20 thishandled = a->handler(type, regs);
21 handled += thishandled;
22 delta = sched_clock() - delta;
23 trace_nmi_handler(a->handler, (int)delta, thishandled);
24

25 nmi_check_duration(a, delta);
26 }
27

28 rcu_read_unlock();
29

30 /* return total number of NMI events handled */
31 return handled;
32 }

tive intervention to achieve a more reliable system response. In particular,
we want to minimise the interrupt latency that, in this case, not only de-
notes the hardware delay to deliver the interrupt request to the operating
system but also encompasses the total number of instructions executed both
before the actual management routine is activated and at its end, to resume
the preëmpted flow.

Listing 1 shows the platform-independent entry point for the manage-
ment of NMIs in Linux, which is executed after the platform-dependent
assembly preamble2. By design, multiple NMIs can fire simultaneously, but
their edge-triggered nature allows detecting at most two pending NMIs.
This limit requires keeping iterating the handlers’ chain even if some called
routines have already recognised the interrupt as intended, thus performing
some action. An optimisation discerns between local and non-CPU-specific
NMIs3. The former has a higher priority, while the latter is considered only

2The NMI assembly trampoline is more expensive than conventional IRQ ones because
it has to manage broader scenarios and requires more checks.

3An NMI can refer to both CPU-internal dynamics, thus requiring the direct action
of the interested CPU or system events which any CPU may handle.
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if no local NMI has been detected.
The kernel’s sole clue about possible concurrent NMIs comes from the

result returned by each chained handler, which checks its conditions and
returns a value representing the number of processed events. With this
method, the kernel catches and resolves the extra NMIs besides the two
detected ones and configures some status information to manage the sec-
ondary NMI handling. However, an NMI is conceived to signal extraordi-
nary events, and we may assume that they are not very frequent. Indeed,
boundary cases are critical, and performing a meticulous check can be cru-
cial in a production system. Unfortunately, this has a cost that directly
influences the experienced system overhead. NMI handler subscribers may
reach a consistent number in a complex environment where several kernel
modules and hardware facilities co-exist, increasing the price to process an
NMI on a CPU. PMUs naturally fit profiling operations by design, but
they are regulated by a working period whose length sets the interrupt fre-
quency. Thus, fine-grain monitoring sessions demand a high PMI generation
frequency which, if mapping on the NMI line, gets a disadvantage due to
the already described mechanism.

A less widespread solution is redirecting the PMI to a generic IRQ line
by adequately configuring the associated APIC entry. The PMI benefits
from a dedicated line and can avoid extra work such as chain inspection.
Even though an interrupt can arise on that configured line only when a par-
ticular PMU’s condition is met, it is a standard practice to keep checking
the generation condition by querying the relative MSRs. This check is due
to an uncertainty level that affects the correct behaviour of this specialised
circuitry, such that spurious interrupt may be generated under some cir-
cumstances [22]. As a drawback, the PMI handler’s promptness may get
thrown on the back burner during the execution of a higher-priority inter-
rupt. Still, these events are relatively rare in real scenarios and may matter
only for exceptional occurrences.

Compared to the NMI code, the generic IRQ entry routine comprises
fewer instructions for the platform-independent handler function. From a
high-level perspective, it performs the following operations:

• check if we are coming from a user- or a kernel-mode and, if needed,
swap the GS segment;

• create a complete registers snapshot and switch to the dedicated IRQ
stack;

• call the do_IRQ function, which sets some system flags and execute
the actual handler;

• leave the IRQ stack;
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• call kernel housekeeping functions according to the execution mode
we are switching back;

• restore the registers snapshot and perform swapgs if required;

• return from interrupt.

Additional actions may take place, such as an extra trampoline stack
switch or security procedures mitigating hardware pitfalls (such as Melt-
down discussed in Chapter 4). Those are present in the NMI assembly
routine as well.

Hence, by setting a standard IRQ line as a vector for the PMI, the
system can benefit from a shorter code to reach the handler function and a
dedicated routine that avoids the previously mentioned chain lookup. These
are key factors to reduce the interrupt latency and, consequently, the side-
effects linked to the execution of the additional instructions. Linux has
dedicated APIs to install a custom IRQ handler in the system. However,
they are strictly devised for external components, e.g., PCI-bus-connected
devices, which exploit a logical and shared interrupt mechanism that vir-
tually enhances the IRQ line over the traditional value of 256 in x86 ma-
chines. Moreover, newer kernel versions have a redesigned do_IRQ function
to achieve better performance, expecting access to symbols not exported
in the mainline version of the kernel. This restriction undermines repro-
gramming the PMI on a different line inside an out-of-tree kernel module,
making the hack impractical without directly working on the kernel source
code.

Exploiting a Custom IDT Entry Using a Kernel Module

An effective way to bypass the limits dictated by the Linux Kernel APIs
is to directly install the PMI handler into the Interrupt Descriptor Table
(IDT). Nevertheless, switching from an NMI to a regular interrupt for PMU
data collection is not a free lunch. Indeed, several technical challenges arise
for this purpose. We discuss in the following a practical approach to reading
PMU data by relying on a Linux loadable kernel module (LKM).

On x86 architectures, the number of available IDT vectors is limited to
256, each associated with a dedicated management routine. The IDT can
be placed anywhere in the linear address space, and its location is stored
in the dedicated IDTR register via the lidt instruction. It is a privileged
instruction that can be executed only at ring 0, while the IDTR register’s
value can be read using the sidt instruction running at any privilege level.
Therefore, to install a custom interrupt handler, we must run in kernel
mode—hence the need to rely on an LKM. Moreover, on 64-bit systems, gate
descriptors stored in the IDT are an extension of the 32-bit ones, as depicted
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Figure 3.1: The general structure of IDT.

in Figure 3.1. As a result, the descriptor shows a non-linear structure that
might be confusing, in which the address of the associated management
routine is not contiguous. This design choice impacts the complexity of the
code to manipulate the IDT and the ability to safely modify entries when the
kernel has finished loading in memory. The possibly unsafe behaviour when
installing an IRQ routine in the IDT at steady state is because 64-bit x86
architectures only ensure writes up to 8 bytes to be atomic. The scattered
nature of the interrupt handler’s address makes it impossible to rewrite ad
IDT line using a single machine instruction. Therefore, concurrent access
to that vector may trigger a kernel-mode segmentation fault, causing the
system to crash.

Therefore, the challenge is to update the gate where we want to install
the custom PMU interrupt handler preventing the CPUs from accessing a
partially-modified entry. A straightforward solution can be disabling the
interrupt source, namely the PMU’s ability to generate a PMI, dodging the
concurrency issue. On the one hand, that approach may achieve the desired
result in a controlled environment where we are sure that no other profiling
agents would interfere with this operation4. On the other hand, each CPU
core has its own IDTR register on SMP machines. Although this design
allows defining a different IDT for each CPU core, Linux has a unique IDT
instance installed at system initialisation. Thus, directly modifying the
system’s shared IDT version would require coordinating all CPU cores to

4Of course, this approach is not suitable for a general update of any IDT gate de-
scriptor, especially in the case of uncontrollable events, e.g., page fault exceptions
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inhibit the interrupt source until the procedure finalisation, which, on large
multicore systems, may produce a non-negligible overhead.

Listing 2 Install a IDT custom entry
1 static void smp_load_idt(void *addr)
2 {
3 struct desc_ptr *idtr;
4 idtr = (struct desc_ptr *)addr;
5 load_idt(idtr);
6 }
7

8 static struct desc_ptr *clone_current_idt(void)
9 {

10 struct desc_ptr *idtr;
11 void *idt_table;
12

13 idtr = (struct desc_ptr *)kmalloc(sizeof(struct desc_ptr), GFP_KERNEL);
14 if (!idtr)
15 return 0;
16

17 idt_table = (void *)__get_free_page(GFP_KERNEL);
18 if (!idt_table)
19 return 0;
20

21 store_idt(idtr);
22

23 memcpy(idt_table, (void *)(idtr->address), PAGE_SIZE);
24

25 idtr->address = (unsigned long)idt_table;
26 return idtr;
27 }
28

29 void idt_patcher_install_entry(unsigned long handler, unsigned vector,
30 unsigned dpl)
31 {
32 gate_desc new_gate;
33 gate_desc *new_idt, *cur_idt;
34

35 /** FIX THIS CODE **/
36 cur_idt = (gate_desc *)patched_idt[patched_idt_idx]->address;
37 patched_idt_idx ^= IDX_STEP;
38 new_idt = (gate_desc *)patched_idt[patched_idt_idx]->address;
39

40 // Create the entry in the spare IDT instance
41 pack_gate(&new_gate, GATE_INTERRUPT, handler, dpl, 0, 0);
42 write_idt_entry(new_idt, vector, &new_gate);
43

44 // Set the spare IDT instance as system's one
45 on_each_cpu(smp_load_idt, patched_idt[patched_idt_idx], 1);
46

47 // Upload old IDT instance
48 write_idt_entry(cur_idt, vector, &new_gate);
49 }

An alternative approach can be based on identifying an alternative way
to perform an atomic update of the IDT data structure. Indeed, the execu-
tion of the lidt instruction can be regarded as the serialisation point for the
update operation. To this end, it is possible to create a full verbatim copy
of the currently in-place IDT table and modify an entry to install the PMI
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handler while the original table is used to serve interrupt requests. This
approach allows us to avoid any concurrency problems. Once the new IDT
instance is ready, we can force all CPU cores to reload their IDTR register to
point to the new table simultaneously. This synchronous update is required
to prevent different interrupt handler versions from concurrently executing
on different CPU cores. It can be easily implemented, as shown in Listing 2,
by relying on the built-in cross-core messaging mechanism based on Inter-
Processor Interrupts (IPI). In the provided example, the on_each_cpu()
function call forces all CPU cores to execute the smp_load_idt() function,
which the new version of the IDT.

To complete the description of our approach, we have to discuss the in-
terrupt routine to install in the IDT entry to process the PMIs. As described
previously, the typical approach in Linux is to have a shared assembly stub
that later calls the appropriate platform-independent function to process
the IRQ, ensuring a logical separation among architecture-dependent and
independent code. Nesting our custom PMI handler in the Linux IRQ dis-
patcher from a kernel module requires tampering with many kernel layers,
making the approach too fragile while also having to account for all the pos-
sible code variants across the different kernel versions. Considering that we
only target the x86 platform, a simple approach is to bypass the shared stub
and make the IDT entry point to a custom platform-dependent dispatcher,
which we provide in Listing 3. This simple dispatcher performs standard
activities also carried out by the Linux kernel for general IRQ management,
although some actions are simplified (e.g., not all general-purpose registers
should be saved) due to its special-purpose nature. This IRQ entry point
can then call a C function (custom_pmi_handler in the example listing)
that can read profiling data from the PMUs that caused the PMI firing.

As a last note, versions of the kernel that have Meltdown mitigations
active (such as Kernel Page Table Isolation, KPTI [54]) must be handled
with additional care. Indeed, the strict kernel and userspace isolation makes
it impossible for the hardware to see any content of the loaded LKM when
running in userspace. If a PMI is fired when the system is running in user
mode, the firmware will not find the PMI handler entry point mapped in
memory, causing a fault. Patching the globally-mapped cpu entry area used
by Linux to give access to fundamental parts of the kernel to the firmware
is not an option because it is defined at kernel compile time. Therefore, the
only practical solution to make the proposed LKM-based approach work
within a PTI-enhanced kernel is to disable KPTI at boot time by setting the
nopti or mitigations=off kernel parameters. If lowering system security
cannot be considered an option, a different path should be taken, which we
shall discuss in the following section.
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Listing 3 A simple IRQ stub
1 extern void pmi_irq_entry(void);
2

3 asm(".globl pmi_irq_entry\n"
4 "pmi_irq_entry:\n"
5 " cld\n"
6 " testq $3,8(%rsp)\n"
7 " jz 1f\n"
8 " swapgs\n"
9 "1:\n"

10 /* Push error code */
11 " pushq $0\n"
12 /* Push CPU registers */
13 " pushq %rdi\n"
14 " pushq %rsi\n"
15 /* ... omit the complete push sequence */
16 " pushq %r14\n"
17 " pushq %r15\n"
18 /* Call high-level handler */
19 " call pmi_irq_handler\n"
20 /* Pop CPU registers */
21 " popq %r15\n"
22 " popq %r14\n"
23 /* ... omit the complete pop sequence */
24 " popq %rsi\n"
25 " popq %rdi\n"
26 /* Clean error code */
27 " addq $8,%rsp\n"
28 " testq $3,8(%rsp)\n"
29 " jz 2f\n"
30 " swapgs\n"
31 "2:\n"
32 " iretq");

Kernel-level Fast IRQ Interface

The Linux Kernel has been designed to provide elevated flexibility and mod-
ularity to support dynamic extension via the runtime loading of out-of-tree
modules. Although this capability allows implementing functions for direct
communication with the kernel internals, it is limited to the public interface
and exposed symbols that sometimes are not comprehensive for the planned
task. Such a design choice is justifiable, as it is part of the hardening pro-
cess that ensures the stability and reliability of the operating system itself.
Indeed, the IDT management and related data structures belong to the
non-exported objects. However, as discussed in the previous section, it can
be desirable to install special-purpose IRQ management routines for PMIs.
Here, we discuss a patch to the Linux kernel source that allows exposing to
LKMs an interface to install custom IRQ handlers. This interface can be
used to pursue a goal similar to the one discussed in Section 3.1 also when
security enhancement patches are active.

Our patch is based on the organisation of the entry_64.S source file,
which contains the most significant part of the platform-dependent code.
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We are particularly interested in the interrupt/exception entry stubs for
our purposes. We report in Listing 4 the relevant part of the code which is in
charge of generating all the 8-byte stubs starting from the irq_entries_start
symbol. During the final part of the IDT initialisation at kernel startup,
the stubs are linearly scanned starting from this symbol, and the entries
which are actually installed in the IDT are marked in the system_vectors
bitmap. Each stub is in charge of pushing the corresponding vector number
to the stack and jumping to a different routine (either common_interrupt
or common_fast_interrupt, depending on the nature of the IRQ entry).
In all cases, the amount of work carried by the stubs is minimal, meeting
our need for a low-overhead activation of the PMI handler.

Listing 4 IRQ entry stubs
1 .align 8
2 ENTRY(irq_entries_start)
3 vector=FIRST_EXTERNAL_VECTOR
4 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
5 UNWIND_HINT_IRET_REGS
6 /* Note: always in signed byte range */
7 pushq $(~vector+0x80)
8 jmp common_interrupt
9 .align 8

10 vector=vector+1
11 .endr
12 /* Place the fast irq entries just after the irq entries */
13 /* fast_irq_entries_start */
14 vector=FIRST_EXTERNAL_VECTOR
15 .rept (NR_VECTORS - FIRST_EXTERNAL_VECTOR)
16 UNWIND_HINT_IRET_REGS
17 /* Note: always in signed byte range */
18 pushq $(~vector+0x80)
19 jmp common_fast_interrupt
20 .align 8
21 vector=vector+1
22 .endr
23 END(irq_entries_start)

Even though it is feasible to manually craft a dedicated IRQ stub and
assign it to a free vector during the IDT filling (using an approach similar
to the one described in Section 3.1), it would require hardcoding the PMI
line or, at least, a mechanism to discover possible incompatibilities with
other elements. Instead, we propose an API that can work with any line in
the interval FIRST_EXTERNAL_VECTOR–FIRST_SYSTEM_VECTOR. Our strategy
leverages the contiguous placement of the two groups of stubs and the fact
that the two loops do not fill the entire IDT table (i.e., by default, less than
256 vectors are used by Linux)

Therefore, we can determine an offset at compile time that allows us
to identify a free vector line in the IDT. This line can be used to install a
new custom fast IRQ handler. In Listing 5 we show the implementation of



Chapter 3. Exploiting hardware beyond offline analysis 27

Listing 5 Register a fast IRQ API
1 int request_fast_irq(unsigned int fast_irq, fast_handler_t handler)
2 {
3 unsigned long fast_IRQ_base;
4 char *fast_irq_entries_start =
5 irq_entries_start +
6 8 * (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR);
7

8 if (fast_irq < FIRST_EXTERNAL_VECTOR || fast_irq >= NR_VECTORS) {
9 pr_warn("Cannot install irq handler at %u. Invalid\n",

10 fast_irq);
11 return -EINVAL;
12 }
13

14 if (test_bit(fast_irq, system_vectors) ||
15 fast_vector_handlers[fast_irq]) {
16 pr_warn("Cannot install irq handler at %u. Busy\n", fast_irq);
17 return -EBUSY;
18 }
19

20 /* The first vector is placed at index FIRST_EXTERNAL_VECTOR */
21 fast_IRQ_base = (unsigned long)(fast_irq_entries_start +
22 8 * (fast_irq - FIRST_EXTERNAL_VECTOR));
23

24 /* Magic trick, setup the new entry */
25 idt_table[fast_irq].offset_low = (u16)fast_IRQ_base;
26

27 set_bit(fast_irq, system_vectors);
28 fast_vector_handlers[fast_irq] = (unsigned long)handler;
29

30 return fast_irq;
31 }
32 EXPORT_SYMBOL(request_fast_irq);
33

34 int free_fast_irq(unsigned int fast_irq)
35 {
36 /* The first vector is placed at index FIRST_EXTERNAL_VECTOR */
37 unsigned long old_IRQ_base =
38 (unsigned long)(irq_entries_start +
39 8 * (fast_irq - FIRST_EXTERNAL_VECTOR));
40

41 if (fast_irq < FIRST_EXTERNAL_VECTOR || fast_irq >= NR_VECTORS) {
42 pr_warn("Cannot uninstall irq handler at %u. Invalid\n",
43 fast_irq);
44 return -EINVAL;
45 }
46

47 if (!fast_vector_handlers[fast_irq]) {
48 pr_warn("Cannot uninstall irq handler at %u. Empty\n",
49 fast_irq);
50 return -EINVAL;
51 }
52

53 /* Restore the old handler address */
54 idt_table[fast_irq].offset_low = (u16)old_IRQ_base;
55

56 clear_bit(fast_irq, system_vectors);
57 fast_vector_handlers[fast_irq] = 0UL;
58 return 0;
59 }
60 EXPORT_SYMBOL(free_fast_irq);
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our API that serves this purpose. Our code takes a fast_irq vector num-
ber and a function handler as parameters. It performs some correctness
checks and verifies the system state not to overwrite an already online or
previously configured vector line. Note that the fast_irq_entries_start
indicates the address of the first fast-IRQ stub, which is associated with
the first unused entry in the IDT. Considering the number and the size of
generated stub entries, they can be allocated within a single 4K memory
page, thus demanding only 12 bits to be addressed. Furthermore, the mem-
ory contiguity ensures that they all share the upper part of their address.
Consequently, our API updates only one of the 16 least significant address
bits, which can be implemented as a single atomic write. Such an operation
shifts all the vector by 2X pages, where X = Y − 12 and Y is the flipped
bit within the lowest offset (lines 25-27). Once the IDT vector correctly
points to the desired stub, the line is marked as used on a system-wide
basis, and the handler function is saved in a unique system vector which is
accessed by a custom pre-handler that we have called do_fast_IRQ routine.
This mechanism emulates the do_IRQ strategy that dispatches the platform-
independent function according to the vector number provided by the entry
assembly code. To uninstall a fast IRQ, we provide the free_fast_irq API
function. It is in charge of restoring the system state by uninstalling the
fast_irq vector, which can be achieved by reverting the address expressed
by the selected IDT gate descriptor to the original interrupt entry stub,
informing the system that the vector is now available, and cleaning up the
corresponding fast-IRQ system vector entry.

Listing 6 Basic fast-IRQ dispatcher
1 __visible void __irq_entry do_fast_IRQ(struct pt_regs *regs)
2 {
3 u8 vector = ~regs->orig_ax;
4 struct pt_regs *old_regs = set_irq_regs(regs);
5

6 entering_irq();
7 /* Add guards to safely remove an handler */
8 (*(fast_handler_t *)(fast_vector_handlers[vector]))();
9 /* The IRQ handler is in charge of calling APIC EOI */

10 exiting_irq();
11 set_irq_regs(old_regs);
12 }

To complete the description of our approach, Listing 6 shows the ba-
sic implementation of the do_fast_IRQ function. As mentioned, its main
purpose is to pick the right handler to manage the interrupt. It retrieves
the vector number from the struct pt_regs and directly uses the vector
number as an offset in the fast_vector_handlers table, which holds the
installed handlers.

Overall, relying on the Fast IRQ registration API makes it possible to
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quickly install an IRQ handling routine that follows the same approach as
regular handlers while following an execution path that requires executing a
reduced number of instructions. This is because many corner cases related
to IRQ management are not considered in our execution path. In this sense,
our approach is not meant to replace the standard Linux management of
IRQs, but only to provide an interface to be exploited in non-standard
contexts, such as the high-frequency sampling with the PMUs. Moreover,
our approach makes it possible to install a fast IRQ management routine
after system initialisation, thus making it possible for a kernel module to
register/unregister a PMI handler any time it is needed.

3.2 Discriminating the Profiling Domain

PMUs can only directly observe the general system-wide behaviour. There-
fore, extracting precise profiling information related to a specific application
can become cumbersome—PMUs work at the architectural level, thus ig-
noring dynamics such as context switches. Indeed, in a time-sharing system,
discriminating what application was running when a PMU captured a par-
ticular event might be even impossible in a post-mortem analysis. The
typical approach adopted while capturing profiling data is to minimise the
cross-application noise by drastically reducing the number of active pro-
cesses, possibly also limiting the operating system’s activity. If this kind
of system’s control is feasible, it is possible to build an acceptably accurate
profile. Conversely, since we target online analysis on production systems,
we can expect this kind of control to be impossible, thus incurring significant
noise in the measurements. Thread discrimination is anyhow an essential
feature for every profiling system, be it online or offline.

Per-thread Profiling

In sampling mode, the sampling period regulates the profiling frequency
according to one or more system events, such as retired instructions and
elapsed clock cycles. Upon counter’s overflow, a PMI interrupt forces the
CPU to undertake all the actions required to start the sample collection.
This procedure implies stopping the current thread’s execution, favouring
the previously outlined dedicated routines. Suppose a theoretical execution
in which no sample has been generated yet, and no context switch occurs. In
that case, once the PMI is fired after a certain amount of time, we will only
find samples (if any) associated with the current thread. This means that
it is possible to implement per-thread filtering of the generated samples
provided that: i) we can associate a trace of generated samples with the
current thread; ii) we can intercept a context switch to empty the sample
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trace.
While point i) above can be simple, in our reference scenario focused

on online self-tuning optimisation, it is unlikely that the monitoring agent
should profile any active thread. Therefore, we must also introduce a mech-
anism to let the system know the pool of threads that the agent should
actively monitor. We propose an explicit “registering” procedure, which al-
lows the monitoring agent to collect data related to specific threads (based
on pid numbers in Linux) or to multi-threaded processes (based on tgids).
For simplicity, in the following, we generically use the term thread for both
cases, with no loss of generality.

In order to reduce the monitoring overhead, an important point is re-
lated to the number of registered threads compared to the number of active
threads. Considering that we target production systems, we can expect the
number of monitored threads to be far lower than the running ones. There-
fore, the monitoring agent should leverage some efficient data structure to
perform thread lookups, mainly since we target high-frequency sample col-
lection. For this purpose, we have explored four different solutions—we
provide performance data in Section 3.4.

The first solution is based on a global shared data structure that can
be updated whenever some thread is registered for monitoring. From our
empirical experience, hash tables well fit the performance requirements un-
der general settings. To determine whether a thread should be profiled,
the monitoring agent can check whether its ID is stored in the hash table.
Nevertheless, thread safety must be ensured since every CPU has its own
PMUs. Given the high dynamicity that we target, a solution based on locks
would negatively impact performance, making this approach non-viable.

A second solution exploits the already-available perf_events subsystem
in Linux, an advanced analytics suite available in the Linux Kernel. The
tight integration with the Linux kernel is also manifested in the presence of
dedicated fields within the struct task_struct that we can use to flag a
thread as under monitoring. We therefore take advantage of the possibility
to register a so-called software dummy event for each process we want to
monitor. This event is not actually associated with any profiling rule but is
used only to mark a thread as under profiling. Furthermore, by registering
this custom event without associating any profiling rule, we can leverage its
instance as a container of custom data—we will discuss in more detail how
to store PMU data on a per-process basis in Section 3.3. Listing 7 shows an
example of how to register, deregister and query a perf event. Once the perf
event is instantiated, it is queued into the dedicated per-process perf_event
list. To check whether a process should be monitored, the monitoring agent
can search the dummy event in the corresponding list and check the related
private data. Even though all the operations are kept consistent through a
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mutex, our experience shows that no significant overhead is introduced.

Listing 7 Example of perf event creation, release and query functions.
1 bool create_task_data(struct task_struct *task, void *data)
2 {
3 struct perf_event *event;
4 struct perf_event_attr attr = {
5 .type = PERF_TYPE_SOFTWARE,
6 .config = PERF_COUNT_SW_DUMMY,
7 .size = sizeof(attr),
8 .disabled = true,
9 };

10

11 event = perf_event_create_kernel_counter(&attr, -1, task, NULL, NULL);
12

13 if (IS_ERR(event))
14 return false;
15 // Insert custom data inside event
16 event->pmu_private = data;
17

18 mutex_lock(&task->perf_event_mutex);
19 list_add_tail(&event->owner_entry, &task->perf_event_list);
20 mutex_unlock(&task->perf_event_mutex);
21

22 return true;
23 }
24

25 void destroy_task_data(struct task_struct *task)
26 {
27 struct perf_event *event;
28

29 event = __get_perf_event(task);
30 perf_event_release_kernel(event);
31

32 mutex_lock(&task->perf_event_mutex);
33 list_del(&event->owner_entry);
34 mutex_unlock(&task->perf_event_mutex);
35 }
36

37 static void *is_profiled(struct task_struct *task)
38 {
39 struct perf_event *event;
40

41 mutex_lock(&task->perf_event_mutex);
42 event = list_first_entry_or_null(&(task->perf_event_list),
43 struct perf_event, owner_entry);
44 mutex_unlock(&task->perf_event_mutex);
45

46 return event ? (void *)event->pmu_private : NULL;
47 }

The third solution is based on storing a monitoring flag directly on the
kernel stack of the profiled thread. Figure 3.2 depicts the overall schema
under two different circumstances. The general idea is to use the last avail-
able stack entry to store the profile status for the corresponding thread.
In this case, determining whether a thread should be profiled involves ac-
cessing the process control block (PCB) of the currently-scheduled thread
via the current macro. The PCB contains a reference to the kernel stack
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Figure 3.2: Stack patching schema

associated with the process, which can be accessed in constant time when
that process is executing. When a PMI is fired, its handler can quickly
access the current thread stack to determine what should be done with the
generated samples.

There are two issues to consider if this strategy is adopted. First, the
last entry on the thread stack might not be the very topmost memory ad-
dress in the stack pages. Indeed, depending on the Linux version or the
underlying hardware architecture, we might find the struct thread_info
data structure at the end of the stack area, as shown in Figure 3.2. There-
fore, care must be taken to determine the proper placement of the struct
thread_info data structure, not to overwrite its content—this is a check
that can be performed at compile-time anyhow.

The second issue to consider is related to the natural growth of the
stack. Indeed, if the stack grows, our flag might be overwritten. This cir-
cumstance might not be easily detected, as this might be due to a perfectly
legit memory write5.

Some techniques can be used as mitigation. A possibility is to rely on a
cyclic redundancy check (CRC) to assess before the flag is read— the prob-
ability of a false negative depends on the robustness of CRC. This solution
introduces a minimal level of uncertainty that affects the system’s reliability.
A second possibility entails relying on dedicated hardware debug registers
that are typically used to define hardware breakpoints. The firmware gen-
erates a trap every time the address is accessed—according to the debug
register configuration, it may filter reads, writes, or even execution accesses.
The associated trap routine should then manage the event accordingly. Re-
lying on debug registers does not introduce concurrency issues because each

5This problem is one reason that led kernel developers to map the kernel stack from
physical onto virtual memory and to move the struct thread_info data structure out
of the stack, as shown in Figure 3.2.
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core can leverage its own set. Nevertheless, both relying on a CRC check
or on a debug register introduces an additional overhead to the simple task
of determining whether a thread should be profiled or not.

The last solution is the simplest one: the struct task_struct can be
extended with a dedicated flag to keep the monitoring state. While this
solution is likely to provide the best performance, it is not viable if the
monitoring agent is implemented purely via an LKM.

The second essential requirement to perform per-thread profiling is be-
ing able to intercept a context switch. As mentioned, this is fundamental
because PMUs observe the CPU’s execution at a system level. Still, if
the scheduler swaps out a monitored thread, its performance data must be
updated to allow resetting the profiling trace. Similarly to the fast IRQ
case that we described in Section 3.1, the context switch kernel code is not
exposed to LKMs, because it is considered part of the operating system’s
internals. Therefore, if our monitoring agent is implemented as a module,
we must rely on additional facilities exposed by Linux to be informed of the
occurrence of a context switch.

The Linux kernel is disseminated of several fixed hook points, called tra-
cepoints, which can be used to install an arbitrary function (probe) to be
invoked every time the tracepoint is met. This facility has been designed to
help kernel developers perform debugging activities of specific portions of
the kernel. Nevertheless, we propose to repurpose this facility as a generic
callback capability that also allows modules to be informed of specific activ-
ities taking place—in our case, a context switch.

A tracepoint can be either enabled or disabled. It is enabled if at least
one probe is installed in the specific tracepoint. All installed probes are
queued and are called one by one when the tracepoint is reached, thus
allowing to redirect the flow to custom registered functions. If a trace-
point is disabled, the introduced overhead is minimal. Tracepoints are de-
clared via the macro DECLARE_TRACE(name, proto, args), requiring as
input the tracepoint’s name, the prototype of the callback functions, and
the parameters name. The Linux kernel already ships a tracepoint named
sched_switch, which is triggered every time the scheduler selects the next
task to be scheduled, thus allowing us to observe both the old and the new
threads installed on the CPU.

In Listing 8 we present our approach to implementing in an LKM-based
monitoring agent a callback function to selectively profile the system at
a thread-level basis. The function register_ctx_hook allows register-
ing the callback function at the selected sched_switch tracepoint, if it
is found in the running kernel. To perform this check, we rely on the
for_each_kernel_tracepoint macro. It iterates among all the tracepoints
defined at kernel compile time, performing the check implemented in the
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lookup_tracepoint function, eventually selecting the correct tracepoint
reference, if present6. Once identified, we rely on tracepoint_probe_register
to register our custom callback function ctx_hook_func.

Listing 8 Context Switch Callback based on Tracepoints.
1 struct hook {
2 char *name;
3 void *func;
4 struct tracepoint *tp;
5 };
6

7 static void ctx_hook_func(void *data, bool preempt, struct task_struct *prev,
8 struct task_struct *next))
9 {

10 if (this_cpu_read(pcpu_pmcs_active) && !is_profiled(next))
11 // ... update prev profiling data
12 disable_pmc_on_this_cpu();
13 else if (!this_cpu_read(pcpu_pmcs_active) && is_profiled(next))
14 enable_pmc_on_this_cpu();
15 }
16

17 static struct hook ctx_hook = { "sched_switch", ctx_hook_func, NULL };
18

19 static void lookup_tracepoint(struct tracepoint *tp, void *hook_ptr)
20 {
21 struct hook *hook = (struct hook *)hook_ptr;
22

23 if (strcmp(hook->name, tp->name) == 0)
24 hook->tp = tp;
25 }
26

27 int register_ctx_hook(char *name, void *func)
28 {
29 /* Fill the hook's tracepoint */
30 for_each_kernel_tracepoint(lookup_tracepoint, hook);
31

32 if (!hook->tp)
33 goto err;
34

35 if (tracepoint_probe_register(hook->tp, hook->func, NULL))
36 goto err;
37

38 return 0;
39 err:
40 return -ENXIO;
41 }
42

43 void unregister_ctx_hook(enum hook_type type, void *func)
44 {
45 tracepoint_probe_unregister(hook->tp, hook->func, NULL);
46 tracepoint_synchronize_unregister();
47 }

Deregistering the callback is a simpler action but requires some care. We
rely on tracepoint_probe_unregister to notify the kernel that ctx_hook_func

6In the proposed code example, struct hook is only a helper structure to aggregate
all the information of interest.
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should not be called anymore upon context switch. Nevertheless, this opera-
tion can be delayed. This delay can create a race condition if the deregister-
ing operation is executed when the LKM is unmounted. Indeed, some CPU
cores might try to invoke that function after the unloading is completed,
thus causing a system crash. To prevent this possibility, we explicitly per-
form a call to tracepoint_synchronize_unregister, which ensures that
all execution traces upon all CPUs are synchronised about the removal of
the callback function.

In Listing 8 we also show the actual implementation of the callback func-
tion, namely ctx_hook_func. This function implements the logic to drive
PMUs according to the profiling status of the scheduled/descheduled pro-
cesses. This implementation also shows an additional optimisation related
to the per-thread processing scheme we are discussing. Indeed, the profil-
ing agent can inspect the old and new scheduled threads’ profiling state to
reduce the number of unnecessary MSR writes. Whenever a profiled thread
replaces another profiled thread, the PMUs’ configuration does not change;
thus, reconfiguring the involved MSRs does not bring any gain but only
introduces a cost. A PMU’s configuration transition occurs only when the
switch between two threads bumps into a profiling state change. To this
end, we have introduced a per-CPU variable (pcpu_pmcs_active) that tells
whether the current-core PMUs are active.

Beyond tracepoints, another technique can be used to inform the moni-
toring agent that a context switch is taking place. In particular, Linux can
be configured to offer an additional dynamic probing subsystem, generally
called kprobes. The kernel can install such probes in almost any code lo-
cation. Typically, they are used to dynamically attach a callback function
to any function’s entry point, return point (a kretprobe), or even after the
execution of every instruction. In order to inject the probe at the desired
point, the kernel replaces part of the machine instruction that should trig-
ger the callback activation with a debug trap instruction7. Once the control
flow reaches the trap, a dedicated handler is activated to implement the
logic associated with the management of the kprobe.

A general code instruction is instrumented by replacing that machine
instruction with a trap, ideally, an int3 assembly instruction which maps
on debug exception. The handler of that exception is aware of the installed
probe and carries out the additional logic before or after the code instruction
is instrumented. This logic entails reconstructing the original instruction in
a different memory location, invoking the associated callback function, and
resuming the initial execution flow. If a kretprobe is installed, the kernel

7On x86 architectures, this is typically done by relying on the int3 assembly instruc-
tion. It is a 1-byte instruction that can therefore be used to (partially) overwrite any
instruction.
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silently installs a kprobe associated with a special callback that installs a
trampoline on the called function stack by replacing the return address. In
this way, the callback can gain control after a return instruction is executed.
Of course, on SMP machines, multiple executions flows can concurrently hit
a kretprobe. In this case, the kernel has to track all the active instances,
requiring (upon installation of the kretprobe) to define the maximum ex-
pected number of instances—if this value is too low, some probes might be
missed. These sequences of operations come with some technical difficulties
that we omit here for brevity. The interested reader can refer to Krish-
nakumar [86] and Mavinakayanahalli et al. [104] for a more comprehensive
discussion of this support.

To notify the monitoring agent of the upcoming context switch, we in-
sert a kprobe into the finish_task_switch(struct task_struct *prev)
function, which is invoked at the end of the schedule() function just be-
fore the new thread gets control of the CPU. At the end of that function,
the old process can be identified via the prev parameter, while the newly-
scheduled one can be already reached via the current macro. We provide
in Listing 9 the reference code to install a context switch callback by relying
on kprobes—the install_kprobe function (lines 30–42). In particular, we
rely on a kretprobe to be notified when the finish_task_switch function
is returning. We have set the maximum number of expected concurrent in-
stances to the number of active CPUs (line 5) because this is the maximum
number of context switches that can occur simultaneously.

The entry_handler and the handler members are the callbacks that are
installed at the beginning and return points of the finish_task_switch,
respectively. The initial callback’s goal is to intercept the parameter of
finish_task_switch and make it visible to the handler function, which
could not access that information otherwise. The return callback will use
that value to accomplish several tasks, such as managing the PMUs’ state
and updating the existing process collected data.

There is an additional aspect that is relevant to discuss concerning per-
thread profiling. As mentioned earlier, we might be interested in monitoring
a group of threads. At any execution time, they might spawn new processes/
threads, and the monitoring agent should be able to discriminate whether
the new threads belong to the monitored group or not. Nevertheless, if the
agent is configured to include newly spawned threads into the monitoring
pool, it must be able to detect the actual creation of the new threads.
A similar consideration deals with the termination of threads, particularly
to enable the monitoring agent to perform cleanup tasks. For instance, if
the monitored threads are kept in a hash map, their termination requires
removing them from the data structure and freeing all related metadata.

We rely on an approach similar to what we have done to intercept context
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Listing 9 Context Switch Callback based on Kprobes
1 struct kretprobe krp_post = { .handler = finish_task_switch_handler,
2 .entry_handler = finish_task_switch_entry_handler,
3 .data_size = sizeof(struct task_struct *),
4 .maxactive = NR_CPUS };
5

6 int finish_task_switch_entry_handler(struct kretprobe_instance *ri,
7 struct pt_regs *regs)
8 {
9 unsigned long *prev_address = (unsigned long *)ri->data;

10 /* Take the reference to previous task */
11 *prev_address = regs->di;
12 return 0;
13 }
14

15 int finish_task_switch_handler(struct kretprobe_instance *ri,
16 struct pt_regs *regs)
17 {
18 /* Get the reference to the leaving process */
19 struct task_struct *prev =
20 (struct task_struct *)*((unsigned long *)ri->data);
21

22 if (this_cpu_read(pcpu_pmcs_active) && !is_profiled(current))
23 // ... update prev profiling data
24 disable_pmc_on_this_cpu();
25 else if (!this_cpu_read(pcpu_pmcs_active) && is_profiled(current))
26 enable_pmc_on_this_cpu();
27

28 return 0;
29 }
30

31 int install_kprobe(void)
32 {
33 int err = 0;
34

35 /* Hook function */
36 krp_post.kp.symbol_name = "finish_task_switch";
37

38 err = register_kretprobe(&krp_post);
39 if (err)
40 pr_warn("Cannot hook post function - ERR_CODE: %d\n", err);
41

42 return err;
43 }

switches. In particular, it is possible to use both tracepoints and kprobes
to intercept the creation/termination of threads. For this specific goal,
the static tracepoints can be retrieved by looking for sched_process_fork
and sched_process_exit, respectively. Analogously, kprobe instances can
be attached to the _do_fork and do_exit system functions. Listing 10
shows the reference implementation of the callbacks when relying on both
techniques.
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Listing 10 Intercepting Thread Creation/Termination Events.
1 // Static Tracepoints
2 void fork_hook_func(void *data, struct task_struct *parent,
3 struct task_struct *child)
4 {
5 if (is_profiled(parent))
6 pid_register(child);
7 }
8

9 void exit_hook_func(void *data, struct task_struct *p)
10 {
11 pid_unregister(p->pid);
12 }
13

14 // Dynamic Kprobes
15 int exit_pre_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
16 {
17 pid_unregister(current->pid);
18 return 0;
19 }
20

21 int fork_ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
22 {
23 unsigned long retval = 0;
24

25 if (is_profiled(current)) {
26 retval = regs_return_value(regs);
27 if (is_syscall_success(regs))
28 /* Fork return value is the child's pid */
29 pid_register(retval);
30 }
31 return 0;
32 }

3.3 Performance Data Buffering

So far, we have discussed several techniques to enable high-frequency profil-
ing across different domains. As a result, by relying on the techniques men-
tioned above, a profiling agent can collect a vast amount of data potentially
of interest for different optimisation strategies based, e.g., on thread-affinity,
hosting cores, or execution mode. Therefore, an additional problem that a
monitoring agent has to face to support online self-tuning strategies is how
to manage the collected data. Several crucial aspects in this context are
related to memory retention policies, concurrency in data structures access,
cache pollution, and overhead in general. This section presents different
strategies and data structures that a monitoring agent can employ to deal
with the (possibly huge) amount of data collected at runtime from PMUs.

Independently of the buffering strategy, memory management is an es-
sential aspect to consider. Indeed, the data placed in the buffers are gen-
erated while running the PMI code, according to some of the strategies
discussed above. Dealing with memory allocation while running in an in-
terrupt context is tricky because of constraints that the memory allocator
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should consider. In particular, if the PMI handler has to allocate the buffers
to keep performance samples, the allocation can only be done via kmalloc,
setting the GFP_ATOMIC flag—other kernel-level allocators, such as vmalloc,
cannot be used in interrupt context, because they may make the invoking
thread sleep. Conversely, a kmalloc call may fail under high memory pres-
sure, leading to a possible sample loss.

The implicit strategy in all buffer management techniques described in
this section is to rely on pre-allocation, possibly when installing the profiling
agent. Nevertheless, we note that a pre-allocated buffer may get filled, a sit-
uation that brings the same level of complexity if dealt with in an interrupt
context. As we will show, a viable solution is to rely on buffering data struc-
tures that may overwrite older samples if the buffer is filled. This approach
simplifies buffer memory management but may render a self-tuning system
unreliable. Therefore, if sample loss cannot be tolerated, the profiling agent
should be configured with a sample generation frequency and a buffer size
such that the likelihood for a buffer to become full is extremely low.

3.3.1 System-wide Buffering

The simplest scenario is when the monitoring agent has to collect system-
wide performance data. This scenario can be helpful when, for example, the
data gathered by the agent are used to optimise some global action, such
as the scheduling of routine housekeeping operations, which do not depend
on the behaviour of specific threads or applications.

A straightforward buffering strategy is to define a single global buffer to
store all the generated information during system monitoring. Nevertheless,
since PMU data are generated at a per-core level, this shared global buffer
must be synchronised. Moreover, accesses from the monitoring agent to de-
liver performance data to userspace must be synchronised to avoid incorrect
reads while write operations occur. Synchronisation can quickly become the
performance bottleneck given the high concurrency we expect to generate
performance data.

We propose a candidate data structure that can be used to reduce syn-
chronisation costs in case of global buffering of performance data, namely
a non-blocking [63] Single-Writer/Multiple-Readers circular queue. In this
data structure, writes have higher priority over reads, explicitly because
we account for the scenario in which data generation takes place within the
PMI, whose duration should be kept as low as possible. Rather than relying
on locks, we depend on Read-Modify-Write (RMW) atomic instructions to
enable a fine-grain synchronisation of read/write operations. In particular,
the proposed algorithms to manipulate the data structure relies on atomic
fetch_and_add (FAA) and compare_and_swap (CAS) instructions, which
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Figure 3.3: General Organisation of the Non-Blocking Circular Queue.

are available on most off-the-shelf architectures. FAA takes a memory ad-
dress and a value. It first reads the content at the given address, then adds
the passed value to the content of the memory location, updating the mem-
ory content while returning the old value. All these operations are executed
atomically. Conversely, CAS accepts a memory location and two values: an
expected old one and a new one. It updates the memory location with the
new value only if the expected old value is currently stored at the given
memory address. Again, all these operations are carried out atomically.

Figure 3.3 depicts the organisation of our non-blocking circular queue.
The actual buffer keeping performance data is a contiguous array, while
the current state of the queue is maintained by relying on two indices to
identify the head and tail entries in the array. The former indicates the
position where someone can start reading, while the latter is the index where
a new element can be stored. The tail and head indices are stored in the
same 64-bit variable (named IDX), the largest word that can be manipulated
atomically using RMW instructions on 64-bit x64 architectures. This choice
allows us to reduce the number of memory accesses when performing opera-
tions on the queue. The least-significant 32 bits of IDX keep the tail index,
while the other half holds the head. The buffer follows a First-In-First-Out
(FIFO) behaviour and can be manipulated with two methods: insert()
and remove(), for queue elements enqueue and dequeue, respectively. The
queue can be in one of the following states, as depicted in Figure 3.4:

• EMPTY: head and tail are equals. Only insert() can be performed.
• FULL: head and tail are logically equal, but the tail is one cycle8

forward. Both insert() and remove() can be performed, but the
8The circular logic implies that an index logically ranges from 0 to length - 1, but its

real value may only increment. A cycle represents one walk through the entire buffer.
For the tail, one cycle forward means that REAL(tail) = REAL(head) + length.
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former will overwrite the oldest element.
• NORMAL: head and tail are different9, and both operations can be

called.
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Figure 3.4: Possible Queue States.

We report in Algorithm 3.1 the pseudocode for the insert() operation.
As mentioned, it is used within a PMI, so it has been designed to offer a
wait-free progress guarantee, which is achieved by relying on a replacement
strategy of the samples in case the buffer is full. This means that to rely
on this data structure correctly, either the profiling application can tolerate
some sample loss, or the frequency at which samples are generated must be
fine-tuned to avoid incurring in overwrites.

An insert() reads IDX to check if the queue is in the FULL state (line
2). If so, it tries to perform a CAS to grow the tail index (line 3). The CAS
is necessary to guarantee atomicity between the read and the increment.
Two cases are possible:

• Success: the tail is atomically incremented so that any reader is po-
tentially blocked (see the remove() algorithm in Algorithm 3.2). Then
the new element is written on top of the oldest element (line 4). Fi-
nally, the head index is incremented so that reads can be executed
(line 5).

• Failure: a reader concurrently dequeued an element. Therefore, the
queue is back in the NORMAL state. The result of the initial check
is no longer valid.

9The logic value of head can be greater or smaller than the tail, depending on the
respective cycles.
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Algorithm 3.1 Enqueue Operation (Single Writer)
1: procedure insert( )
2: midx← idx
3: if head(midx) + size = tail(midx) then
4: if cas(idx,midx,tail(midx) + 1) then
5: write(elem,tail(midx))
6: idx← head(idx) + 1
7: return
8: end if
9: end if

10: write(elem,tail(midx))
11: faa(idx,midx,tail(midx) + 1)
12: end procedure

If the initial check did not succeed, we are in either the NORMAL or
EMPTY state. Thus, the writer can store the new element (line 9) and
then advance the tail to notify all readers that a sample is available (line
10). This increment must be done via an FAA operation because the head
and tail are both stored in IDX, and readers’ and the writer’s concurrent
accesses may occur.

Algorithm 3.2 shows the pseudocode for the dequeue operation. This
operation is not expected to be executed in an interrupt context, so it can
rely on retry loops in case of failures, making it a non-blocking operation.
A reader must wait if the queue is FULL and the tail is a step forward
(lines 4–6) because the writer is performing a concurrent overwrite of the
element at the head index. Then, the reader checks whether the queue is
EMPTY, in which case the operation returns an empty value (lines 7–9).
If the queue is in the NORMAL or FULL state, the operation shall return
the first available element (line 10). An additional CAS is used to mark the
element as consumed by updating the head index (lines 11–13). Similarly
to the discussion on Algorithm 3.1, relying on a CAS operation on IDX
ensures that if a writer has changed the queue state concurrently to the
read, the reader is forced to observe again the updated state thanks to the
CAS failure. As mentioned, this implementation gives higher precedence to
write operations.

3.3.2 Per-thread Buffering

A different buffering strategy is related to keeping all performance data
separated per thread. As discussed in Section 3.2, it is possible to let the
monitoring agent associate PMU data to a specific thread. Keeping the
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Algorithm 3.2 Dequeue Operation (Multiple Readers)
1: procedure remove( )
2: loop
3: midx← idx
4: while head(midx) + size < tail(midx) do
5: midx← idx
6: end while
7: if head(midx) = tail(midx) then
8: return empty
9: end if

10: elem← read(tail(midx)) ▷ Make a local copy of the element.
11: if cas(idx,midx,head(midx) + 1) then
12: return elem
13: end if
14: end loop
15: end procedure

obtained data separated can support many online optimisation strategies,
e.g. in scenarios where thread placement on the CPU cores tailors a reduced
contention effect on the caching subsystem [27] or to improve memory access
latency in NUMA systems [41].

Keeping per-thread data can be done by relying on multiple strategies.
Clearly, the non-blocking buffer presented in Section 3.3.1 can be imme-
diately repurposed. Indeed, it is sufficient to instantiate multiple queues,
one for each thread, and use it to store the data. Associating the thread
with the relevant queue is also a straightforward task. As discussed in Sec-
tion 3.2, it is already necessary to rely on some data structure (e.g., a hash
map) to identify whether a thread is being profiled or not—in which case,
we have to keep sampled data in the dedicated queue. Any data structure
used for this purpose can be augmented with a pointer allowing to locate in
memory the per-thread queue. We note that this strategy is also compliant
with thread registration/deregistration because the queues can be efficiently
allocated/deallocated.

A second strategy is again bound to the perf_events subsystem intro-
duced in Section 3.2. As mentioned, its integration in the kernel is such
that some data structure already keep members used to support its execu-
tion. Referring again to Listing 7, we have shown that shows an example of
how to register, deregister and query a perf event. Once the perf event is
instantiated, custom information is attached to event->pmu_private, then
the event is queued into the dedicated per-process perf event list. To check
whether a process should be monitored, the monitoring agent can search
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for the dummy event in the corresponding list and check the related pri-
vate_data. Even though all the operations are kept consistent through a
mutex, our experience shows that no significant overhead is introduced.

A third strategy entails directly modifying kernel sources. In this case,
a direct modification of the task_struct allows to include a pointer to
the data buffer directly. However, this approach requires to deal also with
process creation and termination to allocate/release the buffer. This latter
point requires some care because concurrent accesses to the buffer should
be made consistent also with respect to memory reclaim. Given the in-
trinsic parallel nature of many workloads, protecting buffer access for per-
formance data reading through, e.g., locks can provide a significant perfor-
mance penalty, as we have already discussed. Moreover, in highly concurrent
applications, per-thread buffering might require allocating a considerable
number of buffers, generating higher memory pressure if the thread count
of the application is significantly high.

3.3.3 Per-core buffer

Taking into account the design of the PMU in x86 systems, commonly,
this dedicated circuitry can observe in-core executions or machine-level in-
fluences, namely the off-core events. The latter can be programmed and
consequently read by any CPU core. An analyzer tool may employ the off-
core PMUs when approaching a comprehensive assessment of the external
components, such as measuring the memory bandwidth or latency of the
main memory.

Another buffering strategy deals with storing performance data on a
per-core basis. This is probably the most straightforward way to deal with
PMU data because each CPU core is intrinsically responsible for its dedi-
cated PMUs, which provide data related to the events happening on that
core10. This buffering strategy can be leveraged in scenarios where the effec-
tive usage of hardware resources can drive thread placement on a per-core
basis [43].

Given the per-core private nature of PMUs, installing a dedicated buffer
for each CPU core requires synchronising only read/write accesses to the
buffer. This can be achieved by relying on the non-blocking queue described
above or on more classical lock-based synchronisation strategies, possibly
employing read/write locks. In both cases, a per-CPU variable can be used
to maintain a reference to the sample buffer.

10There are some exceptions when Simultaneous Multi-Threading is enabled. Logical
threads share the PMUs of the physical core. The resources are then equally divided,
but many events may refer to the overall physical core activity rather than the logical
processor.



Chapter 3. Exploiting hardware beyond offline analysis 45

Per-core buffering can provide several advantages also at the micro-
architectural level. For example, this strategy can improve cache exploita-
tion because the same buffer is used across context switches, thus allowing
the cache prefetcher to optimise memory accesses.

Finally, it is noteworthy that per-core buffering cannot be effectively
used to support profiling strategies different from per-core ones. Indeed, one
might think that this lower-overhead solution might also be used to perform,
e.g., per-thread profiling by post-processing the buffers to extract per-thread
data. Unfortunately, in this case, the incurred overhead can be higher than
relying on some of the aforementioned buffering solutions. Indeed, the data
in the buffer should be demultiplexed depending on the associated thread,
which could be costly. Moreover, a thread may be migrated to a different
core upon a context switch, thus scattering all the data of interest across
all per-core buffers. Considering our online profiling goal, the overhead of
this strategy can be too high.

3.3.4 Accessing Profiling Data from User Space

While a kernel-level facility is fundamental to implementing a profiling agent
based on PMU data, a modular organisation of an autonomic self-tuning
system would benefit from separating the performance data collection part
from the autonomic logic. In particular, it may be desirable to run the
latter in user space, both for maintainability and performance reasons.

In this scenario, it is fundamental to allow userspace applications to
read performance samples. A first strategy is to directly share the buffers
by relying on a dedicated mapping. This configuration is easily achievable
by employing the mmap system call. On the one hand, providing the user-
level applications with unmediated access makes them faster than those
exploiting the conventional system call interface. Moreover, creating a new
mapping in the process’ virtual address space for a fixed memory area min-
imises, after some accesses, the cost of performing the mapping itself11.

At the same time, this approach shows several drawbacks. First, the
userspace application must be aware of the data buffer format—for exam-
ple, if the aforementioned non-blocking queue is used, its access must be
consistent with the proposed algorithms. Moreover, userspace applications
must synchronise their accesses with kernel-level code to enforce consistency.
Overall, this approach requires a coupling logic between the user program
and the underlying kernel, which can be undesirable due to higher complex-

11Completing the memory mapping requires adjusting the page-table entries for the
calling process. Consequently, exploiting this approach to read memory mapped locations
just once is not optimal and may introduce an extra overhead compared to read or write
system calls.
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ity. Moreover, when dealing with a high-frequency data generation as we
do, the user application may not be fast enough to consume them before
the circular buffer becomes full and the data start being overwritten. In
this kernel/user interaction, the problem is exacerbated because scheduling
policies might arbitrarily delay the activation of the userspace application.
In this sense, finding an optimal data generation frequency and buffer size
may be impossible.

A second strategy is to leverage standard virtual file system (VFS) ca-
pabilities to build an interface to access the buffers in a mediated way. In
particular, it is possible to install in the system a set of pseudo-files that
allow, via standard open, read, write, seek and close system calls, to
configure the kernel-level activity and retrieve copies of the data from the
buffers. This solution decouples the internal management of PMUs from
the “presentation layer”, allowing for a more flexible implementation of the
profiling agent. Nevertheless, requiring userspace applications to interact
with a linear file explicitly can be more complex than needed. In fact, a
typical approach to consuming performance data is to read them only once,
to perform some computation (e.g., supporting the autonomic self-tuning
strategy).

Therefore, while we propose anyhow to rely on the proc file system,
we highlight a different strategy. First, we install a set of pseudo-files that
allow reading all possible combinations of data buffering described above.
Second, we exploit the read-once nature of performance samples to provide
a simple API that can deliver a requested number of performance samples to
userspace in an iterator-like fashion. A struct seq_operations contains
the reference to the seq_file operations: start, stop, next, and show.
Those functions implement the core of the seq_file iterator-like navigation.
Of course, as we will show experimentally, this approach is slightly more
costly than the mmap-based solution due to the different layers that compose
the VFS.

3.4 Experimental Assessment

This section presents an experimental assessment of the performance impli-
cations of the different techniques discussed in this chapter. All tests have
been executed on Ubuntu 20.04 LTS with Linux Kernel 5.4.127 running on
a machine equipped with an i7-10750H 6x (SMT) and 16Gb of Ram.

We have used the stress-ng benchmark suite [82], which comprises a
massive set of stress tests known as stressors. Each of them is designed
to target a specific component or subsystem, both at the hardware and
software levels. The set of stressors that we have selected is representative
of different kinds of workloads. This selection allows us to study the impact
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on the performance of our proposed strategies in various contexts, i.e. when
considering CPU-bound, IO-bound, or syscall-intensive applications. The
selected stressors are:

• cpu: a CPU-bound application that starts n different workers that
iteratively run heavy-computation functions;

• cache: a memory-intensive application that starts n workers perform-
ing widespread random memory read and writes to thrash the CPU
cache;

• memcpy : n workers that copy 2 MB of data from a shared region
to a buffer using memcpy and then move the data in the buffer with
memmove with different alignments;

• atomic: n workers that exercise various __atomic_*() built-in oper-
ations on 8, 16, 32 and 64-bit integers shared among the workers;

• matrix-3d : a CPU-intensive benchmark where n workers perform ma-
trix operations on floating-point values;

• bsearch: perform a binary search on a 32-bit integer sorted array,
using n workers;

• fork : a syscall-intensive benchmark where n workers continuously fork
children that execute stress-ng and then exit almost immediately;

• switch: a benchmark using n workers that send messages via a pipe
to a child to force context switching;

• clone: n workers that create clones via the clone system call.

The reference implementation that we have used for our experimen-
tal assessment is based on an LKM which implements all the components
discussed in this chapter. The module is based on a set of weak-symbol
functions implementing the different subsystems of the monitoring agents
(e.g., context switch hooking or buffer management) that are overridden
each time a specific implementation is under test. By relying on this organ-
isation, the overall code path is kept relatively stable across the different
tests, thus enabling us to compare the performance results reliably.

Conversely, some configuration variables are exposed as module param-
eters to simplify the configuration. Some are the sampling period (defined
in the elapsed clock cycles domain) and the PMI vector line. Beyond the
capabilities discussed in Section 3.3.4, we have introduced proc files to ac-
cess and query tool parameters such as the number of collected samples.
All the results are averaged over 5 different runs.

3.4.1 Efficient Collection of PMU Data

For this experiment, we have relied on a patched Linux Kernel (version
5.4.127) to expose to our LKM the API for fast IRQ registration, as de-
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scribed in Section 3.1. This experiment compares the overhead of generat-
ing and processing PMIs when relying on the fast IRQ mechanism or NMI
lines. To assess the accuracy of the different strategies, we also compare the
amount of data collected by varying the sampling period.
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Figure 3.5: Workload overhead comparison between IRQ- and NMI-based
PMIs.

Figure 3.5 reports the overhead increment of both solutions compared to
an execution where no sampling method is enabled. As seen in Figure 3.5a,
a larger sampling period does not make any of the two solutions outperform
the other entirely. It is an expected result, as this low-frequency generation
of samples is unlikely to impact the overall system activities. Conversely, it
is clear that the fast-IRQ mechanism outperforms the NMI-based solution
for higher-generation rates.

We also monitored the number of generated samples for both config-
urations, reported in Figure 3.6. For lower frequencies, both techniques
collected a comparable amount of samples. However, at higher rates (see
Figure 3.6c), the NMI-based solution reports a higher number of samples—
around 20% more than the IRQ-based counterpart. This higher count is due
to Linux’s NMI handling, which cannot prevent PMUs from starting their
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Figure 3.6: Samples generation comparison between IRQ- and NMI-based
PMIs.

monitoring before leaving the PMI routine12. Therefore, the higher count
is mostly related to the PMI routine monitoring itself, which is a clear form
of Heisenmonitoring [113].

Figure 3.7 provides an additional perspective on this result. In partic-
ular, we show an efficiency score value, which captures how many samples
are generated per overhead unit. These results confirm that the fast IRQ-
based solution is the most effective at medium-to-high sample generation
frequencies. Overall, this experiment clearly indicates that the traditional
NMI-based approach used in the literature cannot be effectively used if
online profiling activities are the goal of PMU exploitation unless the moni-
toring agent is interested in a coarse-grain profile of the application. In this
latter case, it can employ both strategies.

12This issue has also been recognized by hardware vendors. In the latest x86 processor
models, a dedicated MSR allows freezing PMU operations during PMI handling to avoid
data pollution. Unfortunately, the Linux NMI handler is implemented in such a way
that the interrupt context configures the system to execute the required handler, then
performs an iret instruction to process the handler of the interrupt context, thus defrozen
the HPCs.
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Figure 3.7: Efficiency between IRQ- and NMI-based PMIs.

3.4.2 Discriminating the Profiling Domain

In this experiment, we evaluate the performance implications of the tech-
niques proposed in Section 3.2 to discriminate the profiling domain. We
first focus on the overhead associated with tracepoints and kprobes. For
this purpose, we have selected from the stress-ng suite the switch, fork, and
clone stressors, that exercise high pressure on thread creation and context
switches. The system activity is kept as high as possible by instantiating
two processes on each CPU core and executing them simultaneously. Fig-
ure 3.8 shows the overhead when relying on the two strategies. The results
are expected. The more complex architecture of kprobes shows a higher
overhead, mainly when many context switches are observed.

We then consider the different per-thread filtering techniques, which
combine the ability to mark a process for profiling activity and create room
to store per-process data. Such dedicated memory may store profiling meta-
data (e.g., PMUs state upon context switch) or collected information (e.g.,
collected data samples). We set up the environment to execute a single
instance of each stressor first (SINGLE in the plots), and a concurrent ver-
sion spawning two processes per each available CPU core (PARALLEL in
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Figure 3.8: Runtime overhead of context-switch intensive workloads with
active system hooks.

the plots). In this experiment, the sampling sampling period has been set
to 214, while the PMI management is based on NMIs.

Figure 3.9 reports the overhead for both configurations. From the re-
sults, the hash table strategy incurs a higher performance penalty. This
result is expected as the global instance is concurrently accessed by all the
CPU cores and enforces consistency thanks to coarse-grain locking prim-
itives. The high-frequency PMI firing rate amplifies the pressure on the
synchronisation mechanism that, in the PARALLEL configuration, shows
an even higher experienced overhead.
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Figure 3.9: Comparison among different approaches to provide per-
process private data.

We have then focused on the different buffering strategies. In this exper-
iment, whose results are reported in Figure 3.9, we assessed the overhead of
each discussed method. The results show that the non-blocking queue in-
curs the highest overhead in most configurations because coarse-grain lock-
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ing mechanisms protect its consistency. The per-CPU solution introduces
the most negligible overhead, just followed by the per-thread implementa-
tion. The difference between the two is due to the improved data locality
of the former, which continuously accesses the same local buffer instance.
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Figure 3.10: Comparison among different buffering policies to collect pro-
cess profiling data.

Conversely, switching the buffer reference upon a context switch nega-
tively affects cache performance. Such an effect is more noticeable in the
right plot, where the number of participating processes demands an in-
tense scheduling activity. Analogously, the drawbacks of the global buffer
instance (referred to as SYSTEM in the plot) can be observed when the
writers increase and the synchronisation mechanism comes in place. We
recall that test set the sampling period to 212 generating a high number of
writing requests. Finally, we reviewed the non-blocking list implementation
by setting the per-CPU policy. This solution, as we can observe, signif-
icantly impacts the workload runtimes. The most affected stressors are
cache and memcpy, which, as part of their goal, concentrate their activity
on the cache subsystem. This phenomenon originated from the internal im-
plementation of non-blocking operations and interconnected hardware bus
locking. Conversely, our non-blocking queue guarantees the writer’s priority
to preempt a reading action. The underneath fine-grain synchronisation is
essential to avoid locking the CPU in the interrupt context, which may lock
the processor until the read completion.

We have also carried out a comparison with the built-in perf tool. This
experiment exploits the traditional userspace interface that directly bridges
the user commands and the kernel level subsystem. Perf driver leverages
two buffers at the kernel level. First, a direct ring buffer is used for caching
results as soon as they are ready, and then the second buffer is filled when
appropriate. The userspace tool lingers in a waiting state and does not
consume system resources until the buffer is nearly full. In that case, to
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avoid sample loss, it wakes up and drains all the collected data. To move as
close as possible to the setup of our tools, we manually defined the hardware
events to be monitored and enabled the PMI on the built-in cycles event,
which maps to the clock cycles hardware event. We recall that the standard
PMI routine (operated by perf) is mapped to the NMI vector line. Moreover,
perf contains an anti-trashing detector that reduces the profiling frequency
rate if the interrupt routine experiences a delay over a defined threshold.
However, this mechanism introduces a degree of indeterminism that cannot
be easily quantified.

Similarly to the IRQ/NMI test, we evaluated the overhead (Figure 3.11)
and the number of generated samples (Figure 3.11a). We can observe that
the perf solution introduces a lower cost at the highest frequency rate com-
pared to the previous results. Nevertheless, the number of generated sam-
ples is way smaller at the fastest frequency due to the auto-tuning frequency
policy. Figure 3.11b shows the efficiency of the perf solution computed as
the quantity of generated data over the overhead execution percentage.
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Figure 3.11: Perf tool evaluation at different sampling periods and 8
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3.4.3 Accessing Profiling Data from User Space

In this last experiment, we evaluate the overhead associated with the differ-
ent techniques explored in Section 3.3.4 to retrieve performance data from
kernel space. We evaluated their performance by reading a large buffer
allocated within a kernel module and accessing it through the different im-
plemented interfaces. Moreover, each test has been run by varying the read
identified as stride, namely the amount of data accessed within every single
request.
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Figure 3.12: Time to fully read kernel level data via mmap- and VFS-
based solutions.

As shown in Figure 3.12, the VFS solution based on the seq_file mech-
anism is the least efficient in acquiring a large amount of data, despite it
being the easiest to be used by typical applications. The raw VFS read
(i.e., when pseudo-files give direct access to performance buffers) mitigates
the overhead but still suffers from the intrinsic cost of performing a system
call for each request. Indeed, the larger the stride, the smaller the number
of required system calls. Conversely, as expected, the mmap-based inter-
face offers the best performance, despite slightly reducing its effectiveness
for larger stride sizes due to the higher probability of experiencing a page
fault. Of course, in real scenarios, mmap-based solutions require offloading
to userspace a part of the synchronisation logic, making the overall imple-
mentation more complex and coupled between kernel space and userspace.



CHAPTER4
Online activity tracing for

system security
Historically, the memory hierarchy has been introduced and equipped with
multiple caches to hide the memory’s high latency and overcome the perfor-
mance gap between processors and memory. This component is fundamental
performance-wise and has been integrated into all modern processing units.
Nevertheless, attackers have repeatedly abused it to extract information
from the operating system (OS) kernel or victim processes, circumventing
the process confinement enforced by standard modern operating systems.

These kinds of attacks are commonly and generically referred to as cache-
based side-channel attacks, and many different techniques have been pro-
posed in the literature [65, 161, 93, 44, 92, 84]. They rely on observing
non-functional properties of the cache architecture (e.g., timing the execu-
tion of cache-accessing operations) to infer information on a victim process
or to leak data. These attacks have also been beneficial to extract data when
side effects on the cache architecture are generated by exploiting transient
execution CPU vulnerabilities. To exploit these vulnerabilities, the attacker
relies on some speculative execution facility from the underlying computer
architecture to load into the cache architecture some data from the under-
lying OS kernel or from a different userspace application whose access is
prevented by traditional security mechanisms, such as paging isolation.

The applications of side-channel attacks are vast. For example, they
have been used to extract secret keys from cryptographic algorithms in-
cluding AES [79, 116, 147] or El-Gamal [93], to steal information from
the underlying operating system [92, 84], to bypass Kernel Address Space
Layout Randomization (KASLR) [95], or to extract cross-VM informa-
tion [148, 157, 25, 28].

The idea of using a cache-based side channel to trace the execution of a
program or to leak information is not new, with the first proposals dating
back to two decades ago [116, 1, 24, 166]. Despite this, the fundamental
mechanism has been preserved over time, i.e., observing traces left in the
caching subsystem of the computer architecture to extract information. In

55



Chapter 4. Online activity tracing for system security 56

this chapter, we concentrate on detecting an application mounting a side
channel to indicate that an information extraction might be taking place.
As we will show experimentally, this focus allows us to detect also transient
execution attacks if they rely on side channels to extract leaked information.

To reduce the impact of attacks that exploit cache side channels, es-
pecially those based on CPU transient execution—namely to reduce the
amount of information that an attacker can leak —several mitigation strate-
gies have been proposed, both at the software and at the hardware level.
The most notable ones are Kernel Page Table Isolation (KPTI) [55], ret-
polines [77], swapgs fences, or PCID. Notably, some of these patches (e.g.,
KPTI) induce a non-negligible performance drop under specific workloads,
which has been estimated as high as 30% [59]. This overhead could be
deemed too high in specific scenarios—examples are virtualized environ-
ments supporting 5G communications [25] and high-performance computing-
oriented setups. In these scenarios, a good tradeoff could be to selectively
enable security patches (either the existing ones or newly devised ones) at
runtime only when software suspected to try to exploit cache side channels
is detected.

To detect an application mounting a side channel with a reduced per-
formance impact, we propose to leverage hardware capabilities offered by
off-the-shelf CPUs. Furthermore, given the tight connection with the mea-
surement capabilities of HPCs and the baseline techniques used to extract
information using a cache side channel, we could assert that HPCs are the
perfect candidates to build a detection mechanism for this kind of attack.
While several works in the literature have followed this path, a recent result
has argued that micro-architectural level information obtained from HPCs
cannot distinguish between benignware and malware [167]. Similarly, an-
other work has illustrated why many of the results in the literature cannot
be considered reliable [38].

In this chapter, we come back to this problem and try to capture some
common features which can be used to define detection metrics based on
measurements obtained through HPCs. We use these metrics to detect
whether a process running in the system is carrying out an attack—indepen-
dently of whether the attack is carried out after having exploited some
transient execution CPU vulnerability.

Our detection mechanism is system-wide. In this sense, we do not make
any assumption on which process is the attacker and which is the victim. We
also directly account for scenarios where multiple linked processes are used
to mount the attack (e.g., relying on the fork() system call). We exploit
the information gathered at runtime to deem some processes as suspected.
In more detail, we concentrate on detecting the usage of side channels to
extract information during an attack to indicate the possibility that the
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process is malicious.
We explicitly acknowledge that our detection mechanism is fallible due to

the degree of uncertainty associated with this kind of mechanism. There-
fore, we do not take any destructive action with respect to the running
process. Instead, we couple our detection capabilities with mitigation ac-
tions. We propose different mitigation actions automatically enforced by
the operating system as soon as a process is suspected as malicious. They
entail a limitation in the scheduler freedom at deciding what CPU resources
should be assigned to some process or the selective (per-process) activation
at runtime of security patches against transient execution vulnerabilities.

To reduce the incidence of false positives and negatives, we rely on a
self-adjustable observation window coupled with a scoring system. This
approach is meant to reduce the probability that benignware with pressure
on the memory hierarchy is suspected or to increase the likelihood to suspect
processes that perform many non-malicious actions before carrying out the
attack.

Our detection mechanism and the mitigations mentioned above have
been implemented at kernel-level in Linux and have been exercised on mul-
tiple processors of the x86 family. We have used our patched kernel for a
month, also in daily usage 1 —the patched kernel has also been used while
typesetting this paper. No false-negative has been observed under that daily
usage workload. Of course, this is not a guarantee that our approach could
be used to enforce more intrusive policies for suspected processes like, e.g.,
killing suspected processes. Instead, it is an indication of the viability of
using HPCs as building blocks for articulated detection mechanisms and
for devising strategies where the setup of security-oriented patches can be
put in place on a dynamic and per-process basis—rather than paying the
cost of these patches by default when any process is active. Our reference
implementation is released as open-source software.

We finally compare the performance penalty introduced in the system
by these different mitigation strategies relying on standard benchmarks for
operating systems [88].

The original contributions of this chapter can be summarized as:

• We introduce a practical mechanism to build metrics from measure-
ments obtained from HPCs to detect that some cache side channel is
currently being used;

• We propose an observation window and a scoring system to reduce
false positives and negatives when considering a process as suspected;

1A video demonstration of the operations of our detection mechanism is available at
https://youtu.be/XGQ4TuqtTAI.

https://youtu.be/XGQ4TuqtTAI
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• We propose a system-wide detection approach for userspace applica-
tions, which makes no assumption on which process is the victim and
which is the attacker;

• We enable per-process or per-CPU mitigation strategies;

• We describe a reference implementation in the Linux kernel;

• We show the effects on performance of our proposal on multiple gen-
erations of Intel CPUs, using standard benchmarks.

4.1 Related Work

We can relate our proposal to two different families of countermeasures to
attacks, namely detection and prevention. On the detection side, using
HPCs is not a new idea. Many works in the literature have relied on HPCs
for this purpose, e.g., for exploit detection [164, 163, 168, 145], malware de-
tection [40, 151, 80, 53, 119, 125], firmware verification [152, 153], integrity
checking [99, 26], or vulnerability analysis [34]. Unlike our proposal, these
works mainly cope with attacks not explicitly oriented to cache side chan-
nels, like ROP (or more generally control flow tampering) or similarity-based
malware detection.

We share the goals with a set of works that rely on HPCs to detect side-
channel attacks [103, 19, 114, 120, 30, 73]. In general, these approaches
rely on machine learning mechanisms, concentrate on specific attacks, do
not support system-wide detection, require to know beforehand what the
attacking process is, or do not consider the possibility of relying on selec-
tively activated software patches. These are all major differences from our
proposal.

On the prevention side, an important mitigation for the Meltdown attack
is KPTI [55]. When running in user mode, this mitigation strategy drops
the historical sharing of the kernel-level virtual-to-physical translation meta-
data (namely, the kernel-level page tables). In user mode, a process only
observes a minimal amount of data and code belonging to the kernel, i.e.,
the data and code, to allow a safe transition to kernel mode upon interrupts
and system calls. This minimal set of code, when activated, performs a
page-table switch, which allows accessing the whole virtual address space of
the operating system kernel. Before returning to user space, the user-land
trimmed page table is put back in place. All major operating systems have
adopted this scheme.

The main problem with this approach is that, for it to work correctly, a
page table change must be accompanied by a flush of all virtual-to-physical
translation entries in the caches—some of these are done automatically when
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updating the page-table pointer, e.g. CR3 on x86 CPUs. This incurs ad-
ditional runtime costs, which have been quantified to be up to 30% of the
execution time observed when this mitigation is not in place [59].

Concerning Spectre attacks, CPU vendors have introduced hardware
mitigations for Speculative Store Bypass (SSB) [69, 8]. Examples are the
Indirect Branch Restricted Speculation (IBRS) mitigation, which restricts
speculation of indirect branches, the Single Thread Indirect Branch Predic-
tors (STIBP) mitigation, which prevents indirect branch predictions from
being controlled by the sibling hyperthread, and the Indirect Branch Pre-
dictor Barrier (IBPB) mitigation, which ensures that earlier code’s behavior
does not influence later indirect branch predictions. The software commu-
nity has been cold towards these mitigations, as they have been reported to
slow down typical workloads up to 50% [35].

On the other hand, one software mitigation to Spectre-like attacks, which
introduces a minimal overhead, is the retpoline [77]. It is a software con-
struct that ensures that if the CPU is mispeculating due to some attack
being carried out against some branch prediction unit, then the pipeline
will be filled with an infinite loop. This prevents arbitrary code execution,
which could also induce data leaks.

Our work grounds on these and other mitigation patches and strategies.
However, our goal is to enable these patches at a very fine grain, i.e., when-
ever a process is suspected as malicious. This finer grain should reduce the
performance impact in the general lifetime of the system while ensuring a
higher security level with respect to an utterly unpatched system.

4.2 Threat Model

We consider an attacker trying to carry out a cache-based attack and ex-
tract information from a co-located victim on the same platform. The
attacker is thus sharing some architectural components with the victim,
such as the First-Level Cache (L1) [133, 82] or the Lowest-Level Cache
(LLC) [57, 74, 93, 79]. In the most general setting, the victim can be some
userspace process, a virtual machine in a multi-tenant cloud environment,
or the underlying OS kernel. We do not make assumptions on the privi-
leges with which the attacker is running, nor on whether the side channel
is being used to extract leaked information after some transient execution
attack has been carried out. Indeed, as mentioned, we are interested in
detecting the usage of a cache side channel to extract information while the
attack is in progress. This allows us to detect also popular attacks such as
Meltdown [92], Spectre [84], and Foreshadow [148, 157].

Concerning transient attacks, we assume that security mitigation patches
such as KPTI are not necessarily active (hence the attack is not prevented)
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but are available in the compiled operating system binary. Indeed, we
propose a mitigation mechanism that allows to selectively re-enable these
patches on a per-process basis, just to prevent the attack, if a process is
suspected as malicious, as we shall describe in Section 4.5.

We also assume that the operating system’s kernel is not compromised
in any way. In particular, we assume that any data acquired by the kernel
is not tampered with by an attacker and that the routines executed by the
kernel are similarly not altered by any attacker. Hence, in our proposal,
we assume that no attack is run from kernel space, e.g. the victim has
not loaded any malicious kernel module that would mount a side-channel
attack. The operating system’s kernel internal and external security is an
orthogonal security aspect to the proposal discussed in this work.

4.3 Detecting Side-Channel Attacks

The overall architecture and methodology that we use to enable prompt
detection of side-channel attacks are depicted in Figure 4.1. We rely on
a combination of measures taken from HPCs in real-time, which allows us
to discriminate processes that are more likely to perform operations on the
cache hierarchy, indicating that they are mounting a side-channel attack.
At the kernel level, we have four major components involved in the system-
wide monitoring of the attacks to detect the activity of malicious processes.
The Monitor module directly interacts with hardware performance counters,
programming them to acquire the measures to build our detection metrics.
Data coming from HPCs are stored directly in a process’ task_struct. The
Detector module relies on these data to compute detection metrics and deem
a running process as suspected or not—again, this information is stored in
the task struct. If a process is suspected, the Mitigator module will detect
it and apply proper mitigations. The Scheduler module interacts with the
operating system’s scheduler. It is one of the fundamental components to
enable system-wide detection and per-process mitigations: every time that
a different task_struct is scheduled, both the Mitigator and the Monitor
modules are notified to enable/disable mitigations and reprogram HPCs,
respectively, to account for the newly scheduled process.

4.3.1 Architectural Details and Preliminary Work Hy-
potheses

Since we are interested in the malicious usage of caches to extract infor-
mation, it is beneficial to discuss how the CPU interacts with the caching
subsystem briefly. Its organization is depicted in Figure 4.1 for the Intel
architecture, which we use as our reference, where there are three levels of
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Figure 4.1: Overall detection architecture and components involved in
memory access—hit paths are not shown.
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CPU caches. The caches closer to the CPU are smaller and faster, and the
caches further away are larger and slower. At the first level, there are two
caches, L1i and L1d, which keep code and data, respectively. The L2 cache
unifies code and data and, in almost every x86 CPU, represents the last
cache level private to the core, while, as the final level, there is the Last
Level Cache (LLC), a shared memory level among all cores of the same
die. Two important cache properties to be considered are inclusiveness and
associativity. The former defines the way a cache level behaves with respect
to the higher ones, which can be:

1. inclusive: this level always contains data stored in the higher levels;

2. exclusive: precisely the opposite of the previous one;

3. non-inclusive: it does not guarantee that higher levels state is a subset
of the current one.

This work considers inclusive caching systems since they represent the
most diffused chipset for Intel processors. On the other hand, associativ-
ity is a strategy that divides a single cache level into multiple sets, where
part of the physical address is used to index into the corresponding cache
set. It is helpful to reduce chip complexity while providing a more efficient
cache implementation. Also, the page table walk firmware relies on the CPU
caches to further improve the performance of a TLB miss [149]. In partic-
ular, the PTEs for the different page table levels are not stored only in the
CPU caches, but modern processors also store them in page table caches
or translation caches [15]. Independently of the associativity strategy, we
work at the granularity of the single cache line.

4.3.2 Detection Metrics

In this Section, we describe the metrics we have devised to determine
whether some malicious side-channel activity is going on. In an initial set of
metrics, we relied on the idea that the exploitation of a side channel is based
on bringing the caching system into a known initial state. Successively, the
attacker attempts to determine whether some change has occurred in the
cache state. However, considering inclusive caching systems, which repre-
sent our target, we know that bringing the cache into a given state (e.g., a
cache line is flushed or a cache set is primed) means performing an operation
that is necessarily reflected into the state of caches at all the levels, from
L1 to LLC.

Based on this observation, we decided to relate to each other volumes of
micro-architectural events that are generated at different levels within the
caching system. At the same time, we wanted to focus on events that are
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not easily manipulable (in terms of their volume generation at a specific
cache level) by an attacker2. Therefore, we decided to avoid considering
cache hits and to focus exclusively on cache miss events.

Independently of whether the initial state of the cache when the attack
is started is based on cache-line flushes or cache-set primes, a side channel
is anyhow based on re-accessing the same cache line to discover changes
into the state. Clearly, the "interface" for the observation is the L1 cache,
but the actual cache access needs to pass through lower levels if a miss is
observed. On the other hand, if a miss has been experienced at the L1,
the likelihood of observing misses at the lower levels is expected to be high.
In fact, by the nature of a cache side channel, the victim either brought
some cache line into the caching system, up to L1, or gave rise to cache line
replacement involving all the cache levels because of inclusiveness.

Considering that in inclusive caching systems the volume of cache misses
at upper levels is greater than or equal to the ones at the lower levels, our
first two detection metrics are based on the ratio between the number of
cache misses at L1 denoted as L1miss, and the corresponding values at lower
levels denoted as L2miss and LLCmiss. We have therefore two predicates P1

and P2 for building our side channel suspicion, which are based on relating
the aforementioned ratios to thresholds, namely:

P1 : L2miss/L1miss > ϕ1 (4.1)

P2 : LLCmiss/L1miss > ϕ2 (4.2)

with the values of ϕ1 and ϕ2 both included in the interval [0,1]. Clearly, the
value zero for these thresholds leads to a highly conservative setting where
the predicates always hold, leading to suspicion independently of the actual
execution pattern. Values closer to one are more representative in terms of
the ability to discriminate between malware and benignware.

Another interesting point about caching is that the caching hierarchy
typically supports data prefetch in order to implement anticipated reads
useful to serve access locality by the applications. For example, this is the
case of the L2 cache in Intel processors. However, a cache side channel is
typically based on activities that target a specific cache line. Hence, we
may expect that prefetched data may result useless. On the other hand,
the scarce exploitation of prefetched data is challenging to be discovered
by relying on miss events. For this reason, we devised an additional met-
ric based on the relation between the number of write-back operations for
cached lines at the L2 cache, which we denote a L2write−back and the number
of lines fetched (including the prefetched ones) still at the L2, which we de-

2As an example, an attacker might easily give rise to volumes of cache hits at the L1
in an uncorrelated manner to the cache hits observable at the LLC.
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note as L2lines−in. Accordingly, we derive a third predicate P3, based on an
additional threshold ϕ3, still having a value in the interval [0,1], in order to
determine the side channel suspicion, according to the following expression:

P3 : L2write−back/L2lines−in < ϕ3 (4.3)

Essentially, predicate P3 is intended to capture all the scenarios where data
update activities do not comply with locality expectations (especially for
very low values of ϕ3), which can be an indication of some unexpected non-
local behavior.

The above-described metrics and predicates are tailored at direct cache
side-channel attacks, namely those attacks that are based on managing
cache lines/sets explicitly with data in the address space of the attacker.
Another way of attacking the cache to mount a side channel is to have in-
direct attacks based on the fact that memory management metadata, in
particular, page table entries, are still cached (see Figure 4.1). This may
lead to evict cache sets with these metadata, thus enabling the determina-
tion of the metadata re-access time to discover whether some victims had
conflicting accesses to the same cache line used to keep the page table en-
tries. To cope with these kinds of attacks, we devised an additional metric,
based on the number of TLB misses at the second level of the page walk, de-
noted as TLBmiss−level−2 and the number of L1 cache misses. In particular,
a high value of the ratio between TLB misses and L1 misses is representative
of a behavior not conforming with classical locality (namely, a behavior not
conforming with good exploitation of already carried out virtual-to-physical
address translations). This may therefore be a behavior where a cache miss
is generated just because of the will to fill the TLB (upon a TLB miss) with
data leading to a cache line replacement. In order to determine the side
channel suspicion in such indirect attack scenarios, we have therefore the
following additional predicate:

P4 : TLBmiss−level−2/L1miss > ϕ4 (4.4)

where ϕ4 is this time not constrained in the interval [0,1].
At this point, we can combine the above-defined predicates to determine

whether to suspect that a side channel exploitation is taking place, or not.
Before doing this, for direct side-channel attacks, we exploit again the ratio
TLBmiss−level−2/L1miss to define the following additional predicate:

P5 : TLBmiss−level−2/L1miss < ϕ5 (4.5)

with ϕ5 < ϕ4. Actually, P5 expresses the fact that there is no bias generated
by a direct side-channel attack in terms of the increase in the volume of
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TLB misses, with respect to the volume of L1 misses related to actually-
accessed data. In fact, direct attacks only exploit data in the address space
(not memory address translation metadata). Overall, for direct attacks we
define a combined predicate S1 to determine whether to raise a suspect as
the following combination of P1, P2, P3, and P5:

S1 = P1 ∧ P2 ∧ P3 ∧ P5 (4.6)

For indirect attacks, we just have P4. Finally, a side channel suspicion is
raised based on the following combination of S1 and P4:

S : S1 ∨ P4 (4.7)

4.3.3 Setting up the thresholds

Basing the detection on measures from HPCs compared against thresholds
has already been identified in the literature as a possible pitfall [38]. How-
ever, a significant identified issue is related to how these thresholds are set
and how they are employed. In particular, while it is clear that thresholds
could be circumvented (e.g., by inducing page faults to affect the accuracy
of the measured events [38]), we emphasize that we play on the safe side.
Indeed, we use thresholds to discriminate between relations among events,
which are in any case representative of the ultimate utilization of the side
channel to extract information. Furthermore, our approach to side channel
detection is based on combining metrics (via the combination of predicates
involving these metrics), which should favor robustness.

Nevertheless, relying on hardcoded thresholds would make the approach
difficult to maintain over time, requiring significant manual intervention.
Changes in the hardware, or peculiarities of specific CPUs, are some of the
aspects which could require to re-tune the thresholds.

The behaviors which we discriminate with our metrics depend mainly
on the architecture of the cache of the machine in which the thresholds are
used to discriminate a process as malicious or not. To this end, our system
explicitly allows defining the values for the different thresholds ϕi for the
actual machine on which we perform the detection at configuration time. In
our reference implementation—see Section 4.6 for additional details—this
is done by running:

• A set of side-channel attacks in a controlled environment.

• A set of benchmark applications from different fields.

By relying on these attacks and on the behavior of the benchmarks
(which represent the benignware part), we can estimate proper values for
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the thresholds, which are used in our detection mechanism. In particular,
we define a threshold value as the average of the two (already averaged
values) for the cases of the run attacks and benchmarks. We note that
including benignware execution in the setup of the thresholds gives rise to
a somehow conservative estimation of the threshold values that is, anyhow,
not unfavorable to non-malicious software.

We note that to avoid bias in the experiments, the synthetic attacks
which we carry out at system startup are different from the ones which
have been used to test our approach. This is an approach similar in spirit
to techniques that perform preliminary probing of the hardware architecture
in order to carry out an attack effectively [150].

4.4 System-Wide Detection and Reference Im-
plementation

As mentioned, our goal is to carry out a system-wide detection of possible
attacks relying on side channels to extract information. This detection is
carried out at the kernel level—our reference implementation is based on
a set of patches applied to Linux 5.4.145. In our implementation, we have
targeted the Intel architecture, considering its widespread nature [121] and
the fact that it has been repeatedly subject to multiple attacks in the last
years. Nevertheless, as we discuss, our reference implementation can be
easily ported to other architectures, such as AMD.

4.4.1 Selected Monitoring Events and Strategy to Ac-
quire HPC Data

We must first give additional details on how we have configured HPCs. Sam-
pling has been set to follow the number of clock cycles—CPU_CLK_UNHALTED
on Intel CPUs, PMCx076 (CPU Clocks not Halted) on AMD. With respect
to the measures, we have tried to select stable measurements to instan-
tiate the proposed metrics. In particular, the following events have been
selected [67, 9]:

• L1miss is mapped to the L2_RQSTS.ALL_DEMAND_DATA_RD event. On
AMD, a suitably corresponding event is PMCx041 (Data Cache Misses);

• L2miss is mapped to the L2_RQSTS.DEMAND_DATA_RD_MISS event. On
AMD, a suitably corresponding event is PMCx07E (L2 Cache Misses);

• LLCmiss is mapped to the OFFCORE_RQSTS.L3_MISS_DEMAND_DATA_RD
event. On AMD, a suitably corresponding event is PMCx0E0 (DRAM
Accesses);
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• L2write−back is mapped to the L2_TRANS.L2_WB event. On AMD, a
suitably corresponding event is PMCx07F (PMCx07F L2 Fill/Writeback
(L2Writebacks bit set));

• L2lines−in is mapped to the L2_LINES_IN.ALL event. On AMD, a
suitably corresponding event is PMCx07F (PMCx07F L2 Fill/Writeback
(L2Fills bit set));

• TLBmiss_level2 is mapped to the DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK
event. On AMD, a suitably corresponding event is PMCx045 (PMCx046
Unified TLB Miss).

We have configured our implementation for scenarios where Simultane-
ous Multi-Threading (SMT) is disabled. This choice is motivated by the
fact that, with SMT disabled, Intel CPUs of various generations offer at
least eight programmable HPCs, which are enough to sample all the pa-
rameters involved in our metrics. With SMT enabled, this number would
be reduced to four on many CPUs. Furthermore, by disabling SMT, we
remove the noise in the experimental assessment related to the need to
time-share the HPC units to gather data related to different measures, thus
focusing better on the validity of our approach. Using our approach with
SMT enabled is possible, but it requires techniques to share HPCs to read
multiple measures, which are out of the scope of this work.

In our reference implementation, we have tackled the cost of running
the PMI handler by installing a custom interrupt handler lined up on a
free vector in the Linux Interrupt Descriptor Table (IDT). This custom
interrupt handler, which is reserved for PMIs, bypasses the traditional acti-
vation scheme for interrupt management in Linux. Indeed, Linux typically
manages a hard interrupt by activating multiple nested functions, in par-
ticular related to the identification of the proper Interrupt Service Routine
in charge of managing the IRQ. This is a cost that cannot be paid to just
record a number of occurred events from an HPC.

Our custom stub accounts for the bare minimum amount of actions
required to serve the interrupt request (namely: possibly execute swapgs,
change the page table if KPTI is active, set the per-CPU flags used to
determine the execution in kernel mode, take a CPU snapshot). After the
actual mode change, we filter out possible spurious interrupts, and we collect
samples from HPCs. We then compute our detection metrics3, determine
whether to consider the current process as suspected or not, and finally
return from interrupt. The obtained data are saved on a per-process basis

3We have implemented metrics evaluation in integer arithmetic, both to reduce the
execution time and not to poison the FPU—we are not explicitly saving the FPU state.
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in the task_struct of the thread currently running on the core, which is
serving the interrupt request.

Another important aspect is that HPCs are shared among processes
scheduled on it. As shown in [38], underestimating this property leads to
an inconsistent behavior of the system-wide detection mechanism. To cope
with this aspect, upon context switch (prepare_task_switch()), if the
observed data is enough, we early evaluate the metrics for the about-to-be-
descheduled process. On the other hand, before returning control to the
newly-scheduled process (namely, in finish_task_switch()), we logically
reset the HPCs and start the measurement of the about-to-be-scheduled
process. In this way, we do not mix HPC data coming from the execution
of different processes if a thread is scheduled/descheduled in the middle of
an observation window, which could lead to an erroneous detection.

As a last note, we have configured HPCs to explicitly filter out activ-
ities when running in kernel mode—the USR configuration bit in the HPC
control register. In this way, every time that we run in kernel mode (also
to extract the values of some HPCs upon a PMI), we do not overcount
the measures taken from HPCs—this solves another source of unreliability
observed in [38]4.

4.4.2 Observation Windows

As discussed, an effective system-wide detection requires filtering out all the
activities not directly related to the instruction sequence of the attack to
avoid pollution in the observed data. Given that HPCs cannot leave the
micro-architectural domain, it is impossible to identify program phases just
by counting low-level events. This aspect could allow an attacker to blend
the malicious code into any program, concentrating the attack phase to a
limited execution time window.

To cope with this problem, we divide the entire observation period into
time slots, which are handled as observation windows of HPC values that are
inspected one by one. This allows discriminating among different execution
phases. Such a discretization is applied to the number of elapsed clock cy-
cles (which defines a constant unit among all running processes) rather than
events such as retired instructions—they may warp the time slot depend-

4Unfortunately, Intel confirmed [71] that using CPL through the PMC’s OS-USR bits
may lead to an incorrect result, such that the sum of OS-data and USR-data is not
equal to the result obtained by counting without filters. This phenomenon is probably
due to the high out-of-order execution degree, which makes it hard to associate the
µop execution with the correct execution ring near a mode transition. Nevertheless, for
our specific context, we have performed some tests in order to quantify this error and
observed very minimal error values (less than 0.1%).
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ing on the executed instruction5. This window is preserved across context
switches and is not shared among processes/threads, thus guaranteeing a
coherent inspection of the execution flow. In other words, if a process/
thread is descheduled in the middle of an observation window, once it is
rescheduled, we resume collecting HPC data from the same exact “point”
in the observation window at which it was descheduled. We also note that
this approach allows overcoming the problem affecting other works (see,
e.g., [110]), in which data collection is associated with the entire program
execution.

The related HPC’s overflow defines the beginning and end of a time
window. It is essential to determine the time slot size so that the observable
data is enough to discriminate meaningful program phases. A too-small
size may cause each slot to provide noisy and poor information, while a
too-large one will eventually fall into the same pitfall as in [110], i.e., too
much-aggregated data. Furthermore, the size of the time window is directly
related to the overhead that the detection architecture introduces in the
system because smaller slots imply more interrupts to be processed.

Similarly to what we have discussed in Section 4.3.3, we determine the
minimum and maximum thresholds for the observation window at system
startup, guaranteeing stable measurements. This is done via an adaptive
approach: if we observe a large fluctuation in the data observed across two
consecutive windows, we reduce the size of the window (up to a compile-
time defined minimum threshold, which accounts for the overhead in the
measurement). Conversely, if variations are minimal, we increase its size
(up to another compile-time defined maximum).

4.4.3 Suspecting Malicious Processes

After calculating the metrics in the PMI, they are compared to the respec-
tive thresholds, thus determining if the predicates driving suspicion hold—
see expression (4.7). Based on the inequalities results, we deem a process as
malicious or not. Obviously, the classification of a process cannot be made
based on a single observation because we would have an excessive number of
false positives considering that, during its execution, a process can assume
different behaviors. For this reason, we have introduced a scoring system.
The process’s score will vary during execution as follows:

• the score is increased by α if the results of the comparison between
metrics and thresholds show a behavior similar to a side-channel at-
tack;

5Every instruction requires a certain number of clock cycles to be carried out, which
varies according to several factors (e.g., the memory state).
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• the score is decremented by β if the metrics do not detect any abnor-
mal situation.

If the score reaches the value of a threshold γ, then the process becomes
suspected. α, β, and γ are tunable hyperparameters of our model. These
parameters are related to each other in the following way. α indicates how
fast a process becomes suspected: the higher the value, the smaller is the
number of positive evaluations of the metrics required to flag it as malicious.
Conversely, β determines how fast a process that was (incorrectly) consid-
ered suspicious starts again to be deemed benign. α and β can be therefore
used to control the responsiveness of our scoring system towards punctual
activities (i.e., possibly malicious or not) exhibited within an observation
window. In the general case, we assume α ≥ β to allow for a prompt-enough
detection of a malicious process. Conversely, γ directly controls when a pro-
cess becomes flagged as malicious. To some extent, it indicates the amount
of data that the system tolerates to leak before deeming a process as sus-
pected. In Section 4.6, we provide an empirical assessment of the behavior
of our approach with respect to these parameters.

Once a process is suspected, this information is stored by exploiting
bit 27 of current->mm->flags6. We have explicitly decided to rely on the
flags field in the mm data structure because, upon a fork(), this data
structure is automatically copied by the kernel, to make it inherited by the
child process. In this way, also if the attacker tries to jeopardize our detec-
tion system by relying on a multi-process attack, the behavioral information
associated with children and the parent processes is shared.

4.5 Mitigation Strategies

Our kernel-based detection subsystem can flag a process as suspected. A
suspected process is one for which we can implement mitigations. We note
that this is not a destructive operation: even if we have incurred a clas-
sification error (i.e., a false positive), the fact that we enable mitigations
will not cause runtime errors (e.g., abnormal termination) in the wrongly-
suspected process. Indeed, we could only cause a performance slowdown.
Nevertheless, considering the overall system, this slowdown will not be com-
parable to that observed if the mitigations we discuss here were activated
by default for all processes—see Section 4.6 for the overhead assessment.
We have foreseen two families of mitigations: one related to side-channel
attacks in general and one pertaining to transient execution vulnerabilities.
The mitigations we put in place have value independently of whether our

6Bit 27 is currently unused.
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approach is used to detect the attacks or other support would be used to
determine (potentially) malicious processes.

4.5.1 Side-channel Attack Mitigations

Multiple mitigations belong to this family. The first one entails that, in
finish_task_switch(), before returning control to a thread of a suspected
process, we flush the last-level CPU cache. This ensures that no data from
other processes is available in the cache to be leaked. Of course, this is an
intrusive operation performance-wise. However, it mainly affects the exe-
cution of the suspected process, for which the cache must be again warmed
up upon its reschedule7.

A second mitigation we devised tries to mitigate the fact that an at-
tacker is likely running on a CPU core that is "close" to the cache used by
the victim. Therefore, an additional strategy is to change the affinity of
the attacker to move it to a different core which is not sharing the same
level of cache with the victim. We note that this mitigation could also be
performance-intrusive, particularly for applications that have explicitly set
their affinity, e.g., to control their memory-access latency on NUMA ma-
chines. However, the system administrator always can change the affinity
for any thread. Hence our approach mimics such a kind of housekeeping
job, in this case carried out for security purposes.

4.5.2 Transient Execution Mitigations

Another mitigation that we explicitly put in place is per-process enabling
of KPTI. The baseline implementation of KPTI in Linux has been slightly
changed to support this mitigation.

In particular, while we maintain the order-1 allocation (8 KB) for the
first-level page table (pointed to by the CR3 register), which allows having
two different views of the address spaces for each process (one for user mode,
one for kernel mode), by default all processes rely on only one order-0 page
table, which maps the whole kernel address space. This configuration re-
sembles the traditional organization of the memory map in Linux before the
introduction of KPTI. The two first-level page tables are kept synchronized
following a scheme that resembles the one currently adopted to synchronize
them whenever a userspace application allocates new physical memory. In
particular, every time that a new set of physical pages is allocated, the

7We think that the performance penalty paid by the OS kernel when managing in-
terrupts that do not find cached data after the reschedule of the suspected process can
have a limited impact, with respect to the fact that upon the reschedule the CPU-core is
anyhow devoted to the specific activities related to the execution flow of the suspected
process.
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kernel with KPTI enabled invokes __pti_set_user_pgtbl() which mate-
rializes in the user-level page table the newly-allocated virtual-to-physical
translation metadata (the page table chain), also explicitly setting the NX
bit, if available on the current architecture. This same scheme is adopted
upon a fork(). We retain this scheme, although we explicitly differentiate
between the user- and the kernel-level page table—this distinction is some-
what implicit in the current standard implementation of KPTI and relies
on some hardcoded macros.

Upon a mode switch, the switch_to_kernel_CR3 macro is used by the
kernel to open access to the whole address space of the kernel. Upon return
to userspace, the switch_to_user_CR3 macro returns to the user-level page
table. This scheme is done every time the machine transitions from user to
kernel mode and vice-versa. Our goal is to selectively activate this scheme
in a per-process way, reducing at most the cost for this operation.

To this end, we recall that a process becomes suspected while running in
kernel mode, namely while a PMI is being processed. In that case, we set a
flag in current->mm->flags. When returning to user mode, we explicitly
check this flag. If it is set, we invoke switch_to_user_CR3. This is enough
to start applying the patches for a suspected process. Conversely, we cannot
check this flag when transitioning from user to kernel mode. This is because
we do not have access to current, which is stored in per-CPU variables,
which are not accessible if the user-mode page table is set.

To check if we have to invoke switch_to_kernel_CR3, we exploit the
fact that the two first-level page tables belong to an order-1 allocation and
are therefore contiguous (both in the virtual and in the physical address
space). We have inverted the user and the kernel page table with respect to
the current implementation of KPTI. This means that the user page table
follows the kernel page table. Given the contiguousness of the pages, it is
sufficient to check if bit 13 of the address contained in CR3 is set to 1. If
this is the case, the thread enters kernel mode with the user-mode page
table. This means that the thread belongs to a suspected process, and we,
therefore, have to invoke switch_to_kernel_CR3. On the other hand, if
the bit is cleared, the process is not suspected, and the whole kernel virtual
address space is already visible.

Of course, we want to account for suspected multi-threaded applications
explicitly. In this scenario, two threads could be concurrently running on
multiple CPUs. We want to minimize the time window when a thread is
running with patches enabled, and another is not. As mentioned, to activate
the patch, a thread belonging to a suspected process must perform a mode
switch from kernel mode. To this end, after flagging a process as suspected,
we explicitly send an Inter Processor Interrupt (IPI) to all other cores. This
operation will require all CPU cores to transition to kernel mode. In this
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way, if a thread of the suspected process was running, the mode change will
result in patch enabling.

A similar mechanism has been put in place to enable/disable several
other mitigation techniques, namely: i) Microarchitectural Data Sampling
(MDS); ii) Spectre v1, v2, L1TF mitigations; iii) SSB mitigations; iv) KVM
Non-Executable Huge Pages; v) TSX Asynchronous Abort. This is sup-
ported by quickly checking the flag in current->mm->flags to determine
whether one specific mitigation should be activated, which might, in turn,
require modifying the content of some MSR value (as in the case of SSB
mitigations).

4.6 Experimental Assessment

4.6.1 Experimental Setup

We have carried out an experimental assessment relying on multiple gener-
ations of Intel CPUs, namely using the following processors:

• i7-6700HQ 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3
6MB 12-way;

• i7-7600U 2x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 4MB
16-way (with TSX);

• i5-8250U 4x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 6MB
12-way;

• i7-9750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3 16MB
16-way;

• i7-10750H 6x (SMT) L1 64KB (I,D) 8-way, L2 256KB, shared L3
12MB 16-way.

To set up the thresholds and observation windows used by our detec-
tion system, we have run versions of the attacks listed in Table 4.1, as
well as the following set of benignware applications: (1) Firefox, with both
textual page, multimedia content access, and browser benchmarks such as
JetStream2; (2) VLC, with both large and short videos and random skip
of video portions, as well as repositioning; (3) Evince Reader, with both
small and large size pdf files, and random skip of pages; (4) gedit for editing

4https://github.com/vusec/revanc.
5https://github.com/vusec/xlate.
6https://github.com/paboldin/meltdown-exploit.
7https://github.com/Eugnis/spectre-attack.

https://github.com/vusec/revanc
https://github.com/vusec/xlate
https://github.com/paboldin/meltdown-exploit
https://github.com/Eugnis/spectre-attack
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textual files of different sizes and random positioning onto the file portion to
be edited; (5) all the kernel-level threads operating within the Linux kernel.

Table 4.1: An overview of considered cache side-channel attacks and ref-
erences to the used implementations.
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Evict + Time [89] (taken from 8) ✓ ✓ ✗ time
Prime + Probe [74, 93] (taken from 9) ✓ ✓ ✗ time

Prime + Abort [44] (taken from 9) ✗ ✓ ✗ TSX
Flush + Reload [161] (taken from 9) ✓ ✓ ✓ time

Flush + Flush [56] (taken from 9) ✓ ✓ ✓ time
Xlate + Time [149] (taken from 9) ✓ ✓ ✓ time

Xlate + Probe [149] (taken from 9) ✓ ✓ ✓ time
Xlate + Abort [149] (taken from 9) ✓ ✓ ✓ TSX

Meltdown (taken from 10)
Spectre (taken from 11)

Foreshadow [148, 157] (taken from [25])

4.6.2 Stability of HPC Events

We evaluated HPCs stability in terms of both over-counting and determin-
ism by comparing the data collected from HPCs with data obtained from
software instrumentation—results are reported in Table 4.2. For this ex-
periment, we relied on a basic (single thread) benchmark12 which computes
the first x prime numbers, where x is a user-defined parameter. As a base-
line, we used cachegrind [112], which automatically detects the underlying
cache structure and builds an equivalent cache model while executing the
program. With cachegrind, we can compare the results related to memory
accesses and cache misses—in this case, we are also able to assess, to some
extent, the accuracy of HPCs. Nevertheless, L3 cache misses, L2 filled lines
(it counts opportunistic events at cache line grain and includes prefetcher
activity), and TLB miss (we use a specific event that requires the emula-
tion of a second-level TLB) are not available. For these events, we compared

12sysbench –test=cpu –cpu-max-prime=20000.
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Table 4.2: Comparison between HPCs and Software Instrumentation on
all the architectures. Err represents the distance (%) between HPCs and
SW while HPCvar shows the HPCs variation coefficient.

i7-6700HQ i7-7600U
HPCs SW Err HPCvar HPCs SW Err HPCvar

loads 4494K 4744K 5.2% ∼0% 4494K 4744K 5.2% ∼0%
L1miss 400K 308K 29% 2.0% 515K 308K 66% 2.9%
L3miss 8557 - - 6.4% 7798 - - 3.9%
L2lines 185K - - 7.9% 221K - - 3.1%
TLBmiss 9168 - - ∼0% 9382 - - 5.7%

i5-8250U i7-9750H
HPCs SW Err HPCvar HPCs SW Err HPCvar

loads 4494K 4744K 5.2% ∼0% 4494K 4744K 5.2% ∼0%
L1miss 521K 308K 69% 1.6% 513K 312K 64% 2.2%
L3miss 6539 - - 3.6% 8064 - - 4.0%
L2lines 224K - - 4.7% 227K - - 2.9%
TLBmiss 8981 - - 1.9% 9321 - - 2.4%

i7-10750H
HPCs SW Err HPCvar

loads 4495K 4744K 5.5% ∼0%
L1miss 517K 308K 67% 1.8%
L3miss 3725 - - 7.7%
L2lines 226K - - 5.5%
TLBmiss 9301 - - 3.0%

the HPCs values of several runs to compute the determinism degree of this
source. The results in Table 4.2 experimentally confirm that, although
HPCs could be subject to reliability errors, we have selected events that are
more stable and portable across different architectures. Although the L1
miss Err value may be a wake-up call to the reader, it is consistent among
the tested architectures and the HPCs variation coefficient. This result
stems from cachegrind’s inability to model all the hardware counterpart’s
internal details that vendors do not disclose.

4.6.3 Accuracy of the System-Wide Detection Approach

To assess the capabilities of our detection system, we have performed a
system-wide experimental evaluation by building sets of benignware and
malware applications. The former relies on the Phoronix Test Suite [88],
from which we selected 156 benchmarks (configured with different inputs)
showing various behaviors and load profiles. Conversely, to build the set of
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malicious applications to exercise our solution’s capability to detect side-
channel attacks, we have not found access to real-world malware of this
kind. Consequently, we have crafted such malicious applications starting
from the stress-ng suite [83]. We injected side-channel attacks (based on the
implementations reported in Table 4.1) into various benchmarks of the suite,
generating a set of 100 malicious applications. The side-channel routine
is placed within the benchmark stress function13. The attack is anyhow
enabled only after a random delay and, after its activation, the side-channel
procedure executes with a specific probability—we set this probability to
10%. By introducing these sources of uncertainty, we increased the non-
determinism degree that attacks may exploit in realistic scenarios.

As described in Section 4.4, the behavior of our detection system depends
on the α, β, and γ hyperparameters. We set α and β to 1 for the entire
experimental phase while varying γ to evaluate the detection according to
different threshold levels. As discussed, α and β represent the rates that
regulate the score progression of each process in the system. By setting
α = β = 1, we are identifying a critical scenario for our detection system,
as we slow down the detection of malicious applications while reducing the
possibility for a benign application to "recover" from spurious actions being
detected as malicious. At the same time, by varying γ, we somewhat change
the responsiveness to an undergoing attack. As stated in Section 4.3.2, we
recall that S1 and P4 predicates identify, respectively, side channels directly
exploiting the cache levels (L1, L2, LLC) and external caching structures
(i.e., TLBs) to manipulate the processor caches indirectly. In our tests,
indirect attacks refer to XLATE implementations.

Figure 4.2 shows the results of the detection accuracy as confusion ma-
trices. The standard benchmarks (i.e., with no side-channel attack injected)
are labeled as OK, while S1 and P4 indicate the direct and the indirect at-
tacks, respectively. Confusion matrices with γ = 1 illustrate the behavior
of our detection system as if the scoring system were not available. In this
configuration, any application becomes suspected after a single violation of
any metric. As we can observe, the number of false positives is non-minimal,
and on the i7-6700HQ, it is even higher than real negatives. Overall, the
benchmarks which have been wrongly suspected are the ones that either:
i) involve a large number of forks and therefore propagate the informa-
tion associated with the measures across a large number of processes; ii)
implement data processing or machine learning algorithms iii) are memory-
intensive scientific applications or explicitly test the memory hierarchy.

Nonetheless, the number of false positives quickly decreases as the value
of γ increases. Indeed, this is related to the fact that subsequent obser-

13The stress function of each benchmark is called several times into a stress-ng main
loop according to input parameters.
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vations can filter out any potential spike in applications’ activity without
prematurely marking the process as suspected. This trend matches exactly
our expectations, also validating the viability of the scoring system. Our
experiments did not report any false-negative detection.

The approach we have proposed well fits scenarios in which a higher level
of security is desired. However, the system is still prone to performance
optimization under very low-security risks. Moreover, by design, the tuning
mechanism aims to reduce the likelihood of experiencing false negatives at
the cost of slightly increasing the number of false positives. Nevertheless, if
γ is set to a suitably high value, this number becomes negligible.

By definition, a detection system is not a predictor, but it reacts to
some events and makes decisions according to its model. Indeed, such a
characteristic is crucial. Before classifying a malicious process as suspected,
we expect part of its attack to have been executed—at least, the portion
required to generate an identifiable pattern by our detection system. Typical
side-channel attacks rely on a preliminary preparation phase (e.g., probing
the cache) during which no data is actually read. If our detection system can
detect a side-channel attack during this preparation phase, the attacker will
not be able to read any data. Conversely, if the detection system identifies
the attack during its extraction phase, then some amount of information
might be read by the attacker.

Overall, the amount of data that an attacker can read even if our de-
tection system is active is an important metric to assess the accuracy of
our system-wide detection approach. Therefore, we have carried out an
experiment to quantify the amount of data that a malicious process can
read before its detection. In this experiment, the attacker shares a chunk of
read-only memory with the victim and tries to leak information by mount-
ing a side-channel attack on a byte-by-byte basis. Concurrently, the victim
reads the shared buffer one byte at a time with some delay among subse-
quent accesses, generating all the conditions to perpetrate the cache-based
attack. In this experiment, we have set the secret’s size to 256 bytes—a
non-minimal buffer corresponding to the size of a large Advanced Encryp-
tion Standard (AES) key—and studied the attack’s effectiveness to extract
data before being detected. Figure 4.3 shows the results of this experiment
with detection capabilities turned on with different values of γ and different
victim’s read rates14 . With γ = 100, our approach can detect the attack
before it extracts a significant fraction of the data extracted when no de-
tection was active, but only when the victim reads with small delays. By

14In this experiment, we have used an observation window of 220. A relation between
the delay between two victim’s reads (in µsec) and the observation window’s size (in
clock cycles) can be devised by considering that at a frequency of 1 GHz (∼ 230), we
have, given the sampling period of 220, 210 samples in one second. 1024 samples in one
second correspond, roughly, to 1 sample/ms.
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Figure 4.2: Detection accuracy evaluation for different values of γ (α, β =
1). S1 and P4 indicate the direct and the indirect attacks, respectively,
while OK indicates normal processes.
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decreasing γ, the percentage of correctly extracted data is reduced.
Although the reader may think that by increasing the victim’s read rate,

the detection may fail to identify the attack promptly, our results show that
the percentage of extracted bytes decreases for very high-frequency reads on
all examined architectures. This phenomenon is due to side-channel attacks
being more sensitive to the noise generated when the activity in the system
increases.

4.6.4 Performance Assessment

We have studied the performance improvement we can obtain with our mon-
itoring proposal. To quantify the performance benefit of our approach, we
have again relied on the Phoronix Test Suite, selecting a set of benchmarks
that interact with the system in different ways, according to the following
classes of behavior:

(A) intensive disk I/O operations (compilebench);

(B) pressure on the scheduler and context switch operation, also consid-
ering multithreaded applications (hackbench, ctx_clock);

(C) a large number of system call invocations, such as fork, exec, and
those related to memory management (OSBench);

(D) high usage of the network socket API (sockperf);

(E) high usage of the GNU C Library APIs (glibc-bench);

(F) complex workloads, related to browsers and databases (selenium,
sqlite-speedtest, Apache).

We also note that selecting these benchmarks allows profiling different
classes of applications, namely CPU-bound ones (in userspace) or applica-
tions that repeatedly interact with the kernel, forcing the application to
make a substantial number of mode switches. Given the implementation
of our software patches, we should have an influence on the performance of
the considered applications. No side-channel attack has been mounted in
this experiment.

These benchmarks were run in the four following scenarios to evaluate
the performance impact of the system-wide detection scheme, also account-
ing for the effect of the observation window’s length:

(A) Mainline kernel 5.4.145 with KPTI, retpolines, SSB mitigations, and
all the patches discussed in Section 4.5 enabled by default for all
processes—referred to as Generic in the plots.
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Figure 4.3: Percentage of a 256-byte secret that an attack can correctly
extract before its detection for different values of γ (α, β = 1) and victim’s
read rates.
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(B) Kernel 5.4.145, with our support for dynamic patching, but with
system-wide monitoring disabled—referred to as Monitor OFF in the
plots.

(C) Kernel 5.4.145, with our system-wide detection scheme activated, with
an observation window set to 220 clock cycles, which was the minimum
observation window value considered by the adaptive approach—referred
to as Monitor (short window) in the plots.

(D) Kernel 5.4.145, with our system-wide detection scheme activated, with
an observation window set to 224 clock cycles, which was the maximum
observation window value considered by the adaptive approach—referred
to as Monitor (long window) in the plots.

The results for the benchmarks in these configurations are reported in
Figure 4.4, where we show the overhead with respect to the mainline ker-
nel 5.4.145 with no active patch, which is therefore vulnerable to all the
discussed attacks—values are averaged over three different runs. By the re-
sults, we can observe that the Monitor OFF approach offers a performance
slowdown with respect to the Generic configuration, which is up to 4 orders
of magnitude lower while showing an overhead over the unpatched mainline
kernel lower than 4% on all architectures and for all application classes. This
means that the support we have introduced in the kernel to enable/disable
at runtime the various security patches is lightweight and non-intrusive.

Conversely, the overhead of the Monitor configuration over the Monitor
OFF configuration is negligible.

It is interesting to note that the impact of the window length is minimal:
considering that they are related to the maximum/minimum values sup-
ported by our system, this experiment shows that the expected overhead,
also accounting for the adaptive optimization of the window, is reduced.
Of course, this reduced overhead is coupled with our proposal’s increased
security level. Overall, this is additional evidence of the viability of our
proposal.

A similar trend can be observed for all tested architectures (except i7-
10750H) and all classes of applications, although with different relative ra-
tios. This indicates the stability of our approach with respect to the per-
formance of applications. The results on the i7-10750H processor do not
match the other models’ behavior. This is because Intel, starting from the
10th generation of its processors, introduced design changes to patch some
hardware vulnerabilities. Consequently, the Linux kernel does not require
enabling all the software patches (such as KPTI) on these processors with
a mitigation of the performance slowdown. Nevertheless, our approach can
still detect side-channel attacks on more modern architecture for which a
hardware patch has not been proposed, with reduced overhead.
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Figure 4.4: Performance Effects of the HPC-based Monitoring System on
different Architectures (logscale on the x axis).
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Figure 4.5: Performance Penalties by Mitigations on the i5-8250U.

The last experiment we present—the data are reported in Figure 4.5—
relates to an assessment of the overhead due to transient execution mitiga-
tions and side-channel mitigations, also when there is significant interference
with benignware on the same CPU cores. For this experiment, we only re-
port data taken on the i5-8250U machine for the sake of space. In any
case, the results on the other architectures show trends that are perfectly
comparable with the data reported on this CPU.

We have launched a number of benchmarks taken from the Phoronix Test
Suite equal to the number of available cores on the considered processor.
Each benchmark has been statically pinned to one CPU core. We then var-
ied the number of malicious applications, pinned to specific CPU cores, and
ran them concurrently with the benignware benchmarks. This setup stress-
tests also the per-process detection/mitigation capabilities of our system.
We report data associated with the system run with all transient execu-
tion mitigations always active (Mitigations always active in the plot),
with transient execution mitigations activated only for suspected processes
(Dynamic TE mitigations in the plot), and with transient execution/side-
channel mitigation countermeasures activated only for suspected processed
(Dynamic TE+SC mitigations in the plot). The applications have been
selected to avoid any false positive/negative. As in the previous experi-
ment, we report the overhead as the percentage increase over an execution
in which no mitigation at all (neither static nor dynamic) is present in the
system.

By the result, we observe again that enforcing dynamic mitigations pro-
vides a significant overhead reduction, as high as 95%. As expected, the
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overhead incurred when also SC mitigations are active is higher. Of course,
depending on the system’s configuration, the user can determine what set of
mitigations should be enforced upon the detection of a malware application.



CHAPTER5
Microarchitectural-driven

application co-scheduling for
system consolidation

Nowadays, one of the main challenges we are faced with is how to use
computing infrastructures also making parts of the system (or the whole
system) be effectively exploitable by multiple concurrent applications. This
is one of the core objectives of consolidation [159, 61], which has emerged
as the main topic in the area of virtualised systems and cloud computing
but is a crucial target independently of the specific technology used for the
actual deployment of software.

In this context, the co-location of applications or virtual machines on
the same hardware platform can give rise to joint usage of the same compo-
nents, like caches and buses, as well as devices. Looking at the co-location
aspect from the point of view of HPCs, we observe that these concurrent
applications can leave onto the hardware a given footprint depending on the
specific features characterising the usage of the hardware components. As
an example, a given co-existence can give rise to higher—or lower—amounts
of misses per time unit at the different levels of the caching hierarchy de-
pending on the features of the applications or even the workload they have
been set to manage. Also, we may have a higher—or lower—rate of instruc-
tion commitment at the CPU-core level, just depending on how the current
instruction flow(s) exploit reservation stations at the level of the CPU-core
engine.

Clearly, HPCs can determine the applications’ footprint on the hard-
ware. However, an important step ahead when dealing with consolidation
and sharing of resources can be represented by the exploitation of the hard-
ware footprint to determine its trends and how these trends depend on the
co-existence of the activities on the hardware. Knowing these trends, we can
decide to make applications jointly use the hardware according to policies
(and schedules) that are not currently supported by the operating system
technology. This can represent an added value leading to the improvement
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of the effectiveness of the hardware usage when hosting a specific set of
applications.

In this chapter, we precisely study this problem. In particular, we work
at the operating system kernel level, and we present a gang-scheduler of
applications (particularly of applications’ threads) hosted by the operating
system. This scheduler is logically layered on top of the conventional CPU
scheduler. It determines the wall-clock-time intervals where a specific sub-
set of applications can share the hardware usage, thus working as a gang
on the hardware. In contrast, other applications will use the hardware in
a different wall-clock-time slice. The gang-scheduled set of threads is de-
termined to give rise to better hardware footprints, which translates into
higher effectiveness of hardware usage by the applications. With this solu-
tion, we target scenarios where long-running applications (like scientific or
data management applications) need to massively use the hardware for a
while, up to their turnaround. Still, we have no response time requirement
related to external interactive entities—which may be non-compatible with
the gang-scheduling approach.

In this solution, we start from a high-level hardware usage parameter,
not directly linked to the outcomes we can get from HPCs, which is the
CPU usage. This parameter allows us to determine what applications can
still exploit the underlying hardware adequately—keeping the CPU not un-
derutilised —when dispatched within the same gang. The gangs established
by relying on the CPU-usage parameter are then analysed in terms of foot-
prints on the hardware to determine what gangs are keeping the CPU used
adequately and making individual components within the chip-set work at
higher levels of their effectiveness.

Finally, after the analysis, the best gangs are actually selected for the
software operations. It is important to note that this approach does not
require any off-line analysis of the application behaviour before the applica-
tions are actually executed (possibly with particulars/new data as input).
Instead, the gangs for the determination of the hardware footprints are
identified at run-time and can also be updated by running the procedure
periodically.

The original contributions of this chapter can be summed up as follows:

• We propose a new methodology that combines different high-level met-
rics and considers the software’s activity from a hardware point of view
to classify workloads;

• We describe a technique to explore different co-schedule at runtime
without affecting the CPU quantum that the OS scheduler would as-
sign to each of the involved processes;
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• We present a modular infrastructure that manages registered appli-
cations and autonomously directs the OS according to the evaluation
phase outcome.

5.1 Related Work

As pointed out, our objective is to include, at the operating system ker-
nel level, a new layer that enables improvements in the footprint on the
hardware by the applications via gang scheduling. However, the idea of im-
proving hardware effectiveness through policies and mechanisms that drive
the execution of software applications has been studied in the literature.

As for proposals that do not explicitly rely on hardware events and pro-
filing data (like the ones coming from HPCs), we need to consider all the
services or platforms that entail mechanisms for making any thread more
likely able to exploit the memory hierarchy. For Non-Uniform-Memory-
Access (NUMA) hardware, we have a baseline operating system support for
defining data placement in the different NUMA nodes [46]. Furthermore, we
also have higher-level solutions that exploit these operating system services
to accommodate the placement (of both threads and data, through affin-
ity mechanisms) along the execution of the applications. The approaches
in, e.g., [58, 36, 42, 41] are general-purpose, hence being usable with ap-
plications from different domains. The solution in [123] is specific to high-
performance simulations and offers an approach well suited for this class of
scientific applications.

Looking at literature studies on the exploitation of the hardware sup-
port, like HPCs, for gathering profiling data for detecting how different
applications co-exist on the same hardware—and how well they use the
memory hierarchy—we can find the proposals in [108]. In particular, these
are oriented to determine whether different applications have (or not) a
good sharing of the various components within the caching system. The
outcoming data are used as a kind of profiling outcome, which can help
establish the final deployment of the applications on the computing plat-
form. However, they are not used as runtime support for automating the
improvement of the job on the hardware components carried out by the
applications.

Looking at works that rely on runtime optimisation capabilities, we also
find solutions that attempt to optimise the CPU usage when multiple dif-
ferent tasks (e.g. computing and communication) need to be carried out
[64, 58, 49]. These solutions still avoid the usage of HPCs, hence working at
a higher level of analysis of the effects of the applications on the hardware.

The reliance on lower-level profiling data has been taken into account
in recent works that attempt to optimise the energy usage when running
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parallel/concurrent applications on multi-core machines [33]. These solu-
tions are not oriented to consolidating multiple applications on the same
hardware. Instead, they tackle the scenario where a single application with
multiple threads with data dependencies (like transactional applications)
is executed. In any case, the objective of these proposals only stands in
controlling the ratio between performance and energy usage, with no addi-
tional optimisation in terms of, e.g., the percentage of time along which the
CPU-core is not retiring executed instructions.

The objective of energy-usage reduction, in combination with the main-
tenance of close to optimal performance has also been studied by the side
of the synchronisation support at the software level, like for the case of
locking primitives [102]. In this approach, we still have a limit on the
runtime support in terms of the type and amount of data being collected
through hardware-level profiling facilities. In fact, the only low-level profil-
ing data are related to the energy used by the hardware. In contrast, any
other parameters used to optimise the synchronisation construct are based
on performance indices evaluated at the software level. Furthermore, the
low-level data related to energy usage are not exploited as an input to the
optimisation process. Instead, they simply represent the audit concerning
the actions executed at the level of the synchronisation support.

Compared to all these works, our approach is proactive in exploiting
profiling data coming from multiple HPCs. Also, this exploitation is auto-
mated and targets creating execution timelines where gangs of applications
are left to be CPU-dispatched by the operating system while others are tem-
porarily blocked. As a matter of fact, our solution can be seen as orthogonal
to several of these solutions, thus being open to co-existence.

5.2 The Consolidator infrastructure

We built our tool as a Linux Loadable Kernel Module (LKM) to simplify
interaction with OS components and hardware control. Although its core
is presented as a unique LKM object, it comprises three different parts:
the HPC driver, the profiler and the consolidator. Rather than applying a
module-stacking but a library-like technique as the baseline strategy. Con-
sequently, both the HPC driver and the profiler expose functions marked
as __week, which the consolidator redefines at compile time to connect all
the elements and insert the analysis procedure. The consolidator represents
the top level element and directly exploits the profiler capabilities to collect
runtime information about desired processes. In compliance with custom
logic, which we shall describe in Section 5.2.3, it ensures that only the se-
lected group of processes runs in a specific time window. In such a way,
it guides the OS scheduler and scans the workload evolution without ex-
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ternal interference, also dealing with the collection of metrics that can’t be
attributed to a precise process due to design constraint (see Section 5.2.3).
Figure 5.1 depicts the general structure of our tool and the relation among
all the involved pieces.

5.2.1 The HPC driver

The HPC driver is the lowest element in the logical organisation of our ar-
chitecture, which manages the interaction with the HPCs available in the
system. It queries the machine capabilities upon module load by invok-
ing a sequence of cpuid instructions, in order to calibrate all the required
parameters to capture performance events.

To build a consolidation profile, i.e. to determine what are the best co-
scheduling groups that allow maximising the performance of the applications
avoiding incurring side effects from contention on the underlying hardware,
we rely on runtime information collected from HPCs.

While it is possible to read information associated with the events di-
rectly from the HPCs, performing an analysis to support consolidation
based on these raw data may be daunting. We have therefore implemented
within our HPC driver logic to automatically apply the Top-Down Micro-
architectural Analysis (TMA) [162] methodology. This methodology builds
representative metrics for the underlying architecture targeting the analysis
of software execution bottlenecks. Analysing the micro-architectural design
makes it possible to define macro-areas where the bottleneck may lay. It
divides the exploration into various levels, and the deeper level is taken
into consideration, the more accurate is the inspection. At the moment,
the TMA methodology spans four different levels. For example, an analysis
carried out at the first level allows one to identify coarse-grain causes for per-
formance bottlenecks, such as deeming an application as CPU front-end or
back-end bound. Going deeper provides a more precise identification of the
root cause, e.g. at level four, we can identify the bottleneck in the particular
use of vectorised FPU instructions or in memory bandwidth limitations.

The TMA methodology requires observing many architectural events
through HPCs, especially at the lowest levels. Unluckily, typical off-the-
shelf architectures offer only a handful. Therefore, to implement the TMA
methodology, it is necessary to multiplex the available HPCs massively, i.e.
it is necessary to switch the architectural event being monitored repeatedly.
Nevertheless, this multiplexing activity can severely impact both monitor-
ing precision and cost, the former due to the possibility that a non-minimal
number of relevant events is lost, the latter due to the continuous reconfig-
uration of the HPCs.

Our approach tries to limit the number of events to be monitored in two
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ways. First, the HPC driver can be configured to cut down the number
of TMA levels after a defined value. Second, depending on the configu-
ration provided by the Profiler, only the relevant branches of the TMA
methodology are explored. In this way, the overall monitoring architecture
is not overwhelmed by a large number of (possibly uncorrelated) events,
and the number of reconfigurations of the HPCs is also reduced. Over-
all, this strategy improves the profiling accuracy and decreases its overhead
simultaneously.

Microarchitectural data are collected by configuring only one of the avail-
able hardware counters in sampling mode to keep track of Time Stamp
Counter (TSC) clock cycles1. This strategy allows us to generate a PMI at
a system-level stable frequency, which is fundamental to tracking the sys-
tem’s evolution over time. Indeed, CPU cores can adapt their frequency at
runtime, thus requiring a stable external source such as the TSC.

Conversely, all other HPCs are set in counting mode. Upon PMI gen-
eration due to the sampling counter overflow, all the raw values from other
HPCs are read and packed with extra information such as CPU id, pro-
cess ID and TSC value in a data structure. Furthermore, TMA metrics are
computed. The generated data are directly passed to the profiler for further
processing.

As a final note, the HPC Driver exposes in the /proc filesystem a set
of pseudo-files that allow us to tune the measurement frequency and to
enable/disable the overall monitoring process.

5.2.2 The Profiler

The main goal of the Profiler is to collect data coming from the HPC driver
and allow userspace applications to register for profiling by writing their PID
to a dedicated /proc pseudo-file. Every time a process registers itself, the
profiler inserts it into a new profiling group, namely a container of processes.
As mentioned, the HPC driver delivers data collected from HPCs stamped
with the PID of the thread that was running when the events were collected.
It is the role of the Profiler to aggregate all these data in a group profile.

Whenever a registered process forks or creates a new thread, the newly-
generated task_struct is automatically registered within the same parent’s
profiling group. To intercept a fork invocation, the Profiler exploits the
Linux Kernel static tracepoints2. The same concept is applied for thread

1On Intel processor, the fixed hardware counters #2 counts the number of reference
cycles at the TSC rate. Still, TSC is a different counter that can be accessed by the
RDTSC instruction.

2Linux Kernel static tracepoints are a lightweight support that allows attaching ex-
ternal code to hook points defined at compile time. Compared to other strategies, such
as ftrace or kprobes, tracepoints provide a lower performance impact at the expense of
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termination: whenever a thread exits, that event is detected, notified to the
Profiler, and the thread is removed from its profiling group—this strategy
also allows us to reclaim memory used for support data structures. Since a
system-wide unique name identifies every group, a process can ask to join
an existing group instead of defining a new one upon registration. In this
way, it is possible to build complex performance profiles flexibly, considering
any number of (concurrent) applications.

Whenever a process that is not registered for profiling is scheduled3, the
profiler switches off the HPC support and conversely turns it on when re-
quired. This strategy still targets an overhead reduction because we avoid
collecting data unrelated to any profiled thread that the Profiler will even-
tually discard. Also, it reduces the number of PMIs that the underlying
HPCs fire.

5.2.3 Finding the best Co-Scheduling

The component at the logical top of our architecture is the Consolidator.
It exploits the profiler capabilities to collect runtime information about
desired processes. As mentioned, its ultimate goal is to build and exploit a
consolidation profile. This approach is based on its capability, built on top
of standard Linux schedulers, to ensure that only the designated groups of
processes run in a specific time window. Building an accurate consolidation
profile is possible thanks to the underlying layers, which allow observing the
workload evolution without external interference.

Current Linux kernel versions are shipped with the cgroup capability,
that has been designed to group processes. Nevertheless, we have explic-
itly avoided relying on this feature because it does not allow to change the
group structure at runtime, with a reasonable overhead. Consequently, we
emulate process grouping by exploiting signals. In particular, we stop and
resume specific processes at runtime, depending on what group(s) of pro-
cesses are allowed to run. Therefore, enabling the scheduling of a group
entails broadcasting the SIG_CONT signal to all of its members. Conversely,
disabling a group is accomplished by sending a SIG_STOP signal. Determin-
ing the members of a group is done by directly interacting with the Profiler,
which keeps track of group information provided via the /proc filesystem,
and intercepts thread creation/termination.

The overall strategy enacted by the Consolidator is shown in Figure 5.2.
It consists of different execution phases controlled by a high-resolution timer
that periodically fires, invoking the scheduling management routine of the
Consolidator.

flexibility.
3We rely on tracepoints also to detect a context switch event.
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Figure 5.2: Consolidator process to find the partition that provides the
best score.

The evaluation phase is the first step, in which each group is exclusively
executed for a specified amount of time, defined by the system parameter
τ . Next, the related CPUusage, which is expressed as the percentage of
the whole CPU time availability, is collected and stored within the group
profile. That value constitutes the metric on which our approach builds all
the possible schedule partitions in the subsequent phase.

The consolidation stage aims at finding the group co-schedule that pro-
vides the best score computed via Equation 5.1.

Score =
CPUusage ∗ Useful_Work

Energy
(5.1)

Each of the involved variables represents the collected statistics dur-
ing the consolidation phase. They are collected for each involved process
(thanks to the HPC driver), aggregated into group profiles (thanks to the
Profiler), and then in co-schedule statistics by the Consolidator.

CPUusage is a global measure extracted by querying each core in the
system, as shown in Listing 11. The kernel provides a per-CPU struct that
holds the related core’s time spent while processing or being in a specific
state—the time domain is expressed in jiffies, and this value is updated at
some “safe” points like context switches, interrupt management, and system
calls invocation. Hence, we can accumulate both the used and total time
for each processing unit deriving the CPUusage as the relation of these two
values.

Power consumption, defined as Energy, is another global measure. Con-
trarily to the previous one, it cannot be computed as the combination of
single contributions. Instead, it is directly obtained by dedicated hardware
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Listing 11 Routine to get cpu usage
1 void read_cpu_stats(u64 *used, u64 *total)
2 {
3 int i;
4 u64 _used = 0, _unused = 0;
5 for_each_online_cpu(i) {
6 struct kernel_cpustat kcpustat;
7 u64 *cpustat = kcpustat.cpustat;
8

9 kcpustat_cpu_fetch(&kcpustat, i);
10

11 _used += cpustat[CPUTIME_USER];
12 _used += cpustat[CPUTIME_NICE];
13 _used. += cpustat[CPUTIME_SYSTEM];
14

15 _unused += cpustat[CPUTIME_IDLE];
16 _unused += cpustat[CPUTIME_IOWAIT];
17 _unused += cpustat[CPUTIME_IRQ];
18 _unused += cpustat[CPUTIME_SOFTIRQ];
19 _unused += cpustat[CPUTIME_STEAL];
20 _unused += cpustat[CPUTIME_GUEST];
21 _unused += cpustat[CPUTIME_GUEST_NICE];
22 }
23

24 *used = _used;
25 *total = _used + _unused;
26 }

probes which observe the whole chip activity. Consequently, we monitor
the total system power consumption and collect data within the designated
time window. Assuming that the scheduled groups are the sole active work-
loads (as in the evaluation phase), this technique estimates the associated
power consumption with a high confidence level.

The last required parameter to compute the score is Useful_Work, as
seen from a micro-architectural perspective. In particular, this parameter
captures the intrinsic dynamics of modern architectures compared to the
actual instructions composing the application. From a general point of view,
a modern processor can be split into frontend and backend units. The former
is in charge of fetching instructions from memory and delivering them to the
execution unit, while the latter performs the actual computation. Moreover,
since we are dealing with out-of-order processors, two additional concepts
must be introduced: speculative activity and µops retirement.

The µOps retirement parameter relates to the number of µOps effec-
tively retired at each clock cycle4, and expresses the percentage of time the
machine is committing useful work. This value is computed per each process
and then aggregated at upper levels. In other words, Equation 5.1 expresses
a way to identify the partition that maximises both the machine throughput
and utilisation while minimising energy consumption. These four compo-

4On most Intel processor models, the maximum number of retired µOps/clock_cycles
is 4.
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nents define the first TMA level, whose management, as anticipated, is a
built-in capability of the HPC driver.

As a preliminary operation, we enumerate all the partitions of the group
set which satisfy defined CPU utilisation constraints. Every subset that
belongs to a partition should employ all the available computing power
without exceeding the maximum machine availability. Ideally, such a value
is 100% of the available computing resources. Still, to let our algorithm
find a viable solution, we relax the problem constraints such that, given any
subset Si, its overall CPU utilisation should be:

α ≤ CPUusage(Si) ≤ 2α (5.2)

Whenever CPUusage(Si) is greater than 100%, the Consolidator sched-
uler simply relies on the underneath OS scheduler, i.e. it does not stop any
thread. Given any partition, each subset represents a co-schedule, namely
the set of groups placed into the run queue and executed concurrently. The
problem can be seen as a variant of the partition problem, in which we
find all the possible k-subset partitions for a given set, where k is the num-
ber of subsets inside the partition itself. To maximise the CPU utilisation
while minimising the likelihood of exceeding the 100% value, we compute
the starting value of k as:

K =

∑n
i=1CPUusage(Gi)

α
(5.3)

All the k-partitions so generated are filtered out according to Equa-
tion 5.2. If the algorithm can produce any valid partition iteratively, it
decreases k and restarts computing a solution. It is important to note that
reducing each time the value of k leads, eventually, to the trivial 1-partition
output, which represents the ordinary system’s state in which all the groups
are active and managed by the OS scheduler.

Data structures containing profiling information are then generated for
each partition and co-schedule. Additionally, a partition having a unique
subset with all the groups is created and pushed into the list to allow us to
evaluate the plain OS scheduler activity.

In the consolidation phase, we individually execute and monitor each
partition. We extract the first co-schedule S from the selected partition
and place it into the run queue while all the other groups are still in a
suspended state.

To guarantee fairness among all the co-schedules, they are activated
for a time slot t = γδ, where γ is a configurable parameter, and δ is a
weight factor that adjusts γ according to the required CPU utilisation. δ is
computed as:
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δ =
CPUusage(Sj)

α
(5.4)

Proving fairness for each partition P containing m subset is straightfor-
ward:

CPUusage(P ) =
m∑
j=1

CPUusage(Sj) =
n∑

i=1

CPUusage(Gi) (5.5)

Thus, our solution extends the associated execution time when a group
requires more than the available resources, ensuring consistency among the
different partitions. Finally, after all the partitions have been profiled, the
one delivering the best score is selected and employed as the active co-
schedule strategy to manage the registered processes.

5.3 Experimental Results

To evaluate the effectiveness of our solution, we performed an experimental
assessment on a machine equipped with an i7-10750H 6x (SMT) CPU and
16Gb of Ram, running Ubuntu 20.04 LTS with Linux Kernel 5.13.

In the first scenario, we characterise the machine score by executing
some applications from the well-known stress-ng benchmark suite. Accord-
ing to the suite terminology, benchmarks are called stressors and provide
individual workloads to concentrate the activity on a specific OS or hard-
ware component. To consider a broad set of application characteristics, we
selected matrix-3d, bsearch, cpu, cache and fork, described in Section 3.4,
and the following stressors:

• matrix : perform different floating-point operations providing a valu-
able combination of memory and computing activity.

• qsort : perform sorting and search operation on integer array.

• io: continuously calls sync system call to commit buffer cache to disk.

• hdd : workers continually writing, reading and removing temporary
files.

• bigheap: spawn different workers that grow their heaps by reallocating
memory.

All the stressors were executed in parallel during this experimental eval-
uation, changing the number of active workers for each configuration. The
SMT functionality was disabled during the whole testing phase to improve
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the measurement stability, thus assigning to CPUusage a maximum value
related to 6-cores.

Figure 5.3a and Figure 5.3b show results for an 8-workers configuration.
For the sake of space, we do not report all the computed partitions, showing
only the four delivering the best scores, the four providing the worst scores,
and the one associated with all the stressors running concurrently (OS in
the plot).

Figure 5.3a depicts the high-level metrics plots we used to compute the
final score for each of the active partitions. Conversely, Figure 5.3b shows
the generated partition structure and the associated co-schedules. For each
co-schedule, we highlight in bold the CPUusage value, while the plain text
indicates the stressor IDs within the co-schedule itself. Each ID can be
mapped to the corresponding stressor by inspecting the OS partition. As we
can see, the fairness property holds. Accordingly, each computed partition
is executed for the same amount of time.

Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7 depict results ob-
tained by the different configurations evaluation, each of them labelled as
STRESSx, where x indicates the number id active processes for each indi-
vidual stressor.

To evaluate our solution in a real-world context, we exploited the Parsec
Benchmark Suite [20, 21], whose benchmarks show unique characteristics
in terms of workloads, parallelisation granularity and data partitioning. In
particular, we selected swaptions, fluidanimate, dedup, freqmine, streamclus-
ter and vips.

Contrarily to the previous experiment, we assessed a dedicated virtu-
alised environment for each stressor to mimic the system activity in a cloud-
like scenario.

Each workload was run into a virtual machine managed by the QEMU
hypervisor. We adopted a lightweight and stripped version of Archlinux
(kernel 5.10) as the operating system to minimize the measurement inter-
ference produced by the system activities and auxiliary components. Each
VM was configured to execute a specific PARSEC benchmark at the startup
phase, setting the number of the worker threads equal to the number of the
virtualised processors. In such a way, selecting the desired configuration for
an evaluation test was possible by merely modifying the QEMU parameters
before launching the VM instance.

In such a scenario, our tool handles a QEMU instance as an individual
entity that, at the registration phase, gets registered to the co-scheduling
management process. Figure 5.8, Figure 5.9, Figure 5.10 and Figure 5.11
report the metrics values of Equation 5.1 for this experiment. In partic-
ular, for each configuration, we selected the best, and the worst partition
computed by our consolidator and compared them with the plain operating
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Figure 5.3: Consolidator process to find the partition that provides the
best score. Stress-ng test with 8 parallel workers per stressor.
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Figure 5.4: Score of the different configurations of stress-ng workloads.
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Figure 5.5: Energy metric of the different configurations of the stress-ng
workloads.
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Figure 5.6: CPU occupancy metric of the different configurations of the
stress-ng workloads.

system scheduler activity. Each run is labeled as Sx e Py, where x refers
to the number of parallel QEMU instances and y represents the number of
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Figure 5.7: Useful Work metric of the different configurations of the stress-
ng workloads.

virtual processors for that VM, namely the number of active processes.
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Figure 5.8: Score of the different configurations of the QEMU-based ex-
periment.

As we can observe in Figure 5.8, we can always find a co-schedule with
a better score compared to the one delivered by the traditional operating
system scheduler. It is also important to note that such a score is not
always directly influenced by the power consumption of the executed work-
load. Sometimes, the combination of the other two metrics has the most
significant impact (see configuration S12_P2).
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Figure 5.9: Energy metric of the different configurations of the QEMU-
based experiment.
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Figure 5.10: CPU usage metric of the different configurations of the
QEMU-based experiment.
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Figure 5.11: Useful Work metric of the different configurations of the
QEMU-based experiment.



CHAPTER6
Accelerating PDES via

hardware-assisted incremental
checkpointing

Speculative Parallel Discrete event Simulation (PDES) is known to be a
core method for deliverying high performance of model execution [76], and
for enabling the full exploitation of the available computing resources in
both distributed and shared memory settings [14, 66]. At the same time,
a core aspect to be considered when building speculative PDES platforms
is the ability to reconstruct past simulation states whenever a causality
violation—caused by wrong speculation paths—needs to be undone.

Several literature proposals exist, envisaging different state-reconstruction
methodologies, which can be roughly classified as checkpoint-based [128] or
reverse computing-based [29]—although in [31] a solution to mix the two
strategies has been presented. In any case, the actual implementations
of the state-reconstruction support mostly rely on pure software-based ap-
proaches, and do not exploit hardware-level operations that are nowadays
commonly available in modern processors.

In this chapter we explore the alternative approach where the support for
state reconstruction is devised as a hardware-assisted facility. Particularly,
we focus on the checkpoint-based methodology, and present an architectural
design of the speculative PDES engine where hardware-level program pro-
filing capabilities offered by modern Intel processors are exploited to detect
(with no software intervention) the state updates that occur while process-
ing an event at the simulation object. This hardware-based detection is
exploited to identify the portions of the object’s state that have been up-
dated along a sequence of events, which need to be logged to build a new
incremental checkpoint. In this work, we explicitly target the x86-64 archi-
tecture and the Linux operating system, as a test case for the viability of
our hardware-assisted checkpointing support.

One core aspect in our proposal is that the detection of memory updates
occurs at the exact granularity of the machine-instruction that performs
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the update. This provides a big advantage over memory-update detection
actuated with other more traditional hardware-level mechanisms, such as
the paging-firmware commonly exploited at the level of the operating sys-
tem. In fact, the latter is known to work with page-based granularity—
corresponding to 4KB in standard configurations on x86-64 processors—
which can be clearly proven suboptimal for finer grain updates, possibly
scattered across multiple operating-system pages.

We also note that our solution retains application transparency, since
the activation of the hardware-level facility that enables memory update
detection does not require any particular action by the user-defined event
handler that implements the simulation logic used to process the events at
the simulation objects. In fact, all the job of coordinating the hardware-level
profiler and the execution of the event handler is carried out by the PDES
runtime environment, which manages the activation of the application-level
event handlers.

Clearly, detecting memory updates with no software intervention deter-
mines a drastic reduction of the cost of incremental checkpointing, thush
making speculative PDES prone to delivering ever increasing speedup. Over-
all, our proposal is along the path of using hardware-level facilities as ac-
celerators in the contexts of speculative PDES. However, this is done in an
unconventional manner since we do not accelerate the execution of the event-
handler logic—as it occurs when porting this logic to GPGPU architectures
[96, 94]. Rather, we avoid the inclusion of additional machine instructions
that would otherwise be needed to intercept the memory updates natively
coded within the event handler by the application programmer. In other
words, we virtualize the presence of these instructions replacing them via
“accelerated” harware-level tasks.

The original contributions of this chapter can be summed up as follows:

• We propose a new way of adopting the Intel PEBS to provide support
beyond application profiling.

• We enhance the system with an application-independent transparent
memory tracing layer without applying software instrumentation.

• We provide experimental evidence of the effectiveness of our proposal
when employed to support the execution of a synthetic model derived
from the classical PHOLD.

6.1 Related Work

How to enable state reconstruction in speculative PDES in an efficient man-
ner is a long-lived research topic. Literature proposals are very disparate
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and tackle a wide spectrum of aspects. The proposals in [128, 134, 50,
142, 130] are agnostic of the way a single checkpoint is built; rather, they
only need to know what is the (average) latency for taking the checkpoint
in order to determine how frequently (or at what points along simulation
time) checkpoints should be taken in order to optimize the tradeoff be-
tween the checkpointing cost and the state reconstruction cost—we recall
that an un-checkpointed state needs to be recontructed by reloading the
latest checkpoint preceeding that state and then reprocessing intermediate
events. Essentially, these proposals provide performance models (sometimes
used as run-time decision models) which do not directly address the issue
of reducing the cost of each single checkpoint operation. Hence, they can
be considered as orthogonal to what we propose in this chapter.

How to reduce the cost of the individual checkpoint operation has been
tackled by other studies. [131] present a hardware-assisted solution where
programmable DMA engines are used to implement data-copy operations
which allow to fill checkpoint buffers with the current content of the simula-
tion object state—hence offloading the checkpoint operation from the CPU.
This solution does not offer the support for incremental checkpointing, since
the DMA based data copy operation always stores the entire simulation ob-
ject state, a limitation that appears to be relevant given the memory-wall
phenomenon in modern processors. Also, it can be used only under the
constraint that the simulation object state (which represents the source of
the DMA operation) is stored in a contiguous memory buffer. Our porposal
removes both these limtations since we enable incremental checkpointing
and we support simulation objects’ states that are scattered in memory.

Still by the side of hardware-assisted solutions, [137] present an architec-
ture where incremental checkpointing in the context of HLA-based simula-
tions is achieved transparently via operating-system services. However, the
granularity according to which memory accesses are tracked to determine
what portion of the state to log within the incremental checkpoint corre-
sponds to an entire operating-system page. We avoid this limitation since
our hardware-assisted mechansm for tracking memory updates operates at
the memory-granularity of each single memory-write machine instruction.

[52] have proposed the “rollback-chip”, which is a specialized hardware
component used to store state variables according to a multiversion scheme.
This enables keeping within this hardware component checkpointed versions
of the state of the simulation object. State restoration is achieved by in-
structing the rollback chip to realign the live state to the selected checkpoint.
Differently from this proposal we do not rely on specialized hardware. In-
stead, we exploit conventional faclities offered by Intel CPUs, which makes
our proposal applicable in a wider spectrum of contexts.

As for software based implementations of incremental checkpointing, op-
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timized approaches rely on (semi-)transparent instrumentation of the event-
handler code to inject additional instructions used to identify state updates
[158, 135, 124]. These approaches have been shown to work well especially
with read intensive workloads, where the fraction of instructions that per-
form memory updates is relatively small. Our objective is the one of avoid-
ing at all the instrumenting instructions and migrating the task of tracking
state updates directly to the hardware. This will make incremental check-
pointing viable even in scenarios with more write-intensive workloads, for
which the cost of tracking memory updates via additional software instruc-
tions could not pay off—with respect to taking non-incremental checkpoints
of the whole state of the simulation object.

Our work is (less closely) related to studies targeted at the exploita-
tion of specific hardware capabilities (or accelerators)—such as GPGPUs
or FPGAs—for improving the execution speed of PDES platforms [94, 160,
132]. Compared to these proposal, our objective is the one of accelerating
the execution of specific tasks carried out by the PDES platform, while still
keeping the application executing on a conventional CPU architecture.

Finally, our proposal is fully orthogonal to the solutions based on reverse
computing, such as the proposal by [138] or the one by [31]. These proposals
still rely on the usage of infrequent checkpoints to optimize the delivered
performance. In fact, our hardware-assisted checkpointing architecture can
be used as a black-box checkpointing support in such combined techniques.

6.2 The Hardware-assisted Incremental Check-
pointing Architecture

The hardware-assisted incremental checkpointing architecture which we have
devised is composed of two different parts. On the one hand, we must be
able (thanks to the discussed hardware support) to detect what are the por-
tions of the simulation state which are touched in write mode during the
execution of simulation events targeted at each specific simulation object
involved in the simulation run. On the other hand, we must be able to ex-
ploit and organize this information in a way that allows to effectively handle
state saving and restore operations, carried out to recover from causal vio-
lations due to the speculative nature of the simulation. In this section, we
discuss separately both aspects.

6.2.1 Hardware-assisted Memory Write Tracing

In our hardware-assisted incremental checkpointing architecture we have
relied on the PEBS support. In particular, we have implemented a Linux



Chapter 6. Accelerating PDES via hardware-assisted
incremental checkpointing 106

kernel module which exposes some services to the userspace PDES runtime
environment to activate the tracing of memory write architectural events.
The facilities offered by this kernel module are activated via proper ioctl()
calls, towards a special device file which is created upon module load.

A first aspect to take into account when dealing with the tracing of
memory write operations is that, despite the fact that the actual tracing is
implemented via firmware facilities, a small overhead is anyhow introduced.
This is related to the fact that the firmware has to pack PEBS records
and write their content in main memory into the PEBS buffer, upon any
memory access in write mode. This buffer is located in RAM, therefore
writing PEBS records consumes a certain amount of memory bandwidth.
On more recent NUMA architectures, the penalty associated with writing
into memory could be also exacerbated by the fact that a CPU core might be
required to write to memory banks associated with remote NUMA nodes.
This scenario could also lead to interference with the activities of other
cores, as the remote memory access is carried out by relying on inter-cache
controller messages, as in the case of CPU interconnect based on the Intel
QuickPath.

It is therefore fundamental to limit the tracing operation only to the
execution of event handlers associated with the simulation model. In this
way, any memory write operation carried out by the PDES runtime en-
vironment to support its internal scheduling, checkpointing, or any other
housekeeping operation will be executed with no active tracing operation,
thus significantly reducing the overall overhead. Nevertheless, a general-
purpose PDES runtime environment must account for simulation events
which can have any execution time granularity. It is therefore fundamental
to devise a solution which can quickly activate/deactivate the tracing facil-
ity based on PEBS, therefore we have decided not to rely on an ioctl()
call for this very specific activity. Indeed, although the transition to kernel
mode is quite fast on modern architectures (thanks to the introduction of
the syscall assembly instruction), the activation of the proper ioctl()
handler involves the execution of several kernel-level software trampolines
(one associated with the system call dispatcher, and one associated with the
ioctl() dispatcher, which is part of the Virtual-File-System layer). Also,
more modern versions of the Linux kernel, implement protection mecha-
nisms against the Meltdown security attack—in particular the Kernel-level
Page Table Isolation mechanism, KPTI—which involve a modification of
the page table upon any mode switch from userspace to kernel space, thus
introducing an additional overhead associated with the flush of the TLB.
Overall, paying all these costs just to enable hardware-assisted incremental
checkpoinfing while executing a single simulation event that could last only
a handful of microseconds could be too much performance unwise.
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To limit the overhead to activate/deactivate PEBS-based tracing, we
rely on a dedicated software trap. Upon module load, we modify the In-
terrupt Descriptor Table (IDT) of every CPU core by nesting an ad-hoc
interrupt handler on interrupt vector 0xf0. This is a vector which is not
used by the Linux kernel for any of its internal interrupt service routines.
The routine which we hook at this vector is extremely simple: it simply
writes into a MSR register a value to activate/deactivate the PEBS-based
tracing. The PDES runtime environment can therefore execute an ad-hoc
software trap (using the int assembly instruction) which generates an exe-
cution path of a few assembly instructions in kernel mode. This execution
flow is also KPTI-compliant, and therefore introduces a very negligible over-
head.

When the PEBS-based tracing support is active, the firmware will write
PEBS records into the PEBS buffer. This buffer is allocated in kernel space
upon module load. We use a buffer of 16 contiguous (in physical memory)
4KB pages, taken directly from the Linux buddy system. If the PEBS index
reaches the PEBS-buffer occupancy threshold, the firmware will activate a
second ad-hoc handler (also hooked in the IDT upon module load) which
simply moves the current buffer into a pool of buffers to be consumed by
the PDES runtime environment in userspace, and allocates a new buffer to
be used as the PEBS buffer.

Another aspect to take into account is the time-sharing nature of the
Linux operating system. In particular, the PEBS-based hardware mecha-
nism is completely unrelated to the scheduling activities of the kernel. It
is therefore perfectly possible that, while the PDES runtime environment
is executing a simulation event, the time quantum allocated to it expires.
In this scenario, the scheduler might give the CPU to a different thread,
completely unrelated to the PDES simulation engine, with the PEBS-based
support still active. The firmware writes in the PEBS buffer virtual ad-
dresses, and it is therefore possible that many samples will be associated
with addresses which are either unmapped in the PDES simulation pro-
cess, or are associated with buffers which are valid, yet not related with the
simulation model. To avoid this phenomenon, the kernel module attaches
an ad-hoc routine at the end of the execution flow of the scheduler of the
Linux kernel—this is done by relying on the kprobes facilities offered by
Linux. In particular, every time that the scheduler determines that a new
thread should be scheduled on some CPU core, we check the pid of that
thread against all the pids of the PDES runtime environment—these pids
are registered at simulation startup via an ad-hoc ioctl() call. If the about-
to-be-scheduled thread does not belong to the PDES runtime environment,
we perform a write operation on a MSR to disable PEBS-based tracing. In
the opposite case, we explicitly enable PEBS-based tracing. By relying on
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this approach, we limit a possible system-wide performance penalty, and
we avoid the introduction of any noise in the PEBS buffer, with respect to
memory write operations not associated with the PDES run.

The last aspect which we have dealt with is how to transfer the informa-
tion from the PEBS buffer to the userspace application. As mentioned, the
PEBS buffer is composed of physically-contiguous pages of memory, which
can be obtained only at kernel level—contiguousness is a requirement for
the firmware to be able to correctly generate PEBS records. Moreover, the
content of PEBS records is not completely of interest for the PDES run-
time environment, which is interested only in the information associated
with simulation state memory write operations, rather than in a full CPU
snapshot. We have therefore implemented an ioctl() call which allows to
retrieve a set of tuples in the form ⟨base address, size⟩, where base address
is the initial address of the memory area touched in write mode by the
simulation model, and size is the amount of bytes touched by the opera-
tion. This ioctl() call is similar in spirit to the readdir() Linux system
call: it returns from kernel space a stream of structures describing a set of
the aforementioned tuples, which can be used to construct the metadata
used to later build the incremental log. This call essentially consumes the
pool of PEBS buffers which have been filled during the execution of one or
more simulation events—once the data from a buffer in the pool is com-
pletely transferred to the userspace PDES runtime environment, the buffer
is returned to the buddy system.

To summarize, the actions which the PDES runtime environment exe-
cutes to lever the PEBS-based memory-write tracing are:

1. before scheduling any simulation event to any simulation object, the
hardware-assisted tracing is activated (thanks to a fast dedicated soft-
ware trap via the int 0xf0 assembly instruction);

2. when the event is completely executed, the hardware-assisted tracing
is disabled (again via the int 0xf0 assembly instruction);

3. the information about what memory areas have been accessed in write
mode by one or multiple events are queried from the module, via an
ioctl() call.

This simple scheme allows to identify what is the portion of the simula-
tion state which has been updated while processing events.

6.2.2 Managing Incremental Checkpoints

The information retrieved from the kernel module should be used by the
PDES runtime environment to build and manage incremental checkpoints.
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To this end, we borrow the baseline approach from [124]. In this proposal,
each simulation object’s state is managed thanks to a userspace memory
manager which serves dynamic memory allocations via malloc() calls. In
particular, the PDES runtime environment relies on a set of bitmaps to
describe the current state of each simulation object, in terms of buffer allo-
cations and memory updates.

The PDES runtime environment uses the ⟨base address, size⟩ tuples
retrieved via ioctl() to flag all the corresponding memory chunks in the
dynamic memory allocator metadata as dirtied. This information is used to
pack a checkpoint which only has the chunks that have been updated since
the last checkpoint (and the associated metadata).

This checkpoint is then linked to the checkpoint queue, in event times-
tamp order, as in the traditional Time Warp proposal by [76]. We note that
this approach allows for great flexibility in the checkpointing scheme. In-
deed, we are only required to update the metadata describing what portions
of the simulation state has been updated after the execution of every event.
The actual incremental checkpoint can be taken also after the execution of
any number of simulation events. In this sense, our proposal is perfectly
compatible with all previous literature results based on the usage of check-
pointing intervals (rather than checkpointing at each event). Indeed, it is
possible to rely on sparse state saving [91, 17], or on any form of adaptive
state saving [118, 134, 50, 141, 129, 130].

To reconstruct a previous simulation state upon a rollback operation,
the chain of logs is backward traversed, starting from the first checkpoint
appearing in the simulation time axis before the restoration point—this is
again a classical means to support state restoration. From each incremental
log that is found in the chain, the PDES runtime environment puts back in
the live image of the simulation state all the chunks that are available and
have not yet been restored in possible previous iterations. In this way, only
the “newest” chunks are restored, and multiple memory write operation
for the same chunk are not executed (this would be the case if the state
was reconstructed by traversing the chain in reverse order). Also, all the
metadata describing which chunks are currently in use are restored.

The iterative restore procedure stops when all the in-use chunks that
have been dirtied are restored. Although in principles this could entail
an indefinite number of iterative backward steps along the log chain, in
practice the restore operation can be immediately finalized once we find a
full log while backward re-traversing the log chain. In fact, all the in-use
chunks that have not yet been restored are immediately available inside the
full log for copy-back operations. Full logs can be explicitly interleaved to
incremental ones, according to the original proposal by [124].
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6.3 Experimental Results

We have implemented the hardware-assisted incremental checkpointing ar-
chitecture described in Section 6.2 within the open source ROOT-Sim spec-
ulative PDES runtime environment [122]. All the simulations have been
run on an octo-core Intel i5-8250U CPU, equipped with 16 GB of RAM,
running Ubuntu 18.04 with Kernel 4.9.1.

To assess the effectiveness of our approach, we rely on a baseline configu-
ration which is based on the more traditional pure software-based incremen-
tal state saving technique. In this baseline configuration, we have relied on
a custom gcc plugin which, during the compilation of the simulation model,
inserts in a completely transparent way ad-hoc function calls before every
memory write instruction. In this way, the PDES runtime environment can
be notified of the pending write operation, and it can flag any relevant meta-
data to mark a portion of memory as dirtied, since the last checkpoint. Both
the hardware-based implementation and the software-based implementation
rely on the incremental state saving mechanism proposed by [124].

To study the performance of the hardware-assisted incremental check-
pointing architecture, we have relied on a synthetic benchmark derived from
the well known PHOLD benchmark presented by [51], explicitly embedding
parameterizable memory operations’ patterns. In this benchmark, each sim-
ulation object executes fictitious events which only involve the advancement
of the local simulation clock to the event timestamp. Every time that
an event is executed, a new fictitious event is scheduled, destined to any
simulation object, with a timestamp increment following some exponential
distribution. Implementations of this benchmark have been already used
in the literature to study the performance of incremental state saving ap-
proaches [158, 131]. The execution of an event includes a busy loop (which
emulates a specific CPU delay for event processing, and hence a specific
event granularity) and/or read/write mode access to a fictitious, memory
contiguous state buffer of a given size S. Large values for S would mimic
applications with large memory requirements. On the other hand, the span-
ning of read/write operations across the state buffer determines the specific
locality inside the object state, associated with the event execution.

The second benchmark is a real-world application, namely the Personal
Communication System (PCS) benchmark, which models a GSM mobile
network. Each simulation object models the state’s evolution of an individ-
ual hexagonal cell, and the whole set of cells provides wireless coverage to
a square region of variable size. Each cell handles a parameterizable num-
ber N of wireless channels, which are modeled in a high-fidelity fashion via
explicit simulation of power regulation and interference/fading phenomena,
according to the proposal by [78].
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Upon the start of a call, a call-setup record is instantiated via dynamically-
allocated data structures, which is linked to a list of already active records
within that same cell. Each record is released when the corresponding call
ends or is handed off towards an adjacent cell. In the latter case, a similar
call-setup procedure is executed at the destination cell. Upon call setup,
power regulation is performed, which involves scanning the aforementioned
list of records for computing the minimum transmission power allowing the
current call setup to achieve the threshold-level signal-to-interference ratio
(SIR) value. Data structures keeping track of fading coefficients are also up-
dated while scanning the list, according to a meteorological model defining
climatic conditions (and related variations).

This application is highly parameterizable. Beyond the already men-
tioned number N of wireless channels per cell, the set of configurable pa-
rameters entails: τA, which expresses the inter-arrival time of subsequent
calls to any target cell; τduration, which expresses the expected call duration;
τchange, which expresses the residual residence time of a mobile device into
the current cell. These parameters affect the utilization factor UF of avail-
able channels, expressed as UF = τduration

τA∗N . This impacts the granularity of
the events, since the more the busy channels, the more power-management
records are allocated and consequently scanned/updated during the pro-
cessing of different events. On the other hand, higher values of the channel
utilization factor lead to higher memory requirements for the state image
of individual LPs.

We have configured the model to use 16 simulation objects, and we have
run the model on 4 concurrent worker threads. Each simulation object has
been associated with a state of 16 KB, and we have varied in the range
[3KB, 15KB] the average amount of memory touched in write mode during
the execution of each simulation event at each simulation object. Due to the
scattered nature of the buffers, a higher amount of total memory accessed in
write mode increases the number of memory writes to be intercepted (both
in the software and the hardware-based case). However, we have adopted an
approach where the update operations are based on memory-block writing
machine instructions, such as stos, which gives rise to a configuration not
unfavorable to the software based solution (since a single interception via
software allows capturing both smaller and larger memory updates).

As a first consideration, the duration of checkpoint/restore operations
is not directly affected by using hardware- or software-based tracing of the
memory-write operations. In particular, when updating 15 KB of simula-
tion state per event, in both configurations we have observed an average
checkpoint creation time on the order of 0.5 µs, and a recovery time on the
order of 4.5 µs. Therefore, the data that we compare in the remainder of
this section exactly allows to capture the effects on memory tracing of the
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Figure 6.1: Average Event Duration.

two different supports (hardware vs software). In Figure 6.1 we report the
average duration (in µs) of a simulation event when varying the size of the
memory accesses. From the result, we can observe that the software-based
solution (referred to as SW in the plots) is always outperformed by the
hardware-assisted solution (HW in the plots)—although as discussed above
it is not penalized by larger memory updates given the memory-block ap-
proach of writing machine instructions. This is an expected result, because
(as we have discussed) the hardware-assisted solution relies on highly opti-
mized firmware operations to trace a single memory access. On the other
hand, for the same operation, the software-based solution requires activat-
ing a dedicated software function. This has also the drawback of requiring
to save the content of several CPU registers for the execution of the model
to continue correctly.
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This result is also related to the data reported in Figure 6.2. In par-
ticular, the reliance on a highly-optimized firmware increases the overall
efficiency of the simulation—a reduced number of rollbacks is always ob-
served when relying on the hardware-assisted solution. We believe that this
phenomenon is related to a secondary effect on the usage of caches, ulti-
mately related to the variance of the event execution times. Indeed, PEBS
buffers are always contiguous in memory, and therefore accessing them to
store PEBS samples will likely have a more circumscribed negative effect
on the data used by the models and on the variance in the event execution
time. Therefore, the reduction of variance of the duration of an event is also
strengthened, an effect which is already known in the literature to have a
possible positive effect on the rollback probability.



CHAPTER7
Conclusions

Predicting the system response when dealing with highly parallel heteroge-
neous workloads represents a more and more pervasive challenge, quickly
expanding from high-performance infrastructures to commodity hardware.
Consequently, performing static-defined decisions might not be able to catch
dynamic interactions stemming from non-deterministic complex environ-
ments. Sometimes, such integrated routines not only may fail to accom-
plish the desired result, but even introduce a performance slowdown by
applying hypotheses that do not match the actual scenario. Furthermore,
any attempt at software optimization would hold just for the current archi-
tecture with a bias toward the provided system configuration, which, in a
widespread scenario, entails the generation of the execution trace in an idle
system to lower any possible external interference. Indeed, even though the
best-compiled versions of several programs are running, their coexistence
may lead to some resources contention (since these are limited and shared)
generating unpredictable effects and possible performance drawbacks.

Shifting to a dynamic strategy requires dealing with stricter constraints,
making the overall process more challenging. On the one hand, system
resources are generally shared among monitoring instruments and monitored
processes requiring dynamic adjustments to avoid the entire system collapse
caused by mistaken configuration or application behaviour changes. On
the other hand, perturbing the target workload execution may generate
polluted information leading decision-makers to wrong actions, as it is not
well representing the runtime state.

To the best of our knowledge, Performance Monitor Units represent
the most suitable technology to enhance profilers with low-overhead and
transparent instrumenting capabilities, also delivering detailed hints from
a hardware-level point of view. Still, their adoption is quite limited and
existing tools are not efficient enough to be activated in production contexts.

One of the goals of this work has been to investigate the root of such
inefficiency and devise alternative techniques to overcome such a problem.
Despite its lightweight nature, this support is often coupled with software-
level metrics or more general-purpose data collection techniques, mainly fo-

114



Chapter 7. Conclusions 115

cusing on richer functional capabilities to fulfil offline analysis than prompt
data delivery for online consumption. Unlike traditional approaches, we
have discussed the performance impact of the various monitoring strate-
gies, and our experimental assessment showed that many of these proposals
can have a negligible impact on the application’s performance profile under
monitoring.

We also claim that the monitoring step shouldn’t be agnostic to data
processing, especially when conducted concurrently in an online fashion.
Cohesion between the two phases is the crux to reaching better efficiency as
it can regulate data generation without producing useless information and
wasting disk space, memory bandwidth and computational resources.

At the same time, an important aspect to consider is the marked differ-
ence between the diagnosis we would like to perform and the related problem
domain, which does not always converge to the same point. In particular,
understanding problem characteristics and projecting them onto the under-
lying machine design effectively pinpoint the proper resource provisioning
and optimal settings for the analysis. Such a process demands a deep knowl-
edge of the used micro-architecture, which may discourage the exploitation
of such supports or even produce misleading data. We firmly believe that
combining raw events to define a high-level representation of hardware ac-
tivities, like the one provided by the Top-Down Micro-architectural Analysis
methodology, is the key to enforcing the analysis portability and its adop-
tion curve.

We have presented our system-wide profiling infrastructure, an indepen-
dent kernel module that smoothly accesses and manages PMUs facilities
and automatically performs filtering and data elaboration to accomplish
required operations. Furthermore, it directly links its features to OS core
elements to broaden its sphere of action, and the data processing strategy
can be easily adapted without dealing with lower-level details, thanks to
its modularity. On the other hand, it ensures the adaptability principle by
allowing ranging the number of applications subjected to monitoring ac-
tivities, thus providing the ability to target a single application, a set of
programs, or even the whole system, including kernel components. More-
over, our solution fosters adaptability by defining application-level hooks
and exploiting augmented kernel-level facilities, providing mechanisms to
trigger operations leading to accurate monitoring and timely decisions.

The experience we gained during this journey tells us that the method-
ology we followed, coupled with the techniques we described, is promising
and can be applied unconditionally to various operational contexts. In par-
ticular, in this work, we have shown how our research can effectively assist
in runtime contexts related to security reinforcement and system consolida-
tion.
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We have presented a system-wide detection system of cache side-channel
attacks based on measures taken from HPCs, which, in turn, combines to
build higher-levels decision metrics to deem a (multi-threaded) process as
malicious. Moreover, we have coupled our detection system with mitiga-
tion actions, both for side-channel attacks and transient execution-based
attacks relying on cache side channels to leak data. These mitigations are
activated on a fine-grain basis at runtime, as opposed to scenarios where
security-oriented tasks are carried out by default independently of the trust-
worthiness level of the running applications. The metrics we have devised
allowed us to detect attacks with a negligible percentage of false positives
and no false negatives on different x86 Intel CPUs and a comprehensive set
of benchmark applications.

On the other hand, by leveraging the modular facilities of our infrastruc-
ture, we have assessed a new technique to drive the Operating System in the
quest for the processes’ placement. We have combined software and hard-
ware metrics to derive a new methodology and classify different co-schedules
according to the system’s activity and the hardware feedback. Furthermore,
the online exploration phase doesn’t affect the slice of time the OS scheduler
would assign to each involved process, assuring fairness and flexibility even
within volatile environments. The experimental phase has shown that our
strategy can always find a higher-score processes grouping than the solution
delivered by the traditional operating system scheduler.

Additionally, we have explored the effectiveness of hardware profiling fa-
cilities in speeding up functional software procedures. In particular, we have
exploited the Intel PEBS feature as a hardware accelerator for memory trac-
ing support and evaluated its effectiveness in PDES runtime environments to
support incremental state saving by intercepting memory-write operations
performed by simulation models. Finally, we demonstrate the viability of
PMUs in reducing the runtime and the intrusiveness of the incremental state
saving support, traditionally associated with software instrumentation.

As future work, we plan to extend the application of self-tuning tech-
niques to the profiling components themselves. As discussed in this thesis,
the sampling frequency must be regulated according to the current execu-
tion context, and indeed this highly depends on both analysis type and
goal. Moreover, performing a specific diagnosis requires a certain resource
quantity, which is strictly related to system capabilities and problem specifi-
cations. It clearly states the need to identify the achievable profiling activity
density without affecting the goodness of the generated data, and such a
value cannot be effortlessly statically computed due to the high relation
with the aforementioned variable parameters. We also wish to invest more
effort in the facilities’ assessment of profiling supports, concerning both their
evolution and new releases. For instance, the concept of the heterogeneous-
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cores design is not bounded to mobile chips anymore, but it states the new
road-map for the upcoming products generation for different vendors, de-
manding the adaption of PMUs to fit new architectures, also delivering new
supports such as the emerging Intel Thread Director [67].
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