
A Symmetric Multi-threaded Architecture for
Load-sharing in Multi-core Optimistic Simulations

Roberto Vitali Alessandro Pellegrini Francesco Quaglia

DIIAG – Sapienza, University of Rome

Abstract

Parallel Discrete Event Simulation (PDES)
is based on a simulation model partitioned
into distinct Logical Processes (LPs) which
are allowed to execute simulation events
concurrently. We present here an inno-
vative approach to load sharing on multi-
core/multiprocessor machines for the opti-
mistic PDES paradigm, where LPs can spec-
ulatively process simulation events with no a-
priori verification of causal consistency, and
violations (if any) are recovered via roll-
back techniques. Each simulation kernel in-
stance, in charge of hosting and executing
a specific set of LPs, runs a set of sym-
metric worker threads, which can be dy-
namically activated/deactivated on the basis
of a distributed algorithm, which relies in
turn on an analytical model providing indica-
tions on how to reassign processor/core usage
across the kernels in order to efficiently han-
dle the simulation workload. In order to opti-
mize efficiency and reduce lock-release phases
used to synchronize the threads when run-
ning in kernel mode, we propose to borrow
from operating systems theory and readapt
the top/bottom-halves paradigm to the de-
sign of load-sharing oriented optimistic sim-
ulation systems. We also present a real im-
plementation of the our load sharing architec-
ture within the ROme OpTimistic Simulator
(ROOT-Sim), namely an open-source C-based
simulation platform implemented according to
the PDES paradigm and the optimistic syn-
chronization approach. Experimental results
for an assessment of our proposal are pre-
sented as well.

Copyright c© 2012 by the paper’s authors. Copying permitted
for private and academic purposes. This volume is published
and copyrighted by its editors. Published at http://ceur-ws.org

1 Introduction

Parallel Discrete Event Simulation (PDES) techniques
are well known for being a classical means to develop
simulation systems featuring high performance, which
is essential for differentiated contexts, such as symbi-
otic systems or simulation-based (time-critical) deci-
sion making. The basic idea underlying these tech-
niques is to partition the simulation model into sev-
eral distinct objects, also known as Logical Processes
(LPs) [Fuj90], which concurrently execute simulation
events on clusters, SMP/multi-core machines and/or
even desktop grids [PF08].

The main problem in the design/development of
this type of simulation platforms is synchronization,
the goal of which is to ensure causally-consistent (e.g.
timestamp-ordered) execution of simulation events at
each concurrent LP. In literature, several synchroniza-
tion protocols have been proposed, among which the
optimism-oriented ones (e.g., the Time Warp proto-
col [Jef85]) are highly promising. With these proto-
cols, block-until-safe policies for event processing at
the LPs are avoided, thus allowing speculative compu-
tation, and causal consistency is guaranteed through
rollback/recovery techniques, which restore the sys-
tem in a correct state upon the a-posteriori detection
of consistency violations. These are originated when
LPa schedules a new event destined to LPb having a
timestamp lower than the one of some event already
processed by LPb. This approach has been shown to
exhibit performance which is relatively independent of
both (a) the lookahead of the simulation model and
(b) the communication latency between the concur-
rently running LPs (e.g. concurrently running simula-
tion kernel instances). It is therefore viable and effec-
tive for a wide spectrum of both application-specific
and infrastructure-related settings.

Multiple LPs typically run within a same
simulation-kernel process, and according to the clas-
sical organization (see, e.g., [CBP00]), this process is
single-threaded. As a consequence, the hosted LPs are
dispatched and run on top of an individual CPU-core
according to a classical time-interleaved mode resem-
bling what happens in traditional Operating Systems
targeted at single-core machines. By this organiza-
tion, the typical literature approach aimed at achiev-
ing effective parallel/distributed simulation runs, by
optimizing the exploitation of the available compu-

tational resources, is load balancing. This technique
is based on migrating the application load (i.e., LPs)
amongst different simulation-kernel instances (i.e. dif-
ferent processes). In other words, the only means to
dynamically re-balance the load is to explicitly re-map
the LPs across the kernels, since each kernel instance
has a fixed computational power (i.e. one CPU-core)
allocated to it.

We hereby propose an orthogonal technique tar-
geted at optimistic PDES system run on top of multi-
core machines, which is based on computational power
(expressed in terms of CPU-cores) dynamical realloca-
tion over time towards the different active simulation-
kernel instances. Hence, we allow a dynamical scale
up/down in the number of symmetric worker threads
belonging to each kernel instance, which sustain the
execution of the whole set of LPs locally hosted by that
same instance, depending on whether LPs (dynami-
cally) increase/decrease their computational power de-
mand. Overall, the load sharing approach is pursued,
in terms of dynamical redistribution of the whole sim-
ulation load across the set of available computing re-
sources. Further, dynamical scale up/down of the
amount of worker threads per simulation kernel in-
stance is based on an innovative analytic approach that
we also propose in this paper.

From the architectural perspective, what we provide
is a paradigm shift towards the building of simulation-
kernels for optimistic PDES systems entailing schedul-
ing and execution functionalities typical of modern
Operating Systems’ technology, in particular the one
targeting SMP and/or multi-core machines. However,
such a shift is non-trivial, since (optimistic) simula-
tion platforms are typically expected to expose a re-
duced set of services (compared, e.g., to those offered
by a conventional Operating System kernel), inter-
nally handled by the simulation-kernel layer via a rel-
atively reduced set of data structures. Hence, the like-
lihood of conflicts in the access to these data struc-
tures upon simultaneous execution in kernel mode by
multiple worker threads (each running on top of a dif-
ferent core) may easily become a bottleneck. To ad-
dress this issue we borrow from the top/bottom-half
programming paradigm, currently employed for han-
dling interrupts within modern, multi-core Operating
Systems, to design multi-threaded optimistic simula-
tion kernels guaranteing minimal length of wait-for-
lock phases, and high scalability.

Beyond general design indications, we also present
a real implementation of our architectural proposal
within ROOT-Sim, namely an open-source optimistic
simulation platform [QPV11b] implemented according
to the optimistic synchronization paradigm. Experi-
mental data assessing the viability and the relevance
of the provided approach are also presented.

2 Related Work

Given that we aim at optimizing the use of the avail-
able computing resources in face of dynamism and fluc-
tuations of the actual workload associated with the
LPs involved in the run, our work is naturally related

to all the literature solutions that have presented poli-
cies for load balancing in the context of either con-
servative (e.g. [BD97]) or optimistic simulation (e.g.
[GT93]). As already hinted, the main differences be-
tween our proposal and these works are in that (A) we
reassign the computational power, instead of the work-
load, across the active simulation kernel instances,
and (B) we rely on an innovative, multi-threading ori-
ented paradigm in order to exploit dynamically scaled
up/down power available to each kernel instance. Also,
our proposal can be considered as orthogonal and com-
plementary to the above results, when considering
that we target multi/many-core machines, while the
aforementioned load-balancing schemes can be used
for load-redistribution on distributed memory systems
(e.g. clusters).

As for HLA-based simulation platforms (see, e.g.,
[MW95]), multi-threading has been used to imple-
ment non-blocking interoperability services across fed-
erations of simulators. The strongest difference from
our approach is that multi-threading has been used
to implement sector-specific functionalities, while we
use it as a means to overtake differentiated opera-
tions (including event processing), depending on dy-
namical variations of the application level workload.
In addition, to the best of our knowledge, changes in
the number of worker threads has never been used to
perform dynamical optimizations in response to work-
load’s variations. It has only been employed in master-
slave simulation architectures to cope with dynamical
increase/decrease of the amount of available comput-
ing resources (e.g. for simulation platforms running on
top of desktop grids [PF08]). However, in such a con-
text, concurrent threads operate on inherently parti-
tioned data, while we approach multi-threading in the
presence of shared (e.g. kernel-level) data structures.

When considering solutions specifically oriented to
improve the performance of simulation platforms on
multi-core machines, one approach having relations
with our proposal can be found in [LW11]. However,
this approach is targeted at a specific architecture,
namely the IBM cell processor, while our proposal is
general, thus being suited for differentiated multi-core
platforms. Also, the work in [LW11] is oriented to op-
timize the simulation via task parallelization schemes
that are orthogonal to the power reallocation scheme
we present in this article. Similar considerations can
be made for other works which address the issue of im-
proving the performance of simulation systems via the
exploitation of hardware parallelism offered by GPU
architectures (see, e.g., [HN10]). These approaches are
mostly suited for data parallelism while we deal with
more general parallelism schemes, which are proper of
the PDES paradigm. Also, dynamic power realloca-
tion across different simulation kernel instances is not
targeted by those works.

The work in [lCsLpY+11] has recently presented
an approach for improving optimistic simulations on
multi-core machines via the employment of a global
schedule mechanisms relying on a distributed event
queue. This proposal has been evaluated with a multi-

Application Level Software ()Unique LP identifier

Local Virtual Clock

input-queue output-queue state queue current state

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination detection

Commitment horizon

determination

Fossil collection

Network/shared-memory message passing

CPU scheduling

Priority determination and LP

dispatching

data structures

subsystems

Figure 1: Reference Architecture for Optimistic Sim-
ulation Systems.
core machine comprising 8 cores. Differently from this
work, our proposal targets the traditional case of local
schedule, characterized by higher scalability thanks to
the avoidance of cross-kernel synchronization opera-
tions while handling scheduling tasks, as we also show
via experimentation on a multi-core server equipped
with a total of 32 cores. Similar considerations can be
made when considering simulation architectures like
ThreadedWarped [Mil10], which uses a global priority
queue.

3 Design Indications

3.1 Optimistic PDES Systems’ Fundamentals

In the optimistic PDES paradigm, LPs are allowed
to process their simulation events without prelimi-
nary verifying that these events do no violate causality
rules. Rather, as soon as new events get available for
a specific LP, they are eligible for processing. This
allows for great exploitation of parallelism, since no
block-until-safe rules are adopted. On the other hand,
in case a causality violation is revealed, due to the
arrival of an event for a destination LP that has al-
ready processed other events with larger timestamps
(namely events in the future of the arriving one), this
LP is rolled back to a correct state value. Also, the
effects on other LPs associated with events that were
produced by the rolling back LP during the causally
incorrect portion of the simulation are also undone by
the simulation-kernel via proper messaging operations.
In Figure 1 we show the reference architectural orga-
nization for optimistic simulation systems, as depicted
by the seminal paper in [Jef85].

Input and output message queues are used to keep
track of simulation events exchanged across LPs, or
scheduled by an LP for itself. These are typically sepa-
rated for different LPs, so to afford management costs.
For the input-queues, these costs are related to both
even insertions and, e.g., event move from the past
(already processed) part to the future (not yet pro-
cessed) in case of rollback of a specific LP. The input-
queue is sorted by message (event) timestamps, while
the output-queue is sorted by virtual send-time, which
corresponds to the local virtual clock of the LP upon
the corresponding event-schedule operation. As dis-
cussed by several works (see, e.g., [RA97]), the actual
implementation of input queues can be differentiated
(e.g. heaps vs calendar queues), and possibly tailored

to and/or optimized for specific application contexts,
characterized by proper event-timestamp patterns (af-
fecting the insertion cost depending on the algorithm
used to manage the queue). On the other hand, output
queues are typically implemented as doubly-linked lists
since insertions occur only at the tail (i.e. according to
non-decreasing values of the local virtual clock). Also,
deletions from the output-queues occur either at the
tail or at the head, but not at arbitrary positions. Tail
deletions occur upon a rollback operation involving the
corresponding LP, which undoes the latest computed
portion of the simulation at the LP. In particular, all
the output messages (i.e. the scheduled events) at the
tail of the output-queue with send-time greater than
the logical time associated with the causality violation
are marked, sent out towards the original destination
in the form of anti-messages, and then removed from
the output-queue. Anti-messages are used for annihi-
lating previously sent messages so to notify to the des-
tinations about the rollback occurrence at the source
LP. Upon their arrival, chained rollback can be gener-
ated in case the events carried by the originally sent
messages have already been processed by the destina-
tion LPs. Head deletions from the output-queues are
related to memory recovery procedures, which we shall
detail later on in this section.

A messaging subsystem takes care of receiving in-
coming messages from other simulation kernel in-
stances, whose content will be then reflected within the
input queue of the destination LP. Also, it is used to
notify output messages (i.e. newly scheduled events)
to LPs hosted by other kernel instances, or the afore-
mentioned anti-messages.

The state queue is the fundamental means for al-
lowing a correct restore of the LP state to a previous
snapshot whenever a causally inconsistency is detected
(i.e. the LP receives a message with timestamp lower
than its current simulation clock, or an anti-message
that annihilates an already processed event) (1). The
state queue is handled by the state management sub-
system, the role of which is to save/restore state im-
ages. Additional tasks by this subsystem are related
to (i) performing rollback operations (i.e., determining
what is the most recent suited state which has to be re-
stored from the log), (ii) performing coasting forward
operations (i.e., fictitious reprocessing of intermedi-
ate events in between the restored log and the point
of the causality violation) and (iii) performing fossil-
collection operations (i.e., memory recovery, by get-
ting rid of all the events and states logs which belong
to an already committed portion of the simulation).
Several solutions have been presented in literature for
optimizing the performance of the state-save/restore
subsystem (see, e.g., [PLM94, Qua01, QS03, RA94])
and/or for providing state-log/restore transparency
vs the application layer (see, e.g., [RLAM96,TQ08]).

1Recently, approaches have been provided which substitute
or complement log based state recoverability via reverse com-
putation techniques [CPF99]. In such a case, recoverability also
relies on having a reverse version of the application code, which
is able to backward apply changes occurred on the LP state since
the point of the causality violation.

The latter aspect is crucial for the usability of the
optimistic paradigm, since it relates to relieving the
application programmer from the burden of design-
ing/implementing low level state management tasks.

TheGlobal Virtual Time (GVT) subsystem accesses
the message queues and the messaging subsystem in
order to periodically perform a global reduction aimed
at computing the new value for the commit horizon
of the simulation, namely the time barrier currently
separating the set of committed events from the ones
which can still be subject to a rollback. This bar-
rier corresponds to the minimum timestamp of not
yet processed or in-transit events. In addition, this
subsystem cares about termination detection, by ei-
ther checking whether the new GVT oversteps a given
predetermined value, or by verifying some (global)
predicate (evaluated over committed state snapshots)
which tells that the conditions for termination model
execution are met. Finally, this subsystem is also in
charge of performing the so-called fossil collection pro-
cedure, aimed at recovering memory buffers currently
keeping obsolete messages end logs, namely those re-
lated to the newly committed portion of the compu-
tation. As for GVT computation, termination detec-
tion and fossil collection, the literature also offers a
plethora of optimized solutions, which are either gen-
eral purpose or tailored to specific computing plat-
forms such as shared memory systems vs clusters (see,
e.g., [BYC+05,FH97]).

Finally, a central point relates to the CPU-
scheduling approach used to determine which among
the LPs hosted by a given simulation-kernel instance
must take control for actual event processing activities.
Although several proposals have been made, the com-
mon choice is represented by the Lowest-Timestamp-
First (LFT) algorithm [LL91]. It selects the LP whose
pending next-event has the minimum timestamp, com-
pared to pending next-events of the other LPs hosted
by the same kernel. Coupled with the traditional
single-threaded approach for the implementation of
the simulation kernel, LTF has the advantage of avoid-
ing the generation of causality violations across the
LPs hosted by the same kernel instance. This is be-
cause these LPs are dispatched in a similar way to
what would happen on top of a sequential simulation
engine, which imposes a timestamp-ordered sequence
of CPU-schedule operations for all the events (across
all the LPs). Hence, rollbacks can be generated only
in relation to events scheduled between LPs hosted
by different kernels, which contributes to reduce the
amount of rollback. Different design/implementation
variants for LTF exist (see, e.g., [SQ10] providing dif-
ferent time complexities).

4 The Symmetric Multi-threaded Ar-
chitecture

4.1 Handling Kernel-level Synchronization

A paradigm shift towards the design/implementation
of symmetric multi-threaded optimistic simulation ker-
nels, entailing multiple worker threads that can con-

currently run any of the LPs hosted on top of the same
kernel instance, needs to avoid synchronization phases
while running in kernel mode to become a perfor-
mance bottleneck. Specifically, while different worker
threads inherently execute according to data partition-
ing paradigms once entered application mode (since, in
accordance with the specification of the original Time
Warp protocol [Jef85], each logical process handles its
own application-level data structures), care must be
taken to avoid “lock-everything effects” when running
in kernel mode. The risk for these effects is actually
due to the reduced set of subsystems forming the opti-
mistic simulation kernel (compared, e.g., to those typ-
ically included within the kernel of a general purpose
Operating System), and also to the inherent strict cou-
pling among the LPs (compared, e.g., to the typical
level of coupling of different processes running on top
of a conventional Operating System).

Most notably, the data structures requiring frequent
updates, to be performed coherently via proper kernel-
level synchronization mechanisms, are both the input
and output queues of the LPs. Essentially, these data
structures represent the core of cross-LP dependencies,
thus involving update operations caused not only by
the activities executed by the worker thread currently
taking care of running the “queue-owner LP”, but also
by the activities carried out by worker threads taking
care of running other LPs. Synchronizing the access to
these data structures via a conventional locking mech-
anism would give rise to scalability problems, exactly
due to such a strict coupling. Further, it would give
rise to critical sections whose duration would depend
on the actual time-complexity of the queue-update op-
eration.

We note that the access to the LPs’ state queues
(either for saving or restoring a state image) does not
induce thread synchronization issues since the need for
state log/recovery operations is only an indirect reflec-
tion of cross-LP coupling, caused by events scheduled
across the LPs. In other words, a single worker thread
is allowed to safely operate on the LP’s state queue
at any time, namely the worker thread that has taken
care of dispatching that LP for either forward or roll-
back execution.

The architectural organization we propose in this
paper to cope with the reduction of synchroniza-
tion costs while performing housekeeping operations
borrows from the design principles proper of multi-
processor/multi-core Operating Systems. Specifically,
any housekeeping task potentially crossing the bound-
aries of individual LPs’ data structures is dispatched
according to the same rules employed to structure
modern Operating System drivers, by organizing it
according to top/bottom-half activities. Hence, when-
ever the need for the execution of such a task arises,
it (logically) takes place as an interrupt to be even-
tually finalized within a bottom-half module. More
in details, upon the interrupt occurrence, we do not
immediately finalize the task, thus not immediately
locking (or waiting for the lock) on the target data
structure. Instead we simply execute a light top-half

simulation kernel interrupt handling layer

messaging layer

LP_locks Bottom-Halves Queues

interrupt

Interrupt
(message/antimessage
from a remote kernel)

LP forward mode

running

LP rollback mode

running

message antimessagetop-half
(get lock and schedule

bottom -half)

Figure 2: Top/Bottom-Halves Architecture within the
Symmetric Multi-threaded Optimistic Kernel.

module which registers the bottom-half function (and
its parameters) associated with the interrupt finaliza-
tion within a per-LP bottom-half queue, resembling
the Linux task queue. The critical section accessing
the bottom-half queue takes constant-time since each
new bottom-half associated with the LP is recorder at
the tail of the queue. Also, when the bottom-half tasks
currently registered for a given LP are flushed, the cor-
responding chain of records is initially unlinked from
the corresponding bottom-half queue, which is again
done in constant time by unlinking the head element
within the chain from its base pointer (2). Given that
the access to the LP bottom-half queue represents in
our architectural organization the only frequently oc-
curring synchronization point, constant-time for the
corresponding critical sections directly leads to mini-
mizing kernel level synchronization costs.

The schematization of our proposal is presented in
Figure 2. Basically, our approach can be supported by
relying on a spin-lock array, named LP LOCKS, having
one entry for each LP hosted by the multi-threaded
simulation-kernel. LP LOCKS[i] is used to implement
the critical section for the access to the bottom-half
queue associated with the i-th LP hosted by the ker-
nel, either for inserting a new bottom-half task to be
eventually flushed, or for taking care of unlinking the
current chain, in order to flush the pending bottom-
halves.

Let us now depict when (logical) interrupts to be
handled via this type of organization occur. Basically,
an interrupt occurs as soon as any worker thread cur-
rently active within the symmetric multi-threaded ker-
nel becomes aware of a new message/antimessage des-
tined to the i-th locally hosted LP. In such a case, the
worker thread needs to accesses the i-th bottom-half
queue within a critical section that performs the in-
sertion of the corresponding message/antimessage de-
livery task, as explained above. To provide additional
details, awareness by a worker thread of a new mes-
sage/antimessage destined to a locally hosted LP arises
in three different circumstances:

2Actual data structure updates are not performed within the
critical section, but are anyhow safe since, as it will be discussed
in Section 4.2, for locality reasons we will allow a single worker-
thread at any time to be in charge of flushing the bottom-halves
of a given LP.

(i) The worker thread is currently running the lo-
cally hosted LPj in forward mode, and this LP
produces a new event to be scheduled for the lo-
cally hosted LPi. Thus the worker thread enters
kernel mode for actuating the delivery of the cor-
responding message to LPi’s input-queue. (Note
that j might be equal to i, hence giving rise to
the case where sender and receiver coincide.)

(ii) The worker thread is currently running the locally
hosted LPj in rollback mode (hence it is perform-
ing kernel level housekeeping operations associ-
ated with revealed causality errors), which gives
rise to the production of an antimessage destined
to LPi, which requires access to LPi’s input queue
for annihilating the original message. (Again we
might have j = i.)

(iii) The message passing layer notifies the worker
thread (e.g. via an explicit message receive op-
eration executed by this thread according to a
traditional polling scheme) about a new mes-
sage/antimessage incoming from some remote ker-
nel instance.

As shown in Figure 2, we logically mark all the
above three circumstances as interrupts, which will
be treated homogeneously, and whose associated mes-
sage/antimessage delivery operation will be finalized
via the bottom-half mechanism.

We note that spin-locks may anyhow exhibit non-
minimal costs since they require the corresponding op-
erations to be performed via sequences of atomic in-
structions (e.g. via the LOCK prefix for the IA-32
instruction set). Additionally, since they are shared
and accessed by different threads, cross-cache invali-
dation effects can be induced as soon as one worker
thread gains control on the spin-lock. To reduce
these effects, we have devised the presence of an ad-
ditional array of flags LP FLAGS (see again Figure 2),
where LP FLAGS[i] indicates whether the correspond-
ing bottom-half queue, namely the one associated with
the i-th locally hosted LP, is not empty. Actually,
LP FLAGS[i] gets updated within a critical section
protected by LP LOCKS[i], either when a new bottom-
half is inserted within the corresponding queue (in this
case the flag is raised), or when the queue is flushed
(in this case the flag is reset). However, LP FLAGS[i]
is also accessed before trying to lock the bottom-half
queue in order to avoid spin-lock operations in all the
cases where the queue would reveal empty once ac-
cessed within the critical section leading to flush oper-
ations. The exact scheme looks therefore as follows:

TOP-HALF: BOTTOM-HALF:
lock(&LP_LOCKS[i]); if (LP_FLAGS[i]){
<log bottom-half>; if (try_lock(&LP_LOCKS[i])){
LP_FLAGS[i] = TRUE; <unlink bottom-halves>;
unlock(&LP_LOCKS[i]); LP_FLAGS[i] = FALSE;

unlock(&LP_LOCKS[i]);
<perform bottom-halves>;

}
}

Being LP FLAGS[i] checked non-atomically wrt
lock acquisition when attempting to perform bottom-
halves, we might experience false negatives in case

the top-half finalizes the insertion of the bottom-half
task concurrently with the check. However, this does
not represent a safety problem since the flag will be
rechecked periodically in subsequent attempts to flush
the corresponding bottom-half queue, thus eventually
falling within the case where the bottom-half queue is
correctly reflected into the state of the input queue of
the destination LP. Such a reflection might therefore
experience only a delay, which resembles delays intro-
duced by traditional single-threaded kernels while re-
flecting the content of cross-kernel messages into the
system state, which is typically affected by the polling
period according to which the messaging layer is ac-
cessed for acquiring not yet delivered messages. Fur-
ther, as hinted in footnote 1, a single worker thread
at a time will be allowed to manage flush operations
for a given LP, hence no false positives will ever be
experienced.

As a last note, messages/antimessages whose deliv-
eries are still pending, being them recorded as tasks
to be finalized within bottom-half queues, represent a
kind of in-transit data, whose timestamp needs to be
accounted for when computing the GVT value.

4.2 Tackling Locality Issues

Given that all the worker threads associated with the
same simulation kernel instance operate within the
same address space, the symmetric multi-threaded ker-
nel allows virtual addresses related to both applica-
tion and kernel level data structures (associated with
whichever LP) to be, in principle, accessible by any
worker thread. However, such a level of sharing would
cause frequent invalidation/refill of, e.g., the top-level
private caches of individual cores, even when entail-
ing processor affinity schemes involving the worker
threads. As an example, data structures associated
with an LP that has been lastly accessed by a given
worker thread would be flushed by the corresponding
private caching system upon the first write access by
a different worker thread.

Overall, while developing a symmetric multi-
threaded optimistic simulation-kernel a core additional
issue to address is related to maintaining an adequate
level of locality, so to avoid harming caching perfor-
mance. In order to cope with this issue, we devise the
adoption of affinity mechanisms such that a worker
thread belonging to a given simulation-kernel instance
is not allowed to run every LP hosted by that ker-
nel. Instead, it takes care of running a subset of these
LPs, which are currently selected as being affine to
the worker thread. In other words, we devise the use
of temporary binding mechanisms associating a subset
of the locally hosted LPs to a specific worker thread,
which is therefore the only thread taking care of run-
ning these LPs during a specific wall-clock-time win-
dow. We note that this approach resembles what is
done by the scheduler of Linux kernel 2.6, where a tem-
porary binding of active processes/threads to a specific
CPU-core is supported for both (a) locality and (b) re-
duction of the CPU scheduling cost.

Overall, within the affinity scheme, each worker

thread is in charge of:

(i) Flushing the bottom-half queues associated with
its affine LPs, which is executed periodically ac-
cording to a traditional polling approach.

(ii) Dispatching its affine LPs for execution in time
interleaved mode.

We note anyway that the binding of a specific LP
to a worker thread is not meant to be fixed, but can
change over-time, also in relation to variations of the
amount of worker threads activated within a given
symmetric optimistic kernel instance. The policy ac-
cording to which the locally hosted LPs are reassigned
to the worker threads will be discussed in Section 5,
together with the performance model we use to reallo-
cate the computational power (and hence CPU-cores)
to the different symmetric simulation-kernel instances.

As an additional note in relation to locality, we
also devise proper memory layout mechanisms in order
to reduce the false cache sharing problem for kernel-
level data structures. As an example, the entries of
both the LP LOCKS and LP FLAGS arrays, which rep-
resent frequently accessed synchronization data struc-
tures, can be memory bind to different cache lines,
which can be easily achieved by exploiting, e.g., the
posix memalignAPI plus padding schemes. The same
approach can be taken for the meta-data associated
with each single LP hosted by each instance of the
symmetric multi-threaded kernel, so that once an LP
is bind to a given worker thread, cache interference
due to accesses to meta-data does not arise.

5 Computational Power Reallocation
Policies

The symmetric multi-threaded kernel allows scaling
up/down the amount of per-kernel worker threads
without any change in the internal operating mode.
This allows for dynamically reallocating the compu-
tational power (in terms of CPU-cores) to the active
kernel instances depending on fluctuations of the work-
load and efficiency variations within the optimistic
simulation run. In this section we first provide an ap-
proach for reallocating the CPU-cores to the active
kernels. Then we address the issue of (temporarily)
binding the LPs hosted by a given simulation kernel
instance to specific worker threads.

5.1 Dynamical Assignment of CPU-Cores to
Kernels

Let us denote with Ctot the amount of available CPU-
cores, and with Ktot < Ctot the number of active
symmetric multi-threaded kernel instances (the case
Ktot = Ctot trivially boils down to the traditional sce-
nario where each kernel instance is allowed to run on a
single CPU-core, hence in the typical single-threaded
mode). Our first objective is to determine the amount
of CPU-cores Ci (with 1 ≤ i ≤ Ktot) to be assigned

to kernel instance Ki for a given wall-clock-time win-
dow, so to improve resource exploitation for fruitful
processing activities.

In our proposal, the re-evaluation of Ci values can
be carried out periodically, for example upon comput-
ing a new GVT value or after a set of subsequent GVT
computations. This also allows to exploit a set of met-
rics characterizing the parallel simulation run, as an
example in terms of determination of the event rate
(committed events per wall-clock-time unit) achieved
by each of the symmetric multi-threaded kernel in-
stances. We denote the event rate achieved by ker-
nel Ki as evri. This quantity is a measure for the
fruitful (non-rolled back) amount of simulation work
carried out by each kernel instance. In an ideal sce-
nario where the efficiency is maximized (i.e. where
the undone computation is negligible), each symmet-
ric multi-threaded kernel instance Ki should use an
amount of computational power that suffices to exe-
cute exactly evri events per wall-clock-time unit. In
fact, an excess of computational power could lead to
over-optimism and hence to rolled back computations,
thus moving the run-time dynamics far from the above
depicted ideal case. So the idea behind the determina-
tion of Ci values is to dynamically assign an amount
of CPU-cores to kernel Ki which is proportional to the
actual computation requirements ofKi for the achieve-
ment of its relative event rate, compared to the one by
the other kernels. Actually, to also take care of the
real CPU requirements on a given kernel instance (so
to also take into account possible variance of the event
granularity across the LPs hosted by different kernel
instances), which is the indicator of the real usage of
computational power for committing the events, the
evri metric can be refined by weighting it via the av-
erage CPU time required for processing the events on
a specific kernel Ki, which we denote as ∆i. Hence we
express the weighted event rate as wevri = evri ×∆i.

In other words, wevri values observed during the
last wall-clock-time period express the relative CPU
requirements of each kernel instance in order to carry
out productive simulation work, in relation to the ac-
tivities of the other kernels and the outcoming synchro-
nization dynamics. Hence, assigning a computational
power proportional to the relative weighted event rate
would tend to lead to the situation where each ker-
nel instance advances its LPs in simulation time in
a “synchronization suited” manner according to what
the other kernels are able to do on their own. This
part of the dynamic reallocation scheme would there-
fore tend to avoid significant presence of overoptimistic
kernel instances during the various phases of the run.

It is anyway typical that performance can be further
enhanced even in cases where the efficiency is already
maximized (or optimized), for example by further re-
assigning the computational power depending on the
real weight of the workload associated with the hosted
LPs. As an example, for loosely synchronized mod-
els we may have two or more groups of LPs that do
not interact, or stop interacting during the run (hence
eventually not directly impacting synchronization and

efficiency), exhibiting different speed of advancement
in simulation time due to, e.g., different weights of the
corresponding events in terms of CPU requirements.
In such a case, the completion of the simulation would
be delayed by the slowest group. Therefore, within the
dynamic scheme for resource assignment, an increase
of computational power should also be envisaged for
all those kernel instances exhibiting larger CPU re-
quirements to advance in simulation time. To this end
we include in our scheme the parameter wctai, which
indicates the wall-clock-time required by kernel Ki to
advance a single simulation time unit. The usage of
this parameter within the dynamic reallocation scheme
would tend to complement the above described one by
further attempting to align the advancement of the
different symmetric multi-threaded kernel instances in
simulation time while the run proceeds.

Finally, the amount of cores Ci to be assigned to
kernelKi should anyway be bounded by the maximum
degree of parallelism that can be accomplished by Ki,
which is a function of the amount of locally hosted
LPs. In fact, each LP is an intrinsically sequential
entity, which is not further parallelized, thus not being
allowed to simultaneously use multiple CPU-cores for
its execution.

Overall, we devise the following rules for dynam-
ically defining the amount of CPU-cores to be reas-
signed to each kernel Ki in order to optimize the usage
of the available computational power:

1. For each kernel Ki the parameter αi =
wevri

∑Ktot

j=1 wevrj
is computed.

2. A first calculation of Ci is then performed as Ci =
⌊αi × Ctot⌋.

3. For each kernel instance Ki for which the con-
dition Ci ≥ numLPi is verified (where numLPk

identifies the number of LPs hosted by Ki), then
Ci is definitively set to numLPi. In fact, ad-
ditional CPU-cores could not be effectively ex-
ploited for parallelization of the locally hosted
LPs.

4. At this point, there could be some CPU-cores left
to be assigned, which we decide to assign on the
basis of (A) the request for allocation remainder
of kernel Ki, namely ri = [(αi × Ctot) − Ci] and
(B) the parameter wctai. In particular, we order
the kernels for which the finalization of Ci values
still needs to be performed (so the ones already
finalized in point 3 are excluded) according to de-
creasing values of the product ri × wctai, and we
assign the remaining CPU-cores according to a
round-robin rule following the priority defined by
such an ordering.

Each of the above steps is an implementation of the
rationales discussed above in terms of suited CPU-core
assignment vs specific performance aspects.

5.2 Binding LPs to Worker Threads

As pointed out earlier, a given set of LPs hosted by Ki

gets temporarily bind to a specific worker thread act-
ing within the kernel, which is in charge of performing
bottom-half operations related to the LPs in the set,
and to schedule them for event processing according to
some priority scheme (e.g. Lowest-Timestamp-First).
Once the new value for Ci gets defined upon reallo-
cating the computational power, a policy is required
to determine which LPs are bind to a specific worker
thread. To achieve a binding that allows balancing the
whole workload related to local LPs onto the whole set
of worker threads, we have devised the below policy.
For the j-th LP hosted by kernel Ki, which we refer
to as LP j

i , we compute the total amount of CPU-time
required for committing its events during the last ob-
servation period (e.g. the last GVT cycle). We refer

to this metric as cpuj
i .

The maximum cpu
j
i value across all the locally

hosted LPs represents in our scheme a reference knap-
sack, and the corresponding LP j

i is assigned to a given
worker thread. Then we exploit the greedy approxima-
tion approach proposed by George Dantzig in [Dan57]
which allows a maximum “overflow” of about 30% over
the reference knapsack, in order to build the other
knapsacks of LPs (hence knapsacks characterized by
sums of cpux

i values) to be assigned to the remain-
ing worker threads. We do this by actually applying
a variant of the original scheme, where the knapsacks
are filled according to a round-robin approach. The
procedure is then iterated until no more LP needs to
be further bind to any worker thread.

6 Experimental Study

6.1 Test-bed Platform

We have implemented the proposed symmetric multi-
threaded optimistic kernel architecture within ROOT-
Sim, which is an open source C/MPI-based simulation
package targeted at POSIX systems [QPV11a], which
implements a general-purpose parallel/distributed
simulation environment relying on the optimistic syn-
chronization paradigm.

ROOT-Sim offers a very simple programming model
based on the classical notion of simulation-event han-
dlers (both for processing events and for accessing a
committed and globally consistent state image upon
GVT calculations), to be implemented according to
the ANSI-C standard, and transparently supports all
the services required to parallelize the execution. It
also offers a set of optimized protocols aimed at min-
imizing the run-time overhead by the platform, thus
allowing for high performance and scalability.

Among the main features offered by ROOT-Sim we
can mention completely transparent recoverability of
the state of the LPs achieved through proper hook-
ing of dynamic memory allocation/release [TQ08], plus
ad-hoc code instrumentation schemes that allow incre-
mental determination of dirty state portions [PVQ09]
and that, ultimately, allow dynamical switch between

different state log/restore schemes depending on the
proper dynamics of the application layer [VPQ10].

The single threaded version of ROOT-Sim also of-
fers innovative transparent supports for LP migration
and load balancing [PDQ11], which will be considered
as a reference for the assessment of the currently pre-
sented symmetric multi-threaded version in terms of
ability to exploit the computational resources offered
by a multi-core machine when the actual simulation
workload dynamically varies over time.

Future steps ahead in the development of ROOT-
Sim definitely entail the integration of the currently
presented symmetric multi-threaded architecture with
the aforementioned LP migration subsystem, currently
supported only when running in single-threaded mode.
This will ultimately provide an environment where
the orthogonal capabilities offered by the symmetric
multi-threaded paradigm (in terms of dynamic reas-
signment of the computational power to different ker-
nel instances) and the traditional migration approach
(in terms of ability to move individual LPs across dif-
ferent kernel instances) get ultimately combined.

Integration of the multi-threaded approach within
ROOT-Sim has been based on pthread technology,
and on the reorganization of the kernel level data
structures in order to (i) provide per-thread pri-
vate data, and (ii) cache aligned kernel-level memory
buffers so to avoid false cache sharing across the worker
threads within the same symmetric multi-threaded
kernel instance. The latter target has been achieved
by exploiting the posix memalign API, plus the us-
age of proper padding schemes allowing cache align-
ment for sequences of records, such as arrays of values.
As for the accesses to the MPI layer, used to transfer
messages across different kernel instances, in our ar-
chitecture they can be symmetrically issued by any of
the worker thread operating within a given kernel in-
stance. Given that the MPI layer does not natively
support multi-threading, we have included a wrapper
that synchronizes these accesses transparently towards
the worker threads via the embedding of critical sec-
tions protected by spin-locks.

As far as GVT computation and fossil collection are
concerned, we have implemented a symmetric scheme
where upon a new GVT computation, all the worker
threads operating within a same kernel instance run
a race. The race winner actually computes the local
reduction and interacts with the master kernel in order
to determine the globally reduced value representing
the new GVT. However, once defined the new GVT
value, all the worker threads operating within the same
kernel instance are allowed to perform fossil collection
operations in parallel. Each of these threads takes care
of fossil collecting the obsolete information associated
with its affine LPs.

Finally, the hardware architecture used for testing
our proposal is a 64-bit NUMA machine, namely an
HP Proliant server, equipped with four 2GHz AMD
Opteron 6128 processors and 64GB of RAM. Each pro-
cessor has 8 CPU-cores (for a total of 32 CPU-cores)
that share a 10MB L3 cache (5118KB per each 4-cores

set), and each core has a 512KB private L2 cache. The
operating system is 64-bit Debian 6, with Linux kernel
version 2.6.32.5. The compiling and linking tools used
are gcc 4.4.5 and binutils (as and ld) 2.20.0.

6.2 Application Benchmarks

In order to evaluate different aspects of the proposed
symmetric multi-threaded architecture, we have con-
ducted experiments on two different application bench-
marks, namely PCS (Personal Communication Sys-
tem) and Traffic, which are hereby described. The first
one has been configured in order to provide a constant
workload across all the LPs during the whole simu-
lation run. This has been done in order to measure
the actual overhead of the symmetric multi-threaded
architecture, while not taking advantages from its abil-
ity to reallocate CPU-cores just given the constancy of
the workload. The second application benchmark pro-
vides instead a highly dynamic workload that varies
over time across the involved LPs. This type of bench-
mark has been used in order to assess the goodness of
the symmetric multi-threaded architecture in terms of
its ability to reallocate the computational power de-
pending on the actual needs.

6.2.1 The PCS Benchmark

this application benchmark implements a simulation
model of wireless communication systems adhering to
GSM technology, where communication channels are
modeled in a high fidelity fashion via explicit simula-
tion of power regulation/usage and interference/fading
phenomena on the basis of the current state of the cor-
responding cell. The power regulation model has been
implemented according to the results in [KB02].

Upon the start of a call destined to a mobile device
currently hosted by a given wireless cell, a call-setup
record is instantiated via dynamically-allocated data
structures, which gets linked to a list of already active
records within that same cell. Each record gets re-
leased when the corresponding call ends or is handed-
off towards an adjacent cell. In the latter case, a sim-
ilar call-setup procedure is executed at the destina-
tion cell. Upon call-setup, power regulation is per-
formed, which involves scanning the aforementioned
list of records for computing the minimum transmis-
sion power allowing the current call-setup to achieve
the threshold-level SIR value. Data structures keep-
ing track of fading coefficients are also updated while
scanning the list, according to a meteorological model
defining climatic conditions (and related variations).
The climatic model accounts for variations of the cli-
matic conditions (e.g. the current wind speed) with a
minimum time granularity of ten seconds.

This simulation model has been developed for ex-
ecution on top of ROOT-Sim in a way that each LP
models a single wireless cell. Hence, the event-handler
callback involves the update of individual cells’ states,
and cross-LP events are essentially related to hand-offs
between different cells.

To evaluate the overhead due to the symmetric
multi-threaded architecture, when compared to the

classical case of single-threaded optimistic kernel, we
have performed a set of experiments where each wire-
less cell sustains the same workload of incoming calls,
hence we are in a balanced scenario not requiring
dynamical reallocation of the computational power,
which is instead a main target of the symmetric multi-
threaded organization. The call inter-arrival time is
exponentially distributed, and the average call dura-
tion is set to 2 min. The expected rate for call inter-
arrival has been set to achieve channel utilization fac-
tor on the order of 30%, while the residence time of
an active device within a cell has a mean value of 5
min and follows the exponential distribution. For the
above scenario, we have run experiments with 1024
wireless cells, modeled as hexagons covering a square
region, each one managing 1000 wireless channels.

We have measured the cumulated event rate (ex-
pressed as the amount of cumulated committed events
vs wall-clock-time) for different configurations of the
symmetric multi-threaded kernel, comparing it with
the one achievable when running the same ROOT-Sim
package in single-threaded mode. In particular, exe-
cutions with 4, 8, 16 and 32 symmetric multi-threaded
kernels (each one starting with 8, 4, 2 and 1 worker
thread, respectively) have been carried out. Also, in
order to assess the effects of the symmetric multi-
threaded organization, we additionally report statis-
tics related to typical run-time parameters character-
izing optimistic simulation runs, such as the rollback
frequency and the rollback length.

6.2.2 The Traffic Benchmark

this benchmark application simulates a complex high-
way system (at a single car granularity), where the
topology is a generic graph, where nodes represent
cities or junctions and edges represent the actual high-
ways. Every node is described in terms of car inter-
arrival time and car leaving probability, while edges
are described in terms of their length.

At startup phase, the simulation model is asked to
distribute the highway’s topology on a given number
of LPs. Every LP therefore handles the simulation of
a node or a portion of a segment, the length of which
depends on the total highway’s length and the number
of available LPs.

Cars enter the system according to an Erlang prob-
ability distribution, with a mean interarrival time
specified (for each node) in the topology configura-
tion file. They can join the highway starting from
cities/junctions only, and are later directed towards
highway segments with a uniform probability. When-
ever a car is received, it is enquequed in the LP’s list of
traversing cars, and its speed (for the particular LP it
is entering in) is determined according to a Gaussian
probability distribution, the mean and the variance of
which are specified at startup time. Then, the model
computes the time the car will need to traverse the
node, adding traffic slowdowns which are again com-
puted according to a Gaussian distribution. In partic-
ular, the probability of finding a traffic jam is a func-
tion of the number of cars which are currently passing

through the node.

Accidents are derived according to a probability
function as well. In particular, they are more likely
to occur when the amount of cars traversing an LP
is about half of the cars which can be hosted alto-
gether. In fact, if few cars are in, accidents are less
frequent. Similarly, if there are many, the traffic fac-
tor produces a speed slowdown, entailing the probabil-
ity of an accident to occur to be reduced. Therefore,
the model discretizes a Normal distribution, comput-
ing the Cumulative Density Function in a contour de-
fined as cars in the node± 1

2 , having as the mean half
of the total number of cars which are at the current
moment in the system, and as variance a factor which
can be specified at startup. The total number of cars
which can be hosted by an LP is computed according
to the actual length of the simulated road, which is
determined when the model is initialized. When an
accident occurs, the cars are not allowed to leave the
LP, until the road is freed. The duration of an accident
phase is determined according to a Gaussian distribu-
tion, the mean and the variance of which are again
specified at startup.

In our execution, we have simulated the whole Ital-
ian highway network on top of 1024 LPs. We have
discarded the highways segments in the islands in or-
der to simulate an undirected connected graph, which
allows to have the actual workload migrating overall
the highway. The topology has been derived from [atl],
and the traffic parameters have been tuned according
to the measurements provided in [tra]. The average
speed has been set to 110 Km/h, with a variance of
20 Km/h, and accident durations have been set to 1
hour, with 30 minutes variance. This model has pro-
vided results which are statistically close to the real
measurements provided in [aci].

We consider this second application benchmark to
be significant for showing how our proposed symmetric
multi-threaded architecture is able to capture unbal-
ance in the load, and react via computational power re-
allocation across the active kernels in order to drive the
system back into an evenly-distributed workload pro-
cessing scenario, which would lead to enhanced fruitful
exploitation of the computational resources.

For this benchmark application we still report the
event rate, this time comparing it with both the
one achieved when considering the classical single-
threaded execution mode of ROOT-Sim, and the
one achievable when activating within such a single-
threaded mode the load balancing mechanisms de-
scribed in [PDQ11]. We recall again that these load
balancing facilities are in principle orthogonal to the
facilities offered by the symmetric multi-threaded or-
ganization, since their target is the move of LPs across
the kernels, not the reassignment of the computational
power to the multi-threaded kernels. Anyway, we feel
that taking load balancing facilities properly offered by
the single-threaded version of ROOT-Sim into account
in the comparison provides a relevant reference for as-
sessing the potential offered by the symmetric multi-
threaded organization in terms of its ability to fruit-

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 10 20 30 40 50 60

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

PCS Application Benchmark

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Single Thread

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50 60 70

Serial Executor

(a) Cumulated Committed Events

 0.002

 0.0022

 0.0024

 0.0026

 0.0028

 0.003

 0.0032

 0.0034

 0.0036

R
ol

lb
ac

k
F

re
qu

en
cy

PCS Application Benchmark

Single Thread
Multithread 32K
Multithread 16K

Multithread 8K
Multithread 4K

(b) Rollback Frequency

 70

 72

 74

 76

 78

 80

 82

 84

 86

 88

 90

R
ol

lb
ac

k
Le

ng
th

PCS Application Benchmark

Single Thread
Multithread 32K
Multithread 16K

Multithread 8K
Multithread 4K

(c) Rollback Length

Figure 3: Results for the PCS Application Benchmark.

fully exploit the available computational power with
dynamic workloads.

6.3 Results

In Figure 3 we show the experimental results that have
been obtained for the PCS application benchmark. We
recall that this benchmark exhibits balanced workload
during the whole run, hence it is suited for assessing
the overhead of the symmetric multi-threaded archi-
tecture when considering that its capabilities to re-
distribute the computational power across the differ-
ent kernel instances are not actually exploited. By
the curves related to the cumulated committed events

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

Traffic Application Benchmark

Multithread (4k)
Multithread (8k)

Multithread (16k)
Multithread (32k)

Load Balancer
Single Thread

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 10 20 30 40 50 60 70

Serial Executor

Figure 4: Traffic Benchmark’s Throughput

(where all the samples have been obtained as the aver-
age over 10 runs all done with different pseudo-random
seeds) we see that, unless for the case of 4 multi-
threaded kernels (each running 8 worker threads), the
additional latency for reaching the completion of the
simulation run, compared to the traditional case of
single-threaded kernel, is no more than 13%. This
is an indication of limited performance intrusiveness
by the top/bottom-half architecture while managing
the input/output queues of the LPs, as well as lim-
ited performance intrusiveness by other synchroniza-
tion mechanisms (e.g. for the access to the MPI layer),
at least when the scale of the multi-threaded configu-
ration is bounded by the value 4. On the other hand,
the multi-threaded configuration with 4 kernels and 8
worker threads for each kernel exhibits a non-minimal
overhead (on the order of 25%).

We note that, although the workload is constant,
small fluctuations due to the probability distribution
ruling the generation of the events can arise, which are
therefore captured by our symmetric multi-threaded
architecture. Nevertheless, this sensibility enhances
the reassignment overhead, as long as the time spent
in this operation is not rewarded by the new worker
threads’ configuration. This is more likely to occur
exactly when the average number of worker threads
per kernel instance gets increased. In addition, we note
that these data have been achieved by considering a
model with medium-to-fine event granularity, on the
order of 30/40 microsecs, thus further supporting the
viability of our proposal, since applications exhibiting
coarser-grained events would absorb better the actual
overhead of the multi-threaded architecture.

Also, we note that the parallel runs provide a super-
scalar speedup with respect to the serial executor
(based on the calendar-queue scheduler), which indi-
cates that the experimentation has been carried out
when considering competitive parallel runs.

For completeness, in Figure 3 we also report the
observed values for rollback frequency and rollback
length for the PCS application benchmark. By
these data we can observe how the symmetric multi-
threaded kernel tends to exhibit a slightly throttled ex-
ecution profile, compared to the single-thread case. In
particular, we note a clear reduction of the rollback fre-

quency, with a less significant increase of the rollback
length. For the case of the symmetric multi-threaded
configuration with 4 kernels, such a throttling is an
expression of the above noted overhead, which leads
to less favorable run-time dynamics.

In Figure 4 we report the results for the case of
the Traffic application benchmark. This time we have
compared the cumulated event rate by our symmet-
ric multi-threaded architecture with a classical single-
threaded organization, a serial execution of the same
application-level software running on top of a calendar-
queue scheduler, and also results of the load balanc-
ing architecture based on the migration approach pre-
sented in [PDQ11]. Again, the parallel approaches
provide a super-scalar speedup. The multi-threaded
versions of the simulation kernel provide a speedup
wrt the single-threaded one, which ranges in between
35% (for the 4 kernels configuration) and 73% (for the
16 kernels configuration).

As for the 32 multi-threaded kernels execution, we
note that the speed down is in the order of 37%. This
is related to the fact that in this configuration no ac-
tual power reallocation is possible on the 32-core server
machine that has been employed (in fact, each simu-
lation kernel must have at least one worker thread in
order to proceed in the simulation). Therefore, we are
again simply measuring the symmetric multi-threaded
architecture pure overhead.

The last comparison shown by the plots is the
one wrt the traditional load balancer. Although we
note that the load balancer configuration provides a
speedup in the order of 30% wrt the single-threaded
approach, it’s throughput is comparable with the 4
kernels multi-threaded configuration, while the 8 and
16 kernels configurations of the multi-threaded archi-
tecture are still 30% faster than the traditional load
balancer configuration.

7 Conclusions

We have here presented the design and implementa-
tion of a symmetric multi-threaded optimistic simula-
tion kernel targeted at multi-core/multi-processor ma-
chines, where, similarly to what happens in multi-core
oriented Operating Systems in terms of process man-
agement, multiple threads operate symmetrically in
order to sustain the whole workload associated with
the LPs hosted by a kernel instance. This type of or-
ganization allows to transparently scale up/down the
amount of worker threads operating within a same in-
stance of the optimistic simulation kernel. Hence, it
allows for dynamic reassignment of the computational
power, namely CPU-cores, to the different kernel in-
stances involved within the optimistic run, depend-
ing on variations of the workload associated with the
hosted LPs. Policies suited for the reassignment have
been also presented, and the whole system has been
tested with different application benchmarks.

References
[aci] Aci - dati e statistiche. http://www.aci.it/?id=54.

[atl] Atlante stradale italia. http://www.automap.it/.

[BD97] Azzedine Boukerche and Sajal K. Das. Dynamic load
balancing strategies for conservative parallel simula-
tions. In Proceedings of the 11th ACM/IEEE In-
ternational Workshop on Parallel and Distributed
Simulation (PADS), pages 20–28, 1997.

[BYC+05] David Bauer, Garrett Yaun, Christopher D.
Carothers, Murat Yuksel, and Shivkumar Kalyanara-
man. Seven-o’clock: A new distributed gvt algorithm
using network atomic operations. In In Proceedings
of the Workshop on Parallel and Distributed Sim-
ulation (PADS’05, pages 39–48. IEEE Computer
Society, 2005.

[CBP00] Christopher D. Carothers, David W. Bauer, and
S. Pearce. ROSS: a high performance modular Time
Warp system. In Proceedings of the 14th Workshop
on Parallel and Distributed Simulation, pages 53–60.
IEEE Computer Society, May 2000.

[CPF99] Christopher D. Carothers, Kalyan S. Perumalla, and
Richard Fujimoto. Efficient optimistic parallel simula-
tions using reverse computation. ACM Transactions
on Modeling and Computer Simulation, 9(3):224–
253, July 1999.

[Dan57] George B. Dantzig. Discrete-variable extremum prob-
lems. Operational Research, (5):–, 1957.

[FH97] R. M. Fujimoto and M. Hybinette. Computing global
virtual time in shared-memory multiprocessors. ACM
Transactions on Modeling and Computer Simula-
tion, 7(4):425–446, October 1997.

[Fuj90] Richard M. Fujimoto. Parallel discrete event simu-
lation. Communications of the ACM, 33(10):30–53,
October 1990.

[GT93] D. W. Glazer and C. Tropper. On process migration
and load balancing in Time Warp. IEEE Transac-
tions on Parallel and Distributed Systems, 4(3):318–
327, 1993.

[HN10] Tsuyoshi Hamada and Keigo Nitadori. 190 tflops as-
trophysical n-body simulation on a cluster of gpus. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, pages
1–9. IEEE Computer Society, 2010.

[Jef85] David R. Jefferson. Virtual Time. ACM Transactions
on Programming Languages and System, 7(3):404–
425, July 1985.

[KB02] Sunil Kandukuri and Stephen Boyd. Optimal power
control in interference-limited fading wireless chan-
nels with outage-probability specifications. IEEE
Transactions on Wireless Communications, 1(1):46–
55, 2002.

[lCsLpY+11] Li li Chen, Ya shuai Lu, Yi ping Yao, Shao liang Peng,
and Ling da Wu. A well-balanced Time Warp system
on multi-core environments. In Proceedins of the 25th
ACM/IEEE Workshop on Principles of Advanced
and Distributed Simulation (PADS), pages 154–162,
2011.

[LL91] Y. B. Lin and E. D. Lazowska. Processor schedul-
ing for Time Warp parallel simulation. In Advances
in Parallel and Distributed Simulation, pages 11–14,
1991.

[LW11] Qi Liu and Gabriel Wainer. Multicore acceleration of
discrete event system specification systems. SIMU-
LATION, 2011.

[Mil10] Ryan James Miller. Optimistic Parallel Discrete
Event Simulation on a Beowulf Cluster of Multi-core
Machines. Master Dissertation, Cicinati University,
2010.

[MMW96] Dale E. Martin, Timothy J. McBrayer, and Philip A.
Wilsey. WARPED: A time warp simulation kernel
for analysis and application development. In HICSS
’96: Proceedings of the 29th Hawaii International
Conference on System Sciences (HICSS’96) Volume
1: Software Technology and Architecture, page 383.
IEEE Computer Society, 1996.

[MW95] Larry Mellon and Darrin West. Architectural op-
timizations to advanced distributed simulation. In
Proceedings of Winter Simulation Conference, pages
634–641, 1995.

[PDQ11] Sebastiano Peluso, Diego Didona, and Francesco
Quaglia. Application transparent migration of simula-
tion objects with generic memory layout. In Proceed-
ings of the 25th ACM/IEEE International Work-
shop on Principles of Advanced and Distributed

Simulation (PADS), pages 169–177. IEEE Computer
Society, 2011.

[PF08] A. Park and R. Fujimoto. Optimistic parallel sim-
ulation over public resource-computing infrastruc-
tures and desktop grids. In Proceedings of the
12th IEEE/ACM International Symposium on Dis-
tributed Simulation and Real Time Applications
(DS-RT), pages 149–156, 2008.

[PLM94] Bruno R. Preiss, Wayne M. Loucks, and Ian D. Mac-
Intyre. Effects of the checkpoint interval on time and
space in Time Warp. ACM Transactions on Mod-
eling and Computer Simulation, 4(3):223–253, July
1994.

[PVQ09] Alessandro Pellegrini, Roberto Vitali, and Francesco
Quaglia. Di-dymelor: Logging only dirty chunks for
efficient management of dynamic memory based opti-
mistic simulation objects. In Proceedings of the 23rd
ACM/IEEE Workshop on Principles of Advanced
and Distributed Simulation (PADS), pages 45–53.
IEEE Computer Society, 2009.

[QPV11a] F. Quaglia, A. Pellegrini, and R. Vitali.
ROOT-Sim: The ROme OpTimistic Simulator:
http://www.dis.uniroma1.it/∼hpdcs/root-sim/,
October 2011.

[QPV11b] Francesco Quaglia, Alessandro Pelle-
grini, and Roberto Vitali. ROOT-
Sim: The ROme OpTimistic Simulator:
http://www.dis.uniroma1.it/∼hpdcs/root-sim/,
October 2011.

[QS03] Francesco Quaglia and Andrea Santoro. Non-blocking
checkpointing for optimistic parallel simulation: De-
scription and an implementation. IEEE Transactions
on Parallel and Distributed Systems, 14(6):593–610,
June 2003.

[Qua01] Francesco Quaglia. A cost model for selecting check-
point positions in Time Warp parallel simulation.
IEEE Transactions on Parallel and Distributed Sys-
tems, 12(4):346–362, February 2001.

[RA94] Robert Rönngren and Rassul Ayani. Adaptive check-
pointing in Time Warp. In Proceedings of the 8th
Workshop on Parallel and Distributed Simulation,
pages 110–117. Society for Computer Simulation, July
1994.

[RA97] Robert Rönngren and Rassul Ayani. A comparative
study of parallel and sequential priority queue algo-
rithms. ACM Transactions on Modeling and Com-
puter Simulation, 7(2):157–209, 1997.

[RLAM96] Robert Rönngren, Michael Liljenstam, Rassul Ayani,
and Johan Montagnat. Transparent incremental state
saving in Time Warp parallel discrete event simula-
tion. In Proceedings of the 10th Workshop on Par-
allel and Distributed Simulation, pages 70–77. IEEE
Computer Society, May 1996.

[SQ10] Tiziano Santoro and Francesco Quaglia. A low-
overhead constant-time ltf scheduler for optimistic
simulation systems. In IEEE Symposium on Com-
puters and Communications (ISCC), page 948, 2010.

[TQ08] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic
memory logger and restorer library for optimistic
simulation objects with generic memory layout. In
Proceedings of the 22nd ACM/IEEE International
Workshop on Principles of Advanced and Dis-
tributed Simulation (PADS), pages 163–172. IEEE
Computer Society, 2008.

[tra] http://www.autostrade.it/studi/studi traffico.html.

[VPQ10] Roberto Vitali, Alessandro Pellegrini, and Francesco
Quaglia. Autonomic log/restore for advanced op-
timistic simulation systems. In Proceedings of
the 18th Annual IEEE/ACM International Sym-
posium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MAS-
COTS), pages 319–327. IEEE Computer Society,
2010.

